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Abstract

Changes in the global economy and climate system have large and wide-ranging repercus-

sions for local and regional economies and ecosystems. Here we focus on global-to-local

linkages that are hypothesized to impact water quality outcomes within a five-state Great

Lakes-Corn Belt region, which includes some of the most intensive agricultural region of the

Midwest. We develop a dynamic integrated assessment model (IAM) that links the regional

economy to global conditions, local land use change, and water quality outcomes and use a sce-

narios framework to assess the likelihood that phosphorus reduction targets for Lake Erie are

met by 2050 under a range of plausible global and regional conditions. We examine the relative

role that global economic and climate conditions play in regional land use and water quality

*We acknowledge support from the National Science Foundation grant SES-1739909 and USDA NIFA-AFRI grant
2018-68002-27932.

†The Ohio State University
‡U.S. Energy Information Administration
§National Renewable Energy Laboratory
¶University of Essex
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outcomes and the extent to which local land stewardship incentives and best management prac-

tices (BMPs) can offset the potential negative effects of global economic and environmental

changes. By integrating a regional-level forward-looking dynamic model, a state-level static

computable general equilibrium model, and a local-level land use change model, this IAM en-

ables a comprehensive and theoretically consistent integration from global conditions through

regional and local decision-making. The model simulates five scenarios defined by distinctly

different combinations of global commodity prices, CO2 prices, climate conditions, produc-

tivity, population, and economic growth. Our results reveal that success in attaining the policy

target is relatively uncertain and highly dependent on future economic, environmental, and

policy conditions. We find that only two of the scenarios are projected to attain the 40 per-

cent spring DRP and TP reduction targets nine out of ten years by the 2030’s. Other results

confirm that lower commodity prices generally lead to reduced cropland acres and are mostly

associated with better water quality outcomes. However greater intensification of cropland use

is not associated with greater water pollution, a result that may be driven by the relatively high

adoption rates for subsurface placement that are reached in later years across scenarios. Taken

together, these results demonstrate the potential for local policies to incentivize BMP adoption

at levels that can act as a buffer to uncertain, changing global conditions.

Keywords: food-water-energy systems, integrated assessment model, global-to-local link-

ages, scenarios framework, global economy, environmental stewardship, climate change

1 Introduction

Changes in the global economy and climate system have large and wide-ranging repercussions

for local and regional economies and ecosystems. In the recent U.S.-China trade war, for exam-

ple, greater trade barriers to U.S. producers reduced U.S. exports and lowered commodity prices

(Regmi, 2019), which altered the relative net returns to cropland at a field level. Allocations of

U.S. cropland shifted (Lee et al., 2023) and, depending on regional conditions, the amount of land

allocated to other uses—pasture, conservation, forests, urban—may have also shifted with conse-
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quent impacts on water quality, biodiversity, carbon sequestration, and other ecosystem services.

While multi-sector interactions across economic, climate, and other system are well-studied at

the global and national scales, the implications of changing global conditions for local and sub-

national economic and environmental outcomes are less understood (Hertel et al., 2023). This is

due to the complexity of cross-scale interactions and the need for considerably more model detail,

including spatially explicit and heterogeneous representations of land use decision making, at local

and regional scales. Incorporating these details is critical for assessing the local consequences of

global change and accounting for these interdependencies in guiding local and regional policies to

efficiently allocate land to productive uses while protecting habitat, water, and other critical forms

of natural capital.

In this paper, we focus on global-to-local linkages that are hypothesized to impact water qual-

ity outcomes within a five-state Great Lakes-Corn Belt region, which includes some of the most

intensive agricultural region of the Midwest. We use a scenarios framework to assess the likeli-

hood that phosphorus reduction targets for Lake Erie are met by 2050 under a range of plausible

global and regional conditions. We examine the relative role that global economic and climate

conditions play in regional land use and water quality outcomes and the extent to which local

land stewardship incentives, currently represented in our model via payments for agricultural land

conservation and best management practices, can offset the potential negative effects of expand-

ing global commodity markets or worsening climate change. To link global economic and envi-

ronmental conditions with local and regional land use and water quality changes, we develop a

Dynamic Regional Food-Energy-Water Systems (DRFEWS) integrated assessment model (IAM).

The key methodological innovation of DRFEWS lies in the integration of five sub-models. We

formulate the dynamic interactions between 1) a regional-level forward-looking dynamic model,

2) a state-level static computable general equilibrium (CGE) model, both specified with a detailed

representation of agriculture, food, energy, transportation, and manufacturing sectors, 3) a local-

scale land use change model that accounts for spatial heterogeneity in soil quality and economic

conditions, and 4) a farmer management model that describes individual heterogeneity in agricul-
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tural land management practices. This enables a theoretically consistent integration from global

conditions through individual-level decision making. The dynamic and CGE model parameters

are calibrated with historical data from U.S. Energy Information Administration (EIA), U.S. De-

partment of Agriculture (USDA), U.S. Bureau of Economic Analysis (BEA), and U.S. Census,

and scenario-specific future projections of energy consumption, GDP growth rates, and meat con-

sumption. The land use model is estimated using the National Land Cover Database (NLCD) from

the U.S. Geological Survey (USGS) in combination with economic, biophysical, and climate data

from the U.S. Census, USDA, EIA, BEA, and other sources. The ensemble of different global

conditions and corresponding macro-level economic and micro-level land use decisions are used

as inputs to 5) an artificial intelligence-based regional watershed model, developed by training a

random forest model with observed data and simulated outputs from the Soil and Water Assess-

ment Tool (SWAT; G. Arnold et al., 2012), to evaluate regional water quality for the Maumee

watershed, the largest watershed in the Lake Erie basin. The watershed model is calibrated using

2005-2015 streamflow data from USGS water stream gauge network and water quality data from

the National Center for Water Quality Research (NCWQR) at Heidelberg University of Waterville

gauge station located near the mouth of the Maumee River watershed in Toledo.

To explore the implications of global-to-local linkages for regional water quality policy targets,

the calibrated model simulates five future scenarios distinguished by varying conditions of glob-

alization and environmental stewardship from 2020 to 2050. These scenarios were developed in

collaboration with a regional stakeholder advisory council drawn from professionals working in the

agricultural, environmental and water sectors. Each scenario is associated with a Shared Socioe-

conomic Pathway (SSP) (Riahi et al., 2017) and a Representative Concentration Pathway (RCP)

(Meinshausen et al., 2011) that are downscaled to the region. We use these downscaled values to

project future population and climate change conditions for the Great Lakes region. In addition,

each scenario is further characterized by a particular combination of global commodity prices,

CO2 prices, and sectoral productivity conditions over this same time period. Finally, we specify

varying regional environmental stewardship conditions across scenarios by varying the trajecto-
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ries of payments to landowners for agricultural land conservation enrollment and adoption rates

for subsurface placement of fertilizer and filter strips. Scenario-specific climate projections for

water quality assessment are based on Coupled Model Intercomparison Project phase 5 (CMIP5)

Bias-Correction and Spatial Downscaling (BCSD). We assess water quality outcomes in terms of

projected spring total phosphorus (TP) and spring dissolved reactive phosphorus (DRP) loads for

the Maumee River watershed, considering nine combinations of climate conditions for RCPs cor-

responding to each scenario. We summarize these outcomes by decade to assess the likelihood that

a 40 percent reduction in spring phosphorus is met nine of the ten years, which is the policy tar-

get set in 2012 by the Great Lakes Water Quality Agreement (GLWQA), a bi-national agreement

between the U.S. and Canada.

Our results reveal that success in attaining the policy target is relatively uncertain, but that

the uncertainty diminishes over time as BMP adoption rates increase across all scenarios. Given

the range of conditions represented by the five scenarios, we find that only two of the scenarios

are projected to attain the 40 percent spring DRP and TP reduction targets nine out of ten years

by the 2030’s and that none of them meet this target by 2025, which was the original timeline

for meeting this target (USEPA, 2018). Both scenarios in which the decadal target is met in the

2030’s have exceptionally high rates of best management practice (BMP) adoption, achieving 83

and 53 percent of total cropland acres with subsurface placement and buffer strips respectively by

2040. By comparison, the 40 percent reduction target is only met six (four) of the ten years for

spring DRP (TP) in the 2030’s for the two scenarios in which BMP adoption rates are the lowest.

The results also reveal the importance of changing climatic conditions: one of the two scenarios

in which the decadal target is met in the 2030’s experiences higher than average precipitation in

the 2040’s. Despite adoption of subsurface placement and buffer strip rising to 90 and 63 percent

respectively by 2050, the decadal target for TP is met eight, rather than nine, times in the 2040’s

under this scenario.

To further explore the relative effects of global and regional conditions on these outcomes, we

compare land use and water quality outcomes across the five scenarios and the associated variations
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in agricultural input and output prices, population trajectories, climate change, and land steward-

ship conditions. The results are consistent with the hypothesis that higher global commodity prices

lead to increases in crop yields and cropland acres, although the latter result is conditional on the

relative payments for land conservation enrollment. A sufficient level of conservation payments re-

duces the amount of land converted to working crop lands due to a greater number of acres enrolled

in conservation. In terms of water quality outcomes, the results are less consistent. We find that the

two scenarios with lower commodity prices and reduced cropland acres have better water quality

outcomes and that this holds over most, but not all, scenarios and time periods. Surprisingly, we

find that the two scenarios with greater intensification (i.e., higher cropland yields and rates of

fertilizer application) are not associated with worse water quality outcomes, a result that may be

driven by the relatively high adoption rates for subsurface placement that are reached in later years

across both scenarios. Taken together, our results demonstrate the potential for local policies to

ensure sufficient BMP levels that can act as a buffer to uncertain, changing global conditions. We

conclude that this added insurance value of land stewardship policies should be considered in the

design of efficient agricultural land conservation and BMPs. However, we have not yet quantified

abatement costs nor incorporated BMP payments, and leave the assessment of efficient policies for

future work.

This research contributes to the development of spatially detailed multi-sector, multi-scale

IAMs—referred to as second generation IAMs (Fisher-Vanden and Weyant, 2020)— and the grow-

ing IAM literature on the food-energy-water (FEW) nexus (Kling et al., 2017) that systematically

integrates global conditions, regional and state economic decisions, local land management prac-

tices, and hydrologic process in the analysis of regional water quality. These approaches are critical

for understanding key interdependencies across scales, analyzing the trade-offs and the synergies

among these resources (Biggs et al., 2015), capturing their impacts on ecological, physical, socio-

economic, and political outcomes (Newell et al., 2019), and assessing local contributions towards

the Sustainable Development Goals (SDGs) (Liu et al., 2018).

Many IAM-FEWS papers have examined linkages across FEW systems at national and global
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scales. For example, Pastor et al. (2019) evaluate the impact of specific RCP and SSP scenarios

on global land use, water consumption and food trade under water regulation policy scenarios.

Van Vuuren et al. (2019) develop a set of model-based scenarios to analyze the future global dy-

namics of the FEW nexus under a baseline scenario of no policy response and compare projected

global food and water trends with alternative response scenarios, including climate policies, higher

agricultural yields, dietary change, and reduction of food waste. CGE models are a standard ap-

proach to representing global and regional trade flows and regional economic interactions and a

number of CGE models have been built to study the roles of food, energy, trade, and policies

(Pelikan et al., 2015; Marten et al., 2019). However, standard CGE models are often static, so

recursive CGE models are often used to generate dynamics. In the literature of recursive CGE

models, intertemporal decisions (e.g., investment and resource extraction) are often assumed to be

exogenous or their associated policy functions are often assumed to be exogenously given with

ad hoc simple equations. We improve this in our recursive CGE model by applying our dynamic

regional forward-looking model’s solution of intertemporal decisions for the Great Lakes region to

generate the associated intertemporal decisions in each of five states in the region in a period-by-

period manner.

Fewer studies have assessed global-to-local linkages in FEW systems. Notable exceptions

include papers published in a 2023 special issue of Environmental Research Letters on global-

to-local-to-global linkages of food-land-water systems (Hertel et al., 2023). For example, Liu

et al. (2023) construct an integrated multi-scale framework for evaluating alternative nitrogen loss

management policies for corn production in the U.S. by combining site- and practice-specific agro-

ecosystem process models with a CGE model that embeds a grid-cell based analysis of the con-

tinental U.S. within a global economic model. However, a limitation of this and other studies is

the static CGE framework and an assumption that the total amount of cropland is fixed over the

projected time horizon. In assessing local and regional outcomes that are spatially dependent, in-

cluding a range of ecosystem services, it is critical that spatially explicit, longer-term projections

account for land use transitions that are observed at more disaggregate scales. The DRFEWS
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framework considers a broader set of land use transitions, including transitions to/from cropland

and pasture, wetlands, or forest, as well as irreversible transitions from cropland to urban. Our

approach allows for the bottom-up, heterogeneous processes that drive Land Use Change (LUC)

to determine shifts in land use over time while maintaining consistency with regional general equi-

librium production and consumption during the simulation period (Prestele et al., 2017; Johnson

et al., 2023). We predict county-level LUC, a computationally-light exercise, but measure LUC

via aggregations of cell-level transitions. This provides us the ability to estimate models of specific

transitions (e.g. cropland to urban use) as functions of local and regional determinants that can be

updated over the course of the simulation (Verburg et al., 2019). Finally, this research also makes

a novel contribution to hydrological modeling by developing an artificial intelligence (AI)-based

regional watershed model that is much better suited for the repeated model runs that are necessary

for scenarios. The SWAT has been used extensively for water quality management that addresses

diverse sources of nutrients and sediment and mitigation actions for agricultural watershed (e.g.,

Hansen et al. 2021). However, it is time-consuming to calibrate and run, and further limited by

the inability to change management practices over time during simulations. Our AI-SWAT model

overcomes these challenges.

The rest of the paper is organized as follows. Section 2 provides a general overview of the

coupled framework and scenarios to be examined using the framework. Section 3 describes the

integration of all models and the details of each model and corresponding data. Sections 4, 5, and

6 explain the results of the economic model, land use model, and watershed model, respectively.

Section 7 concludes the paper and presents future plans for improvement.
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2 Coupled Framework and Scenario Development

The DRFEWS schematic diagram is displayed in Figure 11. The framework first takes scenario-

specific global and regional condition inputs. Second, based on these inputs, the economic2 and

land use models project the trajectories of key economic and land use outcomes through 2050 for

each scenario. Third, outputs from these models feed into the regional watershed model for an

ex-post evaluation of water quality.

Figure 1: DRFEWS Coupled Framework

2.1 Scenario Development

Scenarios are useful for assessing outcomes when multiple sources of uncertainty and conditions

of various interrelated components, including population, economic, climate, and other macro vari-

ables, must be represented in a consistent way. Unlike probabilistic modeling, a goal of scenarios

is often to stress test less likely scenarios and to examine the range of outcomes that are plausible

under varying, including more extreme, conditions. On this basis, we developed the following five

1The description of the sustainability assessment model is omitted in this paper to focus on the IAM and water
quality assessment.

2The economic models are equipped with a greenhouse gas (GHG) emission module that computes GHG emissions
by sector.
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scenarios, associated with varying population, climate, economic, and environmental policy con-

ditions at a global scale and varying land stewardship policies and practices at local and regional

scales. The scenarios are tied to RCP and SSP combinations that are common in the literature and

we adapt descriptions drawn from the SSP framework (O’Neill et al., 2020)3:

• Business as Usual (BAU) (SSP2, RCP4.5): This pathway extrapolates the past and cur-

rent global and regional conditions into the future. Regional population growth is moder-

ate, growing steadily from 47.5 millions in 2020 to 56 millions by 2050. GHG emissions

increase and then level off, reflecting moderate economic growth and subsequent technolog-

ical changes that reduce emissions in later years. Markets also reflect middle of the road

conditions in terms of trajectories of global commodity and carbon prices. Likewise, land

stewardship conditions reflect moderate increases over time, including county-level Conser-

vation Reserve Program (CRP) payments and BMP adoption rates that increase on average

over time following a middle path.

• Balanced Growth with Environmental Protection (BGEP) (SSP1, RCP2.6): This path-

way describes an increasingly sustainable world in which global CO2 prices are the highest

and global GHG emissions reach net zero by around 2070. Global commodity markets re-

flect moderate price levels and global market integration and technological changes enable

economic growth that is balanced by a sustainable use of resources. Regional population

growth is moderate. Strong environmental stewardship policies and practices result in ex-

tremely high rates of conservation enrollments and BMP adoption.

• Global Development with Environmental Protection (GDEP) (SSP4, RCP4.5): This

pathway reflects fast-paced global development enabled by technological changes that offset

rising emissions and are coupled with strong environmental preferences both globally and

in the region. Global commodity markets reflect their highest price levels in this scenario.

Because global growth is concentrated in the developing world, regional population growth

3More details of our scenario development are provided in a separate paper.
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is moderate. Strong environmental stewardship policies and practices result in extremely

high rates of conservation enrollments and BMP adoption.

• Regional Isolation (RI) (SSP3, RCP6.0): Increased global disruptions and rising trade bar-

riers slow the pace of globalization, leading to a stagnating regional population. Increased

costs of global trade reduce global supply, leading to moderate increases in global com-

modity prices. Economic stagnation in the region results in less support for environmental

protection and low levels of support for land stewardship.

• Fossil-Fueled Development (FFD) (SSP5, RCP8.5): Global markets are increasingly in-

tegrated, leading to innovations and technological progress. Economic growth is based on

an intensified exploitation of fossil fuel resources with the highest percentage of coal and

natural gas uses. The lack of trade barriers and environmental regulations result in lower

global commodity prices, high levels of GHG emissions, and low levels of support for land

stewardship in the region. Greater globalization implies higher regional population growth.

Each scenario is specified with a distinct combination of global and regional projections, including

the SSPs4, RCPs5, and national energy-related projections6, all downscaled to the region. The

projection alignment and scenario development are based on the inputs from our regional stake-

holder advisory team and the relevant literature that aligns SSPs with RCPs (O’Neill et al., 2020).

These downscaled values project population change, CO2 prices, climate change conditions, and

energy-related inputs for the region from 2020-2050 for each scenario. Each scenario is then fur-

ther characterized by a particular combination of global commodity prices, sectoral productivity

conditions, BMP adoption ratios, CRP enrollment payment over this same time period. These

scenario-specific conditions are used by the corresponding models in the integrated framework to

reflect the different global and regional conditions. Sections 4-6 present the details of global and

4International Institute for Applied Systems Analysis (IIASA) Shared Socioeconomic Pathways Scenario Database
(SSP) https://iiasa.ac.at/models-tools-data/ssp

5IIASA RCP Database https://tntcat.iiasa.ac.at/RcpDb, and World Climate Research Programme (WCRP)
https://wcrp-cmip.org/cmip-phase-5-cmip5

6U.S. Energy Information Administration, Annual Energy Outlook 2021
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regional scenario-specific inputs used by each model, along with each model’s results.

2.2 Hypotheses

In addition to examining the overall likelihood of attaining the GLWQA policy target under the

range of global and regional conditions represented by these five scenarios, we aim to examine the

following hypotheses that relate scenario assumptions to integrated model results:

H1. Increases (decreases) in global and/or regional demands for crops will (A) increase

(decrease) the intensity of cropland use in the region (i.e., crop yields) and will (B)

increase (decrease) total cropland acres.

H2. Increases (decreases) in cropland use at both the (A) intensive and (B) extensive mar-

gins will reduce (improve) water quality.

H3. Under high (low) land stewardship conditions, water quality outcomes are (not) in-

variant to changes in global or regional demands for agricultural commodities.

First, H1 is investigated in Section 4 by comparing the economic model results of crop yields and

cropland acres from high and low global price scenarios. H2 and H3 are investigated in Section 6.

To probe H2, given the identification from H1 of high or low cropland use results and correspond-

ing scenarios, we compare those pairs of scenarios in terms of their water quality outcomes. Lastly,

H3 can be analyzed with the comparison of water quality outcomes from a pair of two high (low)

stewardship scenarios as they are specified with the same rates of best management practices, yet

with differences in other conditions that are likely to impact water quality.

3 DRFEWS Model Integration

A key methodological innovation lies in the systemic integration of four sub-models. We formu-

late dynamic interactions between 1) a regional-level forward-looking dynamic economic model,

2) a state-level static computable general equilibrium (CGE) model, 3) a county-level land use

12



Figure 2: DRFEWS Integration Process

change model, and 4) a farmer’s land management model. This enables a theoretically consistent

integration from global conditions, to state-level economic decisions, and to local-level land use

and individual-level land management decision making.

The schematic diagram of the integration is shown in Figure 2. First, at time t, the forward-

looking dynamic regional economic model solves a dynamic regional welfare maximization prob-

lem with the starting period at t, given the exogenous scenario-specific time-varying global / na-

tional / regional conditions and the endogenous state vector St (the regional aggregate of state-level

land, capital, labor, and resource stocks) at t. The solutions project a set of socially optimal invest-

ment and energy resource extraction decisions, along with production and consumption quantities,

for each scenario. The derived intertemporal decisions (investment and extraction) at t, approx-

imating general equilibrium solutions, are used as decisions rules in the state-level static CGE

model at t, to make them together a recursive dynamic CGE model. We assume that each state

makes investment and extract resources according to their shares of St within the region and the

regional-scale manufacturing capital and electricity generation capacity investment and fossil fuel
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extraction are allocated to each state proportionally (downscaling from regional intertemporal rules

to state-level intertemporal rules).

Second, based on these intertemporal decisions and scenario-specific conditions, the five-state

CGE model solves for the equilibrium prices and production, consumption, and trade quantities for

each state at t. Among these economic outcomes, each crop’s production and price, fertilizer use,

state GDP, along with scenario inputs such as crop yield, fertilizer price, and state population, are

used as inputs into the land use change model to determine the next period land allocation among

five categories (cropland, pastureland, forest, wetland, and urban).

Third, the local-level land use allocation and land conservation program enrollment are pro-

jected by the county-level land use change model and the farmer’s decision model. The outcomes

are aggregated from a county-scale to a state-scale and region-scale, feeding back into the two

economic models to compute St+1. This provides available land at time t +1 for crop production,

livestock production, and forest carbon sink. The iteration of these steps repeats until the year

2050 for each scenario to project the scenario-specific trajectories of economic and land use out-

comes through 2050. This systemic integration enables an analysis of the effects of varying global

conditions on local-level decision-making in a theoretically consistent framework.

After simulating the integrated economic and land use model, the ensemble of scenario inputs,

such as global climate conditions and regional BMP adoption ratios, and corresponding macro-

level economic (cropping shares and fertilizer application) and micro-level land use decisions (total

working croplands and CRP enrollment) are used as inputs to the regional watershed model, AI-

SWAT. AI-SWAT projects water quality indicators such as total and soluble phosphorus and total

nitrogen loads in the Maumee River watershed in the Western Lake Erie Basin. The model also

examines how frequently each scenario meets the 40% reduction target for the total and soluble

phosphorus by 2050.
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3.1 Economic Models

The DRFEWS economic model is formulated as a recursive dynamic CGE model, which solves

for the regional- and state-level equilibrium prices and quantities through 2050. The recursive

dynamic CGE model is comprised of a forward-looking dynamic regional economic model and

a five-state static CGE model. This dynamic CGE model includes eight sectors for each of the

five states in the region: farming (corn, soybean, wheat, specialty), livestock, food production,

fossil fuel extraction (coal, natural gas), electricity generation (coal, natural gas7, wind, solar),

transportation energy services (gasoline, diesel, corn-base ethanol, electricity), general goods and

services, and trading.

3.1.1 Data and Calibration

An extensive set of historical data between 2016 and 2021 and scenario-specific projections through

2050 are used to calibrate the model parameters and to simulate the model for each scenario. Agri-

cultural data on row crops, specialty crops, and livestock production is primarily sourced from

USDA National Agricultural Statistics Service (NASS). We use food processing, production, and

consumption data from USDA Economic Research Service (ERS) yearbooks on food commodity

use and processing. The state-level energy-related data on primary energy production and con-

sumption and electricity generation and capacity are sourced from the U.S. EIA. State-level GDP

and capital stock data come from the U.S. BEA. These historical data are used to specify the ini-

tial year (2016) endowment by state and also to calibrate both the regional-level and state-level

economic models for all scenarios.

The model calibration process consists of three steps: 1) calibration of regional time-invariant

parameters that are identical across the scenarios (e.g., elasticity of substitution in utility function,

capital depreciation rate), 2) calibration of regional time-varying parameters for each scenario (e.g.,

total factor productivity by sector), and 3) calibration of state-level parameters that are identical

7There are two types of coal- and natural gas-fired power plants in the model: with and without 90% carbon capture
and sequestration (CCS) technologies
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across the scenarios (e.g., elasticity of substitution in production functions). The time-invariant

parameters, universal across the scenarios, are mainly related to the historical and current char-

acteristics of the economy for the region and states. Their calibration is conducted mainly using

historical data, with a certain level of adjustment using the BAU scenario projections. On the

other hand, regional-level parameters associated with intertemporal dynamics are distinct for each

scenario and calibrated with respect to scenario-specific projections. These scenario projections

include coal share of total fossil electricity generation, wind share of total renewable electricity

generation, GDP growth rate, agricultural yield, and meat demand. The projections for each sce-

nario are based on the downscaled projections from corresponding SSP and RCP scenario datasets

and government agencies’ projections (e.g., EIA Annual Energy Outlook), augmented by the dis-

cussion with regional stakeholder advisors to better reflect the reality of the region. By calibrating

the economic model for each scenario, we are able to reflect the scenario-specific social, economic,

climate trends in the model parameters.

3.1.2 Model Description

Figure 3 exhibits a simplified schematic diagram of a state economy in the five-state CGE model.

Labor inputs used for the most sectors are omitted for simplicity. The figure shows only a single

state economy whereas the actual model consists of five states in the region with an identical level

of details for the economy and also accounts for domestic and international trade of commodities.

All economic agents in the economy optimize their decisions given the market and technolog-

ical constraints. For example, in each state, the representative household maximizes their utility

by their consumption choices of food, transportation energy, electricity, natural gas, and general

goods, given their budget constraint. The budget constraint is constructed in a way that their in-

comes (profits from firms, land rents, capital rents, and wages) equal their expenses (consumption

of goods and services, capital investment, and facility operation costs). The crop producers maxi-

mize their profits that equal the gross revenue from selling crops net of the costs of fertilizer, land,

and labor inputs. By solving all optimization problems simultaneously subject to market clearing
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Figure 3: Economic Structure Schematic Diagram

conditions for each good, we identify a set of the equilibrium prices and quantities for every sector

in every state given the period. All model equations and descriptions can be found in the Appendix

A.

3.2 Land Use and Farmer Land Decision Models

We combine a variety of publicly available data describing regional land use, topography, soil

quality, and economic activity at multiple scales to calibrate the land use and farmer management

models. To measure LUC, we use 30m x 30m resolution remote-sensed data on land use/cover

from the United States Geological Survey’s (USGS) National Land Cover Database (NLCD) and

aggregate cell-level changes over time to the county scale. We calculate the share of grid cells g in

county i and LU j that transitions to LU k in each available period (e.g. 2001 to 2006, 2006-2011,
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etc) where Ωgt is the LU category for grid cell g at time t and Gi is the set of all grid cells included

in county i.

Yi jkt =
∑

Gi
g I(Ωgt = k,Ωg(t−1) = j)

∑
Gi
g I(Ωg(t−1) = j)

(1)

This data is available for a set of years between 2001 and 2022, providing us with five snapshots

of regional land use change over two decades. We estimate a collection of quasi-binomial logistic

regression models that describe a set of feasible LU transitions (as measured by these LUC shares)

as a function of average net returns to cropland in the county, population, GDP growth, previous

LU, as well as time-invariant characteristics of land quality such as soil quality and slope8. We col-

lect data on soil productivity and terrain from the Soil Survey Geographic Database (SSURGO),

produced by the USDA National Resources Conservation Service (NRCS), along with agricultural

data on crop production sourced from USDA NASS and economic data from the U.S. Census, the

U.S. BEA and other sources. We choose time-varying characteristics, such as cropland net returns,

that can be coupled with the economic models and updated over time in simulations (via updates

in commodity prices, cropland rents, fertilizer use, and fertilizer prices). We allow for farmer-level

heterogeneity in decisions to enroll in CRP; we treat this as a separate decision made on viable

cropland and model farmer-level decisions to enroll land in conservation as a function of per-acre

payments, county-level average cropland net returns, and other farmer-level characteristics. We

use a choice experiment/survey developed for this project to estimate random effects models of

conservation enrollment that separate the participation and quantity of enrollment decisions for

farmers. We use the estimated models to simulate farmer-level conservation enrollment choices

over time based on assumptions for CRP contract length and payments over time; in other words,

for each farmer, we keep track of their accumulated stock of enrolled CRP land over time, allow-

ing contracts to expire and renew over time based on simulated probabilities of participation and

8We collect all NLCD land cover tags into Cropland, Pasture/Grasslands, Forest, Wetlands, and Urban/Developed
LU bins. Based on observed LUC for 2001-2021, we allow Cropland-Pasture, Cropland-Wetlands, Cropland-Urban,
Pasture-Cropland, Pasture-Wetlands, Pasture-Urban, Pasture-Forest, Wetlands-Pasture, Wetlands-Cropland, Forest-
Urban, and Forest-Pasture transitions. We exclude transitions that occur rarely in the sample period.
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desired enrollment as predicted by our conservation enrollment models9.

The land use and farmer land decision models, together determine county-level LUC in each

time period given the scenario-specific global and regional conditions. Before simulating the pro-

jection, we draw the distribution of farmer characteristics (e.g., farm size and farmer age) for each

county based on 2017 USDA Agricultural Census, and assign the baseline conservation practice

adoption levels using a survey of farmers in the region. Within a simulation time-step, the LUC

module downscales the state-level CGE model results and regional conditions to the county-level

to obtain key variables including crop prices, fertilizer prices, GDP, fertilizer use, and crop mix.

These variables are used to update land use and conservation enrollment predictors such as av-

erage net returns to cropland, county-level GDP growth, cropland rental rates, and pasture rental

rates. Using the predicted rents together with physical factors describing each county as well as our

scenario-dependent variables such as population, county-level LU transitions are predicted via the

estimated regression models described above and LU shares are adjusted based on the predicted

transition shares. The farmer management models project farmer-level changes to the conservation

program enrollment. In the end, the aggregate county-level projections of land use and manage-

ment practices to state-level and feed back to the economic models.

3.3 Regional Watershed Model

After the integrated economic and land use change model simulates projections through 2050 for

all scenarios, the outcomes critical to water quality such as land use, crop rotations and fertilizer

application rates are fed into the regional watershed model to predict impacts on water quality.

Given the integrated model inputs, the farmer’s BMP adoption ratios, and climate conditions for

each scenario, the watershed model projects changes in water quality outcomes.

This watershed model, referred to as AI-SWAT, is developed using random forest regression, a

9More details on the integration steps and simulation will be included in future versions of the paper and can be
provided upon request
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Figure 4: Maumee River Watershed (Source: Ohio EPA)

machine learning algorithm, and trained with observed data and outputs simulated from previous

SWAT results Apostel et al. (2021). We developed this machine learning-based watershed model

to be computationally efficient and easily integrable with other models (e.g., able to account for

gradual changes in BMP adoptions), relative to the original process-based SWAT. The model is

calibrated using 2005-2015 streamflow data from USGS water stream gauge network and water

quality data from the NCWQR at Heidelberg University of Waterville gauge station (USGS gauge

#04193500) located near the mouth of the Maumee River watershed in Toledo. Scenario-specific

climate projections are based on CMIP5 BCSD. Three temperature models10 and three precipita-

tion models11 are selected, considering the comprehensive model ranking specific to the Eastern

Corn Belt Region (Wilson et al., 2022) and availability of projections for the RCPs corresponding

to our scenarios. Thus, in total, nine combinations of temperature and precipitation projections are

used as inputs for the watershed model.

This AI-SWAT model projects water quality outcomes, including streamflow, and loads of

sediment, dissolved reactive phosphorus (P), total phosphorus, and total nitrogen (N), for each

10GFDL-ESM2G, NorESM1-M, MIROC5
11IPSL-CM5A-MR, MIROC-ESM-CHEM, MIROC5
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scenario, in the Maumee River watershed in the Western Lake Erie Basin. In addition to those

water quality indicators, the results examine how frequently this watershed will meet the 40%

reduction target for the total and soluble phosphorus by 2050, which is the policy standard set in

2012 by the GLWQA.

3.4 Greenhouse Gases Emission by Sector

Greenhouse gases emissions are calculated using two life cycle assessment models, each based on

the U.S. Environmentally-Extended Input-Output Models (USEEIO)12 and the Greenhouse Gases,

Regulated Emissions, and Energy Use in Transportation Model (GREET)13. These models calcu-

late emissions factor, considering the full life cycle from the supply of raw material through the

final production or disposal. The GHG emission factors derived for each sector are multiplied by

the sectoral production to compute the gross emissions of the regional economy. The net emissions,

then, are obtained by subtracting GHG sequestered by forest and carbon capture and sequestration

technologies from the gross emissions. GHG emissions are expressed in terms of CO2 equiva-

lent unit, a measure used to compare various gases on the basis of their global warming potential.

Emission factors for coal and gas electricity generation and general manufacturing and services

sectors are time-varying to reflect the retirement of old, less efficient power plants and increased

energy efficiency in manufacturing processes. All other sectors have constant coefficients.

4 Economic Model Scenario Inputs and Results

From Sections 4 through 6, figures are presented using the color code in Table 1 unless otherwise

noted:
12https://www.epa.gov/land-research/us-environmentally-extended-input-output-useeio-models
13https://greet.es.anl.gov
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Scenario SSP RCP Color

Business as Usual BAU SSP2 RCP4.5 Black

Balanced Growth with Environmental Protection BGEP SSP1 RCP2.6 Yellow

Global Development with Environmental Protection GDEP SSP4 RCP4.5 Green

Regional Isolation RI SSP3 RCP6.0 Blue

Fossil-Fueled Development FFD SSP5 RCP8.5 Red

Table 1: Scenarios and Color Codes

4.1 Economic Model Scenario Inputs

This section presents a set of scenario inputs critical to the agricultural sector outcomes. First,

our five-state region population projection is drawn from Jiang et al. (2020) which downscaled the

SSP population projections to generate projections for the U.S. states 14. The projections reflect

the net effect of projected birth rates, death rates, and international and interregional migration.

Population is a critical input that drives regional GDP, land use, and energy and food consumption.

As described in Section 2.1, in the BAU scenario, the regional population is projected to moderately

increase from 47.5 million in 2020 to 56 million in 2050. Two high stewardship scenarios (BGEP

and GDEP) also project moderate increase in the regional population. The FFD scenario exhibits

the highest population growth, whereas the RI scenario is the only non-increasing scenario.

Figure 5: Population in the U.S. Great Lakes Region

14The International Institute for Applied Systems Analysis (IIASA) hosts the SSP scenario database, accessible via
https://tntcat.iiasa.ac.at/SspDb. The underlying scientific data was published in Samir and Lutz (2017)
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Global corn and soybeans prices are projected by economists in our research team in a way

that reflect our best estimate of the global trends under different global economy and stewardship

conditions. It needs to be noted that we project long-run average paths of agricultural commodity

prices, rather than short-term prices that vary around the long-run average due to transitory global

shocks. Specifically, we assume that in the BAU, corn and soybean prices remain stable at ap-

proximately 2020 levels ($4.2/bushel for corn, $10/bushel for soybeans). In general, compared to

the BAU, scenarios with greater global market integration with limited trade barriers have lower

commodity prices. Scenarios associated with strong level of environmental stewardship policies

project higher prices. The net impacts of combining global market and stewardship conditions are

presented in Figures 6-7: 50% higher in GDEP; 15% higher in BGEP; 20% higher in RI; 15%

lower in FFD.

Figure 6: Corn Export Price Figure 7: Soybean Export Price

The framework incorporates crop-specific fertilizer prices and their predicted trends, shown in

Figure 8. The initial fertilizer prices are calculated using the nutrient price indices from the Federal

Reserve Bank of St. Louis and the state-level average nutrient contents applied per acre for each

crop provided by the USDA ERS. The price trend is predicted based on the statistical relationship,

obtained from Schnitkey (2016), between historical fertilizer price changes and corn and natural

gas prices. By using this relationship, the changes in corn prices and natural gas prices due to a

carbon tax are reflected on the fertilizer prices by scenario.

Figure 9 shows scenario-specific conservation payments, a critical driver of farmers’ decisions
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to enroll in a conservation program in our land management model, and thus the size of working

croplands. The BAU conservation payment rate growth (4.3%) is projected using historical rates

of growth in actual CRP contract payments per acre between 2000-2019 in the region15. The vari-

ations across scenarios are determined through discussions with regional advisory stakeholders:

for low stewardship scenarios (FFD and RI), we decrease the growth rate to 66% of the BAU; for

high stewardship scenarios (BGEP and GDEP), we increase the growth rate by 50% of the BAU.

The average conservation payment (in 2016 USD) in the region increases from $130/acre in 2020

to $250/acre, $160/acre, and $475/acre in 2050 in the BAU, low stewardship scenarios, and high

stewardship scenarios, respectively.

Figure 8: Fertilizer Price (Year 2020 =1) Figure 9: Conservation Payment

4.2 Economic Model Results

The economic model projects agricultural sector outputs, including cropland allocation, produc-

tion, and fertilizer uses for corn and soybeans in the Great Lakes region for each scenario. The

agricultural sector results showcase the projected responses of crop producers to the varied global

environmental stewardship, climate, and market conditions and regional agricultural policies.

15See https://www.fsa.usda.gov/programs-and-services/conservation-programs/reports-and-statistics/conservation-
reserve-program-statistics/index for details
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4.2.1 Production and Land Allocation

Cropland and production projections for corn and soybean are exhibited in Figures 10-13. Total

croplands available for production by county in each state are estimated by the land use change

and the farmer’s land management models. Then, the allocation of these total croplands to each

crop production is projected by the dynamic CGE model.

As two main crops in the Great Lakes region, corn and soybean, in general, compete for land.

In the BAU, soybeans are anticipated to be more profitable than corn over time; therefore, more

land is projected to be used for soybean production. Total corn land and production decrease

from 25 million acres and 4 billion bushels in 2020 to 3.5 billion bushels and in 2050, respec-

tively. In contrast, total soybean land and production increase from 25 million acres and 1.4 billion

bushels in 2020 to 32.5 million acres and 2.2 billion bushels, respectively. Of the two high stew-

ardship scenarios, the BGEP favors soybean whereas the GDEP favors corn. This difference can

be explained by commodity export prices (Figures 6 and 7), crop yields (Figures 14 and 15), and

relative costs (e.g., fertilizer price, Figure 8), which together determine the crop’s profitability. In

the GDEP, with the highest expected agricultural commodity prices (50% higher than in the BAU),

corn becomes more profitable than soybean. In the BGEP, the commodity prices are higher than

in the BAU (15%), but the relative increase in fertilizer price is much higher (30% in 2050). As

a fertilizer-intensive crop, corn production relies more substantially on fertilizer inputs than soy-

bean production, and thus is more sensitive to fertilizer prices. The combined effects, insufficient

to switch the order of the two crop’s profitability, lead the BGEP corn and soybean lands closely

to follow the trends of BAU until 2040 when two scenarios begin to deviate mainly due to the

decreased total cropland in the BGEP.

The FFD is a scenario associated with the lowest agricultural productivity due to the worst

global warming condition (RCP8.5) and the lowest commodity prices because of limited trade

barriers and environmental regulations. With lower profitability, both corn and soybean exports

reach zero towards the mid-century and are produced only to meet regional demand. Still, the pace

of decrease in the FFD is modest because of higher population growth in this scenario. Unlike
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soybean, corn land and production rebounds are observed after 2038, largely due to the steady use

of corn for ethanol fuel production in the later years even after the export becomes zero. The RI

scenario holds a set of favorable conditions for agricultural production—high productivity growth,

high export prices, a relatively small increase in fertilizer cost—and all these together contribute

to the increases in the allocated cropland and production of both crops.

Figure 10: Corn Production Figure 11: Soybean Production

Figure 12: Corn Land Figure 13: Soybean Land

4.2.2 Crop Yields

Figures 14 and 15 present corn and soybean yields, respectively, for each scenario. The BAU ex-

periences yields generally increasing over time for both corn and soybeans, approximately by 15%

through 2050, continuing current trends toward improvements in agricultural productivity. The

yields are determined by scenario-specific assumptions, including climate conditions and technol-

ogy advancement, along with fertilizer input quantity. Alternative scenarios mostly follow similar
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patterns for both crops. In particular, the higher commodity price scenarios (GDEP and RI) show

more substantial increases in cropland uses at intensive margins thanks to higher nutrient applica-

tion rates (Figures 18-19) given higher profitability. Only the FFD observes a decrease in yields

mainly driven by the worst climate conditions of RCP8.5.

Figure 14: Corn Yield Figure 15: Soybean Yield

4.2.3 Total Croplands and Fertilizer Application

Total cropland in our integrated model remains roughly constant through 2050 under the BAU

scenario (Figure 16). The two high stewardship scenarios (BGEP and GDEP) project the amount

of the land used for crop production to decline compared to the BAU from roughly 52 million

acres in 2020 to 49 million acres for BGEP and 47 million acres for GDEP in 2050. This is

mainly explained by higher CRP payment rates that contribute to more enrollment in the CRP

conservation program, estimated in land use models. Both low stewardship scenarios stay closer

to the BAU trend than the high stewardship scenarios do.

By combining projections of acres planted to each crop and different rates of fertilizer applica-

tion, the total amount of combined N, P and K fertilizers used for all crops (corn, soy, wheat, and

specialty crops) in the region is projected. Figure 17 suggests that under the BAU scenario, the

total application of fertilizers are projected to decline from 4.5 to 4.0 million short ton by 2050.

In other scenarios, the total amount of fertilizer use varies over time. The higher commodity price

scenarios (GDEP and RI) project the highest total fertilizer use, well above the BAU. The FFD sce-

nario projects lower overall fertilizer use than the BAU until 2040, and then it also rises above the
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BAU by 2050. The BGEP scenario tracks closely to the BAU until the early 2030s, then declines

rapidly by 2050. The declines in total fertilizer use in the two high stewardship scenarios (GDEP

and BGEP) after around 2035 can be explained by increasing fertilizer prices due to higher energy

costs and decreasing total crop land in the region.

Figure 16: Total Croplands Figure 17: Total Fertilizer Use

The model assumes that per-acre fertilizer application rates are nearly constant over time,

around 5% decline, in the BAU scenario (Figures 18 and 19). In other scenarios, the per-acre

fertilizer application rates can be explained by the marginal return of the fertilizer, which is depen-

dent on crop productivity and profitability. For instance, the GDEP, linked to higher productivity

and higher profitability thanks to relative increase in crop price to cost, shows higher application

rates. The FFD projects the lowest projected fertilizer application rates per acre. Fertilizer applica-

tion rates are tied to per-acre yields, but will also play a role as an input to the water quality model

results in Section 6.

Figure 18: Per Acre Nitrogen (N)
Application Rate for Corn

Figure 19: Per Acre Phosphorus (P2O5)
Application Rate for Corn
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4.2.4 Global Market Conditions and Regional Crop Production

In this subsection, we investigate the H1 hypotheses introduced in Section 2.2. Comparisons be-

tween a pair of scenarios with the same stewardship level confirm that our results are generally

consistent with the H1. First, the effects of higher global commodity prices (H1A) are manifested

as the increased crop yields (higher intensity of land use) under the GDEP and the RI, relative to

the BGEP and the FFD, respectively (Figure 14 and 15). Second, the results partly support that

higher prices lead to increased total cropland acres (H1B). Figure 16 shows that the RI maintains

the greater acres of croplands than the FFD does. However, the two high stewardship scenarios

are not consistent with the hypothesis, with the lower price scenario (BGEP) projecting the greater

cropland acres than its higher price counterpart (GDEP). This result is mainly driven by the land

conservation enrollment due to higher conservation payments in those scenarios (Figure 9). The

last result implies that even when global market conditions stimulate an increase in total croplands

and production, a sufficient amount of conservation payment still can lessen or prevent the con-

version from idle lands to working croplands, potentially containing water quality degradation.

Furthermore, the examination of H1 highlights the value of the integrated assessment framework

that links global/regional conditions to state/local-level economic/land use decisions in assessing

the environment, including water quality.

5 Land Use Model Results

Aggregated LUC predicted by each scenario are illustrated in Figures 20-24 below. In short, pop-

ulation and CRP enrollments constitute the two primary differentiating factors in LU between

scenarios. Figure 22 illustrates that high stewardship scenarios break in trend from the other sce-

narios as CRP payments rise over time. Figures 25-29 illustrate the implications of these increasing

CRP payments; for a subset of counties, particularly in Illinois and Indiana, payoffs for enrolling

land in CRP become larger than the average net returns to cropping. We assume that CRP enroll-

ments can be treated as grasslands made unavailable for grazing or other pasture uses; hence, high
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stewardship scenarios contain more grasslands as time progresses as farmers enroll more of their

cropland in CRP. Population projections are a key factor distinguishing between the GDEP and

BGEP scenarios, placing pressures on LU conversion to urban use; conversion to developed/urban

land use varies between scenarios by over 2 million acres for the region by 2050 (Figure 24). Our

current forest models project little movement in aggregate forest land over time with all scenar-

ios remaining near constant during the simulation period (Figure 23), but there are heterogeneous

effects across counties in the region.
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Figure 20: Net Returns Per Cropland Acre
Average Across Counties

Figure 21: Average Difference in Cropland
Net Returns and CRP Payments

Figure 22: Projected Regional
Pasture/Grassland Acres Across Scenarios

Figure 23: Projected Regional
Forest Acres Across Scenarios

Figure 24: Projected Regional
Developed Acres Across Scenarios
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Figure 25: BAU Difference in Cropland Net
Returns and CRP Payments by County

Figure 26: BGEP Difference in Cropland
Net Returns and CRP Payments by County

Figure 27: GDEP Difference in Cropland
Net Returns and CRP Payments by County

Figure 28: FFD Difference in Cropland Net
Returns and CRP Payments by County

Figure 29: RI Difference in Cropland Net
Returns and CRP Payments by County

32



6 Watershed Model Scenario Inputs and Results

In this section, we present scenario projections of water quality changes in the Maumee River wa-

tershed of northwest Ohio. These results are generated by a machine-learning-based model that is

trained to simulate the outputs of a SWAT for the Maumee River watershed. The statistical model

uses scenario-specific inputs on climate conditions, including precipitation and temperature, and

rates of agricultural BMP adoption, along with results from the economic and land use models,

such as projections of fertilizer application rates, crop rotations, and land use changes. In addition

to changes in loads of nitrogen and phosphorus entering Lake Erie, we show how often this wa-

tershed will meet the 40% reduction target in frequency for total and soluble phosphorus, set for

Lake Erie by the GLWQA in 2012.

6.1 Watershed Model Scenario Inputs

First, Figures 30-31 show climate conditions for different scenarios drawn from the nine combi-

nations of global climate models simulated for corresponding RCPs. The temperature and pre-

cipitation are critical inputs into the regional watershed model as they impact sediment loading

and water quality metrics (Kujawa et al., 2020). Under the BAU and the GDEP, both tied to the

RCP4.5 climate projections, the annual temperature in the Maumee River watershed is expected to

increase roughly 1 degree Celsius between 2020 and 2050. Both the BGEP and the RI, in general,

show annual temperatures lower than the BAU, whereas the FFD, associated with RCP8.5 pro-

jections, observes over 1.5 degrees Celsius increase through 2050. The precipitation projections

exhibit more variations across the scenarios. For example, the BAU (and GDEP) displays relatively

gradual increase until 2040, followed by a decrease afterwards. The RI projects the precipitation

increasing through 2030, and then decreasing to have the lowest among the scenarios.
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Figure 30: Annual Average Temperature of
Maumee River Watershed, averaged across
three climate models and rolling averaged
for ten years

Figure 31: Annual Average Precipitation of
Maumee River Watershed, averaged across
three climate models and rolling averaged
for ten years

Second, Figures 32-33 exhibit the projections of subsurface fertilizer placement and buffer strip

adoption, respectively. The current percents of operators using subsurface placement of fertilizer

and the annual rate of change under BAU are estimated using farmer surveys implemented at the

state and regional level over the last 15 years (Kast et al., 2021; Burnett et al., 2018). Rates of

change are adjusted up by 50% for high stewardship scenarios and down by 33% for low stew-

ardship scenarios relative to rate of the BAU16. The current percent of cropland draining through

a buffer are estimated by combining information from recent state and regional farmer surveys

that report both the percent of operators using buffers and the percent of their cropland that drains

through those buffers. Information from similar surveys over time are used to estimate the growth

rate in each of these two components and to produce estimates of the BAU cropland protected by

buffers into the future. The rates of change are adjusted up by 50% for high stewardship scenarios

and down by 33% for lower stewardship scenarios relative to rate of the BAU17.

16All growth rates are moderated after adoption approached 80% of farms to produce a flattened S-curve
17All rates are moderated after adoption approaches 50% of farms to produce a flattened S-curve
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Figure 32: Percent Using Subsurface Fertil-
izer Placement

Figure 33: Percent of Regional Cropland
Drained by Buffer

6.2 Watershed Model Results

Since the size and toxicity of algal blooms in Lake Erie are particularly linked to spring runoff dur-

ing the months of March to July (Martin et al., 2021), we integrate information about temperature,

rainfall, land use, crop rotations, and BMP adoption to project the level of spring18 runoff at the

mouth of the Maumee River for each scenario. The results in Figure 34 suggest that the BAU is

expected to see slowly declining levels of spring runoff through 2050. Meanwhile, the two higher

price scenarios (GDEP and RI) are projected to have higher levels of spring runoff in most years

compared to the BAU. The GDEP is expected to exhibit persistently high spring runoff levels until

the mid-2040s, followed by subsequent drops near the mid-century. Under the FFD scenario, there

is a short spike in spring runoff in the mid-2020s, then a decline through the mid-century. Close

to the mid-century, the BGEP ranks the first in terms of the streamflow amount, followed by the

GDEP and the rest three scenarios (RI, FFD, and BAU).

One observation, from the comparison between the RI and FFD in the 2040s, is that the FFD,

despite its higher precipitation, exhibits a similar streamflow with the RI. The trend can be at-

tributed to the highest temperatures and evapotranspiration in the FFD, contributing to the lower

runoff ratios.

A more notable result is the substantial difference in streamflow between the BAU and the
18Refers to March to July in the present paper.
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GDEP, despite their common climate projections (RCP4.5). The difference signifies the advantage

of the integrated assessment approach over a partial analysis in the water quality analysis. First,

the two scenarios’ distinct global market conditions lead to divergence in the agricultural sector

in terms of a primary crop, fertilizer application rates, and yields, as shown in Section 4.2. This

distinction results in the widening gap between two graphs through the middle of the period, be-

fore convergence takes place thanks to the GDEP’s increased BMP adoption ratios, including the

adoption of vegetative buffers, which are likely to reduce streamflow. Still, it requires a closer

examination to isolate mechanisms behind the streamflow difference between the two scenarios,

but the result hints the significance of global commodity market conditions as well as regional

stewardship practices in water quality.

Figure 34: March-July Mean Streamflow at Mouth of Maumee River Watershed, Averaged across
Nine Combination of Climate Models and Rolling Averaged for Ten Years

The Lake Erie Nutrient Reduction Agreement committed by the U.S. states and Canadian

provinces to reduce the levels of total phosphorus (TP) and dissolved reactive or soluble phos-

phorus (DRP)19 entering Lake Erie from their waters by 40%, particularly during the months of

March-July (equivalent to 860 tons for TP and 180 tons for DRP, marked with gray solid lines

in Figures 35 and 36, respectively). We use our watershed model to project TP and DRP loads

from the Maumee River watershed during these critical spring months for each of our scenarios.

19Dissolved reactive phosphorus (DRP) and soluble phosphorus (SP) are used interchangeably in this paper as DRP
is a subset of SP.
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As annual projections fluctuate widely, we first focus on ten-year rolling averages to highlight the

longer-term trends as in Baker et al. (2019).

TP loads between March and July under the BAU, starting at 1000 tons in 2020, are projected to

reach the 40% reduction target by 2035, and further decline to roughly 750 tons by 2050. The two

high stewardship scenarios (GDEP and BGEP) are projected to have even more rapid declines in

spring TP loads from the Maumee River watershed. These scenarios reach the 40% reduction target

by 2030 and 2026, respectively. Under both low stewardship scenarios (RI and FFD), projected

spring TP loads are higher than BAU throughout the study period, and only approach the 40%

reduction target by the mid-2040s.

DRP loads for March through July under the BAU are projected to decline from around 200

tons in 2020 to roughly 150 tons by 2050. The watershed reaches the 40% reduction target by 2025.

The two high stewardship scenarios (GDEP and BGEP) are projected to see more rapid declines in

spring DRP loads compared to the BAU over the entire study period. Under both low stewardship

scenarios (RI and FFD), projected spring DRP loads are higher than the BAU throughout the study

period, but achieve the 40% reduction target by the late-2020s.

Figure 35: March-July Soluble Phosphorus Loads at Mouth of Maumee River Watershed, Aver-
aged across Nine Combination of Climate Models and Rolling Averaged for Ten Years
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Figure 36: March-July Total Phosphorus Loads at Mouth of Maumee River Watershed, Averaged
across Nine Combination of Climate Models and Rolling Averaged for Ten Years

As noted above, Ohio, Michigan, and Ontario have committed to reduce their spring total P and

soluble P loads to Lake Erie by 40% (compared to 2008 levels) in nine out of ten years. Our model

is able to examine the number of years in each decade that meet the 40% reduction target. Unlike

the graphs above that illustrate a ten-year rolling average showing a long-term trend through the

simulation period, Figures 37-38 provide an insight into the relative frequency with which the 40%

target is met in a given decade under each scenario. In the figures, the gray diamond and the black

bold line indicate the mean and median values of years meeting the 40% reduction target among

those nine simulations for each scenario, respectively. The results suggest that the median values

of the two high stewardship scenarios (BGEP and GDEP) generally tend to reach the 40% target

for spring soluble P more frequently than the BAU’s does in the 2020s and 2030s. By the 2040s,

the GDEP scenario still outperforms the BAU, but the BGEP (eight of ten years) is slightly behind

the BAU (nine of ten years). Under both low stewardship scenarios (RI and FFD), we project that

the soluble and total P targets will be met less frequently than under the BAU in all three decades.
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Figure 37: Years Meet 40% Spring Soluble Phosphorus Reduction Target of Maumee River Wa-
tershed for Each Decade

Figure 38: Years Meet 40% Spring Total Phosphorus Reduction Target of Maumee River Water-
shed for Each Decade

6.2.1 Integrated Framework-Based Water Quality Analysis

This section interprets the water quality results in the context of the integrated framework and also

examines the two remaining hypotheses, H2 and H3, introduced in Section 2.2. First, while the

rolling-averaged DRP and TP results in Figures 35 and 36 show the effectiveness of BMP adoption

in all scenarios, the results in Figures 37 and 38 illustrate that success in the earlier years in at-

taining the policy target is relatively uncertain and highly dependent on economic, environmental,

and policy conditions. Given the range of conditions represented by the five scenarios, we find that

only two of the scenarios are projected to attain the 40 percent spring DRP and TP reduction tar-

gets nine out of ten years by the 2030’s and that none of them meet this target by 2025, which was
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the original timeline for meeting this target (USEPA, 2018). Both the GDEP and BGEP scenarios

in which the decadal target is met in the 2030’s have exceptionally high rates of BMP adoption,

achieving 83 and 53 percent of total cropland acres with subsurface placement and buffer strips

respectively by 2040. By comparison, the 40 percent reduction target is only met six (four) of the

ten years for spring DRP (TP) in the 2030’s for the two scenarios in which BMP adoption rates are

the lowest.

The results also reveal the importance of changing climatic conditions and agricultural activi-

ties. The BGEP shows the most dynamic trend: it experiences relatively larger fluctuations around

2030 and, more notably, slower declining rates in the 2040s despite its highest BMP adoption ra-

tios and smaller working croplands in the corresponding period. The variations in the earlier years

coincide with its volatility in precipitation and streamflow in those years. Furthermore, the reduced

declining rates in the 2040s align with higher precipitation and streamflow in that period.

The comparison between the two low stewardship scenarios provides another insight. These

scenarios exhibit very similar trends in both DRP and TP loads despite their significant difference

in agricultural intensity: the RI is characterized with the greatest croplands, fertilizer application,

etc. The trend may be partially explained by their similar amount of streamflow and identical pro-

jections of BMP adoption ratios. Taken together, these results suggest that BMPs play a significant

role in reducing DRP and TP, but at the same time, the changes in precipitation can compromise the

effectiveness of the practices, as shown in the literature (Bosch et al., 2014; Kujawa et al., 2022).

To examine each of the hypotheses, we compare the results across scenarios to assess whether

they are consistent with the hypothesized relationships. H2 hypothesizes the relationship between

water quality and variations in cropland uses at (A) intensive margins and (B) extensive margins.

The scenario results are inconsistent with H2A: although both GDEP and RI have higher crop

yields with higher rate of fertilizer application, and in addition RI has a lower streamflow, DRP

and TP loads are lower under GDEP than RI. This might suggest that the increase in cropland

use at the intensive margin alone does not always lead to the deterioration of water quality. This

statement is partly supported by the insubstantial differences in water quality between the highest-
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yield scenario, RI and the lowest-yield scenario, FFD. We find greater consistency in the scenario

results with H2B. The scenarios with fewer cropland acres (GDEP and BGEP) perform better in

terms of water quality indicators than those with relatively constant or slightly increasing amount

of croplands (FFD and RI). However, despite its smaller working croplands, the BGEP exhibits

similar or worse water quality in the 2040s than the BAU. As explained above, the illustrates the

offsetting effects from precipitation, which increases in the 2040’s under this scenario.

Lastly, the results are largely consistent with H3. Both the BGEP and GDEP scenarios have

the identical BMP adoption ratios, but differ in their global and regional economic conditions.

Throughout the 2020’s and 2030’s, the two scenarios exhibit similar levels of TP and DRP loads,

diverging only in the 2040’s when precipitation increases under the BGEP scenario. The increased

precipitation imposes a negative impact on water quality in the BGEP scenario. Nevertheless, the

impact is rather moderate, likely due to its higher BMP ratios. Likewise, the RI and FFD scenarios

have equal levels of BMP adoption, but differ in other conditions. The RI is the most agriculturally-

intensive scenario with the greatest cropland acres, yields, and fertilizer uses whereas the FFD is

characterized with relatively lower intensity in agricultural activities. However, their water quality

results are nearly identical throughout the simulation period. Their identically increasing BMP

adoption ratios, together with relatively moderate climate conditions, would contribute to this

trend, mitigating the influences from the regional economy and global market. These results are

also supported by the decadal assessment (Figures 37 and 38) that shows that, despite confounding

factors, increasing rates of BMP adoption across all scenarios leads to more frequent attainment of

targeted DRP and TP reductions.

7 Conclusion and Future Plans

The research introduces an integrated assessment framework of food, energy, and water systems to

assess the impacts of changing global economic/climate and regional stewardship conditions on the

regional economy and environmental quality. By systematically integrating multiple sub-models
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that account for regional- and state-level economic decisions, county-level land use transitions,

and farmer-level land conservation decisions, along with global conditions, the study develops

a theoretically consistent framework of examining decision making across scales and assessing

global-to-local interactions.

The dynamic CGE model has multiple advantages in the context of IAM. First, thanks to the

fully-dynamic integration with the land use model, our model is capable of solving for equilib-

rium quantities and prices given updated total available croplands for each state economy every

period. Instead of using ad hoc intertermporal decisions rules, often used in standard recursive

dynamic CGE models, we build a separate forward-looking dynamic model that determines the

optimal intertemporal decisions on investment and resource extraction. Moreover, as we calibrate

the dynamic model for each scenario, our model parameters is able to reflect the social, economic,

and climate conditions of each scenario, thus contributing a logically consistent modeling to our

scenarios framework.

We calibrate and integrate a county-level LUC model that measures cell-level transitions be-

tween specific land uses which takes into account local land heterogeneity and is coupled with

regional and global economic factors; this global/regional to local linkage allows for LU to change

in response to shifts in higher-scale factors. We then aggregate this LUC up to the state-level,

linking the bottom-up LUC process with regional economic systems. In addition, we make use

of a choice experiment conducted by a sample of regional farmers to estimate a two-step model

of conservation land enrollment; this allows us to take into account farmer-level heterogeneity in

their likelihood to participate in CRP as well as their scale of enrollment. By keeping track of

enrollment at the scale of simulated farmers across the region, we simulate how changes in CRP

payments affect enrollment decisions differently over space and time, incorporating key farmer-

level and spatial heterogeneities that determine aggregate conservation enrollment and subsequent

water quality changes.

The AI-SWAT model is an important computational innovation. Despite its extensive use for

water quality assessment, the SWAT might not be suitable for scenarios framework that requires

42



repeated runs by scenario and integrability with other models. The AI-SWAT model is computa-

tionally efficient. In addition, trained with the observed data and SWAT simulated results for future

farming management scenarios, our watershed model is capable of predicting the water quality out-

comes for each future scenario, adaptively taking into account changing inputs from economic and

land use models and regional land stewardship conditions, including BMP adoption rates.

Despite these multiple contributions to advancing regional dynamics IAMs, the analysis of our

water quality results is still preliminary. The principle advantage of a scenarios framework—that

multiple uncertainties can be considered jointly by bundling a range of specified conditions into a

single scenario—also makes it challenging to interpret the results in a systematic cause-and-effect

manner. Doing so requires additional model simulations to identify and quantify the extent to

which any single factor drives a particular result and to what extent. For example, to further inves-

tigate whether BMP adoption plays the most critical role in determining water quality across the

scenarios, we would need to simulate each scenario many times by systematically varying combi-

nations of global market and climate conditions and conservation program payments, etc. This test

would provide implications for policy effectiveness and robust policies across scenarios. We plan

to conduct additional model simulations to better assess the relative effects of global versus local

conditions. With more modeled outputs, we also plan to use statistical analyses or machine learn-

ing interpretation methods, such as SHapley Additive exPlanations (SHAP) (Lundberg and Lee,

2017), to identify and compare each variable’s contribution to water quality outcomes. In addition,

we plan to incorporate payments for BMPs and use modeled outputs to project the marginal abate-

ment costs of water pollution for different land use and management practices. For instance, with

varying levels of conservation program payments, we can investigate farmers’ responses to the

policy changes and decisions on land conservation, ultimately affecting the regional water quality.

The analysis would allow us to examine the effectiveness of the government payments in reducing

water pollution and the robustness of different policies to the variations in global and regional con-

ditions reflected across scenarios. Lastly, we are currently working on a more granular-scale land

use model to tightly couple heterogeneous farmer management decisions and biophysical model
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outputs to allow for more robust analysis of biophysical outcomes and policy effectiveness.
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Appendix

A Recursive Dynamic CGE Model

The recursive dynamic CGE model consists of two separate models: a dynamic regional model

and a five-state static CGE model. Instead of listing all equations for both models, this section

describes the equations of the recursive dynamic CGE model as if it is a single model. It should

be noted that the transition laws for state variables (e.g., fossil fuel extraction, electricity genera-

tion capacity evolution, and industry capital stock evolution) are the parts of the dynamic regional

model. The relevant intertemporal decisions (e.g., investment in a certain type of electricity gener-

ation capacity) are decided in the regional model and then allocated to each state in the state-level

model by their shares of corresponding capital stocks in the region.

A.1 The Household

The representative household in each state, j, and in period, t, maximizes their utility given their

budget constraint. The utility function is a function of a consumption bundle,

yt = (y f ood
t ,yenergy

t ,ygas,heat
t ,ygeneral

t ), of the consumption of foods y f ood
t , energy services yenergy

t ,

gas for heating ygas,heat
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U(y j
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and the additively separable utility function is defined as
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for each period t, where ω are weights assigned to each consumption goods and γc are a parameter

associated with the degree of relative risk aversion.

The energy services is a composite of electricity yenergy,elec
t and transportation energy, yenergy,trans

t ,

A.1



and is expressed as

yenergy
t =

[
φ

energy
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yenergy,elec
t

)ρe
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energy)
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t
)ρe
] 1

ρe (A.3)

where φ energy denotes the share of energy service provided by electricity and σe is the elasticity of

substitution between two energy services (σe =
1

1−ρe
).

In each period t, the household maximizes their utility given the following budget constraint:
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. The left hand side shows the total income earned that is the sum of the profits from firms

(ΠTotal, j
t ) and the returns on capital (∑cap κ jKcap, j

t ) and on land (∑lb wlb, j
t Llb

t ), given the assump-

tion that the household owns the firms, land, and capital in the economy. The total profits from

firms, Π
Total, j
t , is the sum of profits from each firm. cap indicates sectors using a capital input,

cap ∈ {elec.coal,elec.gas,elec.wind,elec.solar,general}, ld indicates sectors using land as an

input, ld ∈ {corn,soy,wheat,specialty, livestock}, and lb indicates sectors taking labor input, lb ∈

{corn,soy,wheat,specialty, livestock, f ood,elec.coal,elec.gas,elec.wind, transportation}. κ , ι ,

and w represent return rates for capital and land, and wage for each sector in each state, respec-

tively. The right hand side shows the total spending in consumption of goods and services (Pop j
t ·

(∑ pconycon
t )), capital investment (∑ Icap

t ), and operation cost of carbon capture (∑ f f ζ
CCS, f f
t ) and

direct air capture (ζ DAC
t ). con indicates consumption goods, con ∈ { f ood,energy,gas,general}.

In the following, the state index, j, is omitted as equations are symmetric across the five states.
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A.2 Agricultural and Food Sector

A.2.1 Crop Farm

The Qcrop
t amount of a crop is produced using Lcrop

t of land, Fcrop
t of fertilizer, and Ncrop

t of labor

for each crop (crop ∈ {corn,soy,wheat,specialty}). Given that, the the firm’s profit is defined as

the revenue from selling crops net of input costs:

Π
crop
t =pcrop

t Qcrop
t

− p f ert,crop
t Fcrop

t −wtN
crop
t − ιtL

crop
t

where pcrop
t is a crop price and p f ert,crop

t is crop-specific fertilizer price in each state. The profit is

maximized given the crop production technology feasibility constraint. The crop production func-

tion is a nested normalized constant elasticity of substitution (CES) function of the three inputs,

Qcrop
t

Qcrop
0

= Acrop
t

[
(1−β

crop)

{
ω

crop
(

Lcrop
t

Lcrop
0

)ρ1,crop

+(1−ω
crop)

(
Fcrop

t

Fcrop
0

)ρ1,crop} ρ2,crop

ρ1,crop

+β
crop
(

Ncrop
t

Ncrop
0

)ρ2,crop] αcrop

ρ2,crop

(A.6)

where Acrop
t is the crop-specific total factor productivity and αcrop is a decreasing returns to scale

parameter in the region.

A.2.2 Livestock Farm

The livestock products, Qlivestock
t , are produced with crop feeds of corn Qcorn, f eed

t and soybean

Qsoy, f eed
t , the labor Nlivestock

t , and the pasture land Lpasture
t . The profit is maximized:

Π
livestock
t =plivestockQlivestock

t

− pcorn
t Qcorn, f eed

t − psoy
t Qsoy, f eed

t −wtNlivestock
t − ιtL

pasture
t (A.7)
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The livestock production function is formulated as a Cobb-Douglas function,

Qlivestock
t

Qlivestock
0

= Alivestock
t

(
Qcorn, f eed

t

Qcorn, f eed
0

)α l(
Qsoy, f eed

t

Qsoy, f eed
0

)β l(
Nlivestock

t

Nlivestock
0

)η l(
Lpasture

t

Lpasture
0

)γ l

(A.8)

where Alivestock
t is the total factor productivity for livestock production. The parameters α l , β l , η l ,

and γ l are share parameters and their sum is assumed to be less than one.

A.2.3 Food Production Firm

The Y f ood
t amount of food is produced with Qcorn, f ood

t , Qsoy, f ood
t , Qwheat, f ood

t , Qspecialty, f ood
t , and

Qlivestock, f ood
t of corn, soybeans, wheat, specialty crops, and livestock products, respectively, and

the N f ood
t amount of labor. Thus, the profit is expressed:

Π
f ood
t =p f oodY f ood

t

− pcorn
t Qcorn, f ood

t − psoy
t Qsoy, f ood

t − pwheat
t Qwheat, f ood

t − pspecialty
t Qspecialty, f ood

t

− plivestock
t Qlivestock, f ood

t −wtN
f ood

t

(A.9)

The food production function has a nested structure, where, first, a non-meat food composite and

meat production are combined in a CES function, which then comprises a Cobb-Douglas function

with the labor input:

Y f ood
t

Y f ood
0

=

[(
1−ω

f 5
t

)
(

Qcorn, f ood
t

Qcorn, f ood
0

)ω f 1(
Qsoy, f ood

t

Qsoy, f ood
0

)ω f 2(
Qwheat

t

Qwheat
0

)ω f 3(
Qspecialty, f ood

t

Qspecialty, f ood
0

)ω f 4
α f

+ω
f 5

t

(
Qlivestock, f ood

t

Qlivestock, f ood
0

)α f] β f

α f
[

N f ood
t

N f ood
0

]1−β f

(A.10)

where ω f 1, ω f 2, ω f 3, and ω f 4 are the shares of corn, soybeans, wheat, and specialty crops in

the non-meat food composite, respectively, (with ω f 1 +ω f 2 +ω f 3 +ω f 4 = 1), and ω
f 5

t repre-

sents a share parameter associated with meat consumption and its trend representing a diet pattern
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change.β f indicates the share of labor input in food production. α f is a substitution elasticity

parameter.

A.3 Energy Sector

A.3.1 Fossil Fuel Extraction Firm

Fossil fuels are extracted (D f f
t ) from finite recoverable reserves and the stock remaining at time t

is R f f
t . Each resource stock R f f

t satisfies the following stock transition law:

R f f
t+1 = R f f

t −D f f
t (A.11)

where D f f
t is the extracted amount of coal or natural gas ( f f ∈ {coal,gas}). The extraction cost

functions of coal and natural gas are

G f f = θ
f f

(
D f f

t

R f f
t

)α f f

+
(

reg f f
t + τ

f f ,co2
t

)
D f f

t (A.12)

where reg f f
t is the annual cost spent to meet current regulation standards and only applies to coal,

and τ
f f ,co2

t is the potential global-level carbon tax imposed on the fossil fuels supplied to the

regional economy. The profit function is

Π
f f
t =p f f

t D f f
t −G f f

t (A.13)

A.3.2 Fossil Fuel Electricity Generation Firm

The fossil fuel-fired electricity generation, Eelec, f f
t , takes the inputs of corresponding fossil fuel,

D f f ,elec
t , generation capacity, Kelec, f f

t , and labor, Nelec, f f
t . The firm’s profit is

Π
elec, f f
t =pelecEelec, f f

t − p f f
t D f f ,elec

t − ι
elec, f f
t Kelec, f f ,total

t −wtN
elec, f f
t (A.14)
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. Its production function is formulated as a CES function:

Eelec, f f
t

Eelec, f f
0

= Aelec, f f
t

ω
elec, f f

(
Kelec, f f ,total

t

Kelec, f f ,total
0

)αelec, f f

+
(

1−ω
elec, f f

)(D f f ,elec
t

D f f ,elec
0

)αelec, f f
1−βelec, f f

αelec, f f

·

(
Nelec, f f

t

Nelec, f f
0

)β elec, f f

(A.15)

The fossil-based power plant technologies considered in the model include ultra-supercritical (USC)

coal plant (coal), USC coal plant with 90% sequestration (coal90), combined cycle - single shaft

natural gas plant (gas), and combined cycle plant with 90% sequestration (gas90). To incorporate

two types of plant technology for each fossil fuel, we assume: 1) the labors and fossil fuels are

able to move freely across different technology power plants (that is, only one aggregate labor,

fossil fuel input, and generation quantity for each fuel type), 2) each plant always operates to its

full capacity (no under-utilization), and 3) greenhouse gas emissions calculation is based on the

capacity share of each technology type using the same fossil fuel.

The total capacity of fossil fuel-fired electricity generation for each fuel is the sum of power plant

capacity with and without CCS:

Kelec, f f ,total
t = Kelec, f f

t +Kelec, f fseq
t (A.16)

where f fseq ∈ {coal90,gas90}. The capital transition law is specific to a plant type.

The plant capacity without CCS depreciates with the rate of δ elec, f f , grows with the addition of new

capacity, Ielec, f f
t /pelec, f f

t , net of the capacity retrofitted into a plant with CCS, Ielec, f fretro
t /pelec, f fretro

t

(A.3.2). The plant capacity with CCS also depreciates with the rate of δ elec, f f , grows with the

addition of new capacity, Ielec, f fseq
t /pelec, f fseq

t and the capacity retrofitted from a plant without CCS,

Ielec, f fretro
t /pelec, f fretro

t (A.3.2). I f f and p f f represent the plant-specific investment in dollar value

and their associated overnight capital investment costs, respectively, and their division translates
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into new capacity addition.

Kelec, f f
t+1 =

(
1−δ

elec, f f
)

Kelec, f f
t + Ielec, f f

t /pelec, f f
t − Ielec, f fretro

t /pelec, f fretro
t (A.17)

Kelec, f fseq
t+1 = (1−δ

elec, f f )Kelec, f fseq
t + Ielec, f fseq

t /pelec, f fseq
t + Ielec, f fretro

t /pelec, f fretro (A.18)

The operational costs for coal and gas power plants with 90% sequestration are:

ζ
CCS, f f
t = θ

f f ×90%×CO2 f actorelec, f f
t Eelec, f f

t

(
Kelec, f fseq

t

Kelec, f f ,total
t

)
(A.19)

where θ f f is the CO2 capture cost per metric ton for each plant type and CO2 f actorelec, f f is the

average emissions rate of CO2 per terawatt-hour (TWh).

A.3.3 Renewable Electricity Generation Firm

The renewable electricity, Eelec,renew
t , is assumed to take the renewable electricity generation ca-

pacity, Kelec,renew
t , as the major input and the rest inputs are implicitly incorporated in the total

factor productivity. The firm’s profit is

Π
elec,renew
t =pelecEelec,renew

t − ι
elec, f f
t Kelec, f f ,total

t (A.20)

The production function of renewable electricity is

Eelec,renew
t

Eelec,renew
0

= Aelec,renew
t

(
Kelec,renew

t

Kelec,renew
0

)αelec,renew

(A.21)

and the capacity transition law follows

Kelec,renew
t+1 =

(
1−δ

elec,renew
)

Kelec,renew
t + Ielec,renew

t /pelec,renew
t (A.22)
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A.4 Transportation Energy Services Firm

The transportation energy is supplied by four types of energy sources: gasoline Doil,gasoline
t , diesel

Doil,diesel
t , corn-based ethanol Qcorn,trans

t , and electricity Etrans,elec
t . The firm’s profit is expressed:

Π
trans
t =ptransEtrans

t − poil
t

(
Doil,gasoline

t +Doil,diesel
t

)
− pcorn

t Qcorn,trans
t − pelec

t Etrans,elec
t −wtNtrans

t

(A.23)

The production function is constructed as a nested CES function, with the outer nest composed

of the electricity energy and non-electricity combustion-based energy, and then with the inner one

characterized with the substitution between diesel, gasoline and fuel ethanol.

Etrans
t

Etrans
0

=Atrans
t

ω
elec

(
Etrans,elec

t

Etrans,elec
0

)αtrans

+(1−ω
elec)

(
Etrans,combustion

t

Etrans,combustion
0

)αtrans
γtrans

αtrans (
Ntrans

t
Ntrans

0

)η trans

(A.24)

where

Etrans,combustion
t

Etrans,combustion
0

=

[
ω

diesel

(
Doil,diesel

t

Doil,diesel
0

)αoil

+
(

1−ω
diesel

)ω
gasoline

(
Doil,gasoline

t

Doil,gasoline
0

)ρoil

+
(

1−ω
gasoline

)(Qcorn,trans
t

Qcorn,trans
0

)ρoil
αoil

ρoil ] 1
αoil

(A.25)

. In terms of electricity energy, it is assumed that the efficiency of conversion of electricity energy

to vehicle miles traveled continues to improve through 2050. The trend is expressed with the

equation for the effective energy provided by electricity

Etrans,elec
t = γ

elec,e f f iciency
t Etrans,elec,raw

t (A.26)

and the efficiency parameter γ
elec,e f
t for the electricity energy for transportation, which is assumed
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to linearly increase to reach 4 times relative to fossil-fuel energy until 2050 for T (=35) years:

γ
elec,e f f iciency
t≤T = 1+

3
T −1

(t−1) (A.27)

γ
elec,e f
t>T = 4 (A.28)

A.5 General Goods and Services Production

The general goods and services production, which accounts for the aggregate of the rest of regional

GDP, takes capital Kgeneral
t , electricity Egeneral,elec

t , transportation energy Egeneral,trans
t , and labor

Ngeneral
t to produce Y general

t . As this product is designated as a numeraire in the model, its price is

set to one. Its profit is

Π
general
t =Y general

t −κKgeneral
t

− ptrans
t Egeneral,trans

t − pelec
t Egeneral,elec

t −wtN
general
t

(A.29)

. The production function is

Y general
t

Y general
0

= Ageneral
t

[
φ

K

(
Kgeneral

t

Kgeneral
0

)ρm

+
(
1−φ

K)[
φ

m

(
Egeneral,elec

t

Egeneral,elec
0

)ρenergy

+(1−φ
m)

(
Egeneral,trans

t

Egeneral,trans
0

)ρenergy
] ρm

ρenergy
]αke

ρm
(

Ngeneral
t

Ngeneral
0

)1−αke

(A.30)

. Its capital follows the transition law of

Kgeneral
t+1 = (1−δ )Kgeneral

t + Igeneral
t (A.31)

.
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A.6 Trading Firm

Assume that each state has a single representative trading firm and its profit is generated by the

differences between a trade price and a state market price, net of transaction costs:

Π
trade, j
t = ∑

crop

{[(
1−TCcrop, j) pcrop,trade

t − pcrop, j
t

]
Qcrop,ex

t

+
[

pcrop, j
t −

(
1+TCcrop, j) pcrop,trade

t

]
Qcrop,im

t

}
+
[(

1−TClivestock, j
)

plivestock,trade
t − plivestock, j

t

]
Qlivestock,ex

t

+
[

plivestock, j
t −

(
1+TClivestock, j

)
plivestock,trade

t

]
Qlivestock,im

t

+
[(

1−TCelec, j
)

pelec,trade
t − pelec, j

t

]
Eelec,ex

t

+
[

pelec, j
t −

(
1+TCelec, j

)
pelec,trade

t

]
Eelec,im

t (A.32)

+
[(

1−TCgas, j) pgas,trade
t − pgas, j

t

]
Dgas,ex

t

+
[

pgas, j
t −

(
1+TCgas, j) pgas,trade

t

]
Dgas,im

t

+
[(

1−TCcoal, j
)

pcoal,trade
t − pcoal, j

t

]
Dcoal,ex

t

+
[

pcoal, j
t −

(
1+TCcoal, j

)
pcoal,trade

t

]
Dcoal,im

t

+
[

poil, j
t −

(
1+TCoil, j

)
poil,trade

t

]
Doil,im

t

where TC represent product- and state-specific transaction costs.
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A.7 Market Clearing

A.7.1 Agricultural and Food Sector

The produced and imported corn is used for producing food, feeding livestock, generating corn-

based ethanol fuel, and exporting:

Qcorn +Qcorn,im = Qcorn, f ood +Qcorn, f eed +Qcorn,trans +Qcorn,ex (A.33)

The produced and imported soybean is used for producing food, feeding livestock, and exporting:

Qsoy +Qsoy,im = Qsoy, f ood +Qsoy, f eed +Qsoy,ex (A.34)

The produced and imported wheat is used for producing food and exporting:

Qwheat +Qwheat,im = Qwheat, f ood +Qwheat,ex (A.35)

The produced and imported specialty crops are used for producing food and exporting:

Qspecialty
t +Qspecialty,im

t = Qspecialty, f ood
t +Qspecialty,ex

t (A.36)

The produced and imported livestock is used for producing food and exporting:

Qlivestock
t +Qlivestock,im

t = Qlivestock, f ood
t +Qlivestock,ex

t (A.37)

We assume that all produced food is consumed by the household:

Y f ood
t = y f ood

t popt (A.38)

The total amount of land inputs for agricultural sectors and ecosystem services sum to the total
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available land in the region:

Ltotal
t = Lcorn

t +Lsoy
t +Lwheat

t +Lspecialty
t +Lpasture

t +Leco
t (A.39)

where Ltotal
t is exogenous.

A.7.2 Energy Sector

The total production of electricity from fossil fuels, renewables and other resources equal the

electricity used in manufacturing firms plus the electricity used by the household:

∑
f f

Eelec, f f
t + ∑

f fseq

Eelec, f fseq
t + ∑

renew
Eelec,renew

t +Eelec,im
t +Eother

t

= yenergy,elec
t popt +Egeneral,elec

t +Etrans,elec,raw
t +Eelec,ex

t (A.40)

The total produced transportation energy is consumed by the manufacturing firms and the house-

hold:

Etrans
t = Egeneral,trans

t + yenergy,trans
t popt (A.41)

The total amount of coal extracted and imported equals the coal used in electricity and exporting:

Dcoal
t +Dcoal,im

t = Dcoal,elec
t +Dcoal,ex

t (A.42)

The total amount of natural gas extracted and imported equals the natural gas used in electricity

and heating service used by the households and exported:

Dgas
t +Dgas,im

t = Dgas,elec
t + yenergy,gas

t popt +Dgas,ex
t (A.43)

The total amount of the imported oil equals the total amount of diesel and gasoline used in the
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transportation energy firms:

Doil,im
t = Ddiesel

t +Dgasoline
t (A.44)

A.7.3 Labor Market

Ntotal
t =Ncorn

t +Nsoy
t +Nwheat

t +Nspecialty
t +Nlivestock

t +N f ood
t +

Ngeneral
t +Ntrans

t +Nelec,coal
t +Nelec,gas

t

(A.45)
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