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INSIGHTS FROM NORTH RHINE-WESTPHALIA, GERMANY 

 

Abstract 

We analyze ecological improvement potentials of agricultural landscapes in North Rhine-

Westphalia, Germany. Using an eco-efficiency approach, we model agricultural landscapes at a 

20km² hexagonal grid. Ecological output is captured by indicators based on agricultural land cover 

data from the Integrated Administration and Control System. We derive measures for landscape 

configuration and composition including a Shannon crop diversity index, edge density, grassland 

shares, ecological focus areas, and landscape elements. We approximate economic output 

potential using local standard farmland values. Ecological improvement potentials are measured 

against a non-convex frontier estimated with the non-parametric, robust order-m estimator. We 

find overall high eco-efficiency of the agricultural landscapes; yet for the given economic output 

potential, landscapes could improve in the ecological direction. We detect spatially concentrated 

improvement potentials for single ecological indicators. Our results underline that eco-efficiency 

requires coordination at the landscape scale where directional improvement potentials can help 

designing locally adapted strategies. 

 

Keywords: agricultural landscapes, eco-efficiency, ecological improvement potentials, IACS 

data, spatial patterns 

1 Introduction  

The transition to a low-carbon, bio-based and circular economy is seen as an important step 

towards a more sustainable future, creating, however, new demands and challenges for 

agricultural production systems. In fact, increased demand for fuel, fiber and food means 

increasing ecosystem service extraction (Popp et al., 2014).  

Farms operate in the complex social-ecological system, i.e., farming means extracting and 

marketing ecosystem services food, fiber and fuel, and providing maintenance by interacting with 

the natural system (cf. McGinnis and Ostrom, 2014; Meyfroidt et al., 2022). That is, core land use 

and management decisions by farms can have adverse effects on ecosystem functioning.  

Currently, widespread intense and large-scale agricultural production systems substantially 

contribute to biodiversity losses and land degradation by creating homogenous agricultural 

landscapes with larger field sizes (Qiu et al., 2015; Sklenicka et al., 2014). Also, groundwater 

contamination from nutrient leaching, for instance, induced by intense fertilization and cover-free 

periods, and other adverse impacts on water cycle functioning harm the ecosystem’s functionality 

(Chaplin-Kramer et al., 2019). Thus, transforming agricultural production systems towards more 

sustainable ones must be part of the transition toward a bio-based circular economy.  

The structure of agricultural landscapes plays thereby an important role as the composition and 

configuration determine the local ecosystem’s functionality and thus the respective production 

potential. Well documented is that agricultural landscapes of multifunctional composition with 

diverse types of land cover and use can support and stabilize ecosystem service provision 

(Meyfroidt et al., 2022). For instance, an improved habitat provision for natural enemies of pests 

offers more robust crop production (Redlich, Martin and Steffan‐Dewenter, 2021; Zhang et al., 

2018). Also water and nutrient cycling, soil formation and retention may improve with 

improvement potentials for fertilizer and nutrient efficiency (Bethwell et al., 2021; Weibull, 

2003).  In addition, sustainable designs of multifunctional agricultural landscapes incorporate land 

rehabilitation, food security, and biodiversity conservation, as well as climate change mitigation 

and adaptation (Scherr, Shames and Friedman, 2012). 
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Economic pressure, but also agricultural policy trends with low adoption rates of agri-

environmental programs have induced trends toward homogenous landscapes (Baylis et al., 

2016). Sustainable farming practices or systems mainly targeting at improving ecosystem 

functionality, for instance, wider crop rotations or organic farming, offer the potential to 

counteract these trends but often cannot maintain yield levels (Meemken and Qaim, 2018) or even 

may cause land conversion (García et al., 2020). However, the functionality of the ecosystem 

serves as a base of production and ecosystem withdrawal (Bennett et al., 2015). Thus, overcoming 

the perceived trade-off between supporting ecosystem functionality at the expense of productivity 

becomes inevitable (Pretty, 2018). 

Ecosystem service provision capacities and functionality of landscapes remain hard to assess, 

challenging the evaluation of suggested practices for overcoming these trade-offs (Wolff et al., 

2021; Cord et al., 2017). Various indicators have been discussed, for instance, agricultural yield 

levels have been used as productivity indicators (Bethwell et al., 2021; Kanter et al., 2018), while 

quantitative landscape metrics have been used to describe a landscape’s structure (Uuemaa, 

Mander and Marja, 2013). These metrics or indicators capture well single dimensions of the 

complex ecosystem and its functionality but seem limited given the multi-dimensional nature of 

ecosystem service provision of the social-ecological system (Bethwell et al., 2021). 

 

In this paper, we target at addressing this gap and propose a combined view of economic and 

ecological output generating potentials to assess agricultural landscapes’ potential for ecosystem 

service provision using an eco-efficiency approach. We aim to evaluate agricultural landscapes in 

the German Federal State of North-Rhine Westphalia (western Germany) by quantifying their 

ecological improvement potential while acknowledging the respective economic output potential 

using the eco-efficiency score, i.e., the distance of observed output of the location towards the 

highest one in the sample (best-practice). We argue that the eco-efficiency approach is superior 

to single indicators by linking impacts of economic performance on the environment (Caiado et 

al., 2017; Mickwitz et al., 2006; Chen and Delmas, 2012) and offers systematic monitoring for 

policy makers at the regional scale (Mickwitz et al., 2006). Typically, eco-efficiency approaches 

have been applied to measure improvement potentials at the decision-makers level, for instance, 

to measure farms’ improvement potentials in the economic and ecological output (Asmild and 

Hougaard, 2006; Asmild, Baležentis and Hougaard, 2016). This approach, however, has rarely 

been applied for meso-economic level of analysis, the perspective we take in this paper. For 

instance, in Italy, agricultural landscapes with high economic production and nature conservation 

regions could be identified (Coluccia et al., 2020). For the European Union regions with low labor 

and high capital intensity, lower improvement potentials (higher eco-efficiency) could be 

identified (Grzelak et al., 2019). However, no distinction in which direction the improvement 

potentials are higher was offered.  

2 Methodology 

2.1 Eco-efficiency framework 

We base our analysis on the eco-efficiency framework by Schmidheiny and Zorraquin (1998), 

further developed by Kuosmanen (2005) and Kuosmanen and Kortelainen (2005). We focus on 

the ecosystem function perspective with agricultural landscapes maximizing ecosystem functions 

for given economic value added.  

We consider land use and land management decisions by a social planner at the landscape level. 

These decisions concern agricultural economic output (𝑦𝑒𝑐𝑜𝑛 ∈ ℝ𝐾) and ecosystem functions 

(𝑦𝑒𝑐𝑜𝑙 ∈ ℝ𝐿) for given agricultural land (𝑥 ∈ ℝ). The provision of these outputs is assumed to be 

costly in the sense that an increase in one dimension may cause a loss in the another. The 

production possibility set describing the set of all feasible combinations of economic outputs and 
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ecosystem functions that can be provided given the land input is defined as Ψ =
{(𝑥, 𝑦𝑒𝑐𝑜𝑙, 𝑦𝑒𝑐𝑜𝑛)|(𝑦𝑒𝑐𝑜𝑛, 𝑦𝑒𝑐𝑜𝑙) 𝑐𝑎𝑛 𝑏𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑤𝑖𝑡ℎ x}.  

The actual level of ecosystem functions provided may, however, vary between agricultural 

landscapes for identical levels of economic output. Further, ecological outputs are not marketed, 

non-excludable (access with zero marginal costs), and may offer rival benefits. Thus, supply and 

demand may not be at welfare-maximizing levels (Romstad, 2008). In short, agricultural 

landscapes may not achieve Pareto-optimal levels of economic output and ecosystem functions 

but may rather indicate some degree of improvement potential (inefficiency).  

We focus on improvement potentials in terms of ecosystem functions and following Kuosmanen 

and Kortelainen (2005), we classify a unit as eco-efficient if is not possible to increase any 

ecosystem function without decreasing economic outputs or increasing any other ecosystem 

function. Thereby, we treat all ecological outputs with the same weight and impose no valuation 

on the single ecological outputs.  

Figure 1 illustrates our concept for two ecosystem functions 𝑦𝑒𝑐𝑜𝑙,1 and 𝑦𝑒𝑐𝑜𝑙,2. The best-practice 

frontier provides attainable combinations of these ecosystem functions for a given level of 𝑦𝑒𝑐𝑜𝑛. 

If the level of provided ecosystem functions is below frontier levels, improvement potentials exist 

and various paths to achieve the frontier may be feasible. 

 

 

Figure 1: Joint generation of ecological and economic outputs and ecological improvement 

potentials  

We measure these improvement potentials using the distance to the frontier in the direction of 

ecosystem functions using the directional distance function (DDF) introduced by Chambers, 

Chung and Färe (1996). For unit 𝑖, directional improvement potentials 𝛽𝑖 are  

𝛽𝑖(𝑦𝑒𝑐𝑜𝑙 , 𝑦𝑒𝑐𝑜𝑛|𝑑) = sup {𝛽𝑖 > 0|(𝑦𝑒𝑐𝑜𝑙 + 𝛽𝑖𝑑, 𝑦𝑒𝑐𝑜𝑛) ∈ Ψ}, (1) 

where 𝑑 ∈ 𝑅𝐿 is a pre-specified directional vector, and 𝛽 measures the distance to the frontier 

along the path defined by 𝑑 (Daraio and Simar, 2014).  

We consider two settings indicated in Figure 1: First, setting 𝑑 = 𝑦𝑒𝑐𝑜𝑙, we consider the 

simultaneous and proportional increase of all ecosystem functions corresponding to the radial 

approach by Farrell (1957). That is, with a fixed ratio of provided ecosystem functions, their levels 

are increased until a landscape is located on the frontier. Second, we consider the distance to the 

frontier in the direction of each ecosystem functions separately. Thus, we set 𝑑𝑙 > 0 for ecosystem 

function 𝑙, and zero otherwise. For instance, the directional distance for ecosystem function 𝑙 = 1 

is derived using 𝑑 = (𝑑1 > 0,0,0, … , 𝑑𝐿 = 0) without altering the provision of other ecosystem 

functions or economic outputs. (i.e., the vertical improvement in Figure 1).  
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2.2 Study area 

The Federal state of North-Rhine Westphalia is particularly suitable for our analysis as it is 

characterized by a substantial share of high-intensity managed agricultural land (approx. 43% of 

the total land), heterogeneous farm and size structures, bioenergy production, and lignite mining 

areas (Landwirtschaftskammer Nordrhein-Westfalen, 2020). Trends of increasing farm sizes go 

along with changes in the landscape configuration through the increased scale of the operation 

(Noack et al., 2021). Thereby, large farms are associated with large fields and reduced crop 

diversity, and therefore with lower amounts of edge habitat relative to the crop area with 

demonstrably negative effects on biodiversity (Samberg et al., 2016; Fahrig et al., 2015; Batáry 

et al., 2017). With the lignite phase-out, the respective regions became priority regions towards a 

transformation to a sustainable, low-carbon and circular bioeconomy (Stark et al., 2021; MKW 

NRW, 2012). These landscapes were, however, created after the mining process with the aim of 

renaturation at high production potentials. Whether these high productivity agricultural 

landscapes are as ecologically efficient as other regions in the same state under the same 

governance structures remains and is tackled in the spatial pattern analysis omitted from this 

conference paper for brevity. 

2.3 Indicator selection and calculation 

To identify locally adapted ecological improvement potentials, we use a 20 km² hexagonal grid 

to represent the landscape level as shown in Figure 2. Unlike potential units of analysis following 

administrative borders, e.g., municipalities, that vary in size and form, a hexagonal grid provides 

a smooth surface and have therefore been used in landscape analyses (Birch, Oom and Beecham, 

2007; Wolff et al., 2021). 

We consider two different data sources: ecological output indicators are based on the 2019 

Integrated Administration and Control System (IACS). IACS is based on the farmers’ reported 

crop choices used to determine the annual direct EU CAP payments and provides spatially explicit 

information on agricultural land use on a plot level including ecological focus areas. Economic 

output potential of agricultural landscapes is approximated using local standard farmland values 

(BORIS, Bodenrichtwertinformationssystem). Standard land values are determined by local land 

valuation committees for grassland and arable land, and other land use types based on transactions 

in the same area in the two years prior to the reporting year. Transaction prices are corrected for 

transaction-specific particularities, e.g., markdowns/markups for soil conditions.  
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Figure 2: Samples of the distribution of cropland, grassland and ecological focus areas and 

landscape elements within a hexagon for the 1) Rheinische Revier and 2) Münsterland 

Economic output 

To approximate the economic output potential of an agricultural landscape, we follow the 

Ricardian modeling framework introduced by Mendelson, Nordhaus and Shaw (1994) and rely 

on the value of the land of the analyzed landscapes as an economic output indicator. Following 

Mendelson, Nordhaus and Shaw (1994), we argue that land values represent the expected present 

value of future returns of land use including the full range of potential adaptations to changing 

climate conditions. Therefore, land values account for today's economic outputs and future 

economic output potentials. 

We rely on standard land values derived by local land valuation committees for land value zones, 

which are compact and granular areas with homogenous agronomic and market-microstructural 

characteristics. Land values are observed for 4,527 land value zones (average size: 9 km²). For 

each hexagon, we calculate the weighted average standard land value with weights corresponding 

to the shares of the respective land use types (arable, grassland). 

Land values are suitable for our cross-sectional analysis as they are less sensitive to shocks and 

to transaction specificities, such as buyer/seller-specific search costs and market power 

considerations (Balmann et al., 2021). Land values may, however, be sensitive to off-farm 

influences and non-agricultural factors, e.g., land development options (Ortiz‐Bobea, 2020). We 

therefore exclude hexagons with low levels of agricultural land use (<5%) or with land values 

suggesting reflecting option values for potential rezoning from the analysis.  

Ecosystem function indicators 

Within the eco-efficiency framework, economic output is combined with ecosystem functions a 

landscape can provide. Agricultural landscapes are human-environment systems where the 

provision of ecosystem functioning rely on the modification and management of the ecosystem 

(Bethwell et al., 2021). Such agro-ecosystems are managed ecosystems where multiple actors, 
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primarily farmers, interact which can lead to positive or negative environmental impacts (Petz and 

van Oudenhoven, 2012; Zhang et al., 2007). Using multiple indicators, we want to approximate 

ecosystem functioning by incorporating landscape metrics as proxies for landscape composition 

and configuration. Composition thereby describes number and proportion of land cover/use types 

in or of a landscape, whereas configuration describes the spatial arrangement of land cover/use 

types (Fahrig et al., 2011). Landscape metrics consider landscape patterns and have been 

successfully used to as indicators for landscape functions (Uuemaa, Mander and Marja, 2013). 

These can include habitat functions (biodiversity, habitats), landscape regulating functions (fire 

control, microclimate control, etc.), and information functions (landscape aesthetics).  

We consider four agro-ecological indicators at the landscape level indicating agricultural 

landscape composition (SDI, share of grassland, share of EFAs) and configuration (edge density), 

summarized as agricultural landscape heterogeneity. A heterogeneous landscape structure can 

benefit, for example, species richness (Fahrig et al., 2011) and increased yields (Burchfield, 

Nelson and Spangler, 2019) at the same time. In general, a multifunctional agricultural landscape 

can provide multiple ecosystem functions (Bennett et al., 2015).  

Shannon Diversity Index (SDI)  

The SDI measures agrobiodiversity and compositional heterogeneity (Fahrig et al., 2011; Uthes, 

Kelly and König, 2020). We consider land uses with 210 crop types, 5 variations of grassland and 

29 semi-natural habitats, i.e., it incorporates the whole agricultural landscape and the total utilized 

agricultural area (UAA). The SDI reflects richness and abundance calculated as 

𝑆𝐷𝐼 =  − ∑ 𝑝𝑖 ln 𝑝𝑖

𝑛

𝑖=1

 

where 𝑝𝑖= share [%] of agricultural land use type/land use type and usage 𝑖 in utilized agricultural 

area. Thus, higher values of the SDI correspond to richer crop diversity. 

Grassland share 

Grasslands provide a broad range of ecosystem functions, such as filter or retention functions, 

carbon storage, habitat provision, maintaining biodiversity, and recreational services (Schwieder 

et al., 2022). Grassland is potentially used more extensively compared to intensively farmed 

cropland (Barraquand and Martinet, 2011). In contrast to high-diversity grasslands, intensively 

farmed grasslands are characterized by increasing grazing pressure and mowing frequency, use of 

fertilizers and herbicides, and reseeding after plowing (Batáry, Matthiesen and Tscharntke, 2010). 

However, the IACS data does not include specifications on management practices for grassland. 

To represent the difference in the ecological value of grassland compared to cropland, we use the 

grassland share of the agricultural area. 

Edge density 

Edges of crop- and grassland plots serve as contact surfaces between agricultural (plot-to-plot 

edges) and other neighboring land uses (plot outline edges) and can be beneficial to habitat 

diversity, e.g., pollinator abundance (Tscharntke et al., 2021). Thus, higher edge density serves 

as an indicator of greater landscape heterogeneity (Uthes, Kelly and König, 2020). Edge density 

is related to plot size and shape and increases with higher shape complexity of a polygon. In 

addition, higher edge densities are known to enhance yields (Martin et al., 2019). High edge 

densities support shorter travel distances and/or greater resource complementation between 

habitats and crops for different species (Martin et al., 2019). We calculate the edge density as 

kilometers per agricultural hectares (cropland and grassland only) derived from individual plot 

edges. Thereby, plot-to-plot edge lengths is counted only once to avoid overestimation. 

Share of ecological focus areas 

Ecological focus areas (EFAs) serve as semi-natural habitat and increase landscape heterogeneity. 

They include linear or patchy landscape elements, such as hedges and woody or herbaceous 
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patches. They provide shelter and shadow to a variety of animals, can influence the micro-climate, 

and provide some protection against wind erosion (Uthes, Kelly and König, 2020; Tscharntke et 

al., 2021). In addition, EFAs work as connective elements in the landscape, providing corridors 

for movement or islands of breeding and nesting to species (Burel and Baudry, 2005). We consider 

all landscape elements and selected EFAs, including fallow land and plots taken out of production 

as semi-natural. We calculate the share of EFAs per total UAA using weighted area values with 

weights corresponding to their ecological value according to the CAP Greening framework 

(German Federal Environment Agency, 2014).  

2.4 Empirical implementation 

Frontier estimation 

Estimating the DDF (eq. 1) requires knowledge about the frontier, i.e., the upper boundary of the 

production possibility set Ψ, which is unfortunately unknown and needs to be estimated. To 

estimate simultaneously the efficient frontier and the landscapes’ improvement potentials, we use 

the fully non-parametric, robust order-m estimator introduced by Cazals, Florens and Simar 

(2002) extended by Simar and Vanhems (2012) to the directional distance approach.  

The idea is to estimate the frontier out of observed data by enveloping observed combinations of 

(𝑦𝑒𝑐𝑜𝑙, 𝑦𝑒𝑐𝑜𝑛). In contrast to full frontier approaches, such as DEA or FDH, order-m is a partial 

frontier estimator and estimates the expected optimal output level achieved by 𝑚 randomly drawn 

peers. As a result, the estimated frontier may not necessarily envelope all observations but allows 

levels of (𝑦𝑒𝑐𝑜𝑙, 𝑦𝑒𝑐𝑜𝑛) with a low probability to be located beyond the frontier.  

Cazals, Florens and Simar (2002) estimate this expected optimal level using a Monte-Carlo 

procedure, in which the DDF for observation 𝑖 is derived using a bootstrap procedure with 𝐵 (𝑏 =
1, … , 𝐵) frontier estimations. For each 𝑏, 𝑚 observations with higher levels of economic output 

than observation 𝑖 are drawn with replacement. The maximum possible expansion of ecosystem 

functions for 𝑖 is calculated relative to this sample. Averaging over the B replication provides 𝑖’s 

value of the DDF. For details, we refer to Daraio and Simar (2014). 

The order-m estimator brings several advantages making it particularly appealing for our analysis: 

first, no pre-specified functional form is required to model the relationship between economic 

outputs and ecosystem functions at landscape level, for which otherwise a theoretical basis would 

be missing. Second, the estimator has a reduced sensitivity against outliers as points are allowed 

to be located outside the frontier (Simar and Vanhems, 2012). Third, order-m allows a non-convex 

production possibility set, which has been suggested for ecosystem functions (see Ruijs et al., 

2013; Tschirhart, 2012) and may also arise due to the use of ratio-measures (Olesen, Petersen and 

Podinovski, 2015, 2022), as in our application.  

The empirical implementation relies on the approach by Daraio, Simar and Wilson (2020), who 

derive a numerically stable approach to obtain exact directional distance estimates. Following 

Daraio, Simar and Wilson (2020), we estimate the model for 𝑚 = {50,75,100, … ,5000} and 

select 𝑚 = 3500 as the share of superefficient observations is stable for higher values of 𝑚. We 

set 𝑑 = 𝑦𝑒𝑐𝑜𝑙 to obtain the distance as a proportional increase in the direction of all outputs, and 

𝑑𝑙 = 𝑦𝑒𝑐𝑜𝑙,𝑙 to estimate ecosystem function-specific improvement potentials.  

Spatial pattern analysis 

[Omitted for brevity] 

Data treatment and descriptive statistics 

Our initial dataset of 1,531 hexagons covers around 90% of the study region. Considering only 

cells with at least 5% under agricultural land removes 70 hexagons with less than 100 ha of 

cropland or grassland. Another hexagon is removed as an outlier due to its extremely high land 

value likely reflecting option values for potential rezoning.  
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The resulting dataset contains 1,460 observations, covering 85.6% of the state's area. The dataset 

shows substantial variation across our study region, with land values varying between around 10 

and 110 thousand €/ha (see Table 1). We note a bimodal distribution of land values with hexagons 

clustered around 20 and 75 thousand Euro per hectare, respectively, where the former cluster is 

located in particular in the more mountainous south-eastern part of the state. This division is also 

visible in the other indicators: whereas the south-east is predominantly characterized by high 

grassland shares and higher edge densities, the western and the northern part of the state show 

higher shares of cropland and higher crop diversity. Concerning EFAs, we observe a strong 

variation across the state with some small focus areas in the south-west, north, and north-east. 

Table 1: Descriptive statistics 

N=1,460 Unit Mean Med. SD Q1 Q99 CV 

Economic output        

Land values €/ha 50,601 52,409 26,597 11,956 108,058 0.526 

Ecosystem function indicators       

Shannon diversity Index 2.790 3.070 0.689 1.096 3.650 0.247 

Grassland share % 36.763 23.763 30.557 1.356 99.916 0.831 

Edge density 100 Km/ha 25.744 25.000 6.478 14.000 46.410 0.252 

EFAs 
Weighted % of 

UAA  
2.657 2.342 1.733 0.280 7.960 0.625 

3 Results and discussion 

3.1 Ecological improvement potentials 

Estimates of the order-m distance functions are summarized in Table 2. The upper part of Table 

2 shows the estimates transformed into Shephard efficiency scores to indicate the degree in 

percentages to which the units have achieved the frontier. The lower part summarizes the 

improvement potentials in units of the indicators. Thus, higher values in the upper half indicate 

that a region is providing higher levels of ecosystem functions for a given level of economic 

output, whereas higher values in the lower half indicate higher improvement potentials.  

Results for the radial efficiency scores indicate that the units can increase all ecosystem functions 

indicators simultaneously by around 6% on average (mean: 0.94) while keeping economic output 

levels constant. Thus, ecosystem function provision seems to be close to optimal levels on 

average. Results suggest, however, substantial variation between the units as improvement 

potentials of 10% or more is indicated for a quarter of the units, whereas around 10% of the units 

are located beyond the frontier (see maps in Figure 3). 

We note that radial measures indicate high efficiency if an observation performs well in at least 

one ecosystem function indicator dimension. Thus, units with a very high grassland share obtain 

high radial efficiency scores, whereas units with a low share indicate a substantially higher 

variation in the efficiency measure. In turn, as the grassland share is inversely related to the SDI, 

efficiency scores are rather high for low SDI values and have a higher variation for high SDI 

values. 

For the directional efficiency measures, where the improvement potentials are determined by 

improving each indicator separately, results show substantially higher improvement potentials 

(see maps 2 to 5 in Figure 3). The lowest average improvement potentials are indicated for the 

Shannon diversity index and edge density, where indicators could be improved by 29 to 40% on 

average.   

Results indicate that the analyzed units could increase their respective grassland share on average 

by more than 50%, corresponding to an increase of around 34% percentage points, keeping all 
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ecosystem function indicators and the economic output constant. While the highest variation in 

the efficiency scores is found for the EFAs, the actual improvement potentials show substantially 

less variability. This results from the high skewness of the indicator and few units with 

substantially higher values in this dimension dominate the frontier.  

Table 2: Descriptive statistics of radial and directional efficiency scores 

 Mean Median SD Q1 Q99 CV 

Radial efficiency score 0.937 0.958 0.066 0.765 1.005 0.07 

Directional efficiency scores (%) 

Shannon diversity 0.712 0.780 0.193 0.263 0.979 0.271 

Grassland share 0.475 0.415 0.289 0.027 1.000 0.608 

Edge density 0.604 0.600 0.147 0.322 0.967 0.243 

EFAs 0.272 0.218 0.204 0.022 0.995 0.752 

Directional improvement potentials in units of the indicators 

Shannon diversity (index points) 1.172 0.886 0.822 0.080 3.068 0.701 

Grassland share (%) 35.53 32.554 23.345 0.000 86.706 0.657 

Edge density (100 km/ha) 18.469 17.994 9.607 1.000 36.837 0.520 

EFAs (% of UAA) 8.240 8.845 3.323 0.031 12.806 0.403 

 

 

3.2 Spatial patterns 

[Spatial pattern analysis and illustration with sample regions omitted for brevity] 

3.3 Discussion 

We find an overall high eco-efficiency in the agricultural landscapes in North Rhine-Westphalia 

with efficiency scores above 85% for 90% of the observations. That is, for the given level of 

economic outputs, all ecological output indicators could increase simultaneously by around 15% 

on average. Despite the overall high average, results suggest substantial and spatially concentrated 

improvement potentials for single ecological outputs. 

We find high improvement potential for EFAs, whereby particularly landscape elements like 

hedges play an important role in habitat provision for different species (Tscharntke et al., 2021). 

Between single ecological dimensions, various co-benefits exist. For example, if the amount of 

EFAs is increased through the establishment of hedges at field edges, the edge length, i.e., density 

is increased as well as the agricultural landscape diversity. Increasing crop diversity can be 

achieved through dividing plots and thus decreasing plot size which goes along with increasing 

edge length. Thereby, more edges provide the potential for implementing landscape elements such 

as hedges and marginal (flower) strips for increasing semi-natural habitat. Overall, meeting the 

different improvement potentials in one or more directions is likely to increase landscape 

heterogeneity which can be beneficial for several ecosystem functions including increased yields 

and habitat provision (Burchfield, Nelson and Spangler, 2019; Tscharntke et al., 2021). In 

addition, we identify potential conflicts within the ecological dimension. For instance, a low 

improvement potential for the share of grassland relates to the high improvement potential of the 

share of EFAs.  
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Figure 3: Maps of eco-efficiency scores for 1) radial efficiency score 2) SDI, 3) grassland 

share, 4) edge density and 5) share of EFAs 

 

We note that eco-efficiency does not imply sustainability (Mickwitz et al., 2006; Kuosmanen, 

2005). Both sustainable development and eco-efficiency are concepts introduced from outside to 

the local policy context. To implement these concepts, they would have to be interpreted and 

introduced into the local decision-making process (Mickwitz et al., 2006). The assessment on the 
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landscape level thereby calls for collective management of single actors (e.g., farmers). 

Sustainable development is one of the key purposes of the Common Agricultural Policy (CAP) 

within the European Union (EU) but targets farmers as decision-makers and farms as operating 

units instead of landscapes as spatial units. 

We also note the following limitations of our study. First, ecosystem function indicators are 

limited in their informative value. For example, IACS data provides no information on the 

management intensity of grassland albeit extensively manage grasslands potentially provides 

higher ecological value (Barraquand and Martinet, 2011; Schwieder et al., 2022). The SDI lacks 

information on the spatial distribution of agricultural plots and presents the total extent of each 

category (Dušek and Popelková, 2017; Fjellstad et al., 2001). Thereby, it depends on the overall 

share of agriculture and number of crops within a hexagon. Spatial crop species diversity  strongly 

increases with the sample size (i.e., the share of agriculture within a hexagon) (Merlos and 

Hijmans, 2020; Kindt and Coe, 2005). Second, our empirical approach identifies only 

improvement potentials relative to a best practice frontier determined by the sample and therefore 

likely underestimate the true improvement potentials. Lastly, while our analysis does not require 

any ex-ante assumptions concerning a weighting of different ecological output indicators, the 

resulting equal weighting of the different indicators may not reflect the actual contribution to 

ecosystem functionality. 

4 Conclusions 

This paper aimed to quantify the ecological improvement potential of agricultural landscapes 

while acknowledging the respective economic output potential using an eco-efficiency analysis 

approach. Taking this combined view of economic and ecological dimensions of the ecosystem’s 

functions potential offers a more holistic view given the complexities of the social-ecological 

system. 

Results indicate overall high average eco-efficiency of agricultural landscapes in the study region. 

However, substantial improvement potentials are present in single ecological dimensions. Spatial 

clustering of improvement potentials underlines that coordination at the landscape scale is 

necessary to derive locally adapted strategies account for to natural landscape conditions to target 

such improvement potentials. The proposed eco-efficiency is scalable and may serve as a basis to 

derive and monitor such policies. 
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