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Abstract  

 

Farmers in low-income countries suffer from several challenges that prevent them from 

achieving higher yields and generating economic gains. Improved agricultural technology can 

help remove some of the existing obstacles to high agricultural productivity. This paper evaluates 

an agricultural intervention that provided groundnut farmers in rural Bangladesh with 

comprehensive recommendations on Integrated Pest Management (IPM), Good Agricultural 

Practices (GAP), and agronomical suggestions. Using reduced form econometric analyses, we 

assess the impact of the training program on input usage and yield. Our findings indicate that 

when farmers receive training on several technologies together, they tend to adopt only the low-

cost ones, making such a training program less effective due to the non-adoption of the 

potentially more beneficial higher-cost technologies. We find significant changes (based on 

recommendations) in the usage of traditional inputs, but not in new ones. The adjustments in 

traditional inputs are easier to remember and cheaper to implement. We construct a simple model 

to show that the learning costs are high for new inputs, leading to selective adoption. Policy 

recommendations include simplifying complex training into manageable components and 

implementing strategies to reduce the learning costs associated with new inputs. 
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Does Training Farmers on Multiple Technologies Deter Adoption? Evidence from a 

Farm Management Training Program in Bangladesh 
 

1. Introduction  

 

Farming households in low-income countries suffer from several challenges that prevent them 

from achieving their potential yields and generating economic gains. Good agricultural practices 

(GAP), including improved inputs, can help address some of the existing obstacles to achieving 

high agricultural productivity. Technology adoption remains low due to several factors that vary 

widely by the technology itself, cultural context, and geography (Ruzzante et al. 2021). New 

technologies may reduce welfare when demand-side (like inelastic demand, lack of infrastructure, 

absence of export markets, etc.) and supply-side constraints (such as imperfect input markets, 

liquidity constraints, lack of extension services, etc.) exist (Gupta et al. 2018).  

An all-composite intervention in the form of a training program was carried out on 

groundnut farmers in rural Bangladesh. The USAID training program was held to address the 

major constraints that groundnut farmers face in the region including diseases that affect seeds, 

plants, and harvest.1 We evaluate the impact of this program on input usage and yield by employing 

difference-in-differences (DID) econometric analyses, semi- and non-parametric techniques. Our 

analyses reveal significant changes in the usage of traditionally used inputs based on the training 

program’s guidelines, but not in the usage of newly recommended inputs.  

Learning costs can be higher for complex new inputs (Foster and Rosenzweig, 2010, 

Emerick and Dar, 2021, Jack, 2013). One of our main findings indicates that farmers 

predominantly made low-cost adjustments or changes in traditional inputs, while largely 

disregarding the high-cost recommendations. However, since the high-cost inputs were those that 

 
1 Among groundnut farmers in Tanzania, Daudi et al. (2018) highlight that pests and diseases were the main production 

constraints.  
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could potentially increase yields significantly, their non-adoption resulted in no overall impact of 

the training program on the farmers’ yields and profits.  

Several agricultural development interventions carried out by international agencies, 

governments, and NGOs do not often lend themselves to rigorous impact evaluation. Such 

interventions attempt to solve multiple challenges faced by farmers at the same time. These 

interventions often combine multiple treatments within the program, which leaves the scope for 

various levels of adoption and allows the adoption of different components. To boost agricultural 

production, recent studies of technology adoption consistently suggest the adoption of integrated 

farm management systems. However, one limitation of these studies is the absence of rigorous 

analysis on the profitability of new composite technologies (Takahashi et al. 2019). In this paper, 

we attempt to fill this gap by evaluating an intervention that includes several farm management 

recommendations on Integrated Pest Management (IPM), Good Agricultural Practices (GAP), and 

agronomical suggestions, for groundnut farmers in rural Bangladesh.   

We study why the adoption follows such a behavioral pattern where farmers choose to 

follow low-cost technologies, while not adopting the seemingly higher-cost ones. While learning 

how to use new inputs can be costly, risk and uncertainty from new technologies prevent their 

adoption (Chavas and Nauges, 2020). Farmers might also perceive adjusting traditional inputs as 

less risky than introducing entirely new practices, particularly if the intervention is on their primary 

crop. Prior evidence suggests that support services are crucial for multiple agricultural 

technologies (Khonje et al., 2018).  

A farmer who is hesitant to adopt all components of the recommendations due to 

unfamiliarity with the new technology may still implement parts of it by engaging in less costly 

activities (like setting up sticky traps). There are many low-cost activities that a farmer can choose 
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from. However, having too many low-cost activities that one can choose from might not be a good 

thing. Too many choices may result in poor decision quality due to the “choice overload”2 effect. 

Several experiments show excessive choices result in decision-makers being less motivated to 

choose, they have difficulty choosing and are unsatisfied with their choices which cumulatively 

leads to ‘decision fatigue’3 (Iyenger and Lepper 2000, Schewartz 2004).  The change in the usage 

of traditional inputs is relatively easier to remember and cheaper to implement.  

However, since starting to use new inputs like biofertilizers and trichocompost 

(trichoderma bacteria-laced compost to manage soil diseases caused by a fungus) are costly and 

perceived as risky, adoption is selective due to varying costs to farmers. The lack of adoption aligns 

with the findings of Rahman et al. (2018) and Rao et al. (2008), indicating low adoption rates of 

certain IPM components in Bangladesh and India, respectively. 4 This could be due to several other 

factors such as increased costs of production and lack of availability of new IPM products in the 

local markets. 

The training program was held to address the major constraints that groundnut farmers face 

in the region. Integrated pest management can help sustainably combat these issues and generate 

environmental benefits (Cuyno et al. 2001, Birthal et al. 2000, Mullen et al. 1997, Norton et al. 

2019, Rahman et al. 2018). According to the Environmental Protection Agency, “Integrated Pest 

Management (IPM) is an effective and environmentally sensitive approach to pest management 

that relies on a combination of common-sense practices. IPM programs use current, 

comprehensive information on the life cycles of pests and their interaction with the environment. 

This information, in combination with available pest control methods, is used to manage pest 

 
2 term first used in the book, Future Shock (1970) by Alvin Toffler. 
3 coined by the social psychologist Roy F. Baumeister  
4 Rao et al. (2008) focus on the IPM package adoption on groundnut.  
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damage by the most economical means, and with the least possible hazard to people, property, and 

the environment.” While it has been a few decades since IPM was introduced, the adoption rate 

has been very low. Many attribute this to a perceived lack of knowledge supply (Buurma et al. 

2017, Rao et al. 2008, Rahman 2022). 

This paper is particularly relevant for policymakers, program implementers, and 

agricultural and experimental economists. From the policymaker’s perspective, the primary 

objective often centers on maximizing the extensive margin — that is, expanding the reach and 

number of participants in an intervention. Accordingly, it is common practice in developing 

countries to bundle multiple recommendations simultaneously within training programs, a 

strategy that is deemed cost-effective due to its broad coverage.5   Bundling various agricultural 

practices and technologies into a single training session appears efficient, reducing logistical 

costs and ensuring that more farmers receive exposure to new methods and tools. 

However, it might be undesirable if farmers do not fully comprehend the 

recommendations and opt for the "easier" changes over more complex, but potentially more 

beneficial, ones. For program implementers, understanding the dynamics of technology adoption 

is crucial. Effective training programs must balance the depth and breadth of content to ensure 

that farmers can internalize and implement the practices being taught. Implementers must 

recognize that without ongoing support and follow-up, the initial training might not lead to 

sustained adoption of the recommended practices.  Additionally, evaluating the impact of such 

programs is challenging. Consequently, the literature on rigorous economic impact evaluations 

 
5   Some examples are as follows. The Integrated Pest Management Lab at Virginia Tech (funded by USAID) 

training modules for different crops have several recommendations (IPM IL n.d.). Otsuka and Larson (2016) discuss 

training modules prepared by Japan International Cooperation Agency (JICA) which included several 

recommendations on “seed selections, seedling preparation, transplanting, fertilizer use, water management, and 

animal traction.”  
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of similar training packages (or IPM packages) is scarce. This paper contributes by providing 

important lessons for agricultural interventions and offering insights into the effectiveness and 

limitations of bundling multiple recommendations within training programs. 

The rest of the paper is organized as follows: Section 2 provides details on the 

background of the study region in Bangladesh and about the training program. In Section 3 we 

discuss the baseline data which throws some light on the economic behaviors of the farming 

households in our study. In Section 4, we discuss the empirical strategy. The results are discussed 

in Section 5, which is followed by a final Section 6 that concludes. 

2. Setting   

Bhola district is situated in the Barisal Division of south-central Bangladesh.6  Agriculture remains 

the primary economic activity. Main crops include rice, potatoes, onions, chilies, and garlic. 

Fishing is also significant, given Bhola's proximity to the Bay of Bengal. Groundnut cultivation in 

southern Bangladesh, as in other low-income countries, suffers from several challenges that 

prevent farmers from achieving their potential yields and higher income from groundnut farming.  

The prevalent issues fall into two categories: (a) unpredictable adverse shocks like pests, diseases, 

and weather calamities, and (b) systematic poor traditional agricultural practices such as excessive 

use of certain inputs and pesticides, and inadequate spacing between plants. (Akter et al. 2010, 

Binam et al. 2004, Begum et al. 2011, Miah and Mondal, 2017, Suraya et al. 2018). 

To address these issues, the integrated pest management activities (IPMA) training 

program supported by the United States Agency for International Development’s (USAID) 

Bangladesh mission and carried out by Virginia Tech was implemented in Char Fassion upazila 

 
6 Administratively, Bangladesh is divided into divisions and further subdivided into districts. Each district is 

segmented into Upazilas, which are then divided into unions, and finally, unions are broken down into wards. 
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(subdistrict) of Bhola district in the Barisal division. The primary goal of the training program 

along with several demonstrations was aimed at strengthening activities around groundnut farming 

in the 2022-23 Dhulot (December 2022 to May 2023) season. The training program aimed to tackle 

these issues by introducing IPM activities, which is a collection of sustainable eco-friendly 

strategies for pest control, and GAP, a set of standard practices established to ensure secure and 

sustainable cultivation of crops. Thus, there were multiple informational nudges, each of which, if 

adopted by itself and in combination, is expected to impact agricultural yields and other outcomes 

of interest positively. The interactive effects of these changes are also expected to be positive.  

A total of 200 farmers were invited to participate in the training program that happened in 

November 2022, before the 2023 Dhulot planting season (January – June 2023). The training 

program was held over 5 days. About 30-40 farmers were trained each day from 9-5. The training 

was interactive and was conducted in the local language, Bengali. There were 3 components to the 

training program: information on Integrated Pest Management (IPM), Good Agricultural Practices 

(GAP), and agronomical suggestions. The session on IPM included understanding the existing 

pests and diseases of groundnut in the area and providing eco-friendly solutions to these problems. 

Some of the suggestions were preemptive, while others were provided as responses if certain pests 

showed up. For example, since root rot was reported to be a major problem in the area, the usage 

of trichocompost was recommended. Another example includes the setting up of sticky traps to 

capture insects, instead of chemical pesticides. The farmers were also explained the life cycle of 

certain common pests in the area so that they could respond accordingly. In the session on GAP, 

practices like cleaning diseased plants from the field, making proper water-draining channels, and 

maintaining enough space between plants while planting were discussed. Finally, certain 
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agronomical suggestions were made based on the local government’s recommendations regarding 

the amount of usage of fertilizers like urea, boron, and gypsum among others.  

When organizations design training programs, their objective is to maximize farmer 

adoption of the technology. As a result, they often target areas where farmers are not credit-

constrained or where households belong to higher-income groups, given their greater likelihood 

of adoption. However, this targeting approach complicates the task of evaluating the causal impact 

of training programs on farming outcomes, as finding a comparable control group becomes 

difficult.  

Similarly, in this project, the training program was chosen to be made available to farmers 

in regions where higher adoption rates were anticipated. In response to this case, the multi-arm 

control design was developed to evaluate the impact of the training program as discussed in the 

Introduction. 350 farmers were invited to the training, but only 200 attended. From these 200 

attendees, 150 farmers were randomly selected to form our “treatment” group. Technically 

speaking, the farmers who complied with the treatment assignment and attended the training 

program are known as “compliers”.   However, we will refer to them as the “Treatment” group for 

simplicity. Those who were invited but did not attend the training program will be referred to as 

non-compliers (NC). These two groups are comprised of farmers within the same union. We 

collected data on the non-compliers as well. 

The first control group comprised farmers from the same sub-district but a distinct union, 

while the second control group consisted of farmers from a neighboring sub-district with similar 

characteristics to where the intervention took place. The location of the first control group is about 

an hour away from the location of the treatment farmers (about 11 miles) and the second is about 
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an hour and a half away (about 30 miles)7.  A baseline survey was carried out before the start of 

the season in December 2022, which was followed up with another survey on the same sampled 

households after the groundnut harvest in July 2023. The two waves of groundnut household 

surveys created a panel dataset of more than 500 households for evaluating the impact of the 

training program on groundnut cultivation.  

[Figure – 1 here] 

Essentially, the issue can be viewed as a three-stage decision problem: first, the decision to 

adopt a new technology; second, determining the number of technologies to adopt; and third, 

selecting which ones to adopt. (See Figure 1). Our analysis suggests that when providing 

informational nudges on multiple technologies, farmers are likely to choose the ones perceived as 

"easier" or less costly, while wrongly assuming all technologies bring equal benefits. 

Consequently, there is a lower likelihood of adopting technologies requiring "high effort." If this 

holds, training farmers simultaneously on high-cost and low-cost technologies may deter farmers 

from adopting “more” profitable, but perceivably riskier, technologies. During a single training 

session, it becomes challenging for farmers to assess the individual benefits of each technology. 

However, costs are a well-defined factor that affects farmers in the short term, making them more 

inclined to decide on adoption based on cost considerations.  

 

3. Data  

The treatment group consists of 150 farmers (compliers) randomly selected farmers from the 200 

farmers who chose to come to the training program. The other farmers who did not comply 

comprise the group of non-compliers. The farmers who were invited for the training program were 

 
7 The travel times are approximate times required to travel in public transport, which is the main mode of travel in 

the area. Very few individuals own personal vehicles in these areas.   
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from 4 wards in Char Madras union, Char Fasson Upazila, Bhola district.8 [See Table 1] 112 and 

127 farmers were selected from 4 wards in the Osmanganj union and 8 wards from the Tazumuddin 

Upazila9, respectively as controls. Throughout the paper, T, NC, and C will be used to denote 

Treatment (Compliers), Non-compliers, and Control groups, respectively. There has been an 

attrition of only 2 farmers for the follow-up in the treatment group.  

[Table 1 here] 

While we provided training to the farmers, we are treating this initiative as an intervention for 

their households. In certain households, when the main decision-maker regarding groundnut 

(mostly the male head of the household10) was not present, the spouse of the main decision-maker 

was sent for the training. Also, in groundnut cultivation, the entire family is involved in labor-

intensive components. Hence, we focus on the household-level variables for our analysis and not 

the farmer’s demographic variables. Table 2 represents the means of the three groups and 

differences in household demographic variables between treatment and non-compliers, and 

treatment and control groups. There are no highly significant differences between the groups, 

except that the household heads in the treatment group are, on average, about four years younger 

than those in the control group.  

[Table 2 here] 

 

Table 3 represents the means of the three groups and differences in groundnut cultivation 

variables between treatment and non-compliers, and treatment and control groups. While the 

experience of the main decision-maker is not different between the three groups, the households 

 
8 Administratively, Bangladesh is divided into divisions and further subdivided into districts. Each district is 

segmented into Upazilas, which are then divided into unions, and finally, unions are broken down into wards. 
9 4 wards each from unions Chandpur and Chanchra, in Tazumuddin Upazila.  
10 While the role of females as the main decision maker regarding groundnut is not commonplace, there are some 

crops where the women in the household make the major decisions.  
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in the control group seem to have been engaged in groundnut farming for a significantly longer 

period. Groundnut is also considered to be a main source of income by more farmers who received 

the training than the other groups. In this region, plot sizes vary significantly and are often 

specialized for specific crops, which may restrict farmers from cultivating their preferred crops on 

their own land. Consequently, farmers frequently engage in leasing transactions — leasing out 

their less suitable plots while leasing in plots that are more conducive to their preferred crops. This 

practice helps explain the observed discrepancy between average land ownership and the extent of 

land used for groundnut cultivation.  

From Table 3, we can see that farmers in the treatment group have cultivated significantly 

more land than the other two groups, despite owning similar or even smaller amounts of land, 

facilitated by these leasing opportunities. The treated farmers also have significantly more plots 

and areas for groundnut cultivation. However, yield is higher in the control group, which points to 

the inverse relationship between plot size and productivity (See Table 4) (Helfand and Taylor 2021, 

Rada and Fuglie 2019). The yield is, however, similar in treatment and the non-complier groups 

(See Table 3). The higher yields observed in the control group could be due to more efficient 

farming practices or better soil conditions in their area. 

[Table 3 here] 

Table 4 represents the means of the three groups and differences in groundnut agricultural 

characteristics and practices between treatment and non-complier, and treatment and control 

groups. This table provides some explanations for the above evidence. We observe farmers in our 

treatment group use a much lower quantity of seeds per acre. Additionally, the soil in the area is 

also perceived to be more saline than the control group. The agricultural practices among the three 

groups are largely similar, with the notable exception of removing dead plants. This difference 
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may stem from varying disease incidence rates across the groups. Specifically, the treatment and 

non-complier groups likely experience higher rates of plant diseases compared to the control 

group, reducing the necessity for them to engage in cleaning dead plants. 

[Table – 4 here] 

 

The evidence suggests that the program was implemented in an area where a higher proportion of 

farmers consider groundnut cultivation their primary source of income, and thus possibly allocate 

more resources to it. Additionally, the area possibly has a higher incidence of plant diseases, which 

results in lower yields. Table 5 shows the baseline input usage of inputs (in kg/acre). Focused 

group discussions were held and depending on their current usage levels and local soil conditions, 

the farmers were recommended to adjust the levels of inputs they use, as shown in Table 5.  

[Table – 5 here] 

5. Empirical strategy  

First, we investigate the uptake of new IPM inputs, followed by the change in fertilizer usage 

following the training. We estimate the change in the amount of each fertilizer, caused due to the 

training, using the Difference-In-Difference estimation (DID) (Angrist and Pischke 2009, Card 

and Krueger 1994) strategy for each input:  

 𝑌𝑖𝑡 = 𝛼 + 𝜇𝑖 +  𝜆𝑡 + 𝛽1𝑇𝑖 ∗ 𝑡 +  𝜖𝑖𝑡  (1) 

where 𝑌𝑖𝑡 is the dependent variable, the amount of input (fertilizer) used, 𝛽1 is the coefficient of 

interest which measures the Average Treatment Effect on the Treated. 𝑇𝑖 is the dummy variable 

that equals 1 if the observation is in the treatment group and 0 otherwise. 𝑡 is the time variable 

which is equal to 0 in baseline and 1 in the follow-up.  𝜆𝑡 captures the time-fixed effects to account 

for unobserved characteristics specific to both the periods, 𝜇𝑖 captures the household-level fixed 
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effects, and 𝜖𝑖𝑡 is an idiosyncratic stochastic error term. This strategy allows us to account for time-

invariant unobservable differences between treatment and control groups. 

 After studying the impact of the training program on agronomical input use, we study the 

impact on yields. We present equation (1) for yields and estimate it again after incorporating 

controls for additional household-level demographic variables, along with cultivation and 

agricultural characteristics.  

𝑌𝑖𝑡 = 𝛼 + 𝜆𝑡 + 𝜇𝑖 + 𝛽1𝐷𝑖𝑡 + 𝛅𝑋𝑖𝑡 + 𝜖𝑖𝑡  (2) 

If the parallel trends assumption is violated, the DID estimate will be biased. According to the 

parallel trends assumption, the trends would be the same in both groups in the absence of training. 

In baseline, the yield in the treatment group (compliers) is 76 kg/acre, for non-compliers it is 85 

kg/acre, for control it is 107 kg/acre. In the follow-up, it is 125 kg/acre, 118 kg/acre and 147 kg/acre 

respectively. The household and groundnut agriculture characteristics are significantly different in 

the treated and control groups. Time-varying confounding factors and the potential sensitivity of 

the assumption to the chosen functional form of the outcome can undermine the validity of the 

parallel trends assumption. Since it is uncertain which specific functional form would ensure 

parallel trends in our analysis, we may question the validity of this assumption. It is possible that 

the parallel trends assumption does not hold. If we assume that the training had no effects on yield, 

there seems to be some other factor/factors that affected the yields positively for all these 3 groups. 

The question is whether that has impacted the treatment and control groups equally. We can 

condition on covariates and assume that parallel trends hold conditional on those covariates (Roth 

et al. 2023). The overlap condition (also known as the positivity condition) needs to hold. This 

ensures that for each treated unit with covariates 𝑋𝑖, there are some untreated units in the 

population with the same value of 𝑋𝑖 (Roth et al. 2023, Khan and Tamer, 2010). This is a strong 
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assumption. Since certain non-parametric or semi-parametric methods provide consistent 

estimation of the ATET under conditional parallel trends under weaker assumptions, we will use 

them for robustness check. Each of these ATETs carries the same meaning as the parameters in a 

two-period, two-group difference-in-differences (DID) analysis. Since there are multiple DID 

parameters involved, we describe them as heterogeneous treatment effects or heterogeneous DID. 

This approach differs from estimating a single ATET, which assumes uniformity over time and 

across cohorts. We also conduct the RA, IPW, and the doubly robust AIPW (Callaway and 

Sant’Anna 2021). We also conduct the Propensity Score Matching (PSM) and Nearest Neighbor 

Matching (NN).  

6. Results  

6.1 Input usage  

First, we discuss the adoption of IPM inputs due to the training program. We summarize the impact 

of the training on IPM-recommended inputs such as trichocompost, Dynamic, Lycomax, and other 

practices recommended during the training in Table 6. After training, only 8, 16, 4, and 11 out of 

the 148 farmers began implementing Trichoderma compost, Dynamic, Lycomax, and other IPM 

practices, respectively. Boron was utilized by 10 farmers during the baseline study, and this 

increased to 11 after training. In the case of bio-fertilizer, the number of farmers using it increased 

from 24 in the baseline to 66 after the IPMA training. Chemical pesticides remain widely used, as 

one would expect, particularly in the comparison villages. We cannot analyze the effect on the 

quantity of chemical pesticides since its unit is not well defined because of various undefined units 

such as bottles, which could be of various sizes. 

     [Table 6 here]  
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Table 7 presents the change in price of the major agronomical inputs from baseline to follow-

up for all the farmers in our dataset. Hence, broadly speaking, prices of all inputs went up except 

for TSP and Gypsum. The price of TSP remained the same, but the price of Gypsum fell in the 

follow-up. Table 8 presents the DID estimates capturing the changes in the quantity of an input 

used per acre after the treatment. The amount of Urea used by the farmers in the treatment group 

has marginally gone up by about 1 kg per acre and it is significant. The amount of TSP usage has 

also gone up by about 3 kgs per acre by the treated households. We find no evidence that the usage 

of other inputs has changed.  

[Table 7 here] 

[Table 8 here] 

 

6.2.1 Yield   

Table 9.1 reports the impact on groundnut yield per acre. We estimate an average treatment 

effect on the treated (ATET) estimator using DID estimation strategy, which gives the average 

impact of providing the IPMA training program on groundnut farmers that received the training 

program (T vs C). We present four columns, one estimated without adding any baseline variables 

in the regression analysis; second, where we estimate with the household (HH) characteristics (HH 

head age, HH head female, HH Head years of education, HH size) as controls; next, along with 

the HH characteristics, we add the cultivation and agricultural variables as controls (own land 

holding, total number of plots, plot size, if treated seed, soil salinity, drain channel, if used power 

tiller, space between saplings, and clean dead plants). Finally, in the fourth specification, we add 

the groundnut agricultural characteristics as controls. Because of multicollinearity, some of these 

variables were dropped. The magnitude of the increase in yield is positive, however it is not 
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statistically significant when we add controls. We find no evidence that there is a positive effect of 

the IPMA training program on yields in the farmers who received the training. In Table 9.2, we 

also add the first principal component11 of shocks faced by the farmers in both years as a control 

to specification (3) and see that there is no change.  

[Table 9.1 here]  

6.2.2 Robustness checks for the results on yield 

Here, we present the heterogenous/augmented TWFE model which considers interactions between 

treatment-time cohorts and time (Wooldridge 2021) along with RA, IPW, and the doubly robust 

AIPW (Callaway and Sant’Anna 2021) (Table 9.2). We present the Propensity Score Matching 

(PSM) and Nearest Neighbor Matching (NN) in Table 9.3.  

     [Table – 9.2 here]  

[Table – 9.3 here] 

7. Conclusion  

This paper evaluates the impact of a training program that provided comprehensive 

recommendations, including information on Integrated Pest Management (IPM), Good 

Agricultural Practices (GAP), and agronomical suggestions, to groundnut farmers in rural 

Bangladesh. We provide a detailed summary of the individual and household-level agricultural and 

groundnut cultivation characteristics of the farmers in the study area.  

We observe changes in the usage amounts of traditional inputs aligning with the 

recommendations; however, the adoption rates of new inputs (IPM inputs) are very low. 

Consequently, we find no evidence that there has been an impact on yields and profits. Our findings 

indicate that when farmers receive training on a mix of low-cost and high-cost technologies, they 

 
11 The first principal component is the linear combination of the independent variables that captures the greatest 

variance, accounting for the maximum possible variation in the data 
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are more inclined to adopt only the low-cost ones, making the training program less effective for 

promoting the adoption of high-cost technologies.  

The concept of cost here extends beyond market price to include learning costs. Without 

ongoing extension services, it is challenging for farmers to absorb and implement all the 

information provided in a short period, as was the case with our one-day training program. This 

suggests that for training programs to be more effective in encouraging the adoption of high-cost 

technologies, they need to be supplemented with continuous support and follow-up to help farmers 

overcome both financial and educational barriers. 

Adopting technology in agriculture in developing countries is a challenging task due to 

various factors. While several reasons have been identified, the potential for choice overload has 

not been adequately considered. Choice overload can occur when farmers are presented with 

multiple technologies simultaneously. As discussed, many implementing agencies bundle all 

recommendations together, resulting in training packages with numerous instructions. Low literacy 

rates may further complicate the ability of farmers to assimilate all this information in a single 

session. Therefore, it is crucial to assess the cognitive capabilities of farmers before implementing 

any intervention and to provide after-training support and extension services in properly structured 

manageable portions. This ensures that farmers who are willing to adopt new technologies can do 

so effectively. The future course of study will focus on understanding how to reduce these steep 

learning costs. Existing literature highlights the role of extension workers and peer effects in 

facilitating learning. We aim to explore the extent to which these additional supports can aid in 

reducing learning costs by reducing the burden of choice and improving technology adoption in 

subsequent work. 
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Tables and Figures 

 

 

 

 

 

 

 

 

Figure-1: Representative farmer’s adoption decision process 
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Table 1: Sampling Design with Sample Sizes 

 

 

Survey round 

 Assigned to Treatment Control Total 

 Treatment 

group 

(4 wards in 

Char Madras) 

Non-compliers 

(4 wards in 

Char Madras) 

 Control 1 

(4 wards in 

Osmanganj) 

Control 2 

(8 wards in 

Tazumuddin 

Upazila) 

 

Baseline 

(Dec 11-21, 2022) 

 

150 132 

 

112 127 

 

521 

 

Follow-up 

(Jul 8-18, 2023) 

 

 

148 

 

132 

 

 

112 

 

127 

 

 

519 

 
Notes: The 4 wards in the non-complier group are the same as the treatment wards. 

 

Table 2: Two-sample t-tests of Baseline Balance in Demographic Variables 

Demographic 

Variables   

 Treatment 

(T) 

Non-

compliers 

(NC) 

Control 

(C) 

 Difference 

(T – NC) 

Difference  

(T – C) 

HH Head Age  47.30 

(12.10) 

45.80 

(11.79) 

51.57 

(13.52) 

 

 

1.50 

(1.43) 

-4.27*** 

(1.35) 

HH Head Female    0.04 

(0.20) 

0.06 

(0.24) 

0.05 

(0.21) 

 -0.02 

(0.03) 

-.01 

(0.02) 

HH Head years of 

Education 

 4.59 

(4.33)  

4.22 

(4.09) 

4.62 

(4.31) 

 0.37 

(0.50) 

-.04 

(0.45) 

HH Size  5.05 

(1.73) 

5.29 

(1.64) 

5.41 

(2.16) 

 -0.24 

(0.24) 

-.36 

(0.22) 

N  150 132 239    
Notes: The two-tailed t-tests are between the treatment and non-complier groups and between the treatment and pure 

control groups. The standard deviations are in parentheses in columns for T, NC, and C. Standard errors from t-tests 

appear in parentheses for the columns (T-S) and (T-C). p * < 0.1, **<0.05, ***<0.01. 
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Table 3: Baseline Balance in Groundnut Cultivation Characteristics 

Characteristics with groundnut cultivation  T NC C T-NC T-C 

Experience (in years) of main decision 

maker in groundnut cultivation 

 16.37 

(8.08) 

15.68 

(8.89) 

17.24 

(9.35) 

0.69 

(1.01) 

-0.87 

(0.93) 

Experience (in years) of the HH in 

groundnut cultivation 

 28.54 

(11.90) 

30.52 

(12.85) 

25.23 

(14.49) 

-1.99 

(1.49) 

3.31** 

(1.42) 

Groundnut is the main source of income  0.35 

(0.48) 

0.20 

(0.40) 

0.23 

(0.42) 

0.16*** 

(0.05) 

0.12** 

(0.05) 

Total number of own plots   4.99 

(4.35) 

4.50 

(2.34) 

7.18 

(8.06) 

0.49 

(0.43) 

-2.19*** 

(0.72) 

Number of plots in groundnut cultivation  2.55 

(1.40) 

2.11 

(1.15) 

1.80 

(0.91) 

0.44*** 

(0.15) 

0.75*** 

(0.12) 

Plot size (in acres)   3.02 

(1.76) 

2.66 

(1.86) 

2.00 

(1.18) 

0.36 

(0.22) 

1.02*** 

(0.15) 

Own land holding (in acres)   4.12 

(6.34) 

3.57 

(6.02) 

5.63 

(7.52) 

0.55 

(0.74) 

-1.52** 

(0.74) 

Area for groundnut cultivation (in acres)  6.51 

(3.57) 

4.74 

(2.89) 

3.09 

(1.57) 

1.77*** 

(0.39) 

3.42*** 

(0.27) 

Own land area in groundnut cultivation (in 

acre) 

 1.64 

(2.48) 

1.41 

(2.28) 

1.44 

(1.70) 

0.23 

(0.29) 

0.20 

(0.21) 

Share of farmers who leased in land   0.76 

(0.43) 

0.73 

(0.44) 

0.56 

(0.50) 

0.03 

(0.05) 

0.20*** 

(0.05) 

Yield of GN (kg per acre)  75.98 

(60.64) 

85.40 

(64.47) 

116.65 

(66.10) 

-9.42 

(8.20) 

-40.67*** 

(7.10) 

 

N  150 132 239   

Notes: The baseline values of groundnut cultivation are based on respondents’ self-reported values for the 2021-22 

Dhulot season. The two-tailed t-tests are between the treatment and non-complier groups and between the treatment 

and pure control groups. The standard deviations are in parentheses in columns T, NC, and C. Standard errors from t-

tests appear in parentheses for the columns (T-NC) and (T-C). p * < 0.1, **<0.05, ***<0.01. 
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Table 4: Baseline Balance in Groundnut Agricultural Characteristics and Practices 

Input Use  T NC C T-NC T-C 

Quantity of groundnut seed (in 

kg) per acre 

 5.03 

(1.01) 

5.41 

(1.24) 

5.38 

(1.31) 

-0.38*** 

(0.14) 

-0.34*** 

(0.13) 

Treated groundnut seed before 

sowing 

 0.67 

(0.47) 

0.62 

(0.47) 

0.61 

(0.49) 

0.05 

(0.06) 

0.06 

(0.05) 

Perceived degree of soil salinity 

(on a scale of 1-3) 

 2.00 

(0.72) 

2.02 

(0.07) 

1.67 

(0.75) 

-0.02 

(0.09) 

0.33*** 

(0.08) 

Farmer has good drainage system  0.63 

(0.48) 

0.72 

(0.45) 

0.70 

(0.46) 

-0.09 

(0.06) 

-0.07 

(0.05) 

Made channels between rows for 

better drainage 

 0.66 

(0.48) 

0.73 

(0.44) 

0.62 

(0.49) 

-0.07 

(0.05) 

0.04 

(0.05) 

Used Power tiller  1.00 

(0.00) 

0.99 

(0.09) 

0.98 

(0.13) 

0.01 

(0.01) 

0.02 

(0.01) 

Space between saplings (in 

inches) 

 6.32 

(1.27) 

6.36 

(1.46) 

6.16 

(0.98) 

-0.04 

(0.16) 

0.16 

(0.11) 

Cleaned dead plants  0.67 

(0.47) 

0.62 

(0.49) 

0.49 

(0.50) 

0.05 

(0.06) 

0.18*** 

(0.05) 

N  148 132 239   

Notes: The baseline values of groundnut agricultural characteristics and practices are based on respondents’ self-

reported values for 2021-22 Dhulot season. The two-tailed t-tests are between the treatment and non-complier groups 

and between the treatment and pure control groups. The standard deviations are in parentheses in columns T, S, and 

C. Standard errors from t-tests appear in parentheses for the columns (T-NC) and (T-C). p * < 0.1, **<0.05, ***<0.01. 

 

 

 

 

Table 5: Baseline Input Usage Amounts (in kg/acre) 

Inputs  T  NC C Recommendations  

Urea  3.02 

(3.06) 

3.55 

(4.49) 

4.00 

(2.66) 

Increase 

TSP  7.55 

(3.18) 

8.52 

(7.79) 

9.56 

(12.54) 

Increase 

SOP/MOP  3.56 

(1.96) 

3.76 

(3.49) 

3.64 

(1.89) 

Same 

Zinc  0.35 

(0.37) 

0.35 

(0.42) 

0.29 

(0.46) 

Same 

Gypsum  2.42 

(2.32) 

2.97 

(2.58) 

2.92 

(2.10) 

Increase 

N  150 132 239  

 Note: This table shows the mean usage amount of the commonly used inputs in the baseline. The standard 

deviations are given in parentheses. The recommendation column indicates whether the farmers were asked to increase 

or decrease the usage amounts.  
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Table – 6: Descriptive statistics of change in agricultural behavior of treated farmers 

(compliers) as per recommendations 

Treatment farmers Baseline Follow-up 

 

IPM inputs (Number of treated farmers using the 
input)  

 

  

Trichocompost 0 8 

Dynamic  0 16 

Lycomax  0 4 

Other IPM practices 0 11 

Biofertilizer 8 20 

 
Good Agricultural Practices 

 

  

Space between saplings (in inches)  6.32 

(1.27)  

6.79 

(1.72)  

Space between rows (in inches) 9.16 

(1.77)  
8.30 

(2.05)  

Channels between rows (1 for yes, 0 for no)  0.66 

(0.48)  
0.80 

(0.40) 

Clean dead plants (1 for yes, 0 for no) 0.67 

(0.47) 

0.57 

(0.50)  

 

Quantities of agronomical inputs (in kg/acre) 
 

  

Urea 3.08 

(3.07) 

3.59 

(4.03) 

TSP 7.52 

(3.19) 

8.76 

(8.04)  

SOP/MOP 3.55 

(1.99) 

4.13 

(4.45)  

Zinc 0.33 

(0.32) 

0.60 

(0.60)  

Gypsum 2.42 

(1.60) 

0.75 

(2.18)  

N 150 148 
Notes: Standard deviations are in parentheses 
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Table 7: Average Price of agronomical inputs for treated farmers in baseline and follow-up  

Treatment  

(148 farmers)  

Baseline Follow-up 

Average Prices of agronomical inputs (in BDT/kg)     

Urea 20.99 

(5.07) 

24.34 

(6.04) 

TSP 30.80 

(19.05) 

29.68 

(7.30) 

SOP/MOP 22.72 

(12.68) 

24.18 

(6.59)  

Zinc 193.69 

(58.00) 

205.98 

(56.27)  

Gypsum 53.53 

(51.11) 

37.54 

(25.50)  

Notes: Standard deviations are in parentheses 

 

 

 

 

Table 8: Treatment Effects on Quantity of Input Use from Difference-in-Difference 

Estimation 

Input Usage  

(kilograms per acre) 

Urea  TSP  MOP  Zinc  Gypsum  

ATET   

Time × Treatment Dummy (1 vs 0)  

     

Coefficient (without controls)  0.83* 3.23*** 0.40 6.65 0.01 

Robust Standard Error  (0.48) (1.18) (0.47) (6.50) (0.26) 

p-value  0.09 0.01 0.39 0.31 0.96 

Coefficient (with controls)       

Robust Standard Error       

p-value       

N  387 386 386 386 385 

Note: ATET estimate adjusted for panel effects and time effects. p * < 0.1, **<0.05, ***<0.01. 
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Table 9.1: Treatment Effects on Yield from Difference-in-Difference Estimation 

Groundnut 

output 

(kilograms per 

acre) 

(1) 

Without 

controls 

(2) 

With HH 

characteristics 

(3) 

With HH + Cultivation 

+ General Agricultural 

characteristics 

(4)  

With HH + Cultivation 

+ General Agricultural 

characteristics + first 

principal component 

of shocks 

ATET   

Time × 

Treatment 

Dummy (1 vs 0)  

    

Coefficient  18.03* 12.15 10.68 9.42 

Robust Standard 

Error  

(10.16) (11.39) (11.90) (12.13) 

p-value  0.08 0.29 0.37 0.44 

N  376 373 369 369 

Note: ATET estimate adjusted for panel effects and time effects. p * < 0.1, **<0.05, ***<0.01. In specification (1), 

there are no controls. In specification (2), we control for HH head age, HH head female, HH Head years of education, 

and HH size. In specification (3), we add the controls own land holding, the total number of plots owned, average plot 

size, if treated seed, soil salinity, drain channel, if used power tiller, space between saplings, and clean dead plants. In 

(4), we add the first principal component of all the general shocks like climate disasters, loss of a family member, 

serious illness, etc. 

 

Table 9.2: Heterogenous Treatment Effects on Yield  

Groundnut 

output 

(kilograms per 

acre) 

(1) 

RA 

(2) 

IPW 

(3)  

AIPW 

ATET      

Coefficient  3.57 18.03* 3.57 

Robust Standard 

Error  

(19.49) (10.14) (19.49) 

p-value  0.86 0.08 0.86 

N  322 351 322 

Note: ATET computed using covariates: HH head age, HH head female, HH Head years of education, and HH size, 

land holding, the total number of plots, plot size, if treated seed, soil salinity, drain channel, if used power tiller, space 

between saplings, and clean dead plants farmer’s experience in GN cultivation, the farmer’s HH experience in GN 

farming, if the farmer considers GN to be their primary crop, GN cultivated area, how much of the GN area is owned 

by the farmer, and if the farmer has leased in land for GN. p * < 0.1, **<0.05, ***<0.01. 
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Table 9.3: Propensity Score Matching (PSM) and Nearest Neighbor (NN) 

Groundnut output 

(kilograms per acre) 

(1) 

PSM 

 

(2) 

NN 

ATET     

Coefficient  16.54 7.30 

Robust Standard Error  (12.86) (12.94) 

p-value  0.20 0.57 

N  349 270 

Note: Some variables had to be dropped for collinearity. The rest of the covariates: HH head age, HH head female, 

HH Head years of education, and HH size, if treated seed, soil salinity, drain channel, if used power tiller, space 

between saplings, and clean dead plants farmer’s experience in GN cultivation, the farmer’s HH experience in GN 

farming, if the farmer considers GN to be their primary crop, GN cultivated area, how much of the GN area is owned 

by the farmer, and if the farmer has leased in land for GN. p * < 0.1, **<0.05, ***<0.01. 


