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Evaluating the impact of government investment support 
for crop robots: a multi method approach  

Olivia Spykman and Andreas Gabriel 

Bavarian State Research Center for Agriculture, Germany 

Abstract  

Technology plays an important role in the transition towards more sustainable agriculture. 
The associated costs for farmers may be lowered through government investment support 
programmes. The German federal state of Bavaria runs such a programme for various 
technologies, including crop robots that help to reduce chemical plant protection input. Based 
on official funding application data, an economic model relying on field trial data, and results 
from an early adopter focus group discussion, the case of the crop robot FD20 (FarmDroid 
ApS) in sugar beet is evaluated in detail. The funding application data indicates that applicants 
manage larger farms and work according to organic standards more often than the Bavarian 
population of farmers. The applicants’ counties of residence match areas of sugar beet 
production, suggesting a use of the robot mainly in sugar beets. The economic evaluation 
indicates a shift in minimum area of sugar beet production necessary for economical use of 
the robot caused by the government investment support. The minimum necessary area varies 
by field size and number and points to the importance of setup times and agricultural 
structures for robot profitability. The focus group discussion highlights the relevance of the 
government investment support scheme for farmers’ investment into a new type of 
technology shortly after its market entry. This multi-method approach has provided 
complementing conclusions from its three components that would not have been possible 
from each piece of research individually. Overall, the government investment support appears 
to have been integral to the success of crop robots in Bavaria and may thus serve as an 
example for other policymakers looking to create similar technology investment support 
schemes to move forward the digital transition in agriculture.  

Keywords  

Field robots; early adopters; economic model; focus group; sugar beet production; public 
funding.  

Presenter Profiles 

Olivia Spykman works is part of the Digital Farming Group at the Bavarian State Research 
Center for Agriculture and works on the socio-economic evaluation of crop robots for her 
PhD. After research crop robot acceptance among farmers and the general society, she 
currently focuses on questions of labour economics. She has a background in environmental 
science and agricultural economics.  
 
* Corresponding Author: Olivia Spykman, Bavarian State Research Center for Agriculture, 
Institute Agricultural Engineering Animal Husbandry, 94099 Ruhstorf a.d. Rott, Germany; 
olivia.spykman@lfl.bayern.de   
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Introduction  

The European agricultural sector currently faces a lack of manual and skilled labour as well as 
strict political regulation in response to environmental and societal requirements (cf. 
European Commission, 2023a), among other challenges. While these issues demand systemic 
changes rather than technological fixes, shifts in agronomic approaches require longer 
timescales. Novel (digital) technologies can contribute to the necessary transition both within 
existing and towards more sustainable systems. Among the digital technologies frequently 
discussed for this purpose, field robots may contribute to the solution in multiple ways: 
autonomous operation can reduce the dependency on labour (cf. Lowenberg-DeBoer et al., 
2021), and autonomous mechanical weeding can reduce herbicide input and labour cost 
simultaneously. Furthermore, lower weights than tractors reduce fuel consumption and soil 
compaction, and electric drives may reduce the dependency of agriculture on fossil fuels. 
These changes address some of the demands posed in the EU Green Deal to be fulfilled by 
2030 (cf. European Commission, 2023a, b). The German federal state of Bavaria has set an 
even more ambitious goal of halving the use of chemical plant protection by 2028 (StMELF, 
2021). Characterized by small-scale agriculture, Bavaria is actively moving forward the 
transition through an investment support programme (Bayerisches Sonderprogramm 
Landwirtschaft Digital, “BaySL Digital”) for digital technologies that enable the reduction of 
herbicide use and support organic farming, among others (StMELF, 2023). One such 
technology eligible for funding through the programme is the seeding and weeding robot FD20 
by Danish manufacturer FarmDroid ApS. It is solar-powered and autonomously seeds and 
weeds sugar beet and other fine seeds, relying on an RTK-enhanced GNSS system as opposed 
to camera detection. Between October 2019 and December 2022, Bavarian farmers could 
apply for funding of 40 % for a maximum investment sum of € 100,000 for eligible 
technologies, including the FD20. After an evaluation break of the technology-specific 
programme, it was resumed in July 2023. Lowering technology entry costs for farmers while 
simultaneously moving towards more sustainable agricultural practices is the proclaimed goal 
of the programme (StMELF, 2023). As such, it addresses financial limitations to technology 
adoption, which play an important role in farmer decisions for or against new technology.   

In the broader context of farm technologization, farmers tend to seek a compromise between 
costs and realizable benefits of advanced technologies (Kutter et al., 2011). Factors such as 
farm size, legal framework, operator characteristics, and the relative advantage of farming 
technologies consistently influence adoption and diffusion (Shang et al, 2021). Against this 
background, the attitude of farmers in acquiring new technologies is strongly determined by 
investment cost-related concerns. High investment costs may impede farmers in realizing 
potential profitability benefits (Eastwood & Renwick, 2020). Other literature indicates that 
farmers also adopt new farming practices even without an immediate profit (Lehman et al., 
1993). However, financial initiatives can support a quicker and broader application of 
technologies, such as capital grants for technology maintenance, tax breaks, interest rate 
reductions, and free technical assistance (Tey and Brindal, 2012; Floridi et al., 2013; Shang et 
al., 2021). One or more of these measures could indirectly change farmers' perceived 
profitability and improve actual farm productivity or even mitigate technology user risk 
(Ferrari et al., 2022). A variety of studies shows that the presence of government support 
services and funding schemes is an important prerequisite for the adoption of digital 
technologies in agriculture (e.g., Reichardt and Jürgens, 2009; Lambert et al., 2015). However, 
there are more economic analyses that measure the extent of decoupled farm payments or 
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federally subsidised crop insurance premiums (e. g., Weber et al., 2016). Only few studies 
document the various country-specific programmes that have a direct impact on the use of 
digital farming technology. This may also be due to many such programmes having only been 
implemented in recent years (McFadden et al., 2023). Barnes et al. (2019) postulate that 
technology-specific subsidies offered by national or regional authorities may be an important 
driver for adoption of disruptive technologies like crop robots, especially on smaller and low-
income farms. In this context, the appropriate type of financial support is also decisive. A very 
recent study from Switzerland simulated that in the case of site-specific management, coupled 
payments for reduced nitrogen are more cost-effective than, for example, area-based 
payments or subsidies for the use of technology (Huber et al., 2023). However, this result is 
specific to the technology and cannot necessarily be transferred to crop robots, as, for 
example, savings potentials of herbicides can only be measured in context of the reference 
(e.g., conventional vs. organic farms).  

The Bavarian government’s funding scheme for digital farming technologies represents a case 
study for the role of technology investment support in the transition currently underway in 
the farming sector. The particular case of the FD20 robot within this regional funding scheme 
has been analysed from multiple perspectives. The present contribution forms a synthesis of 
the analysis of official funding data, a model for calculating economic efficiency of the FD20 
(Spykman et al., 2023a; Rossmadl et al., 2023) as well as findings from a focus group discussion 
(Spykman et al., 2023b) to evaluate a regional investment support programme. The overview 
provides insights for researchers and policymakers in other regions looking to investigate and 
support the uptake of digital technologies in agriculture.   

Methods  

A multi-methods approach was used to understand the impact of funding for crop robots 
through the government investment support programme BaySL digital in Bavaria. First, 
applications for crop robot investment support approved by the responsible government 
agency are evaluated to characterise the funded farms. Then, an economic evaluation shows 
the monetary impact of subsidy payments on the profitability of the FD20 compared to 
standard weed control in organic sugar beet. Finally, results of a focus group discussion with 
early adopters provide perspectives from practical agriculture both on experience with the 
robot as well as on the role of the funding scheme.  

(a) Evaluation of funding application progress  

The investment support programme was launched in October 2018, with the robot FarmDroid 
FD20 only being put on the list of eligible technologies in October 2019. The currently ca. 50 
technologies on this list fulfilled the requirements of (1) having a digital component and (2) 
serving the purpose of reducing the input of chemical plant protection products. Other 
categories of technologies were also supported under the same funding scheme but will not 
be discussed here. The funding of digital weeding and spraying technologies, which includes 
crop robots, was continued until December 2022, when it was paused for evaluation. Funding 
was resumed in July 2023, but this ongoing period will not be considered in the present 
analysis.  

A list of approved applications for robots over the scheme’s duration (October 2019 till 
December 2022) was provided by the Bavarian State Ministry of Food, Agriculture and 
Forestry under adherence to data protection regulation. Based on the farm identification 
numbers, farm size and management type (organic/conventional) could be retrieved from the 
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government database. Further information on the status of the funding process was added: 
after approval for funding, farmers were given 12 months’ time to purchase the crop robot. 
They were then given another three months to submit the invoice as proof of purchase in 
order to receive an investment support of 40 % of the purchasing price up to an investment 
sum of net € 100,000. Therefore, at the time of writing, not all approved applications can be 
evaluated conclusively. This category will be considered “open” applications, as opposed to 
“completed” (invoice submitted, funding transferred) and “incomplete” (application retracted 
or no invoice submitted more than 15 months after approved application).  

Given the FD20’s suitability of sugar beet production, which relies heavily on manual weeding 
under organic management, the applicants’ postal codes were mapped and combined with 
data on sugar beet production. For this purpose, the first two positions of the five-digit postal 
code, which indicate the region, were used to create a color-coded map of approved 
applications for the FD20 per region in QGIS 3.12.3 (QGIS Development Team, 2023). 
Additionally, county-level (“Landkreis”) data on sugar beet production was provided by the 
two sugar beet growers’ associations (Steinberger, 2023, personal communication, 25 July; 
Beil, 2023, personal communication, 26 July). Since membership in one of the two associations 
is mandatory and dual membership is not possible for growers, the provided data can be 
considered comprehensive. The data were also transferred to QGIS 3.12.3 and color-coded.   

(b) Modelling the effect of public funding  

Given a lack of long-term empirical data, an economic model of different assumption-based 
scenarios was evaluated in Microsoft Excel. This model compares organic sugar beet 
production using the FD20 to the standard method of weed control, relying on a tractor and 
manual labour (see Spykman et al., 2023a; Rossmadl et al., 2023). Only those measures of the 
sugar beet production process assumed to differ between robot and tractor operations were 
included in the model. Table 1 summarises the different measures considered in the model 
comparing the two variants (FD20 vs. standard variant). The model includes labour and 
machinery costs for both variants. These costs take into account farm-field distance, error 
frequency and farmer-response time in the FD20 variant, and time needed for the completion 
of setup tasks, among others. The time data for the FD20 variant are based on experience as 
well as dedicated time measurements from various field trials in 2021 (Rossmadl et al., 2023). 
All other parameters are based on standardized data (KTBL, 2021; Achilles et al., 2020). The 
model’s computations include the difference between the FD20 and the standard variant, so 
that the produced output was the FD20’s profit contribution to sugar beet production relative 
to the standard variant (Spykman et al., 2023a; Rossmadl et al., 2023).  

Table 1: Comparison of FD20 and standard variants in the economic evaluation model 
(adapted from Spykman et al., 2023a)  
 

FD20 variant  Standard variant  

1x blind seeding1    
1x seeding  1x seeding  

1x blind weeding2    

3x inter-row weeding  1x manual weeding  

3x intra-row weeding  3x tractor-bound mechanical weeding  

0.3x manual weeding (canopy closure)  1x manual weeding (canopy closure  
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Based on experience from field trials (Kopfinger and Vinzent, 2021), it is assumed that the 
FD20 variant may fully replace the first passes of manual weeding but still requires some 
manual weeding at canopy closure due to (1) a safety margin around the individual plants not 
being weeded and (2) the risk of leaf damage by the FD20 during passes at or after canopy 
closure. Therefore, the FD20 variant contains a pass of manual weeding at a fraction of the 
time of a regular pass of manual weeding, as it is assumed that farm labourers will be able to 
proceed at a faster pace compared to the standard variant due to the FD20’s frequent passes 
throughout the season and thus lower weed coverage compared to the standard variant at 
canopy closure.  

For a sensitivity analysis, different scenarios were calculated in the model (Spykman et al., 
2023a). The baseline scenario, using data for the research site in Bavaria, assumed an annual 
capacity of 18 ha (calculated based on FD20 speed and good field days (Achilles et al., 2020)), 
which was divided over ten fields of 1.8 ha each, based on the average Bavarian field size of 
1.74 ha (LfL, 2014). Further scenarios included a variety of field distributions given a constant 
total area of 18 ha, ranging from a single 18 ha field to 15 1.2 ha fields. Additionally, a range 
of maximum possible field capacities (8-20 ha), , calculated from the good field days (Achilles 
et al., 2020) in German sugar beet producing regions (WVZ, 2022) and own data on the robot’s 
speed during seeding and weeding, was investigated. The upper end of the maximum field 
capacity spectrum is marked by the manufacturer’s specification of 20 ha being the seasonal 
limit (FarmDroid ApS, 2023), which can also be reached in Bavaria according to the 
calculations. There are two sugar beet growers’ associations in Bavaria, which together 
represent all sugar beet growers in the state. As specified by these growers’ associations, 
between 26 and 29 % of member farms cultivate sugar beet on areas between 8 and 20 ha 
(Steinberger, 2023, personal communication, 25 July; Beil, 2023, personal communication, 26 
July).  

Further parameters include the purchasing price of the FD20 at net € 90,000 (Miller, 2022), 
and wages at 21 €/h for skilled labour and 16 €/h for manual labour (Die Bundesregierung, 
2022; Achilles et al., 2020). Fuel costs were assumed to be 1.40 €/l (Offermann et al., 2022), 
including both the effect of the Russian invasion of Ukraine and the farm diesel subsidy. The 
resale value of 20 % after ten years is based on standardized data for agricultural equipment 
(Achilles et al., 2020) since no empirical data on an FD20 second-hand market exists yet. The 
baseline scenario was calculated without government investment support (Spykman et al., 
2023a); for scenarios with government investment support, the purchasing price of the FD20 
was reduced by 40 % to net € 54,000.  

(c) Focus group discussion with early adopters  

In autumn of 2022, the six farms that had received approval of their funding application prior 
to the start of the 2020 production season and thus had two seasons of experience with the 
robot were selected from the list of investment support recipients. A further nine farms that 
had received FD20 investment support after the start of the 2020 season but before the start 
of the 2021 season were added to the list. Given the applicants’ agreement to future research 
inquiries during the application process, these 15 early adopters were contacted by telephone 
and invited to participate in an online focus group discussion to discuss their experience with 
the robot and challenges in their respective areas of operation in different regions of Bavaria 
(see Spykman et al., 2023b). Focus group discussions, as opposed to individual interviews, 
allow for a variety of interpersonal interactions to be provoked, despite a limited time frame, 
to obtain more details and background information (Mayring, 2016). A rough framework of 
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topics outlined by pre-defined questions is typical for this method of data collection (Roller & 
Lavrakas, 2015). The focus group participants discuss freely within the prepared topics, which 
covered before-purchase expectations, funding process, user experience, problems and 
challenges, suggestions for improvement in the present case. The moderator intervenes as 
soon as the discussion strays from the topic or content is repeated in the discussion.   

Seven of the 15 farm managers contacted took part in the online discussion session (two 
approved applications before 2020 season, five approved applications before 2021 season), 
with some variability in the group regarding crops grown, location, cultivation method, soil 
conditions, and age of operator (see Spykman et al., 2023b). Sample heterogeneity is an 
advantage for focus groups, as homogeneous groups tend to limit the knowledge gained 
about the population (Grønkjær et al., 2011). The audio track of the 90-minute discussion 
session was recorded to transcribe discussion for content analysis. In the transcript, individual 
statements made by the participants were coded and assigned to the original topic areas 
investigated.  

Results  

Descriptive statistics of funding applications  

Over the course of three years (November 2019-December 2022), 88 applications for funding 
of field crop robots (65 by organic farmers) were approved by the Bavarian State Ministry for 
Food, Agriculture, and Forestry. Based on the available data, it is not possible to state the total 
number of applications to evaluate whether any applications were not approved. Of all these 
applications, only two were for robots other than the FarmDroid FD20, which will not be 
considered in the further discussion.  

Regarding the 86 applications for the FD20 crop robot, it should be noted that one application 
was submitted by a machinery group with its proper ID; although this machinery group 
represents two farms, they applied jointly for one robot. Additionally, four tenancies in 
common also applied for a robot to be shared by two farms, yet in each of these cases, each 
farm applied individually. That is, these eight applications represent only four robots. Thus, 
the total number of robots for which applications were approved amounts to 82 and the total 
number of individual farms having been approved for funding amounts to 87.   

At the time of writing, 17 of the 86 approved applications had been retracted or not completed 
(i.e., invoice submitted within required timeframe) and may thus be considered incomplete. 
Of the remaining 69 approved applications, six are open as applicants are still within the 15-
month timeframe post-approval to submit the invoice for their robot. That is, 80 % of all 
approved applications so far were or can still be completed. Figure 1 demonstrates the 
development of cumulative approved applications and submitted invoices in monthly 
increments over the course of three and a half years, beginning with the first approved 
applications in February 2020 and leading up to August 2023 (the latest possible date at the 
time of writing) as submission of invoices remains possible until early 2024 for the last 
approved applications. It becomes evident that applications were rather slow in the first year 
but subsequently maintained a steady rate. After the programme was paused (from late 
December 2022 until resumption in July 2023), submitted invoiced continued increasing for 
several months.   
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Figure 1: Temporal development of approved applications and submitted invoices for the 

FD20 (dotted box indicating evaluation pause) 
 

The applicants’ farm sizes range from 13 to 458 ha, with a mean of 99.5 ha. The mean farm 
size is thus markedly larger than the Bavarian average of 36.9 ha (StMELF, 2022). The Bavarian 
population of sugar beet farmers grows sugar beet on an average of 8.6 ha, although the 
largest farms reach sugar beet areas of 180-200 ha (Steinberger, 2023, personal 
communication, 25 July). Additionally, with 87 % of applications coming from organic farmers, 
the group of applicants quite juxtaposed to the population of Bavarian farmers, of whom only 
11 % manage their farm according to organic standards (StMELF, 2022). While the available 
data did not provide information about the crop(s) in which the robot was planned to be 
deployed at the time of application, the visualisation of application numbers and sugar beet-
producing areas in the federal state of Bavaria in Figure 2 indicates a spatial relationship 
between FD20 applicators and sugar beet production regions (county/”Landkreis” level). 
Regions with a higher number of approved applications are concentrated in the major sugar 
beet growing areas in the north, east and west of the state.   

  

Figure 2: Regional distribution of all 86 approved applications for FD20 (left, own data) and 
sugar beet producing counties (right, 2022 data from Steinberger, 2023, personal 
communication, 25 July)  
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Effect of government investment support on crop robot economics  

In the economic model, the baseline scenario (total area operated by robot of 18 ha, 
distributed evenly over ten fields) resulted in an FD20 profit contribution of 304 €/ha*a at 0 % 
investment support and 794 €/ha*a at 40 % investment support, respectively. Given the small-
scale structure of Bavarian agriculture, different scenarios of field size and distribution were 
considered. The profit contribution of the FD20 remained positive over all field distribution 
scenarios for a total area of 18 ha and irrespective of the 40 % investment support. This 
suggests that investment support is not necessary for economical operations at the upper end 
of the robot’s annual area capacity, even if operations take place on many small fields and 
thus require substantial set-up time (see Spykman et al., 2023a). However, given the 
uncertainty about a potential second-hand market, a worst case of 0 % resale value was also 
considered. It highlights the importance of the investment support scheme for financial risk 
reduction. Under the assumptions of the baseline scenario (i.e., total area of 18 ha) a 0 % 
resale value would lower the profit contribution by 60 % for the no-investment-support 
scenario, but only by 23 % for the investment-support scenario.  

The investment support also impacts the minimum total area (see Figure 3) for economical 
operations. Considering average field sizes of 2 ha (cf. baseline scenario) and 4 ha, the FD20’s 
profit contribution at each total area (range: 8-20 ha) was evaluated, subject to divisibility 
constraints. If the 40 % investment support is added to the calculation, both field sizes yield 
positive profit contributions across the considered range. However, without investment 
support, larger total areas would be necessary for the robot to break even, i.e., 11.5 ha at an 
average field size of 4 ha and 13.7 ha at an average field size of 2 ha. Thus, even if farmers 
have larger-than-average fields in Bavaria, they still require a certain minimum area for the 
robot to be economically advantageous over the standard method. The required minimum 
area also exceeds the average sugar beet area per farm of 8.6 ha, which, however, ranges 
widely between growers (Steinberger, 2023, personal communication, 25 July) This 
disadvantage of small-scale structures may be attenuated by government investment 
support.  

 

Figure 3: Profit contribution of FD20 under consideration of different field size options with 
and without investment support  
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FD20 early adopters’ opinion on role of government investment support   

Among the early adopters engaged in the focus group discussion, the primary utilisation of 
the FD20 is in sugar beet production (see Spykman et al., 2023b). In a few instances, it is 
deployed for sowing rapeseed and subsequently performing hoeing operations between the 
rows. Notably, one farm manager expressed intentions to employ crop robots in kale 
cultivation. Regarding the area managed using the FD20, the participants communicated a 
sizable range from 8 to 25 ha, exceeding the manufacturer’s specification of a maximum 
seasonal usage of 20 ha (FarmDroid ApS, 2022). Most farmers in the focus group found that 
the robot met their expectations. While the robot successfully reduced manual labour, it did 
not completely replace it. The FD20’s effectiveness in task performance exhibited significant 
variation depending on the site-specific conditions. Particularly soil structure (i.e., preferably 
finely textured, minimal presence of stones, and as level as possible) emerged as a pivotal 
requirement for achieving technical success in utilising the robot.  

Main drivers for investing in the robot FD20 were similar across participants. One of the key 
motivations were Covid-19-driven concerns about not being able to host seasonal workers 
due to travel restrictions or stricter housing regulation. The market-availability of FD20 in 
Germany at the start of the pandemic and the possibility to reduce economic risks through 
the investment support programme presented farmers with the opportunity to increase 
resilience and decrease cost of organic sugar beet production. They confirm the application 
process of the funding scheme to be well organized and easy to manoeuvre, so that no 
suggestions for improvement of the procedure were discussed in the focus group. 

Towards the end of the group discussion, farmers were asked whether they would repeat the 
investment in the FD20, given the knowledge they had gained during the two years since 
purchase. The farmers’ responses to this question were more differentiated. Some were 
generally happy with the robot’s performance but were deterred by the increase in its 
catalogue price since they had purchased it so that, without investment support, they would 
not purchase the robot a second time. This sentiment was echoed by another fraction, who 
highlighted the value of improved resilience in production due to a reduced dependence on 
seasonal labour. This subgroup agreed also that they would still make the investment under 
similar conditions, i.e., price and investment support. A third subgroup appreciated the work 
relief presented by the FD20 but based on their experience would now prefer waiting for 
further technological developments to improve the relative advantage before investing in a 
crop robot.  

Discussion  

The multi-perspective evaluation of government investment support for farmers’ 
participation in the technological transition towards autonomy in agriculture highlighted the 
importance of farmer characteristics as early adopters and the relevance of targeted support 
programmes for small-scale regions. The investment support programme in Bavaria has 
resulted in more than 55 robots being used predominantly in sugar beet production within 
three years of funding. This represents more than a quarter of all FD20s operating in Germany, 
according to the manufacturer (Georgsen, 2023, personal communication, 26 July). 

While investment support generally lowers the risk for farmers, the ones who invested in the 
robot directly after its market entrance in Germany in 2020 may still be described as 
venturesome. The government investment support programme in Bavaria supported this 
incentive, as opposed to the general CAP subsidy mechanism, which does not grant additional 
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funds to promote innovations for sustainable agriculture (Reinhardt, 2022). In the specific case 
of the FD20, the high rate of organic farmers among applicants (87 %) suggests that this 
technology may facilitate organic sugar beet production, which could influence farmers’ 
decision to adopt organic farming practices, thus contributing to a socio-political objective in 
Bavaria. Further, FD20 early adopters had to find technological solutions on their own to put 
the robot to its most effective use, adding to the general learning costs that come with the 
change from tractor to robot. The focus group participants also underscored the importance 
of direct exchange with the manufacturer (cf. Rial-Lovera, 2018; Rose et al., 2021) and the 
importance of ongoing technological development of crop robots for their retrospective 
opinion. Research into the applications of the specific technology in question and possibly 
subsidies for their early adoption (Sparrow & Howard, 2020) may thus contribute to broader 
dissemination and lower risk for small-scale farms (Fleming et al., 2018).   

Sectoral diffusion at large is linked to incentivising infrastructural conditions and policies. 
Ferrari et al. (2022) gathered expert opinions and conclude initiatives for public awareness, 
taxes and subsidies, training and education, cohesion funds, and general policies reducing the 
risk of use to be important drivers of digital transformation. However, government investment 
support programmes should be designed with caution. Transparency and care are needed 
because many farmers feel strongly monitored by the state (due to regulations on subsidies). 
This leads to fear of data misuse or exposure of grievances among farmers (Linsner et al. 
2021). However, the focus group participants did not express any such concerns. The 
processing of applications for the BaySL Digital funding scheme occurred through the same 
platform as applications for direct payments, so that necessary operational data was recorded 
by the funding body anyway.   

The economic model assessing the profitability of the use of the FD20 underscores the 
importance of government investment support in the context of small-scale farming, as is 
typical in Bavaria. Investment support reduces the total area required to reach break-even by 
45 % under the declared assumptions. Given the lack of long-term empirical data on the 
technology, the resulting profit contributions should be considered only in relative terms, 
though, being highly dependent on the assumed input values. Nonetheless, the resulting 
patterns indicate that some farms, depending on their field distribution, may not have been 
able to use the robot economically without co-funding. This observation indicates that crop 
robots, too, are subject to economies of scale, which may be attributed to costs of labour for 
setup tasks (e.g., transport between fields). Thus, despite autonomous vehicles reducing 
active labour time on the field, they do require increased labour at other stages of the field 
work process, somewhat analogous to the shift, yet not reduction in labour due to milking 
robots (cf. Martin et al., 2022). The described difference in economy due to farm size may 
cause a digital divide, which can be softened by government policy (van Woensel et al., 2016).   

Conclusion   

The multi-method approach to evaluating technology-specific government investment 
support by means of the FD20 robot case allowed drawing a combined conclusion from three 
individual investigations. The economic assessment allows for evaluation of potentials for 
specific farm types and sizes. The identified range of profitability matches the production 
areas of almost a third of sugar beet growers in Bavaria, although more detailed analyses will 
be needed to differentiate between organic and conventional producers. The economic model 
further suggests government funding to represent a decisive financial incentive, which was 
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confirmed by the focus group. The three perspectives provide an overview of the alignment 
of funding scheme, farm structures, and target user group in Bavaria, which would not be 
possible on a stand-alone basis.  

Government investment support like the BaySL Digital programme can play an important role 
in facilitating the adoption of novel technologies such as the FD20 robot. Hardware technology 
may only become economical when used at a certain intensity, meaning that the investment 
case may not be clear or given at all for farms below a certain acreage. Investment support 
programmes may decrease the required acreage by lowering the effective sum of investment, 
thus enabling otherwise disadvantaged small farms to participate in technological progress.  

Technological progress in agriculture is not an end in itself. Rather, current developments aim 
to make farming more ecologically compatible while guaranteeing economic competitiveness 
and social support. Government investment support should be coupled to the achievement 
of milestones in the agricultural transition. In the BaySL Digital programme, this was achieved 
by restricting funding to technologies that could meet pre-defined objectives (e.g., the 
reduction of synthetic plant protection inputs). Other options may be devised, but this general 
aspect should not be omitted by policymakers wishing to implement a funding scheme for 
agricultural technologies. 
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Abstract 

In a context of increased milk price volatility and dairy farm modernization, our study aims to 
shed light on whether the costs associated with the financial investments made when 
acquiring technologies and their maintenance costs exacerbate the damage suffered when 
the price becomes volatile, or whether the expected productivity gains actually help to cope 
with this market hazard. To do this, we distinguish three farm categories according to three 
separate variables that approximate the level of technological tools used. Then, we estimate 
the variation in the level of viability of each group when price volatility changes.   

We apply fixed effect ordered logistic regression on data gathered from the French farm 
accountancy data network from 2002 to 2020. Sample is divided into three categories 
according to their levels of intensification and use of technological tools. We estimated 
separately the viability models of each category to check for heterogeneity.   

Our results show positive roles of low intensification and moderate use of technological 
equipment in mitigating the impact of an increase of milk price volatility on dairy farm viability. 
These contribute to provide insights on farmers’ coping strategies effectiveness and the extent 
to which modernization is advantageous.  
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Introduction  

Ensuring economic viability constitutes a prerequisite of farm sustainability (O’Donoghue et al., 2016) 
because not only, a persistent low viability leads to the abandonment of activities (Barnes et al., 2020); 
but also, good viability encourages the takeover of farms by younger generations (Farrell et al., 2021).   

It is acknowledged that risks, such as commodity price volatility, significantly threaten the farm 
economic viability (Vrolijk et al., 2010), but to our knowledge, studies quantifying the severity of these 
impacts are rare. Dervillé & Fink-Kessler (2019) highlighted, via a comparative case study, strategies 
allowing to remain viable in a liberalized French dairy market without assessing the magnitude of the 
variations in viability according to strategic choices. Brorsen et al. (1984) have investigated through 
econometric and simulation techniques the impacts of price variability on Texan wheat producers’ 
marketing margins and viability but they didn’t examine a differentiating effect in function of the 
farm’s structural characteristics.   

As it reduces investment (Schulte et al., 2018; Wibowo et al., 2023), by focusing on French milk sector, 
our study contributes to fill the knowledge gap by analyzing the impact of milk price volatility on the 
level of viability, given the farm’s technological use degree which require a subsequent investment. 
Hence, our aim is to shed a light on the consequences of their structural choices to support their 
decision making and help them to identify the extent of the adjustments needed to face the increasing 
milk price volatility. Indeed, technological equipment are becoming more and more available and 
accessible that it is important to be aware of the impact of its adoption in a potentially volatile dairy 
market context (Butler et al., 2012; Chatellier et al., 2014).   

We use agricultural accounting data from the Farm Accountancy Data Network (FADN) to 
econometrically estimate the effects of milk price volatility by applying an ordered fixed-effect logistic 
estimator following Baetschmann et al. (2020). This allows us to account for unobserved and 
unchanged farm or farmer characteristics that influence the level of farm viability, like the 
management and learning capacity of farmers.  

Using ascending hierarchical classification, our sample of farms is divided into three sub-samples 
according to the level of use of technological tools. The estimates are made separately for the different 
sub-samples obtained: low, medium and high level of technology use. Then we compare the 
magnitude of the milk price volatility between the three groups.   

Economic viability is a widely used concept, but no consensus exists about its definitions. While 
scholars agree with Tichit et al. (2004)’s consideration as 'a good health' of a system which require a 
given reference called 'reproductive threshold' by Saravia-Matus et al. (2021), there is divergence 
about its determination.   

Some studies contend that good health refers to an ability to provide a decent living or a sufficient 
remuneration to maintain family labour. Thus, viability is based on the comparison of non-salaried 
workers income to the opportunity cost of working in the farm which may be represented by the 
average wage in the agricultural sector or the legal minimum wage (Morel et al., 2017; Barnes et al., 
2015; Vrolijk et al., 2010; Phimister et al., 2004). Others extend its definition to the ability to cover the 
operational and replacement costs of all production input, not only the labour. Thus, they refer to 
economic indicators such as profitability32 and productivity of the activity to judge whether the farm 
is viable (Assefa et al., 2017; Wolf, 2012)(Martin et al., 2020; Volkov et al., 2021). But these definitions 
didn’t satisfy Barnes et al. (2020) and Hennessy & Moran (2015) who argue that the viability of the 
farm should consider its wealth which reflects farmers’ well-being and conditions the continuation of 
activities. However, as this wealth relates to fixed inputs, it rather refers to the long-term viability of 
the farm (Barnes et al., 2015).  

Economic viability differs from financial viability which is limited to the ability to meet financial targets 
like liquidity, debt ratio and rate of return on equity (Aggelopoulos et al., 2007), by the consideration 
of economic indicators, such as productivity and opportunity costs, in defining the ‘good health’ (Spicka 
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et al., 2019). As Savickiene et al. (2016) noted the economic viability of the farm relates to "its capacity 
to survive, live and develop using its resources" (p.105). This emphasizes the need to account for 
attributes required for farm functioning such as: value added, intermediate consumption, 
depreciation, and external factors (Wilczyński & Ko\loszycz (2021). We follow this definition of viability 
which seems the most comprehensive. Thus, being viable means being able to continue one's activity 
and even ensure growth despite difficulties and uncertainties. That supposes low vulnerability to risks 
or disturbances. One can distinguish it from resilience which is associated with the ability to resist, 
adapt and transform in the face of disturbances (Meuwissen et al., 2019) as it implies being efficient 
during normal periods. Besides, unlike resilience and sustainability, farm economic viability focuses 
only on enterprises employing agricultural inputs and is based only on the income they provide, 
excluding off-farm household income (Spicka et al., 2019).   

The direct relationship between economic viability and agricultural product price volatility has rarely 
been studied in the literature. Brorsen et al. (1984) found a negative relationship between them in the 
context of the wheat sector in Texas. They considered farms with a rate of return on capital greater 
than or equal to 4% to be viable. However, they did not consider the strategies adopted by the farms. 
Furthermore, we assume that this variation in viability may differ according to the level of use of 
technological equipment.    

To manage agricultural price volatility, including milk, farmers rather use generic means like production 
intensification than  instruments such forward contracts and future markets (Assefa et al., 2017; Wolf, 
2012).   

Technological change, which includes the extended use of technological equipment like automatic 
milking systems or manure scrapers, is recognized as factors that improve technical efficiency 
(Ashkenazy et al., 2018; Blayney & Mittelhammer, 1990). But this advantage is not only attributed to 
equipment which enables the optimization of direct agricultural inputs such as labour, water, organic 
matter, biodiversity as defined by Shrestha et al. (2021). It may also include other technologies such 
as genetics. To our knowledge, Hansen et al. (2019), is one of the few studies that specified the role of 
one equipment. They showed with a stochastic frontier analysis on 212 Norwegian dairy farms that 
the use of an automatic milking system implies higher income efficiency. This finding conducts us to 
the following assumption: the degradation of the economic viability of dairy farms is lower for farms 
using more technological tools than for farms using less technological tools.  

Methods  

Data source and study population  

To test our hypotheses, we use data from the Farm Accountancy Data Network (FADN), between 2002 
and 2020. The chosen period is relevant for our study as it corresponds to the beginning of dairy farms 
exposition to milk price volatility following the 2003 reform of the Common Agricultural Policy. We 
also collect data on 2002 for our moving average calculations of volatility. We select French dairy farms 
whose income depend mainly on dairy production and which appear at least five years consecutively 
in the database. They are located in the national geographic.   

Thus, we obtain an unbalanced panel data composed by 1677 unique farms during the observation 
period. However, we have a significant inequality in the number of farms observed annually. The year 
2015 contains the lowest number of observations due to the crisis which hampered the survey.  

The data were processed and analyzed using the 15ème version of the STATA software. We deflated 
all monetary variables to adjust for inflation before our analysis.  

Characterization of the economic viability of the studied dairy farms  

In our study, we use the indicators of Wilczyński & Ko\loszycz (2021) since it encompasses 
attributes that characterizes farm economic viability. It relates to the ability to provide enough 
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outcome including subsidies, valued at market prices, to cover the opportunity cost of inputs. 
We integer subsidies in farms’ outcome because our aim consists in explaining their level of 
viability given the public payment they receive. Moreover, in France, it is mainly composed by 
direct payments independent to income variation1. 

Thus, outcome result from the total value of output of crops and crop products, livestock and 
livestock products, of other output, including that of other gainful activities (OGA) of the farms 
and subsidies. It is the sum of sales and use of (crop and livestock) products and livestock, the 
change in stocks of products (crop and livestock), the change in valuation of livestock, the 
various non-exceptional products, minus purchases of livestock. While, the opportunity costs 
of inputs are measured by intermediary consumption (IC), depreciation (D), wage (W), rent 
(R), debt interest paid (I), and taxes (T). 

Concerning the opportunity cost of self-employed workers, we have opted for the legal 
minimum wage (LMW) because it expresses the minimum level of remuneration to guarantee 
a decent standard of living in France. Thus, this value makes it possible to maintain a worker. 

Viability =
Outcome

IC +  D +  W +  R +  I +  T +  LMW
 

The results can be interpreted as follows: 

• Viability ≤ 1: the farm is not viable and called “survival” because the provided 
outcome is inferior to the potential income receive in other employment. It doesn’t 
allow the activity continuation in good conditions. 

• 1< Viability ≤ 1.2: farm is "viable" as the generated outcome is enough to ensure the 
maintenance of the factors of production and to meet the need of the farmers. 

• Viability > 1.2: Farm is “in development” thanks to the extra outcome obtained and 
which can be allocated to the improvement of farms’ potential.  
 

During the observation period, the majority of farms are viable. Only 25% of them are not 
viable, but this percentage vary annually and follow an increasing trend. In contrast, the share 
of developing farms decreases sharply.  

 

1 For more information about the effects of subsidies, especially income risk management, see Trestini et al.( 2018) and Vera 
& Colmenero ( 2017). 
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Figure 1: Annual distribution of farms according to their level of viability 

Measuring milk price volatility 

To calculate the annual volatility of the milk price, we use the method of Santeramo & 
Lamonaca (2019). Their formula measures how important is the deviation of the current year's 
price from the trend compared to three-year (y -1, y, y+1) moving average deviation. When it 
is excessively far from the moving average deviation, the price is considered as volatile in the 
current year. 

We apply this formula to French milk price data from the European price observatory. The use 
of these aggregated data allows us to avoid the endogeneity problem related to the milk price 
received by each farm which may depend on a farm’s investment ability determined by its 
viability. 
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 with 𝑃𝑦 represents the milk price in year 𝑦 

Classifications and characteristics of farm sub-samples  

To categorize a farm according to the level of use of technological equipment, we carry, for 
each year, a k-means classification based on several separating variables. We assume that the 
characteristics of technological equipped farms vary in time following the development in the 
society. 

Since we use accounting data, we cannot obtain precise values of the existing technological 
equipment in the farm. Therefore, to identify these characteristics, we rely on the cost 
associated to the corresponding asset which allows us to have an approximation. The 
following variables are used: 

• Equipment rental value per hectare of utilized agricultural area and per livestock unit 
(LU) 

• Equipment rental costs per hectare of utilized agricultural area and per LU 

• Maintenance and repair costs of equipment per hectare of utilized agricultural area 
and per LU 

• Specific facilities value per hectare of utilized agricultural area and per LU 

• Machinery and equipment value per hectare of utilized agricultural area and per LU 
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The  Error! Reference source not found. shows the average characteristics of the three groups o
btained: i) barely, ii) moderately, iii) highly equipped farms. The last group spend the highest 
fees to maintain and repair materials, being up to €126 per LU, while it amounts to €70 for 
low technology farms. Besides, the value of materials and tools of moderately (€1,120 per LU) 
equipped farm equals more than double that of the lowly one (€414 per LU). 

Table 1: Characteristics of farms according to their level of use of technological tools 

 Low Technology 
Intermediate 
technology 

High technology 
Total (total 

average) 

Rental of equipment by 
UAA38 (€/ha) 

0,0928482 0,088836 0,0783891 0,0901802 

Equipment hired per LU 
(€/LIVESTOCK UNIT) 

8,326493 10,65464 11,3363 9,410322 

Rental charges for 
materials per UAA (€/ha) 

0,0051045 0,0042731 0,0054093 0,0048366 

Rental charges for 
materials per livestock unit 
(€/livestock unit) 

0,4248825 0,4790031 0,7262153 0,4700454 

Maintenance and repair of 
materials per UAA (€/ha) 

0,0051045 0,0042731 0,0054093 0,0048366 

Maintenance and repair of 
materials per livestock unit 
(€/livestock unit) 

70,21455 97,40813 126,5615 84,70297 

Specialised installations by 
UAA (€/ha) 

1,239739 2,128391 1,130065 1,544821 

Specialised facilities by 
LU (€/LU) 

100,6461 228,5518 171,8378 152,0637 

Materials and tools by 
UAA (€/ha) 

5,420725 10,67278 16,06533 8,198418 

Materials and tools by 
LU (€/LU) 

414,783 1120,73 2291,568 826,6346 

 

Choice of control variables 

To build the model of the dairy farm economic viability, we based ourselves on economic 
studies that focus not only on the economic viability of farms, but also on their income stability 
and resilience. Indeed, as we have shown in the theoretical framework, these concepts are 
linked. Income stability is an intrinsic condition for farm economic viability.  

It turns out that viability depends on farm structural characteristics and practices, the 
farmer’s-economic attributes and random hazards. Therefore, we include in our model the 
number of dairy cows (Perrin et al., 2020) and the labour intensity (Spiegel et al., 2021) to 
indicate the structure of the farm. The number of dairy cows gives us information on the size 
of the dairy farm and allows us to check its role in the economic viability of dairy farms. Indeed, 
we expect that a large farm potentially benefits from an economy of scale and resources to 
ensure the stability of their income (Harkness et al., 2021; Wilczyński & Ko\loszycz, 2021), 
which contributes to the economic viability of the farm (Vrolijk et al., 2010). Labour intensity, 
measured by the ratio of the number of paid and unpaid workers and the value of assets, 
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𝑖𝑡 

informs us about the importance of workers compared to capital, such as farmland. We expect 
that a farm with low labour intensity is more viable because as Spiegel et al. (2021) highlighted, 
it enhances resilience by increasing labour productivity. 

Concerning the farmer’s attributes, we are mainly interested in their age and agricultural 
training. Age refers to the level of experience (agricultural or otherwise) that the farmer has 
and which may have enhanced their managerial capacity. As Dhungana et al. (2004) have 
shown, agricultural producers become more efficient as they get older. Similarly, education is 
one of the personal characteristics that can influence management quality, as it provides the 
skills necessary to promote technical and financial efficiency (Nuthall, 2009). We assume that 
these determinants of managerial capacity contribute to the economic viability of the farm. 
However, to avoid multicollinearity with technology use, we exclude it from our control 
variables. 

Two other variables are used to identify the agricultural practices. First, the price quartile to 
which the farm belongs is used to capture the quality of the milk sold by the farm. Indeed, the 
price paid to producers is composed of the basic price which is increased according to the 
quality of the milk (the fat and protein content of milk production or other attributes). The 
specificity of the milk is a source of an added value that constitutes a resilience factor for farms 
(Ashkenazy et al., 2018), knowing that it is linked to economic viability (Meuwissen et al., 
2019). Secondly, type of farming indicates how diversified it is. Harkness et al. (2021) and 
Sneessens et al. (2019) have shown respectively that agricultural diversification stabilizes farm 
income and reduces vulnerability. Thus, it could promote the economic viability of the farm. 

Finally, we include in our model of dairy farm viability three types of hazards to which dairy 
farms are exposed. Economic hazards are captured by the volatility of input and milk prices. 
We consider the price of concentrates, which is an important cost in dairy production. We use 
aggregate data from the European observatory to measure its instability. We apply the same 
formula as for milk price volatility to calculate concentrate price volatility. 

Climatic and sanitary hazards are measured by the volatility of milk production. The latter is 
calculated individually as we use data for each farm from the FADN. Thus, the production 
volatility results from the difference between the production level of the current year and the 
average production of the period. 

Model specification 

Our dependent variable 𝑦𝑖𝑡 corresponds to the viability of dairy farm 𝑖 in year 𝑡. It is a qualitative 

variable composed of three ordered categories noted 𝑐 such that i) 𝑐=1 represents the worst 
state called "surviving"; ii) 𝑐=2, the fairly good state, which is noted "viable" and iii) 𝑐=3, the 
most favored state, "developing". Therefore, it is modelled following Harkness et al., (2021) 
and Albert & Chib (1993, P.5) on ordered multinomial variables. 

We consider a continuous and latent variable 𝑦𝑖𝑡
∗  that indicates the value of the underlying 

viability of farm 𝑖 in year 𝑡 and that allowed it to be assigned into one of the three categories 
𝑐. 

Thus, we model the different states 𝑐 of 𝑦𝑖𝑡  that are generated by the latent variable 𝑧𝑖𝑡  as 
follows: 

𝑦𝑖𝑡 = 𝑐 𝑠𝑖 𝑦𝑖𝑡
∗  ∈ (𝜏𝑐−1, 𝜏𝑐] 

Knowing that 𝜏𝑖𝑐 = 𝜏𝑗𝑐 = 𝜏𝑐 is constant for any individual 𝑖 and 𝑗, such: 
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𝑦𝑖𝑡 = {

1              𝑠𝑖               𝜏0 < 𝑦𝑖𝑡
∗ < 𝜏1

2              𝑠𝑖              𝜏1 ≤ 𝑦𝑖𝑡
∗ < 𝜏2 

3              𝑠𝑖              𝜏2 ≤ 𝑦𝑖𝑡
∗  < 𝜏3

 

With 𝜏0 = −∞ < 𝜏1 < 𝜏2 < 𝜏3 = +∞ 

𝑦𝑖𝑡
∗  depends on the following function: 

𝑦𝑖𝑡
∗ =  𝛼𝑖 +  𝑋𝑖𝑡𝛽1 +  𝑉𝑃𝑟𝑖𝑥𝑡𝛽2 + 𝑉𝑃𝑟𝑜𝑑𝑖𝑡𝛽3 +  𝑉𝐼𝑛𝑡𝑡𝛽4 +  𝑅𝑗 +  𝑢𝑖𝑡 

Where 

• 𝛼𝑖: unobservable characteristics of the holding 𝑖 such as the management capacity of 
its operator. 

• 𝑋𝑖𝑡 : vector of control variables that indicate the observable characteristics of 

• holding 𝑖 in year 𝑡. 

• 𝑉𝑃𝑟𝑖𝑥𝑡 : measures the aggregate volatility of the milk price in year 𝑡. 

• 𝑉𝑃𝑟𝑜𝑑𝑡 : measures the volatility of the output of farm 𝑖 in year 𝑡. 

• 𝑉𝐼𝑛𝑡𝑡 : measures the aggregate volatility of input prices indicated by the price of 
concentrates in year 𝑡. 

• 𝛽𝑘 : the parameters to be estimated for the variables of interest and the control 
variables 

• 𝑢𝑖𝑡: time-varying unobservable term 
 

Estimation method 

To estimate the parameters of our model, we apply a fixed effect. Indeed, as the random 
effect assumes a normal distribution and independence from the explanatory variables of the 
term representing the unobservable and time-invariant characteristics of individuals (Greene, 
2012), we prefer to apply the fixed effect which relaxes this strong restriction. Since the fixed 
effect is only valid with the logistic distribution function (Muris, 2017), the probability of 
observing modality 𝑐 is obtained as follows: 

Pr(𝑦𝑖𝑡 = 𝑐|𝑋𝑖𝑡
′ , 𝛼𝑖) = 𝑃(𝜏𝑐−1 < 𝛼𝑖 + 𝑋𝑖𝑡

′ 𝛽 + 𝑢𝑖𝑡 < 𝜏𝑐|𝑋𝑖𝑡
′ , 𝛼𝑖) 

= Λ(𝜏𝑐 − 𝑋𝑖𝑡
′ 𝛽 − 𝛼𝑖) − Λ(𝜏𝑐−1 − 𝑋𝑖𝑡

′ 𝛽 − 𝛼𝑖) 

With 

Λ(x) = 𝑒𝑥 (1 + 𝑒𝑥)⁄   represents the cumulative distribution function of the distribution law 
logistics.  

The probability depends on 𝑋𝑖𝑡
′ which is the vector of all explanatory variables and 𝛽 which is 

the vector of all parameters. 

To estimate the parameter vector 𝛽, the maximum likelihood estimator must be used. The 
likelihood function is expressed as follows: 

𝐿 = ∏ ∏ ∏(𝑃𝑖𝑡)𝑦𝑖𝑡=𝑐

𝑘

𝑐=1

𝑇

𝑡=1

𝑁

𝑖=1
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𝐿𝑛(β, 𝜏, α) = ∏ ∏ ∏[Λ(𝜏𝑐 − 𝑋𝑖𝑡
′ 𝛽 − 𝛼𝑖) − Λ(𝜏𝑐−1 − 𝑋𝑖𝑡

′ 𝛽 − 𝛼𝑖)]1{𝑦𝑖𝑡=𝑐}

𝑘

𝑐=1

𝑇

𝑡=1

𝑁

𝑖=1

 

Then, this function must be expressed in logarithm as follows: 

𝐿𝑜𝑔 𝐿 = ∑ ∑ ∑(𝑃𝑖𝑡)𝑦𝑖𝑡=𝑐

𝑘

𝑐=1

𝑇

𝑡=1

𝑁

𝑖=1

 

Finally, the following non-linear system of equations must be solved: 

𝜕𝐿𝑜𝑔 𝐿

𝜕β
= 0 

As our dependent variable is an ordered categorical variable, we estimate the parameter using 
feologit of Baetschmann (2012), Baetschmann et al. (2015) et Muris (2017). This estimation 
method presents a lot of advantage as it allows to solve the parameter incidence by using 
sufficient statistic1. The dependent variable is transformed into a binary variable for which the 
maximum likelihood estimator conditional on this statistic works. Then it recombines them to 
obtain the parameters of the explanatory variables of our initial dependent variable. Let us 
note 𝑑𝑖𝑡

𝑐  the new binary dependent variable. It is given by: 

𝑑𝑖𝑡
𝑐 = 1(𝑦𝑖𝑡 ≥ 𝑐) 

𝑑𝑖𝑡
𝑐 = 0(𝑦𝑖𝑡 < 𝑐) 

Let �̅�𝑖
𝑐 be the number of times 𝑑𝑖𝑡

𝑐 = 1 is observed for holding 𝑖 during the observation period. 

�̅�𝑖
𝑐 = ∑ 𝑑𝑖𝑡

𝑐

𝑇

𝑡=1

 

The latter is the sufficient statistic on which the maximum conditional likelihood and 
approximates 𝛼𝑖. 

Thus, the probability of observing our new binary dependent variable 𝑑𝑖
𝑐 is equivalent to 

(𝑑𝑖1
𝑐 , … , 𝑑𝑖𝑇

𝑐 )′ conditional on the value of �̅�𝑖
𝑐. It is obtained by: 

𝑃𝑖
𝑐(β) ≡ Pr(𝑑𝑖

𝑐| ∑ 𝑑𝑖𝑡
𝑐𝑇

𝑡=1 = �̅�𝑖
𝑐) =

exp {𝑑𝑖
𝑐′(𝑋𝑖𝛽 − 𝜏𝑖

∗)}

∑ exp{𝑗′(𝑋𝑖𝛽 − 𝜏𝑖
∗)𝑗∈𝐵𝑖

 

With 

𝑗 = (𝑗1, … , 𝑗𝑇 )  tel que 𝑗𝑡={0,1} et ∑ 𝑗𝑡 =𝑇
𝑡=1  �̅�𝑖

𝑐 

 

𝐵𝑖 represents the set of possible vectors 𝑗. 

After the log transformation, the conditional likelihood function becomes: 

𝐿𝐿𝑐(β) = ∑ log 𝑃𝑖
𝑐(β)

𝑁

𝑖=1

 

 

1 A statistic is sufficient when "no other statistic that could be estimated from the sample provides additional information to 
identify the value of the parameter to be estimated” (Fisher, 1922, p. 310). 
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It no longer depends on time-invariant individual unobservable characteristics 𝛼𝑖. After 
combining the information, the BUC (Blow-up and cluster) estimator is: 

𝐿𝐿𝐵𝑈𝑐(β) = ∑ 𝐿𝐿𝑐(β)

𝑘

𝑐=2

 

Results 

The estimation of models per subsample defined according to the level of use of technological 
tools was validated by the likelihood ratio test. Indeed, the separation of the samples brings 
more explanation to our model than integrating the variables of interest in interaction with 
the other variables. The integration of other control variables such as legal status does not 
bring us any additional information. Table 2 shows the results of our basic model. It shows 
that all coefficients are jointly and significantly different from zero according to the Wald test. 
The coefficients estimated by our main model represent the marginal effects of the 
explanatory variables on the latent variable of sustainability. However, as we are most 
interested in the viability categories and in identifying the effect of milk price volatility on 
category membership, we calculate the marginal effect on average. This parameter tells us 
the variation in probability to belong on one category following a unit variation in the 
explanator variable. The direction of the relationship is indicated by the sign of the 
corresponding coefficient. 

Effects of milk price volatility on economic viability differentiated by level of use of 
technological tools on dairy farms 

The results in table 2 below show us that the parameters of milk price volatility estimated 
using ordered fixed-effect logistic regressions are significantly negative at the 5% confidence 
level for all three subsamples. Thus, if milk price volatility increases by one unit, ceteris 
paribus, the probability of surviving increase. However, the magnitudes of the variation differ 
significantly in function of the level of use of technological equipment. Indeed, the viability of 
farms with low use of technological tools shows a higher sensitivity (-13.20) to a unit increase 
of milk price volatility compared to the viability of those with a higher level of use (-11.06).  
This sensitivity appears to be lowest for farms with a medium level of technology (-4.164). In 
other words, the use of technological tools reduces the impact of volatility on farm economic 
viability, but there is a limit of risk reducing equipment. 

This result confirms the concerns and roles played by technological tools and the advantages 
drawn from capital use. The increase in productivity should help to mitigate the consequence 
of milk price volatility. Agricultural technologies allow farmers to avoid certain tasks that can 
be automated and potentially free up time for the farmer to focus on farm or milk price 
volatility management. Besides, it is possible to allocate time for information retrieval, and to 
react more quickly in an appropriate way. However, as these tools also represent additional 
costs such as maintenance costs1, they can increase the farm's operating costs and reduce its 
financial capacity. 

  

 

1 The Table 1 (in the section “Classifications and characteristics of farm sub-samples”) describing the characteristics of the 
three groups clearly shows the superiority of the median cost of equipment maintenance the high-tech group compared to 
the low- and medium-tech groups. 
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Table 2: Ordered logistic fixed effect of short-term viability of sub-samples by level of technology 
use 

 (1) (2) (3) 
 Lowly technologized 

holding 
Moderately 
technologized holding 

Highly technologized holding 

Milk price volatility -13,20*** -4,164** -11,06*** 
 (2,135) (1,735) (2,310) 
Volatility of milk production 1,075 -0,336 -1,866 
 (0,758) (0,958) (1,553) 
Price volatility of concentrates 10,03*** 2,177 2,650 
 (2,475) (1,567) (2,600) 
MILK PRICE QUARTILE    
Q1 Référence Référence Référence 
    
Q2  0,680*** 0,623*** 0,303 
 (0,184) (0,236) (0,269) 
Q3 0,998*** 0,838*** 0,338 
 (0,190) (0,270) (0,308) 
Q4 1,162*** 1,546*** 0,669* 
 (0,239) (0,328) (0,361) 
Type of farming    
Specialized dairy cattle Référence Référence Référence 
    
Mixed beef and dairy cattle 0,186 0,652 0,223 
 (0,391) (0,558) (0,559) 
Poly-breeding 0,703 1,036 0,620 
 (0,640) (0,653) (0,760) 
Mixed crop livestock 0,924 0,412 0,999** 
 (0,602) (0,374) (0,466) 
Intensification level    
Extensive Référence Référence Référence 
    
Semi-intensive -0,132 0,0351 0,124 
 (0,219) (0,224) (0,274) 
Intensive -0,353 -0,570 -0,0458 
 (0,327) (0,361) (0,392) 
Labour intensity 0,000431*** 0,000269* 0,000318* 
 (0,000162) (0,000154) (0,000177) 
Age of the farm holder 0,0498* -0,00646 0,0243 
 (0,0256) (0,0183) (0,0157) 
Cow milk herd size 0,0279** -0,00132 0,0602*** 
 (0,0124) (0,0103) (0,0150) 
    
Observations 1 800 1 280 947 
Robust standard deviation in parenthesis; ***, ** et * indicate statistical significance at 1%, 5% et 10%. 

 

To better understand our results, we focus on the variation in the probability of belonging to 
each viability degree following a unit variation in milk price volatility. These are presented in 
table 3.  

In the case of the two groups, there are significant increases in the probability to be survival 
or non-viable for all the three groups (low, medium, and high use of technological equipment) 
when volatility increases, all other things being equal. Farms with a low level of use of 
technological tools are the most affected, followed by those with a high level of use. Indeed, 
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their probabilities of being non-viable rise respectively by 2.47% and 2.12%. In contrast, the 
probabilities of becoming non-viable increase by 0.83% for farm using moderately technology.  

Concerning the probability of becoming viable, it increases for the low-tech group, although 
this change is very small, but decreases for the medium and high-tech groups. Despite this 
positive change in the probability of being viable, the situation seems to be more worrying for 
the low-tech farms when the milk price fluctuates more. The benefits of technological tools 
outweigh their limitations, especially in the face of milk price volatility. 

 

Table 3: Average marginal effects of milk price volatility by level of use of technological tools 

 Probabilities change 

  
Lowly technologized holding  
1. Surviving 2,470 
2. Viable 0,0783 
3. In development -2,548 
Moderately technologized holding  
1. Surviving 0,828 
2. Viable -0,102 
3. In development -0,726 
Highly technologized holding   
1. Surviving 2,121 
2. Viable -0,233 
3. In development -1,888 

 

The offsetting effects between variables, presented in table 4 tell us about the adjustments 
needed on labour intensity and on the number of dairy cows to counterbalance the changes 
in viability level. Low, medium and high technology farms increase respectively the value of 
assets per worker by €298, €154.8 and €347.8 to compensate for the decrease in viability due 
to a unit increase in milk price volatility. In other words, they resort to an increase in the 
number of dairy cows of 4.73 and 1.84 respectively for the low and high technology farms. 

 

Table 4. Offsetting effects of milk price volatility with: i) cow milk number and ii) labour intensity 

 Lowly technologized 
holding 

Moderately 
technologized holding 

Highly technologized 
holding 

Cow milk herd size  4,71** - 1,84*** 

Labour intensity (Assets 
value per worker) 

-306,26 *** 
 

-154,8* -347,8* 
 

***, ** and * indicate statistical significance at 1%, 5% et 10%. 

 

Effects of control variables on the economic viability of dairy farms 

Some of the control variables’ estimated parameters are also significant at least 90% and even 
99% confidence levels. First of all, for low technological farms, the concentrate price volatility 
coefficients is significantly positive, in opposite to our expectation (negative effect on 
viability). 
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We assume that the high dependence of low-tech farms on equipment rental and the low 
ownership of equipment or facilities makes them flexible to manage concentrate purchases in 
a countercyclical way to deal with input price volatility. Thus, for example, they can take 
advantage of a price drop to build up their stock and benefit from this stock when prices rise.  

For the other control variables, their correlation with sustainability is rather consistent with 
our hypotheses. Indeed, the variable indicating the presence of a high payment for the 
production of high value-added milk (the quartile of the price to which the farm belongs) and 
the age of the farmer are significantly and positively correlated with the economic viability of 
the farms. The viability of the group of farms belonging to the upper quartile is higher than 
that of the group of farms included in the lower quartile. Thus, our result coincides with the 
prediction of Vrolijk et al (2010) that economic viability depends on the price level in addition 
to its variability. Furthermore, dairy farms tend to be more viable when their operators are 
older, especially for low technological use farms. This relationship reflects the importance of 
experience in determining the viability of dairy farms. We hypothesize that the professional 
experiences gained by farmers not only in dairy or agricultural production, but also outside 
the agricultural sector contribute to the multiplication of skills needed to achieve better 
economic results, without too much technology. 

Concerning the results obtained for the type of farming, a significant difference in viability is 
observed between farms specialized in dairy cattle and diversified farms, mixing crop and 
livestock, notably for highly equipped farms. In other words, making the available farmland 
profitable with other productions leading to independent markets or risks or to 
complementary land uses, favours more flexibility to adapt to the different hazards and would 
allow to better insure economic viability.  

Robustness and limitations of the results 

To test the robustness of our results, we made four main modifications. 

i) Changing the measure of milk price volatility: we calculate the volatility of the milk 
price paid to individual farms instead of the aggregate milk price. It is obtained by the 
deviation of the price from its average value during the whole observation period. We 
cannot calculate the coefficient of variation based on a three-year moving average 
because the FADN database is a non-cylindrical panel. 

ii) Extension of the sample studied: we select farm appearing three years consecutively 
in the database instead of five years. 

iii) Use of other measures of diversification: following Harkness et al. (2021), we 
considered two other measures of diversification. We integrate them in the model in 
a sequential way, to avoid a problem of multicollinearity. a) First, the agricultural 
diversification which consists in evaluating the diversity of the existing animal and 
vegetable productions within the farm. This is obtained using the Herfindhal index 
below. This index is based on the proportion of gross product (𝑝𝑖) generated by the 
different types of agricultural activities41 𝑖. Its value, between 0 and 1, increases 
(decreases) as the level of specialisation of the farm is high (low). b) Next, we introduce 
farm diversification which measures the diversity and importance of the farm's non-
farm activities such as on-farm processing. The diversification of the holding is 
calculated by the ratio of the share of products from agricultural production to the 
total products of the year. 
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𝐼𝑛𝑑𝑖𝑐𝑒 𝑑𝑒 𝐻𝑒𝑟𝑓𝑖𝑛𝑑𝑎ℎ𝑙 = ∑(𝑝𝑖)
2

𝑛

𝑖=1

 

i) Non-annual classification of farms according to the level of technological tools use: We 
test the effect of an ascending hierarchical classification applied simultaneously on all 
the observations of the period considered in our study.  

The parameters of milk price volatility in our regressions remain significantly negative except 
for the volatility of the individual milk price. Indeed, the use of an absolute average may lead 
to an overestimation of volatility and would reduce its correlation with economic viability 
despite its strong correlation with the relative measure of volatility (coefficient of variation 
calculated from the three-year moving average of the aggregate milk price). 

In addition, the values of the coefficient do not always remain close to the basic model’s one. 
However, the order of magnitude is still almost maintained throughout the sub-samples’ 
regressions. Indeed, the parameters gravitate around the bounds of the confidence interval 
of those of the basic model, with the exception of the parameters estimated when applying 
the absolute classification. Consequently, we deduce that our results are relatively robust. 
However, they are limited in the context of a relative classification of the level of use of 
technological tools, which we consider to be the most relevant. Indeed, given the structural 
change that has taken place in the dairy sector, we aim to highlight the sensitivity of farms 
considered as high-tech according to the criteria of the time. 

Table 5. Robustness tests of milk price volatility parameters according to the level of use of 
technological tools 

  (i) (ii) (iii) 
(a) 

(iii) 
(b) 

(iv) 

 Basic model Individual milk 
price volatility 

Larger 
samples  

(> 3 years) 
appearance) 

Agricultural 
diversification 

Diversification 
of operation 

Overall farm 
classification 

Low-tech holding 

Coefficients -13.20*** -2.196 -13.77*** -14.72*** -13.31*** -6.649*** 

Standard deviations (2.135) (1.511) (2.196) (2.071) (2.114) (1.029) 

Medium-tech holding 

Coefficients -4.164** -1.534 -4.020** -4.693** -3.856** -10.08*** 

Standard deviations (1.735) (1.301) (1.754) (1.835) (1.714) (1.830) 

High-tech holding 

Coefficients -11.06*** -1.054 -11.92*** -14.68*** -10.33*** -5.313 

Standard deviations (2.310) (1.832) (2.318) (2.593) (2.303) (4.250) 

*p<0.10, **p<0.05, ***p<0.01      

Conclusion 

Our work has quantified the impacts of technology use levels on the variation of economic 
viability of dairy farms when milk price volatility changes. Our results show that the 
degradation of economic viability is significantly lower for farms with moderate or high use of 
technological tools compared to those with low levels of use. Thus, the level of technology use 
is an important heterogeneity factor in determining the evolution of farm viability in a volatile 
market. Finding the right level of equipment is therefore necessary to reap the benefits it 
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offers without being burdened by the associated costs. Therefore, it is important not to reduce 
investment in technological tools too much in response to increased volatility in the price of 
milk to avoid undermining the economic viability of the farm.  

The generalization of our results should be carried out with caution because they are sensitive 
to the methods of calculating the volatility of the milk price and the classification of farms 
according to their level of technological tools use. Indeed, they indicate the consequences of 
an increased volatility of the average milk price at national level, without considering 
territorial specificities. In addition, farms should refer to annual references to situate their 
level of technological use before referring to our results. Furthermore, our results could be 
deepened by analyzing the severity of the lack of viability of farms with low technological use 
following an increase in milk price volatility. 

References 

Aggelopoulos, S., Samathrakis, V., & Theocharopoulos, A. (2007). Modelling the determinants of the financial 
viability of farms. Research Journal of Agriculture and Biological Sciences, 3(6), 896‑901. 

Albert, J. H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the 
American statistical Association, 88(422), 669‑679. 

Ashkenazy, A., Calvão Chebach, T., Knickel, K., Peter, S., Horowitz, B., & Offenbach, R. (2018). Operationalising 
resilience in farms and rural regions – Findings from fourteen case studies. Journal of Rural Studies, 59, 
211‑221. https://doi.org/10.1016/j.jrurstud.2017.07.008 

Assefa, T. T., Meuwissen, M. P. M., & Oude Lansink, A. G. J. M. (2017). Price risk perceptions and management 
strategies in selected European food supply chains : An exploratory approach. NJAS - Wageningen Journal of 
Life Sciences, 80, 15‑26. https://doi.org/10.1016/j.njas.2016.11.002 

Baetschmann, G. (2012). Identification and estimation of thresholds in the fixed effects ordered logit model. 
Economics Letters, 115(3), 416‑418. 

Baetschmann, G., Ballantyne, A., Staub, K. E., & Winkelmann, R. (2020). feologit : A new command for fitting fixed-
effects ordered logit models. The Stata Journal, 20(2), 253‑275. 

Baetschmann, G., Staub, K. E., & Winkelmann, R. (2015). Consistent estimation of the fixed effects ordered logit 
model. Journal of the Royal Statistical Society: Series A (Statistics in Society), 178(3), 685‑703. 

Barnes, A. P., Hansson, H., Manevska-Tasevska, G., Shrestha, S. S., & Thomson, S. G. (2015). The influence of 
diversification on long-term viability of the agricultural sector. Land Use Policy, 49, 404‑412. 
https://doi.org/10.1016/j.landusepol.2015.08.023 

Barnes, A. P., Thomson, S. G., & Ferreira, J. (2020). Disadvantage and economic viability : Characterising 
vulnerabilities and resilience in upland farming systems. Land Use Policy, 96, 104698. 
https://doi.org/10.1016/j.landusepol.2020.104698 

Blayney, D. P., & Mittelhammer, R. C. (1990). Decomposition of Milk Supply Response into Technology and Price-
Induced Effects. American Journal of Agricultural Economics, 72(4), 864‑872. 

Brorsen, B. W., Grant, W. R., Richardson, J. W., & Schnake, L. D. (1984). Impacts of Price Variability on Marketing 
Margins and Producer Viability in the Texas Wheat Industry. Western Journal of Agricultural Economics, 9(1836-
2016‑151024), 342‑352. 

Butler, D., Holloway, L., & Bear, C. (2012). The impact of technological change in dairy farming : Robotic milking 
systems and the changing role of the stockperson. Journal of the Royal Agricultural Society of England, 
173(622), 1. 

Chatellier, V., Lelyon, B., Perrot, C., & You, G. (2014). Trajectoires du secteur laitier français à la veille de la 
suppression des quotas. 31. 

Dervillé, M., & Fink-Kessler, A. (2019). Construction de la compétitivité des exploitations laitières : Les 
enseignements d’une comparaison France et Allemagne. Centre d’études et de prospective, 138. 

Dhungana, B. R., Nuthall, P. L., & Nartea, G. V. (2004). Measuring the economic inefficiency of Nepalese rice farms 
using data envelopment analysis. Australian Journal of Agricultural and Resource Economics, 48(2), 347‑369. 

Farrell, M., Murtagh, A., Weir, L., Conway, S. F., McDonagh, J., & Mahon, M. (2021). Irish organics, innovation and 



Proceedings of the 6th Symposium on Agri-Tech Economics for Sustainable Futures 39 

farm collaboration : A pathway to farm viability and generational renewal. Sustainability, 14(1), 93. 

Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philosophical transactions of the 
Royal Society of London. Series A, containing papers of a mathematical or physical character, 222(594‑604), 
309‑368. 

Greene, W. H. (2012). Econometric analysis (Seventh). Pearson. 

Hansen, B. G., Moland, K., & Lenning, M. I. (2019). How can dairy farmers become more revenue efficient? 
Efficiency drivers on dairy farms. International Journal of Agricultural Management, 8(2). 

Harkness, C., Areal, F. J., Semenov, M. A., Senapati, N., Shield, I. F., & Bishop, J. (2021). Stability of farm income : 
The role of agricultural diversity and agri-environment scheme payments. Agricultural Systems, 187, 103009. 
https://doi.org/10.1016/j.agsy.2020.103009 

Hennessy, T., & Moran, B. (2015). The viability of the Irish farming sector in 2015. Teagasc: Athenry, Ireland. 

Martin, G., Barth, K., Benoit, M., Brock, C., Destruel, M., Dumont, B., Grillot, M., Hübner, S., Magne, M.-A., 
Moerman, M., Mosnier, C., Parsons, D., Ronchi, B., Schanz, L., Steinmetz, L., Werne, S., Winckler, C., & Primi, R. 
(2020). Potential of multi-species livestock farming to improve the sustainability of livestock farms : A review. 
Agricultural Systems, 181, 102821. https://doi.org/10.1016/j.agsy.2020.102821 

Meuwissen, M. P. M., Feindt, P. H., Spiegel, A., Termeer, C. J. A. M., Mathijs, E., Mey, Y. de, Finger, R., Balmann, A., 
Wauters, E., Urquhart, J., Vigani, M., Zawalińska, K., Herrera, H., Nicholas-Davies, P., Hansson, H., Paas, W., 
Slijper, T., Coopmans, I., Vroege, W., … Reidsma, P. (2019). A framework to assess the resilience of farming 
systems. Agricultural Systems, 176, 102656. https://doi.org/10.1016/j.agsy.2019.102656 

Morel, K., San Cristobal, M., & Léger, F. G. (2017). Small can be beautiful for organic market gardens : An 
exploration of the economic viability of French microfarms using MERLIN. Agricultural Systems, 158, 39‑49. 

Muris, C. (2017). Estimation in the fixed-effects ordered logit model. Review of Economics and Statistics, 99(3), 
465‑477. 

Nuthall, P. (2009). Modelling the origins of managerial ability in agricultural production*. Australian Journal of 
Agricultural and Resource Economics, 53(3), 413‑436. https://doi.org/10.1111/j.1467-8489.2009.00459.x 

O’Donoghue, C., Devisme, S., Ryan, M., Conneely, R., & Gillespie, P. (2016). Farm economic sustainability in the 
European Union : A pilot study. Studies in Agricultural Economics, 118(3), 163‑171. 

Perrin, A., San Cristobal, M., Milestad, R., & Martin, G. (2020). Identification of resilience factors of organic dairy 
cattle farms. Agricultural Systems, 183, 102875. 

Phimister, E., Roberts, D., & Gilbert, A. (2004). The Dynamics of Farm Incomes : Panel data analysis using the Farm 
Accounts Survey. Journal of Agricultural Economics, 55(2), 197‑220. https://doi.org/10.1111/j.1477-
9552.2004.tb00093.x 

Saravia-Matus, S., Amjath-Babu, T. S., Aravindakshan, S., Sieber, S., Saravia, J. A., & Gomez y Paloma, S. (2021). Can 
enhancing efficiency promote the economic viability of smallholder farmers? A case of Sierra Leone. 
Sustainability, 13(8), 4235. 

Savickiene, J., Miceikiene, A., & Jurgelaitiene, L. (2016). Assessment of economic viability in agriculture. Strategic 
Approaches in Economy, Governance and Business, 2nd ed.; Zbuchea, A., Pînzaru, F., Eds, 101‑118. 

Schulte, H. D., Musshoff, O., & Meuwissen, M. P. M. (2018). Considering milk price volatility for investment 
decisions on the farm level after European milk quota abolition. Journal of Dairy Science, 101(8), 7531‑7539. 
https://doi.org/10.3168/jds.2017-14305 

Shrestha, J., Subedi, S., Timsina, K. P., Subedi, S., Pandey, M., Shrestha, A., Shrestha, S., & Hossain, M. A. (2021). 
Sustainable intensification in agriculture : An approach for making agriculture greener and productive. Journal 
of Nepal Agricultural Research Council, 7, 133‑150. 

Sneessens, I., Sauvée, L., Randrianasolo-Rakotobe, H., & Ingrand, S. (2019). A framework to assess the economic 
vulnerability of farming systems : Application to mixed crop-livestock systems. Agricultural Systems, 176, 
102658. https://doi.org/10.1016/j.agsy.2019.102658 

Spicka, J., Hlavsa, T., Soukupova, K., & Stolbova, M. (2019). Approaches to estimation the farm-level economic 
viability and sustainability in agriculture : A literature review. Agricultural Economics, 65(6), 289‑297. 

Spiegel, A., Slijper, T., de Mey, Y., Meuwissen, M. P. M., Poortvliet, P. M., Rommel, J., Hansson, H., Vigani, M., 
Soriano, B., Wauters, E., Appel, F., Antonioli, F., Gavrilescu, C., Gradziuk, P., Finger, R., & Feindt, P. H. (2021). 
Resilience capacities as perceived by European farmers. Agricultural Systems, 193, 103224. 
https://doi.org/10.1016/j.agsy.2021.103224 



Proceedings of the 6th Symposium on Agri-Tech Economics for Sustainable Futures 40 

Tichit, M., Hubert, B., Doyen, L., & Genin, D. (2004). A viability model to assess the sustainability of mixed herds 
under climatic uncertainty. Animal Research, 53(5), 405‑417. 

Trestini, S., Szathvary, S., Pomarici, E., & Boatto, V. (2018). Assessing the risk profile of dairy farms : Application of 
the Income Stabilisation Tool in Italy. Agricultural Finance Review, 78(2), 195‑208. https://doi.org/10.1108/AFR-
06-2017-0044 

Vera, A. C., & Colmenero, A. G. (2017). Evaluation of risk management tools for stabilising farm income under CAP 
2014-2020. Economía agraria y recursos naturales, 17(1), 3‑23. 

Volkov, A., Zickiene, A., Morkunas, M., Balezentis, T., Ribasauskiene, E., & Streimikiene, D. (2021). A Multi-Criteria 
Approach for Assessing the Economic Resilience of Agriculture : The Case of Lithuania. Sustainability, 13(4), 
2370. https://doi.org/10.3390/su13042370 

Vrolijk, H. C. J., De Bont, C., Blokland, P. W., & Soboh, R. (2010). Farm viability in the European Union : Assessment 
of the impact of changes in farm payments. Rapport-Landbouw-Economisch Instituut, 2010‑011. 

Wibowo, H. E., Novanda, R. R., Ifebri, R., & Fauzi, A. (2023). Overview of the Literature on the Impact of Food Price 
Volatility. AGRITROPICA: Journal of Agricultural Sciences, 6(1), 22‑32. 

Wilczyński, A., & Ko\loszycz, E. (2021). Economic Resilience of EU Dairy Farms : An Evaluation of Economic Viability. 
Agriculture, 11(6), 510. 

Wolf, C. A. (2012). Dairy farmer use of price risk management tools. Journal of Dairy Science, 95(7), 4176‑4183. 
https://doi.org/10.3168/jds.2011-5219 

 

  



Proceedings of the 6th Symposium on Agri-Tech Economics for Sustainable Futures 41 

Digitalisation for Agroecology: Agenda for an inclusive policy 
roadmap 

Andrea LandiA*, Evangelos AnastasiouB, Ioannis AviziotisB, Karl BehrendtC, Nils 
BorchardDE, Jochen KantelhardtF, Søren Marcus PedersenA, Liisa PesonenG, Karl 

ReimandF, Conceição Santos SilvaH, Friederike SchwierzI, Andreas Meyer-
AurichI  

 
A Department of Food and Resource Economics (IFRO), University of Copenhagen, Denmark 

B Department of Natural Resources Management & Agricultural Engineering, Agricultural 
University of Athens, Greece 

C Global Institute for Agri-Tech Economics, Food Land & Agribusiness Management 
Department, Harper Adams University, Newport, Shropshire, United Kingdom 

D German Agricultural Society, Frankfurt am Main, Germany 
E Lisbon School of Economics and Management, University of Lisbon, Portugal 

F Department of Economics and Social Sciences, Institute of Agricultural and Forestry, 
University of Natural Resources and Life Sciences, Vienna, Austria 

G Production Systems, Natural Resources Institute Finland, Helsinki 
H Forest Mediterranean Union, Lisbon, Portugal 

I Leibniz-Institute for Agricultural Engineering and Bioeconomy, Postdam, Germany 

  

Extended Abstract  

Agroecological systems have a great sustainability potential, as a path to agricultural 
development and toward a balanced and economically sound society (D'Annolfo et al., 2017). 
Regardless of the definition used to define its principles, agroecology is characterised by a 
holistic approach that comprises environmental, social and economic dimensions (FAO, 2018; 
Francis et al., 2003; Gliessman, 2018; HLPE, 2019). Agroecology is characterised by having a 
recognisable social component, promoting participation (and even some form of activism) 
from all the stakeholders involved in food production (Gliessman, 2014, p. xi).  

Digital technologies can improve the agricultural sector in different ways (Finger, 2023; 
Khanna, 2021). This includes enhancing decision-making processes of farmers, other 
stakeholders, and institutions; Improving connectivity and networking from data sharing; 
Improving production from yield increase, improving quality, labour reduction, and minimising 
environmental impacts. Other benefits include monitoring, traceability, insurance claims, and 
certifying compliance with standards and regulations.  

However, such benefits might not come alone, as, overall, digitalisation increase energy 
consumption (Lange et al., 2020). A second disadvantage is the adoption rates varying among 
stakeholders with distinct characteristics. As the agri-food sector is generally conservative, the 
perceived complexity of digital technologies is one of the barriers preventing a more 
widespread adoption of digital tools (Giua et al., 2021). Another barrier is the lack of 
harmonisation of such technologies, with often little interoperability and a poor protection of 
data sovereignty. Farmers’ lack of experience and the organisation required for the correct 
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implementation of digital technologies are examples of the degree to which digitalisation will 
modify agricultural systems (Schnebelin et al., 2021).  

Both barriers to adoption and intrinsic limitations of digital technologies are not necessarily in 
contrast with the concept of agroecology. Digitalisation makes available a set of tools to 
improve social fairness and the other ethical principles of agroecology and, at the same time, 
can be an instrument to increase environmental sustainability (MacPherson et al., 2022).  

This perspective is based on the state-of-the -art of the work of the European collaborative 
consortium action D4AgEcol1. It addresses the policy implications of the path toward the 
transformation of European agricultural production systems to include an agroecological 
approach, by using digital technologies. The paper presented focuses on the methodological 
aspects of co-creation, suggesting a framework to operationalise the co-development of 
policy roadmaps. The focus on transition to agroecology and digitalisation of agri-food 
production at the same time, with specific focus on policies is exclusive to this project (Giua 
et al., 2021; Iocola et al., 2023; MacPherson et al., 2022).  

Problem statement 

Digitalisation touches upon some dimensions that are in common with agroecological 
principles2. However, there are some criticisms about the use of digital technologies to 
increase sustainable practices. Such criticisms point out how digital technologies are 
inherently linked to industrial agriculture, hence their usefulness in enforcing agroecological 
principles is not automatic (Hilbeck, McCarrick, Tisselli, Pohl, & Kleine, 2022). Besides, some 
scholars emphasise the need for rethinking the way public policies address issues, engaging 
with local society and stakeholders, designing policies through collaborative methods 
(Hillgren, Light, & Strange, 2020; Tõnurist & Hanson, 2020). Ultimately, the co-creation of 
political actions would increase their efficacy and acceptability. Therefore, the general 
research question for this work will be:  

‘How national and European policies should combine the views of all stakeholders to 
enable the adoption of digitalisation for the transformation of agricultural systems 
toward the adoption of agroecological principles?’  

Framework  

With the goal of designing policy roadmaps that fuse the voices of stakeholders, experts and 
policymakers, the overall theoretical framework that best addresses the need for a broad 
acceptability is the framework of responsible innovation (Stilgoe, Owen, & Macnaghten, 
2013). The framework is well suited to design policies for both digitalisation of agriculture and 
agroecology. Anticipation, Reflexivity, Inclusion, and Responsiveness are the four components 
of the responsible innovation framework. They all resonate with the principles of agroecology 
and digitalisation (Shelton et al., 2022; Stilgoe et al., 2013). Namely, reflexivity and 
responsiveness are critical for linking digitalisation and the dimensions of agroecology related 
to sustainability and environmental performance, while reflexivity and inclusion are accessory 
to achieve the social principles of agroecology.  

 

1 Digitalisation for Agroecology’ project: https://d4agecol.eu/ 
2 See for example the OECD policy dimensions, that include trust, society, access, jobs, and innovation among others 
(https://goingdigital.oecd.org/dimensions, accessed 20th June 2023). 

 

https://d4agecol.eu/
https://goingdigital.oecd.org/dimensions
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The level of interaction between stakeholders enabled by the framework of responsible 
innovation is aligned with the current European programmes on agroecology, and with the 
expectation from future projects (Iocola et al., 2023). Additionally, the framework is well 
suited to implement inclusivity and ethics into the national and European policies; two of the 
essential actions recommended for integrating digitalisation and transition toward 
agroecological systems (Shelton et al., 2022).  

The responsible innovation framework is fit to assess the resilience of the production systems, 
highlighting the effects of innovation on the system’s resilience, adaptability, and, critically, 
transformability. Those are the three dimensions of the framework described in Meuwissen 
et al. (2019).  

The analysis of the data from the literature and produced involving the stakeholders in the 
process of planning the transformation of the European agricultural systems is expected to 
considers the (community) capitals framework (natural, cultural, human, and social capitals), 
to further connect the different impacts of digitalisation to agroecological principles, and to 
all the components of the production systems (i.e., all stakeholders and their connections) 
(Emery and Flora, 2006; Pigg et al., 2013). 

Methodology  

To operationalise the framework, the formulation of policy roadmap shall include elements of 
co-creation, through dialogues (workshops), aimed to create the conditions to allow all 
relevant stakeholders to participate in such dialogue, to enhance the co-creative part of 
executive solutions.  

Overall, the policymaking includes three main activities: 1. Literature review and connection 
with present and past experiences; 2. Stakeholders’ involvement: a series of workshops 
(feedback from those interested in and affected by the digitalisation process); 3. Expert 
feedback.  

The second point is particularly important, as the digitalisation of agricultural production 
affects multiple and diverse stakeholders from different European countries, not only farmers 
and digital tools’ providers, but also other actors within the production system and the local 
community not directly involved in the production.  

In relation to the stakeholders’ involvement, and as other experiences on co-creation 
highlight, the main difficulty in promoting a dialogue between stakeholders and civil society is 
the lack of a common background. Providing all the participants with some basic information 
is critical to coordinate the workshops in different countries (and to compare the results), and 
engaged in different production systems (e.g., organic and conventional productions, 
agroforestry).  

For this reason, illustrating an ‘ideal scenario’, rather than focusing on existing technologies, 
is a useful tool to increase the level of the discussion, moving the workshop from a discussion 
about tools to a dialogue where all the participants add to the vision based on their respective 
experience. A fiction-based approach might be the most effective method for discussing a 
radical transformation of agricultural systems through digitalisation (Hillgren et al., 2020; 
Miller and Bennett, 2008), allowing a comprehensive analysis of the co-creative dialogue, 
easing the task of merging primary and secondary data, and, at the same time, stimulating the 
engagement of the local stakeholders.  
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The scenarios shall include all the different uses of digital technologies, that are: Support of 
stakeholders’ decision-making; Support in connection between stakeholders, creation of 
networks and data sharing (and feedback mechanisms); Direct improvements of production; 
Monitoring, traceability, increased transparency, and social and environmental performances 
(certification, both formal and informal, of adherence to agroecological practices). 

Based on such scenarios, the discussion will touch upon the consequences of adopting 
agroecological practices through digitalisation at different scales, from farms to the entire 
system, and the local communities. The discussion will be moderated, to ensure the analysis 
of the effects on all dimensions (human, social, and on the environment). Then, the data 
produced in the workshops in different countries will be analysed and synthetised. Such data 
will be merged with findings from literature, and a panel of interdisciplinary experts will assess 
the possible socio-economic impacts, the effect on resilience and the potential for a transition 
toward agroecology.  

Finally, the policy roadmaps will identify the enablers necessary to assist such transition (in 
term of political, scientific, and social efforts), and how to measure the success rate of such 
efforts, through qualitative and quantitative indicators. Figure 1 gives a complete overview of 
the process. 

 
Figure 1: The process of creating national and European policy roadmaps of digitalisation for 
agroecology 

Indicators are necessary for the creation of scenarios in phase 2, to analyse the data generated 
in the co-creative phase, and to assess the success of the policy roadmaps. Technical and 
economic indicators about production and economic convenience are critical for determining 
the economic viability of the proposed solutions. However, increased yield and profitability 
are object of a widespread discussion in relation to both digitalisation and agroecology, as 
most studies are inconclusive or send mixed messages (e.g., D'Annolfo et al., 2017; Lio and 
Liu, 2006; van der Ploeg et al., 2019). Therefore, the indicators that will be discussed during 
the workshops and represented in the policy roadmap are those related to human and social 
capitals, to connect some principles of agroecology to the specific outcomes of implementing 
digital technologies, regardless of the economic potentials.  

The path ahead  

In conclusion, the goal of this extended abstract is to suggest an approach to the co-creation 
of knowledge, to incorporate different experiences and cultural backgrounds into multi-
country (e.g., across Europe) and national policy roadmaps. The methodology is designed to 
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enhance local differences and between countries. When its development will be completed, 
to make available to researchers and practitioners a collaborative tool for the formulation of 
policies. The discussion of future scenarios within the framework of responsible innovation is 
expected to increase the understanding of the different approaches to business, the relevance 
of local tradition and social norms for the decision-making processes, and it will be applicable 
to different production systems (e.g., agricultural production, agroforestry, livestock 
production, regardless of if conventional or organic).  
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Extended Abstract 

Variable rate application (VRA) is a most fundamental precision agriculture technology that 
applies varying rates of inputs in different sites of a field. However, its profitability in 
commercial farming has remained unclear, and has been a key constraint to growers’ 
adoption. Indeed, evaluating VRA’s profitability is an extremely challenging task. In theory, it 
requires the full knowledge of true crop response function at each field site, based on which 
the optimal (profit-maximizing) site-specific input rates can be derived. But in practice, 
estimating accurate site-specific response functions is very difficult due to the complexity of 
crop response and the lack of data. Thus, the economic value of VRA is still largely unknown 
despite several decades of precision agriculture research and practices. 

In the agronomy literature, numerous small-plot experiments have been conducted to 
estimate crop responses. Each experiment was established in a small, uniform piece of land 
with carefully controlled and collected trial data. While crop responses can be accurately 
estimated for those specific experimental sites, however, the small-plot data can represent 
neither the management conditions nor the spatial variability of actual large-scale commercial 
farming fields. Recognizing those limitations, recent years have seen a growing number of site-
specific crop response estimation studies using on-farm experiments that were conducted in 
growers’ production fields. The number of observations and spatial variability in field 
characteristics collected from on-farm experiments are often much larger than those of small-
plot trials, though the data quality might also be considerably lower. Many studies have 
reported the VRA economic evaluations based on on-farm experimental data. However, so far 
most of those evaluations were case studies using only one or several experimental fields, as 
well as their unique estimation methods. As can be expected, given the large variations across 
individual fields, those results can hardly be generalized and provide reliable guidance for 
growers’ VRA investment decisions. 

This study attempts to evaluate the economic return of VRA by using 42 field-years’ data of 
on-farm precision experimentation (OFPE) and consistent evaluation techniques. All 
experiments were for corn yield response to nitrogen fertilizer conducted in Corn Belt states, 
spanning from 2016 to 2021. The nitrogen trial rates were determined by varying from 
growers’ currently applied rates (status quo) in each field. Nitrogen rates were applied by 
growers’ own variable rate equipment following the trial design maps provided by 
researchers, and the yield data were collected by combine yield monitor during the harvesting 
process. Inexpensive field characteristic information (e.g., elevation, soil type, EC) were also 
collected for each field. The data were cleaned, processed, and organized in spatial units of 
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about 6 meters wide and 20 meters long. An average experimental field contained about 2,000 
units. 

In spite of numerous existing studies on site-specific yield response estimation in the 
literature, there is still no consensus on what models are the most appropriate. In this study 
we tried two different modeling strategies. The first strategy directly interacted field 
characteristics with nitrogen rates to explicitly capture the variations in nitrogen response 
(i.e., marginal effects of nitrogen). Instead of imposing linear interaction terms like many 
existing studies, we used a machine learning model, Multi-Arm Causal Forest (MACF), to allow 
more complex interaction patterns. The MACF model predicted each observation’s yield 
changes caused by nitrogen rate changing from base rate (the lowest trial rate) to any other 
trial rates, which can be regarded as relative site-specific yield responses. The second strategy, 
however, did not directly use field characteristics, but first divided the field into several 
management zones, and then estimated a uniform response function in each zone. The zone 
delineation was based on the spatial distribution of coefficient from an exploratory 
Geographically Weighted Regression estimation. Two econometric models were used to 
estimate the uniform response: Spatial Error Model (SER) with a quadratic functional form, 
and Generalized Additive Model (GAM) that allows a more flexible non-parametric response 
pattern.  

Based on the estimated site/zone-specific yield response functions and current corn 
($6.5/bushel) and nitrogen fertilizer ($1/lb) prices, the optimal variable rate nitrogen 
applications (VRA) were derived. Economic return of VRA was measured by the profit of VRA 
over growers’ currently applied rate. Final estimation results showed the VRA return varied 
substantially across individual fields, ranging from zero to about $150 per acre. By SER 
estimation, only one (1) field’s VRA return was lower than $5/acre, 43% of the fields had 
moderate return ($5 to $20/acre), and 55% of the fields had high return (>$20/acre). The 
average VRA return across the 42 fields was $29/acre, an economically significant amount that 
is worth considering by growers. GAM results (average of $33/acre) were similar to SER. By 
MACF estimation, however, the average VRA return was at a lower amount of $19/acre, and 
29% of the fields had low VRA return (<$5/acre). Those findings demonstrated the VRA return 
estimation depends heavily on the estimation model selection. Unfortunately, it is difficult to 
tell which model’s result is closer to the true value. The zone-specific models (SER and GAM) 
might over-fit and exaggerate the variations of response, or the interaction model (MACF) 
might overlook key field variables and underestimate the response variations. Without 
knowing the true situations, our estimations by different models provided a range of VRA 
values ($19 to $33/acre) to the best of our knowledge for growers’ VRA investment decisions. 

Additionally, we also calculated the optimal uniform nitrogen rate application (URA) for the 
whole field. That helps to decompose the total VRA return into two parts: (i) profit increase 
from correcting grower’s rate to URA, and (ii) profit increase from URA to VRA. Our results 
showed that part (i) took a large portion (($16 to $18 per acre) of the total VRA return. Since 
URA does not require expensive variable rate equipment, this portion of economic return can 
be more easily acquired by growers. It also means the “pure” VRA returns (i.e., part ii) were 
actually much smaller ($2.6/acre by MACF, $12/acre by SER, and $15/acre by GAM). 

Note that all the estimations in this study are ex post evaluations, which represent the 
potentials of VRA return. In reality, growers can rarely achieve the optimal VRA and the 
potential returns. To estimate more realistic VRA economic returns, we need to develop ex 
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anti VRA decision algorithms by more sophisticated models, and test their profitability using 
more out-of-sample experimental fields. 
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Abstract 

Accurately evaluating yield response to nitrogen can increase crop management profitability 
and sustainability. Many studies estimate yield response by fitting a regression model to 
data collected from different fields. But analysing such combined data requires that 
heterogeneity across fields be accounted for in the regression analysis along with the 
variation in input rates. This study uses data from 27 large-scale on farm experiments to test 
the potential danger of getting biased estimates of yield response functions. Models with 
and without field fixed effects are run. The yield response functions from the two models 
showed different slopes, which provides a visual representation of the bias resulting from 
the pooled estimation. Use of the Mundlak approach indicated that ignoring the 
endogeneity of regressors with respect to field effects leads to an unreliable estimation of 
yield response to N. 
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Introduction 

Use of nitrogen (N) fertilizer in crop production is important both economically and 
environmentally. Over-fertilization can lead to N leaching, causing pollution, whereas under-
fertilization may produce yield below the economic optimum (Schlegel, Dhuyvetter, and 
Havlin 1996; Magdoff 1991). Accurately evaluating the yield response to N can improve the 
accuracy of estimating economically optimal N rates, thereby increasing farmers profitability 
and improving the sustainability of agricultural activities (W. Raun et al. 2017; Ransom et al. 
2020). 

The supplemental N requirement of corn and supply from soil can vary substantially among 
fields (Bundy and Andraski 1995). Numerous studies have estimated yield responses to N for 
individual fields (Scharf and Lory 2002; Schmidt et al. 2002). However, since statistical analysis 
needs adequate variations in input levels and yield observations to provide understanding of 
yield response functions, in previous studies, researchers have been combining observed 
application data from multiple locations to estimate yield response to inputs (e.g., Spillman 
1923; Tumusiime et al. 2011; Lory and Scharf 2003; Sela, Woodbury, and Van Es 2018; Wang, 
Shi, and Wen 2023). At the early stages of finding optimal corn N rates based on yield response 
data, yield response functions were estimated based on combined data from numerous 
experiments of N trials (Osterhaus, Bundy, and Andraski 2008; Scharf 2001; Oberle and Keeney 
1990; Pias et al. 2022; Roberts et al. 2013; Lory and Scharf 2003). Among those N trials, the 
majority of them received different N rate treatments across different fields; some of them 
were based on the crop management history (Andraski and Bundy 2002), some of them were 
chosen by producers (Scharf et al. 2011), some of them have no information about how the 
trial rates were chosen (Vanotti and Bundy 1994a, 1994b; Lory and Scharf 2003; Barker and 
Sawyer 2010; Roberts et al. 2013). An N recommendation approach, Maximum Return to N 
(MRTN) (Morris et al. 2018; Sawyer et al. 2006; Nafziger 2018), is a good and significant 
example of using combined multiple N trials data to recover yield response. Since its goal is to 
have regional recommendations of nitrogen application rates, it incorporated data from 
diverse locations with varying N rates and a wide range of field characteristics into the model. 
Consequently, the MRTN research is conducted using data from hundreds of N trials in the 
database from each state or a specified region within the state, without specifying consistent 
N rates or increments across fields. 

Even though some studies may have sufficient variations of N treatments within each trial, 
including more observations from multiple trials can provide additional information to the 
regression process. This, in turn, enhances the precision of the estimates and leads to the 
development of better decision-making tools (Bullock et al. 2019). Also, as the management 
of agricultural activities increasingly relies on big data and machine learning methods, the 
need to incorporate more observations into the analysis process is intensifying. More studies 
are now using a significantly larger volume of data than before, which often necessitates the 
combination of observations from multiple fields. (Van Klompenburg, Kassahun, and Catal 
2020; Qin et al. 2018; Ransom et al. 2019; Su et al. 2022). 

However, despite the benefits of combining data from separate field experiments, there are 
challenges in combining data from different trials. During the process of combining data, the 
heterogeneity of fields’ characteristics will be brought into the regression analysis along with 
the variation in input rates. If these field characteristics are not controlled for in the 
regression, their effects on yield may be attributed to other variables. This can lead to a biased 
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estimation of the marginal effect of N on yield. Oglesby et al. (2022) compared the 
Economically Optimal Nitrogen Rate (EONR) and the Agronomically Optimal Nitrogen Rate 
(AONR) obtained from models analysing each field individually with those obtained by 
combining data by year or both field and year. They found that pooled data tends to mislead 
the estimation of impact of the input on yield. To address this issue, previous studies have 
proposed methods that incorporate location-specific models to potentially improve input rate 
recommendations (W. Raun et al. 2017; W. R. Raun et al. 2019). 

The main objective of this study is to examine the potential bias in estimating the causal 
effects of N on yield due to omitted variable bias when using combined data from multiple 
fields. I will use unique datasets from the Data Intensive Farm Management project (DIFM) 
(Bullock et al. 2019) that allow us to test this hypothesis. The DIFM uses precision agricultural 
technology to conduct on-farm experiments (OFPE) in large-scale farm trials in different 
states. Because the initial goal of DIFM is to generate profit-enhancing information for each 
specific participating farmer, targeted input rate are decided upon separately by each field. 
Given that the amounts of N treatment are determined by farmers for individual fields and 
may correlate with their fields’ characteristics, combining the DIFM data should present the 
endogeneity problem previously mentioned. On the other hand, multiple (usually 5 to 7) 
treatment rates are applied by variable rate technology in each field based on Latin square 
trial design maps, making sure the input rates and other elements are independent. These 
project protocols introduce two dimensions of N variation when combining data from multiple 
fields: within-field N variation and across-fields N variation. Of these, only the within-field N 
variation is independent to other elements within each field, ensuring the yield response curve 
reflects the real impact of N on yield. This provides a great opportunity to test the potential 
danger of getting biased yield response to N using combined fields data. 

Models with and without adding field fixed effects were estimated using on-farm 
experimental data combined across fields. The results show that the estimated marginal 
impact of N on yield were different from the two models and the two yield response curve 
showed different slopes, resulting in different EONR estimations. This is consistent with my 
hypothesis, which is that the correlation between the unobserved farm characteristics and the 
choice of N treatments will cause omitted variable bias in the analysis. Mundlak’s method 
(Mundlak 1978) was applied to check for endogeneity. Results show that ignoring the 
endogeneity of regressors with respect to field characteristics leads to an unreliable 
estimation of yield response to N. It is very important to be aware of this problem, as this issue 
has not been widely recognized in previous literature and the use of big data, machine 
learning, or on-farm experiments for managing agricultural activities has increased 
dramatically, which increasingly necessitates the combination of observations from multiple 
fields. 

Methods 

Experimental Data 

The Data Intensive Farm Management (DIFM) project (Bullock et al. 2019) works with 
participating farmers conducting on-farm precision experiments (OFPE) on fields. Latin square 
field trial design is established by researchers at the beginning of each growing season for 
each trial. The N treatment rates were determined around farmers’ status quo rates, which 
were chosen based on farmers’ experience and expectations for the field. The dimension of 
the plots was designed to fit the swath width of the machinery available. Other farming 
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practices stayed the same throughout the field. Figure 1 shows an example of a trial design. 
This field was partitioned into 253 plots and each plot is assigned to one of the N treatment 
rates around 117 lb/ac N. 

 

Figure.1: An example Latin square trial design map 

Twenty-seven corn N trials in 2021 (15 trials) and 2022 (12 trials) growing season from the 
DIFM project were used for this study. These trials were conducted across Illinois, Ohio, 
Arkansas, and Oklahoma in the U.S., as well as in Quebec, Canada. N treatments were 
implemented in the field using variable rate applicators according to the trial design. Figure 2 
shows the applied N treatments for each trial. The red points represent the average N rate in 
each field, it varies across different fields because farmers chose different status quo rates. 

In October, yield monitors were at harvest to collect yield level data. See Figure 3 shows an 
example of applied variable N trial and observed yield data. 

 

Figure 2: N treatment rates in each field 
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Figure 3: As-applied N rates and observed yield 

Data quality was maintained through data cleaning and processing, as discussed briefly by 
Bullock et al. (2019). Through data processing, extreme as-applied rates and yield were 
removed from raw data retrieved directly from applicators and yield monitors. Data from side-
of-field, headlands, too-small plots, geometrically irregular areas was excluded from the 
experiment, since the farming practice in these cases are less consistent than the interior of 
the field due to different machine driving speed, potential application overlaps, etc. An 
approximately 10m-long “transitional buffer zones” were applied at the end of each plot to 
mitigate the yield monitors’ reading delays between different yield zones. 

The georeferenced raw yield data were used to generate yield polygons, which were used as 
the “observation units” in analysis. The creation of these polygons depended on factors such 
as the plot’s original length, swath width, headings, and the distance between points. Within 
each field, the area of each polygon remained constant. The N rate assigned to each polygon 
was calculated as the average value of the as-applied N rates falling within that specific 
polygon. If the N treatment values at points within a yield polygon exceed three times of their 
standard deviation, the polygon is removed from the analysis, ensuring that the yield 
observations originate from a single N treatment rate. 

Since DIFM runs OFPE in large-scale farms, the abundance of observations within each farm 
(Figure 4) provides sufficient treatment variation to estimate its yield response function. 
Considering that the OFPE are conducted at multiple locations and farmers select the central 
treatment rates, the combined DIFM data can reflect the variations of N demands both across 
different fields and within each individual field. This combination of two different dimensions 
of data enables the estimation of both the pooled yield response, incorporating variations in 
N levels across all fields, as well as field-specific yield response, accounting only for within-
field N variations. 
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Figure 4: Number of observations in each trial 

 

Non-experimental data 

The soil and weather data were obtained using R software (R Core Team 2022). Elevation data 
for each field was obtained using the elevatr package (Hollister et al. 2022). Digital elevation 
maps were used to calculate the values of terrain slope and curvature. Slope data was 
obtained using the raster package (Jacob van Etten 2012). Curvature data was obtained using 
the spatialEco package (Evans and Murphy 2023). All of the soil data was calculated from 
subplot-level measurements, consistent with the observation unit. 

Daily weather data is obtained from Daymet (Thornton et al. 2022). Monthly precipitation and 
the number of extreme degree days (EDD) (Schlenker and Roberts 2009) are included in the 
regression analysis. Precipitation and temperature are assumed to stay the same in the fields 
in northern Illinois, central Illinois, southern Illinois, Ohio, Arkansas, and Oklahoma. The 
number of EDD were calculated as follows: 

𝐸𝐷𝐷 = ∑ 𝑚

𝑛

𝑖=1

𝑎𝑥(0,  𝑇𝑚𝑎𝑥,𝑖  − 𝑇𝑐), 

where 𝑇𝑚𝑎𝑥,𝑖 is the maximum temperature on the ith day from April to September, 𝑇𝑐, 29∘𝐶 

for corn (Schlenker and Roberts 2009), is the critical temperature threshold that will lower 
yield. 

Data merging 

Soil data was computed for each observational unit in analysis. The average values for 
elevation, slope, and curvature from each subplot were merged with applied N and yield 
levels, using their geographic references through R programming. Weather information was 
integrated into the dataset based on the fields’ locations. 
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Econometric Model and Analysis 

Potential endogeneity problem when using data from multiple fields 

As discussed, many studies estimated yield response by fitting a regression model to data 
collected from different fields without accounting for the unobserved heterogeneity among 
those different fields. Figure 5 illustrates a potential problem of this approach. As found in 
previous literature, field-specific characteristics vary from field to field, leading to different 
yield potentials. For example, consider a two-field case, where field 1 reaches a higher yield 
potential compared to field 2 due to field or soil characteristics that are not observed by 
researchers. It is known that some farmers follow yield-based management algorithm, where 
farmers tend to apply more N for the fields with higher yield potentials (Rodriguez, Bullock, 
and Boerngen 2019). In this example, farmers tend to apply more N in field 1 (the orange 
points has higher average than the blue points). The points represent the as-applied N rates 
and yield level observed by researchers in each field, capturing their own yield response. 
However, when combining the observed data from both fields, the cross-sectional fit is the 
black line, consequently biasing the estimation of the relationship between N response and 
yield. 

 

Figure 5: Conceptual demonstration of the potential endogeneity problem when using data 
from multiple fields. 

 

The fact that farmers select N rates based on their understanding of the fields, accounting for 
unobserved field characteristics, is not the sole cause of leading to the endogeneity problem 
from using a pooled model with data from multiple fields. Weather, varies from location to 
location, can significantly change yield response to N. However, there are numerous 
approaches to representing weather variables, which can be calculated using minimum, 
maximum, or average values on a daily, weekly, monthly, or entire growing season basis. 
Diverse criteria can also be used to construct weather variables. For instance, one could use 
the absolute temperature or precipitation values or count the number of days surpassing 
specific thresholds. More importantly, it is nearly impossible to model the interactive and non-
linear weather effects on corn yield response (Schlenker and Roberts 2006; Bassu et al. 2014). 
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Therefore, it is not realistic to perfectly account for weather variables in regression analysis, 
meaning that the unaccounted impacts will be left in the error term. This idea also applies to 
soil variables. The Soil Survey Geographic Database (SSURGO), soil tests from experimental 
fields, etc. are common sources of soil information. However, the accuracy of soil data can 
limit the extent to which can be controlled for the impact of soil characteristics on yield in 
regression analysis. This can, again, result omitted variable bias in the yield response 
estimation. 

For the sake of demonstration, assume yield response follows linear functional form 

𝑦𝑓𝑖 = 𝐗𝑓𝑖𝛃 + 𝑣𝑓𝑖  (1) 

𝑣𝑓𝑖 ≡ 𝑐𝑓 + 𝑢𝑓𝑖  (2) 

where 𝑦𝑓𝑖 is the yield level in field 𝑓 and subplot 𝑖, 𝑋𝑓𝑖 is a vector of all the independent 

variables including N treatment rates and other controlled covariates. 

The error term 𝑣𝑓𝑖 contains all of the factors that affect yield but are not measurable or 

controllable (not in 𝐗𝑓𝑖). Equation (2) decomposed it into two parts. 𝑢𝑓𝑖 is the idiosyncratic 

error across all subplots. 𝑐𝑓 represents the unobserved field characteristics, which are 

assumed to be constant within each field but vary across locations. Examples of 𝑐𝑓 are 

unobserved the farmer’s human capital or management ability, and non-measurable soil 
characteristics. However, these unobserved field characteristics can impact the yield level and 
subsequently influence the N rates chosen by farmers. For instance, farmers tend to apply 
more N on the fields that have historically shown higher yields. Consequently, the correlation 
between uncontrollable field characteristics and N treatment rates causes an endogeneity 

problem. This is, 𝐸(𝐍𝑓
𝑔𝑐′

𝐜𝐟) ≠ 0, then pooled OLS estimator will be biased, 𝐸[�̂�|𝑋] ≠ 𝛃. 

Field fixed effects 

Thanks to the protocols of the DIFM trial design, the across-field heterogeneity was caused by 
the trial design rates being centered on farmers’ status quo rates and the Latin square trial 
design was implemented to ensure clean variation in N levels within each field. Therefore, the 
combined fields data provides a great opportunity testing the potential danger of getting 
biased estimated yield response functions ignoring field heterogeneity. To eliminate the 
heterogeneity across fields in the regression analysis, the fixed effects model (Mundlak 1978) 
can be applied. By including field fixed effects, only the variation within a field is used as 
identifying information to estimate 𝛽𝑁, which can solve the endogeneity problem due to 
unobserved field-specific characteristics. 

Models with and without field fixed effects are run respectively using the 27 corn-N trials. 
Quadratic model was used to estimate the impact of N on yield. The quadratic functional form 
of crop yield functions remains attractive as it is simple to implement, easy to understand, and 
it can capture the non-linearity of yield response to inputs. The shape-constrained generalized 
additive (SCAM) model (Pya and Wood 2015) is also applied to estimate the yield response to 
N. Instead of defining a specific functional form, SCAM lets the data determine the nature of 
the relationship between inputs and output, which allows for a more flexible specification of 
yield response function. The results from SCAM and quadratic models are very similar (Figure 
S1 in Appendix). Based on the simplicity of the quadratic model, we used it for this study. 

The statistical model can be written as Equation (3), 
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𝑦𝑓𝑖 = 𝐍𝑓𝑖𝛃
𝑁 + 𝐗𝑓𝑖𝛃

𝑋  + 𝑣𝑓𝑖  (3) 

where 𝐍 contains the N treatment rates in each subplot and their quadratic term, 𝐗 includes 
all other subplots-level soil and weather covariates, including elevation, slope, curvature, 
monthly precipitation from April to September and EDD. All yield, N, and soil features are in 
site-specific level with 𝑓 representing field and 𝑖 representing subplot. 

The error term 𝑣𝑓𝑖 has the same structure as Equation (2). Since N treatment rates were 

applied based on Latin square trial design, it is orthogonal to any other factors that affect yield. 
However, as mentioned earlier, the presence of unobserved field characteristics is highly likely 
to influence farmers’ chosen rates, resulting in a correlation with the input treatment rates. 
These implies, 

𝐸(𝑁𝑓𝑖 𝑣𝑓𝑖) = 0,  ∀𝑓 ∈ {1,2, … , 𝐹} 

𝐸(𝐍𝐠𝐜′
𝑓𝐜𝑓) ≠ 0 

where 𝐍𝑔𝑐 is a (𝐹 × 1) matrix contains all the grower chosen N rates, which are the centers 
of the variable Nitrogen rates in each field. Again, 𝐜 is a matrix contains unobserved field-level 
characteristics. 

Combining Equation (3) and Equation (2) yields: 

𝑦𝑓𝑖 = 𝐍𝑓𝑖𝛃𝑁 + 𝐗𝑓𝑖𝛃
𝑋  + c𝑓  + 𝑢𝑓𝑖  (4) 

Note, since c𝑓 are the field-level characteristics, the impact of it on yield stays the same in 

each farm 𝑓 and doesn’t vary among subplots 𝑖 within the field. The fact of 𝑐‾𝑓𝑖 ≡ 𝑐𝑓 for each 

field 𝑓 provides the condition that including field fixed effects can eliminate cross-field 
variation and only use within-field variation to estimate the yield response curve. 

Taking average of the independent and dependent variables in Equation (4) over each farm 𝑓 
can get, 

𝑦‾𝑓 = 𝑵‾ 𝑓𝛃𝑁 + 𝑿‾ 𝑓𝛃𝑋  + 𝑐𝑓  + 𝑢‾𝑓  (5) 

Subtract equation Equation (5) from Equation (4) yields Equation (6). 

𝑦𝑓𝑖 − 𝑦‾𝑓 = (𝑵𝑓𝑖  − 𝑵‾ 𝑓)𝛃𝑁  + (𝑿𝑓𝑖 − 𝑿‾ 𝑓)𝛃𝑁  + 𝑢𝑓𝑖 − 𝑢‾𝑓  (6) 

Define 𝑦𝑓𝑖̈ = 𝑦𝑓𝑖 − 𝑦‾𝑓, 𝑵𝑓𝑖
̈ = 𝑵𝑓𝑖  − 𝑵‾ 𝑓, 𝑿𝑓𝑖

̈ = 𝑿𝑓𝑖  − 𝑿‾ 𝑓, and 𝑢𝑓𝑖̈ = 𝑢𝑓𝑖  − 𝑢‾𝑓, Equation (6) 

can be written as: 

�̈�𝑓𝑖 = �̈�𝑓𝑖𝛃
𝑁  + �̈�𝑓𝑖𝛃

𝑁  + �̈�𝑓𝑖  (7) 

In this case, 𝐸[𝜷�̂�|�̈�;  �̈�] = 𝜷𝑁 due to the orthogonality of N treatments (𝐍𝑓𝑖) and other 

covariates (𝐗𝑓𝑖) from Latin square trial design. This will lead to an unbiased estimation of 

causal impact of Nitrogen on yield, generating an unbiased yield response function. 

Specification test 

Mundlak’s method (Mundlak 1978) is used to test the statistical significance of the 
unobserved field heterogeneity, which lead to the endogeneity of the model. A Wald test 
based on the coefficients on the means of the field varying variables from a random effect 
model (Equation 8) was performed to identify if the observed variables are statistically 
significantly correlated with the unobserved field characteristics. 

𝑦𝑓𝑖 = 𝛼 + 𝐍𝑓𝑖𝛃
𝑁 + 𝐗𝑓𝑖𝛃

𝑋  + 𝐍‾ 𝑓𝛃𝑁‾ + 𝐗‾𝑓𝛃𝑋‾ + 𝑣𝑓𝑖  (8) 
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where 𝐍𝑓𝑖 and 𝐗𝑓𝑖 contains the same variables as Equation (3). 𝐍‾𝑓 and 𝐗‾𝑓 have all the mean 

values of each variable by field. 

The Null hypothesis has all the coefficients on the means (𝛃𝑁‾  and 𝛃𝑋‾ ) are zero indicates that 
there’s no endogeneity in the pooled regression. 

Results 

Table 1 shows the regression results of the models, both with and without including field fixed 
effects, respectively. After adding field fixed effects into the model, the coefficient of the N 
variable changed from 0.494 to 0.407 and became less significant. Moreover, the quadratic N 
term turned no longer significant. Since N is orthogonal to any other factor that might 
influence the yield level within field, the coefficients from the model with fixed effects truly 
represent the marginal effect of N on yield. This provides evidence that using pooled model 
can bias the yield response to N. The impact of slope on yield changed from positive to 
negative after including field fixed effects, this is more consistent with agronomic expectations 
as steeper slopes can lead to poor water drainage, increased runoff, shallow soil depth, and 
challenges related to planting and N application. The elevation and curvature also became lass 
significant after including field fixed effects into the model, indicating that these factors 
showed effects on yield beyond their individual influences in the pooled model. 

 

Table 1: Regression results from pooled model and field fixed effects model 

  Pooled Model Field Fixed Effects Model 

N 0.494*** 0.407+ 
 (0.015) (0.231) 
N^2 -0.001*** -0.001 
 (0.000) (0.001) 
elevation 0.058*** -0.079* 
 (0.002) (0.035) 
slope 0.283*** -0.134* 
 (0.030) (0.051) 
curvature 0.000*** 0.000* 
 (0.000) (0.000) 
Apr precipitation -0.233***  
 (0.019)  
May precipitation -0.335***  
 (0.009)  
Jun precipitation 0.123***  
 (0.006)  
Jul precipitation 0.220***  
 (0.011)  
Aug precipitation -0.164***  
 (0.021)  
Sep precipitation -0.945***  
 (0.012)  
EDD -0.041***  
 (0.002)  
Num.Obs. 47405 47405 
Std.Errors IID by: field 
FE: field  X 

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 
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From the results, all the monthly precipitation and EDD variables are statistically significant 
(weather was assumed to be consistent within each field and were thus controlled by field 
fixed effects). This aligns with the agronomic expectation that weather influences yield levels. 
However, as previously mentioned, it is nearly impossible to perfectly reflect the impacts of 
weather and soil on yield in regressions. Therefore, it is very likely that there is omitted 
variable bias in the pooled yield response regression analysis. 

Figure 6 shows the results of estimated yield response curves from the pooled model and the 
fixed effect model. The figure shows that the two models resulted in two yield response 
functions with different slopes, providing a visual representation of the bias resulting from the 
pooled estimation. Because the field fixed effect eliminated the heterogeneity across fields 
and only used the N variation within each field for the regression. As N is orthogonal to other 
factors based on the trial design, the within-field N variation can be considered clean. 
Therefore, the yield curve depicted by the red line represents the true yield response to N. 
Any deviation between the two curves can be attributed to the bias arising from the 
estimation conducted using the pooled model. 

 

Figure 6: Predicted yield response functions with and without field fixed effects (black is 
pooled) 

 

Following the Mundlak approach, the Wald test yielded a 𝜒2 statistic of 116.9, which rejected 
the Null hypothesis indicating that ignoring the endogeneity of regressors with respect to field 
effects leads to an unreliable estimation of the yield response to N. This is important, As EONR 
is found as the solution to the problem of applying N at the profit maximizing rate, which 
happens when the yield response curve has the same slope as the crop-N price ratio, the 
estimation of the yield response to N directly affect the estimation of EONR. More accurate N 
fertilizer guidelines can help with raising farm profits and reducing environmental damage. In 
this study, for example, the EONR estimated for each individual field is 214 lb/ac, while the 
EONR estimated from the pooled regression is 176 lb/ac. The difference between the two 
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EONR comes from the biased estimated yield response function using pooled data without 
recognizing field heterogeneity. 

Sufficiently many N input rates and observations are essential to the accurate estimation of 
yield response. Many researchers have obtained data from multiple sites or studies, as 
combining yield and N data from various site-years is an easy-to-implement and cost-effective 
process. However, the results from this study showed the potential bias arising from ignoring 
unobserved field heterogeneity when analyzing datasets obtained from multiple site-years. It 
is important to acknowledge this, as managing agricultural activities using big data and 
machine learning methods have become hot topics, those studies now require much larger 
volumes of data, necessitating the combination of observations from multiple fields. 

Conclusion 

Accurately evaluating yield response to N can increase crop management profitability and 
sustainability. Many studies estimate yield response by fitting a regression model to data 
collected from different fields, as statistical analysis requires varied input application levels. 
Even with sufficient variation in N treatments within each trial, having more observations 
contributes to a more continuous distribution of N and field characteristics, which is desirable 
for developing N recommendation approaches. One way to attain additional observations, of 
course, is to combine data from multiple fields. But analyzing such combined data requires 
that heterogeneity across fields be accounted for in the regression analysis along with the 
variation in input rates. In other words, noisy variation among different fields may challenge 
yield response estimation for each field. 

This study used data from 27 large-scale on-farm precision experiments with trial design rates 
centered on farmers’ status quo rates to test the potential danger of generating biased 
estimates of yield response functions. A Latin square trial design was used to make N 
orthogonal to other factors, so within-field N variation can be considered clean. The field fixed 
effects in the model eliminated cross-field variation and only used the input variation within 
each field as identifying information to estimated yield response, ensuring an unbiased 
measurement of the response to N. Models with and without field fixed effects were run. The 
yield response functions from the two models showed different slopes, which provided a 
visual representation of the bias resulting from the pooled estimation. The results of this study 
indicated that ignoring the endogeneity of regressors with respect to field effects leads to an 
unreliable estimation of yield response to N. It is important to recognize this potential problem 
when use combined data from multiple locations, particularly as studies now demand vast 
amounts of data with the rise of big data, machine learning, and OFPE in agriculture 
management. 
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Extended Abstract 

On-farm precision experiments (OFPE) is a popular and widespread method to help farmers 
have better information about their field’s spatial characteristics map and associated yield 
response function. Thus, with an OFPE trial, farmers can improve their expected profits by 
estimating yield response function more accurately. Despite these advantages, some costs 
hinder farmers from running OFPE privately. This research proposes a way to use OFPE data 
as a public good, which can generate valuable information in a field where OFPE has not 
been implemented. We conceptually define the value of OFPE data as a public good and test 
if the information acquired from multiple other fields’ OFPE data promotes as much 
expected profits as running OFPE in the field we want to manage. The results show that the 
multiple OFPE data is not yet a valuable public good since the quality, quantity, and spatial 
diversity of data are limited.  

OFPE is a large-scale farm trial that uses precision agricultural technology to conduct 
randomized input experiments over a whole field. When an OFPE runs in an entire field, it still 
maintains a small-plot first-principal concept (Bullock et al., 2019). That is, OFPE applies 
randomized variable rates input on the designated grid cells by following a trial design. Global 
Positioning System (GPS) linked vehicles enable farmers to apply the designed variable rates 
very accurately.  

Therefore, OFPE requires little work on the farmers’ part to operate the trials, while 
conventional small-plot trials demand intensive labour to apply inputs. OFPE also helps lower 
the cost of generating profit-enhancing information since it collects data in real-time when 
the vehicle applies inputs and harvests crops. With this advantage, OFPE provides a better 
idea about yield response and helps farmers raise the profitability of input management 
decisions.  

Despite the merits of OFPE, some costs still hinder farmers from conducting OFPE on their 
fields. First, farmers are usually afraid of losing profits from applying a wide input rate range 
for this trial. For instance, if OFPE applies ten different fertilizer rates over a whole field, then, 
in most of the field, yield response usually increases fast at a low quantile of the applied 
fertilizer range and does not increase beyond an economically optimum input rate (EOIR). 
Thus, when the targeted input rates are quite different from the EOIR, it creates a profit loss. 
Farmers should also pay to learn how to communicate with consultants to interpret an 
analysis result of the OFPE data, or they need to hire services to aid in those processes. 
Another cost to mitigate uncertainty in ex-ante estimated yield input response is that we need 
to observe how variable weather events could impact yield response by conducting multiple 
repeated OFPE for a given field. These repeated field experiments aggravate farmers’ burden 
of time spent on these processes. In addition, field characteristics and soil nutrition status 
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change while we run multiple-year OFPE, so it is difficult to keep controlling experiment 
settings with consecutive biennial trials under the crop rotation system.  

To retain the advantages but reduce farmers’ burden of conducting OFPE, researchers can 
consider the potential benefits of using multiple other field OFPE data. Suppose that a 
researcher can acquire a lot of same-year OFPE data from multiple fields around diverse 
spatial weather regions. The collected OFPE data might be able to estimate how spatially 
different weather impacts yield response function. Thus, it might be possible to capture the 
spatial weather impact on yield response by collecting multiple fields OFPE data, instead of 
conducting multiple-year OFPE to estimate temporal weather impact on yield response. 
Moreover, the collected OFPE data has much more observations than single site-year OFPE 
data, and it is expected to predict yield response to input and field characteristics interactions 
well. If this idea works, by using multiple other fields OFPE data, farmers can generate valuable 
information about the field they want to manage. Thus, OFPE data can be regarded as a public 
good with public policy implications since the trial information in one place is useful for 
another place without paying additional costs. Therefore, information about whether OFPE is 
a public good has social value.  

The objective of this paper is to investigate whether OFPE data is a valuable public good. If the 
information obtained by multiple other fields OFPE data can achieve as much expected profit 
as conducting OFPE, then we can claim that the multiple OFPE data is a valuable public good.  

To test this objective, I use 39 OFPE field data collected from 24 different fields around the 
Midwest corn belt from 2016 to 2021 under the biennial crop rotation. First, I estimate the 
yield response function of each of the 39 OFPE data by using Generalized Additive Model 
(GAM) regression and it is assumed to be true. To focus on how well the method estimates 
yield response, the only manageable input is restricted to a nitrogen fertilizer(N). From this 
estimated yield response, we calculate the Economically Optimum Nitrogen RATE (EONR). 
After that, we cross-validate the profit of true EONR by using the OFPE data from other fields.  

In this study, we found that a prediction of EONR is inaccurate in most fields, and 39 OFPE 
data have a low value as a public good. The results imply that it requires more space and 
temporal diversity of OFPE data to make the multiple fields OFPE data have a social value. 
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Abstract 

In regenerative agriculture soil health is considered the key to achieving biodiversity, 
ecosystem restoration and climate change management. Farmers, agroecological innovators 
and research have suggested mixed cropping as a way to promote soil health. The simplest 
form of mixed cropping is strip cropping. In conventional mechanized farming use of mixed 
cropping practices (i.e., strip cropping, pixel cropping) is limited by labour availability, rising 
wage rates, and management complexity. This study hypothesized that regenerative strip 
cropping with swarm robots could be profitable, thereby helping Great Britain simultaneously 
meet food security, carbon-net-zero targets and other sustainability challenges of 
biodiversity, animal welfare and rural levelling up. Using the unique autonomous whole farm 
commercial farming demonstration experience of the Hands Free Hectare (HFH) project at 
Harper Adams University in the UK, this study evaluated the ex-ante economics of wheat - 
barley - grass ley - spring bean autonomous regenerative strip cropping practice. Results from 
the ‘steady state’ Hands Free Hectare-Linear Programming (HFH-LP) mathematical model 
applied to a 500 ha British farm shows that autonomous regenerative strip cropping achieved 
comparable profitability to conventional whole field monoculture cropping and conventional 
regenerative strip cropping systems. Further sensitivity scenarios exploring strip edge effects, 
input saving and reduced labour availability found that autonomous regenerative strip 
cropping practice was more profitable than conventional systems. Autonomous strip cropping 
with forage and livestock could viably promote the five soil health principles of regenerative 
agriculture in Britain. The farm economics reveal that autonomous swarm machines have the 
potential to enable the adoption regenerative agricultural practices and reconcile the 
production goals of productivity and profitability, and environmental goals of sustainable 
agriculture. 
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Abstract  

Efficient nitrogen management is a paramount concern in modern agriculture to achieve 
optimal crop productivity, conserve resources, and mitigate environmental impacts. Central 
to this endeavour is the estimation of the economic optimum nitrogen rate (EONR), which 
represents the nitrogen application rate that maximizes crop yields while balancing input costs 
and potential environmental risks. Over the years, several approaches have been proposed to 
estimate the EONR, ranging from simple to sophisticated mathematical models. While these 
methods provide valuable insights for a more accurate estimation of the EONR, most 
publications fail to report the statistical uncertainty inherent to the parameter estimation and 
the model choice. Moreover, questions remain regarding how to accurately estimate EONR 
taking into account the inherent spatial variability in crop yields, which can significantly 
influence the optimal nitrogen rates required for various yield zones within a field. Therefore, 
we tested a model-averaging approach that utilizes information criteria to compute weights 
for different response functions to obtain the EONR estimates. The weights are assigned based 
on model performance, ensuring an accurate representation of the EONR for different yield 
zones. Overall, the results demonstrate that the averaging approach is a promising method 
for estimating the economic optimum nitrogen rate, particularly in the context of diverse yield 
zones within a field.  
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Abstract 

Precision agriculture researchers began investigating "management zone" (MZ) delineation as 
variable-rate technology emerged in commercial markets in the 1990s.  A large part of that 
research has focused pm questions about  what clustering or delineation methods should be 
used on past yield data and spatial field and soil characteristics data to delineate MZs.  The 
literature’s MZ delineation methods have grown in complexity over the years, but several 
widespread flaws in this literature persist.  Using microeconomic theory to define MZs, we 
show that creating MZs for a generic input is suboptimal as the input type, management 
decisions, and zones are fundamentally connected.  Specifically, a profitable MZ delineation 
requires a selected managed input and sufficient knowledge about site-specific yield response 
functions, and in particular marginal yield response to input application rates, which can only 
be estimated with data from on-farm precision experiments (OFPEs).  Thus, OFPE is vital for 
the proper establishment of MZs.  
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Introduction 

Precision agriculture researchers began investigating "management zone" (MZ) delineation as 
variable-rate technology emerged in commercial markets in the 1990s.  A large part of that 
research has focused on questions about what clustering or delineation methods should be 
used on past yield data and spatial field and soil characteristics data to delineate MZs.  The 
literature’s MZ delineation methods have grown in complexity over the years, but several 
widespread flaws in this literature persist.  Using microeconomic theory to define MZs, we 
show that creating MZs for a generic input is suboptimal as the input type, management 
decisions, and zones are fundamentally connected.  Specifically, a profitable MZ delineation 
requires a selected managed input and sufficient knowledge about site-specific yield response 
functions, and in particular marginal yield response to input application rates, which can only 
be estimated with data from on-farm precision experiments (OFPEs).  Thus, OFPE is vital for 
the proper establishment of MZs.  We maintain that the methods used to delineate MZs over 
the past generation are a product of the data-extensive methods of input management 
guidelines that were developed in an era of expensive data generation.  But increased 
employment of OFPE methods are creating a world of inexpensive field trial data generation.  
The obvious implication is that management zones can now be determined empirically, using 
copious data analysed in the context of meaningful, rigorous microeconomic theory. 

Brief Literature Review 

There are several limitations and gaps in the existing management zone literature. First, it is 
exceedingly common for studies to declare determination of management zones without 
specifying how the zones should be managed.  They make no attempt to estimate 
economically optimal input rates for each zone or evaluate the profitability of the rates 
compared to the optimal uniform input rate for a field.  Rather, they tend to claim validity of 
their management zone determinations on the variations of soil and field characteristics or 
yield within and across zones (Cillis et al. 2018; Colaco and Bramley 2018; Kayad et al. 2021; 
Velasco 2020).   
 
Yield-based MZ research has typically taken three steps in MZ determination: identifying 
variables associated with yield, choosing the number of zones, and then using cluster analysis 
to define those zones.  Several methods are available for each step of this process.  Principal 
component analysis is commonly used to choose the relevant variables (Gustaferro et al. 
2010; King 2005; Peralta et al. 2014; Tagarkis et al. 2013; Yan et al. 2007). Other studies have 
used normalized classification entropy to determine the optimal number of management 
zones through balancing the variation within a zone and the variation across zones, but 
alternative methods have been proposed by Zhang et al. (2010) and Vendrusculo and Kaleita 
(2011). Similarly, fuzzy c-means and k-means clustering are common methods to delineate 
management zones with the chosen numbers of zones and characteristics variables, but 
Velandia et al. (2008) proposed a new method to account for spatial correlation. By using 
Moran’s I scatter plots, these zones account for the spatial structure of the field or soil 
characteristics. 

A Microeconomics-based Definition of Management Zones 

Consider a field partitioned into some number of sites, where a site is defined as a piece of 
the field on which vector of characteristic variables c = (c1, …, cM) takes on some value. For 
example, on some site A, the levels of those characteristics variables may be represented by 
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the vector value cA = (𝑐1
𝐴, … , 𝑐𝐿

𝐴), where, 𝑐1
𝐴 = 23% may be soil clay content, 𝑐2

𝐴 = 3.7 may be 
terrain slope in degrees, etc.  Similarly, let cB = (𝑐1

𝐵, … , 𝑐𝐿
𝐵), where maybe clay content on site 

B is 𝑐1
𝐵 = 12%, terrain slope on site B is 𝑐2

𝐵 = 1.7, etc.  Characteristics values for sites C and D, 
cC = (𝑐1

𝐶 , … , 𝑐𝐿
𝐶) and cD = (𝑐1

𝐷 , … , 𝑐𝐿
𝐷), are defined similarly.  Now define a per-acre yield 

response function dependent on the input choice variable N and the characteristics variable 
c:  y = f(N, c).   

It seems natural that a management zone should be defined as a part of crop production field 
in which the input or inputs being considered are best managed with the same management 
strategy.  Here the word “should” is normative, and implicitly requires that the strategist have 
an objective.  In managing a field, many farmer objectives are plausible:  the farmer may wish 
to maximize profits, maximize expected profits if the decision involves uncertainty, or 
maximize some function of the higher moments of the profit distribution.  For the purposes 
of the current discussion, we maintain simplicity by modelling farm management conducted 
under conditions of certainty and perfect information, and we assume a risk-neutral neutral 
farmer whose objective is to maximize profits.  Continuing to keep things simple, assume that 
the producer wants to site-specifically manage the input N, to maximize per-acre net revenues 
on the field.  Let sj represent the area of site j, in acres.  Indexing sites by j = 1, 2, 3, …, J, let NJ 
be a variable representing the producer’s choice of the input on a site j, the farmer’s net 
revenues maximization problem is to solve the following: 

max
𝑁1 ,… ,𝑁𝐽

{∑ 𝑠𝑗[𝑝𝑓(𝑁𝑗 , 𝐜𝑗) − 𝑤𝑁𝑗]𝐽
𝑗=1 }.  (1) 

Equivalently, we can say that the producer wants to maximize net revenues by maximizing net 
revenues on each site, thus solving J different problems: 

max
𝑁𝑗

[𝑝𝑓(𝑁𝑗 , 𝐜𝑗) − 𝑤𝑁𝑗], 𝑗 = 1, … 𝐽.  (2) 

For some generic j ∈{1, …, J}, let 𝑁𝑗
∗ be the solution to the problem above.  𝑁𝑗

∗ must depend 

on the maximization problem’s parameters, which are p, w, and 𝐜𝑗, so we can write 

𝑁𝑗
∗(𝑝, 𝑤, 𝐜𝑗)  This function is implicitly defined by the necessary condition for profit 

maximization, solved using ordinary calculus: 

𝑝
𝜕𝑓(𝑁𝑗

∗(𝑝,𝑤,𝐜𝑗),𝐜𝑗)

𝜕𝑁
− 𝑤 = 0,  (3) 

or equivalently, 

𝜕𝑓(𝑁𝑗
∗(𝑝,𝑤,𝐜𝑗),𝐜𝑗)

𝜕𝑁
=

𝑤

𝑝
.  (4) 

 

Using the Theoretical Framework to Critique the Literature 

Equation (4) above makes clear that a management zone is a part of the field in which the 
marginal product schedule is invariant.  Figure 1 illustrates this point.  The top panel of 
Figure 1 shows the yield response functions specific to some field section A and specific to 
some field section B.  The two areas have different values, cA and cB, of the vector of field 
characteristics variables, which results in each site having its own yield response function, 
shown as f(N, cA) and f(N, cB).  In is assumed that the two yield response curves are vertically 
parallel.  Two (input price, output price) situations are shown in the illustration.  In the first 
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situation, the output price is p = 10 and w =5, making w/p = 0.5.  In the second situation, the 
output price is p = 10 and the input price is w = 3, making w/p = 0.3.  The profit-maximization 
condition shown in equation (4) is illustrated in the top panel of Figure 1.  Because the yield 
response curves are vertically parallel, their slopes equal 0.5 at the same input application 
rate, which is shown as 𝑁∗(10,5, 𝐜𝐴) = 𝑁∗(10,5, 𝐜𝐵).  In the same way, their slopes equal 0.3 
at the same input application rate 𝑁∗(10,3, 𝐜𝐴) = 𝑁∗(10,3, 𝐜𝐵).  The bottom panel of Figure 
1 presents an alternative diagram that makes the same point was is made in the top panel.  
Because the two yield response curves are parallel, then their partial derivatives with 
respect to N are the same.  This partial derivative is often called the marginal product of N, 
and putting the price ratio w/p on the panel’s vertical axis shows that no matter the value of 
the price ratio w/p, the economically optimal input application rate is the same for site A as 
for site B.  That is, these two sections are in the same management zone, even though site A 
is “more productive” than site B. 

 

Figure 1.  Management zones are determined by the input price, the output price, and the 
marginal yield response to the input application rate. 

Figure 2 is another depiction of why finding sites that have different levels of yield productivity 
need not be helpful for delineating management zones.  Rather, you gathered data on past 
yields.  Assuming that MZs are determined using past yield data from a field that was managed 
uniformly in the past, the data would show a yield of 250 at sites A and B, and a yield of 125 
at sites C and D.  If site A with site B were grouped because they have similar yields, and 
similarly site C with site D were grouped because they have similar yields., then the 
management zones have badly created.  Sites can have similar yields without having similar 
economically optimal input application rates.  The two management zones that should come 
out of Figure 1 are one that combines site A with site C, since their optimal N rate is 100, and 



Proceedings of the 6th Symposium on Agri-Tech Economics for Sustainable Futures 74 

one that combines site B with site D, since their optimal N rate is 200.  Grouping sites with 
similar yields into management zones does not maximize profits. 

 

 

Figure 2.  Similar yield values do no imply similar optimal management strategies 

 

Conclusion 

The discussion above shows that management zones should be delineated by marginal yield 
response functions.  Knowing a site’s yield response function is sufficient for knowing it 
marginal yield response function.  Agricultural scientists have been running field trials for 
hundreds of years to generate the (input rate, yield) data needed to estimate yield response 
functions, and in many ways estimation of yield response functions was the principal 
motivation behind R.E. Fisher’s development of modern statistical methods.  The problem 
with the types of “small plot” field trials that Fisher and many others ran to generate data 
useful for crop input management is that running them has traditionally been labour-intensive 
and therefore expensive.  This led Stanford (1966, 1973) and others to attempt to come up 
with data-extensive methods of recommending input application strategies (Rodriguez, et al., 
2019).  Trying to use yield maps or field characteristics maps to determine input management 
zones is a continuation of this pattern of data-extensive strategies.  Basic microeconomic 
theory makes it clear that field trial data are needed to obtain empirically-identified 
management zones.  Relatively recently, on-farm precision experimentation (OFPE) has been 
greatly lowering the costs of running very large agronomic field trials (Bullock, et al. 2019; 
LaCoste, et al. 2022).  OFPE has to potential of generating just the kinds of data needed for 
empirically-determined input management zones. 
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Abstract 

Background: Rubber, a significant cash crop, is grown by smallholders in over 30 countries, 
with Asia contributing to 75% of the global output. Some nations have amplified export-
oriented monoculture rubber production, while others advocate interplanting with diverse 
crops such as fruit trees. Despite this, rubber-based farming diversification has seen limited 
implementation. Natural rubber (Hevea brasiliensis) intertwines intricately with the climate 
change narrative, impacting poverty, food security, and biodiversity. The vast 14 million 
hectare expanse of rubber plantations supports the livelihoods of 40 million smallholders. By 
2024, an additional 3 million hectares are projected for rubber monoculture, amplifying the 
urgency to promote climate-smart practices like rubber-based agroforestry. Understanding 
the environmental impacts of rubber-based agroforestry could significantly shape climate 
policy, and enable its inclusion in global climate financing initiatives. This leads us to our 
primary research question: How does rubber-based agroforestry compare environmentally to 
monoculture rubber farming systems? 

Methods: This review follows Collaboration for Environmental Evidence guidelines and ROSES 
reporting standards. Multiple databases (e.g. Scopus, Web of Science and EBSCO) will be 
searched. Literature in English providing primary environmental impact evidence of both 
monoculture and diversified rubber farming will be screened via EPPI Reviewer following a 
rigorous inclusion and exclusion criteria. Following the initial screening, eligible studies will 
undergo a full-text review, data extraction, and quality assessment. The extracted data will be 
synthesised for comparison of environmental impacts.  

Results (anticipated): The systematic review of existing literature will identify the 
environmental trade-offs between these two farming systems. Such insights will enable 
policymakers to tailor interventions, advise farmers and agricultural extension officers, and 
advocate for sustainable farming practices. By identifying knowledge gaps, this study will also 
guide future research directions, ensuring the simultaneous preservation of smallholder 
livelihoods and our planet's health. 

Keywords 

Rubber-based Agroforestry, Monoculture, Environmental Impacts, Systematic Review, 
Climate-Smart Practices. 
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Abstract 

The agricultural stage is a hotspot in the carbon footprint (CF) of the production of corn 
bioethanol and, within this stage, the production and use of nitrogen fertilisers is the sub-
process that has the greatest incidence. The current research project aims to incorporate the 
environmental impacts in the analysis of optimum nitrogen fertiliser rates, in addition to the 
agricultural and economic outputs that have been widely used in previous studies. We seek 
to obtain functions that describe the CF at different nitrogen rates, topographic positions and 
climatic conditions, incorporating them as objective functions in multiobjective optimization 
procedures. In order to achieve this aim, the first step is to quantify the corn bioethanol CF 
with Life Cycle Assessment (LCA) methodology, for fertilisation and yield data at a site-specific 
scale. On-farm research trials were conducted in 18 corn fields where agricultural producers 
applied up to 6 levels of strip nitrogen fertilisation, through an elevation gradient, in 5 crop 
seasons distributed over 12 years, in the centre-south region of Córdoba province, Argentina. 
The corn transportation and its industrial process were considered as fixed subsystems for this 
research. The LCA methodology follows the ISO 14067:2018 standard and the 
Intergovernmental Panel on Climate Change (IPCC) guidelines (2019). The R software was used 
to process the large datasets. A bioethanol corn CF map at a site-specific scale was achieved. 
As opposed to a single CF value per field, assessing the CF at a site-specific scale allows us to 
explore the within-field variability caused by different input rates, its interaction with 
environmental factors and crop yields. Spatial and temporal statistical analysis is needed to 
understand the relation between nitrogen fertilisation and corn bioethanol CF. Furthermore, 
we expect to consider the function that best represents this relation in the definition of 
optimum site-specific nitrogen rate.  

Keywords 

Carbon footprint; life cycle assessment; corn bioethanol; precision agriculture; site-specific 
management. 
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Introduction 

The term carbon footprint (CF) has been widely used as an indicator to quantify the human 
pressure on the environment (Hoekstra & Wiedmann, 2014). The CF measures the greenhouse 
gases (GHG) emissions per unit of outcome produced (Kim & Dale, 2008; Kraatz et al., 2013; 
Boone et al., 2016; Xu & Lan, 2016; Arrieta et al., 2018; Mekonnen et al., 2018). Due to the 
fact that the manufacture of a product requires the use of multiple raw materials, energy and 
transportation, the identification of the GHG emissions throughout the entire process is 
necessary for an integral and systematic analysis. The Life Cycle Assessment (LCA) 
methodology is one of the most known methodologies to calculate and compare CFs and 
other environmental impact indicators across different regions and a long time. The 
International Organization for Standardization (ISO) has two sets of standards (14040 & 
14060) that provide tools for the assessment. The LCA of a product takes into account the 
environmental impact throughout all the stages of the production process, such as the 
production and transportation of raw materials from the field to the industry, the 
manufacture, its use and the residues generated after its use (Hauschild et al., 2018; Roy & 
Dutta, 2019).    

Biofuels emerge as an alternative to reduce carbon dioxide emissions resulting from the 
extraction and use of fossil fuels and to contribute to the Sustainable Development Goals of 
the United Nations Agenda (United Nations, 2015). The agricultural stage is a hotspot in the 
production of corn bioethanol (Pieragostini et al., 2014; Moreira et al., 2020; Bongiovanni & 
Tuninetti, 2021; Hilbert et al., 2021) and, within this stage, the production and use of nitrogen 
fertilisers is the sub-process that has the greatest incidence in the total corn CF (Ma et al., 
2012; Wang et al., 2015; Yan et al., 2015; Qi et al., 2018; Piñero et al., 2019; Bongiovanni & 
Tuninetti, 2021; Hilbert et al., 2021; Lee et al., 2021). However, the use of appropriate nitrogen 
fertiliser rates is a key factor for obtaining high yields in corn (Adeyemi et al., 2020; Agyin-
Birikorang et al., 2020; Seleiman et al., 2021). That is why it is very important to optimise the 
use of fertilisers, and the CF is an adequate indicator as it considers not only the GHG 
emissions but also the amount of output generated with those inputs.  

Sustainable intensification of agriculture pursues high product demand by optimising 
agricultural management and reducing its impact on the environment, by means of increases 
in the yield per area with less or same use of inputs (Rosales Álvarez et al., 2004; Andrade, 
2020; Cassman & Grassini, 2020). In this context, Precision Agriculture (PA) is a technology 
that generates the nexus between the need for a more intensified agricultural production and 
that of increasing concerns regarding environmental sustainability (Muschietti-Piana & 
Zubillaga, 2014; Finger et al., 2019). Variable fertilisation rate is a PA technology that allows 
the application of the optimum rate in each specific site, according to the crop requirements 
and soil variability in each production field. Consequently, it can reduce nitrogen loss to the 
environment and increase the nitrogen use efficiency and crop and economic yields 
(Bongiovanni & Lowenberg-Deboer, 2004; Gregoret et al., 2006; Albarenque et al., 2016; 
Muschietti-Piana et al., 2018).  

Although the environmental impacts caused by different PA technologies with site-specific 
management in comparison with a uniform management have been studied in corn (Brown, 
2013; Balafoutis et al., 2017), those studies did not consider the environmental indicators in 
the decision-making process; they just assessed the impact after the management strategy 
had been already implemented. Instead, the current research project aims to incorporate the 
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environmental impacts in the analysis, in addition to the agricultural and economic outputs 
that have been widely used in previous studies. We seek to obtain functions that describe the 
CF at different nitrogen rates, topographic positions and climatic conditions, incorporating 
them as objective functions in multiobjective optimization procedures. In order to achieve this 
aim, the first step is to quantify the corn bioethanol CF with LCA methodology, for fertilisation 
and yield data at a site-specific scale. Here we will focus on this specific objective.   

Methods 

Study site 

The study site is located in the centre-south region of Córdoba Province, Argentina (Figure 1). 
Córdoba province is a major corn producer in Argentina, with a total production that 
represents more than a third of the total corn production in the country. Moreover, the main 
corn starch bioethanol production plants are located in this area, which produce most of the 
bioethanol in Argentina (MINEM, 2021).  

 

Figure 1: Location of the 18 study sites and the main bioethanol plants in Córdoba Province, 
Argentina. 

Experiment design 

The georeferenced database has 18 maize real field cases where agricultural producers 
applied up to 6 levels of strip nitrogen fertilisation, through an elevation gradient, in 5 crop 
seasons distributed over 12 years, in the centre-south region of Córdoba province. Each crop 
season covers the period between July 1 and June 30 of the following year, and the study 
period is from the year 1998 through 2010. The elevation gradient was assessed with digital 
elevation maps. From it, a topographic index (CTI) was calculated (Tarboton, 1997). It has been 
demonstrated that CTI index is a good indicator of water accumulations and organic carbon in 
soil (Schmidt & Persson, 2003; Liu et al., 2006; Terra et al., 2006; Huang et al., 2008). Three 
topographic zones were classified in each one of the 18 fields. The minimum value, the two 
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terciles and the maximum value of CTI were considered as threshold values for the zone 
classification. Higher values of CTI index correspond to lower zones within the field, whereas 
lower values of CTI index correspond to higher zones. The daily precipitation was recorded 
with a manual rain gauge in each field and the accumulated precipitation (PPACUM) was 
calculated during each corn season. In addition, the historical average value of accumulated 
precipitation (PPHISTORIC ACUM) was collected for that same period, considering the series of 
years that each field had a record. Then, a Precipitation Index (IPP; IPP=PPACUM/PPHISTORIC ACUM) 
was calculated to identify wet or dry years with respect to the historical values of each field. 
Half of the trials presented values higher and lower than 1, wet or dry seasons respectively; 
being a value of 1 a combination of location per campaign with normal rainfall for the crop 
season. 

The agricultural management in each field followed standard practices widely adopted in the 
region (i.e. planting date, plant density, crop protection, weed control, rotations, etc.). Thus, 
corn management was assumed to be constant during the study period, and this information 
was obtained from technical reports of the magazine Márgenes Agropecuarios (2010). Yield 
data were obtained with AgLeader yield monitor and georeferenced by GPS with RTK (Real 
Time Kinematic) precision technology.  

On-farm research trials were carried out according to Bouder & Nielsen (2000). The area of 
the fields is 10 hectares on average (ranging from 4 to 16 ha). In each field, 4 to 6 fertilisation 
rates were applied in strips including an unfertilized control. The width of the strips was the 
same width of the combine harvester (9 metres) and the length was the field. Rectangular 
grids were created as polygons on top of the observations, in order to normalise the dataset. 
The maximum rates reached in each trial ranged between 115 and 288 kg N ha-1, and the plant 
stands were never subjected to a nitrogen limitation. The nitrogen fertilisation source was 
urea (46-0-0) applied in the moment when the crop presented between V4 and V6 (Abendroth 
et al., 2011). 

Data of the transportation of raw material from the field to the industry and of the industrial 
process were provided by a biorefinery located in Villa María, Córdoba, Argentina. Annual data 
correspond to the crop season 2020/2021, and these are considered to be representative of 
the transportation of raw material and of the industrial process of corn bioethanol in 
Argentina. Ninety-two percent of the trucks travelled less than 250 km per trip transporting 
the raw material from the fields directly or indirectly to the industry. The corn transportation 
and its industrial process were considered as fixed subsystems for this research, because the 
industry has a processing capacity independent of the crop yield.    

Carbon footprint calculation 

LCA methodology was used to calculate the CF in each square polygon of the regular grid. The 
LCA methodology follows the ISO 14067:2018 standard and the Intergovernmental Panel on 
Climate Change (IPCC) guidelines (2019). The R software was used to process the large 
datasets. The LCA recognizes four main stages, which are: the definition of the objective and 
scope of the system to study; life cycle inventory analysis, which collects the relevant inputs 
and outputs of the system; the evaluation of the environmental impacts generated by the use 
of inputs and outputs; and the interpretation of the impacts in each phase of the inventory. 

The functional unit was 1 MJ of corn bioethanol at the industry’s gate, according to the 
Renewable Energy Directive 2018/2001 (European Union, 2018). In the bioethanol production 
process, not only biofuel was generated, but also other by-products. The emissions that 
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correspond to each by-product were assigned according to the energy criteria. The resulting 
bioethanol CF was expressed as gCO2eq MJ-1.  

The GHG emissions were estimated by multiplying the consumption quantities of each input 
to the corresponding Emission Factor (EF) obtained from databases. The EF for the use of 
fertilisers, crop residues and the use of fuels in agricultural machinery and transportation of 
raw materials were obtained from IPCC Guidelines (2019) Tier 1; the EF for the production of 
fuels was obtained from Hilbert & Caratori (2021); the EF for the production of fertilisers and 
agrochemicals, and the production of inputs for the industrial stage, were obtained from 
Biograce V4; the EF for the seed production was obtained from EcoInvent 3.7. It was assumed 
that there was no soil carbon sequestration, because all fields have more than 20 years of 
continuous agriculture, hence the system was considered to be stabilised (ISO, 2018; IPCC, 
2019). 

The impact category evaluated was global warming. The impact assessment method used was 
the Global Warming Potential method (GWP) with a horizon of 100 years; based on the IPCC 
Fifth Assessment Report (IPCC, 2013). The GWP considered were for the three main GHGs: 
Carbon Dioxide CO2, Methane CH4 and Nitrous Oxide N2O (IPCC, 2013). 

Results 

A bioethanol corn CF map at a site-specific scale was achieved. Figure 2 illustrates the results, 
taking field number 14, randomly, as an example. Both yield and CF values for each nitrogen 
rate present differences in wet and dry seasons (Figure 3). Moreover, there may be differences 
in yield and CF values among topographic zones (Figure 4). Nevertheless, statistical analyses 
are needed. 

 

Figure 2: Topographic index (CTI), strip fertilisation nitrogen (N) rates, corn yields and corn 
bioethanol carbon footprint (CF) values at a site-specific scale in a typical field of the area. 
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Figure 3: Scatter plot of median corn yield and median bioethanol CF for each nitrogen rate, 
considering data from 18 field trials. Blue circles: wet seasons. Red triangles: dry seasons. 

 

 

Figure 4: Scatter plot of median corn yield and median bioethanol CF for each nitrogen rate, 
considering data from 18 field trials. Circles: wet seasons. Triangles: dry seasons. Grey: high 
zone. Orange: middle zone. Brown: low zone. 

Discussion and conclusion 

The resulting maps are a very useful tool as CF data can be related with yield and fertilisation 
data, as well as with topographic and climatic conditions in order to analyse the spatial and 
temporal variability of CF within and among fields. As opposed to a single CF value per field, 
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assessing the CF at a site-specific scale allows us to explore the within-field variability caused 
by different input rates, its interaction with environmental factors and crop yields. 
Furthermore, it allows us to consider the CF as an indicator in the definition of PA strategies. 

A wide variety of studies around the world have demonstrated a negative correlation between 
crop yield and its CF (Yan et al., 2015; Arrieta et al., 2018; Zhang et al., 2018; Zhang et al., 
2021). This relation is affected by the use of inputs. As the use of inputs increases, so does the 
yield, reducing the associated CF (Zhang et al., 2018, Zhang et al., 2021), until reaching a 
threshold. Above this threshold, the addition of more inputs does not increase the crop yield, 
which can result in a higher CF (Yan et al., 2015). Therefore, it is relevant to calculate the CF 
at a site-specific scale to optimise the fertilisation rate with PA. 

Due to the date of the experiment data available, we do not focus on the value of the CF itself, 
but we do highlight the functionality of the LCA methodology to calculate a site-specific corn 
bioethanol CF and its potential optimisation with PA technologies. By analysing the relation 
between nitrogen fertilisation and corn bioethanol CF with spatial statistics, in the next steps 
of the current research project we expect to assess if the CF responds differently to the 
addition of nitrogen fertilisation in seasons with different rainfall and across different 
management zones. Moreover, we expect to include the function that best represents this 
relation as an objective function in multiobjective optimization problems. This approach will 
allow the determination of the optimum nitrogen fertilisation rate with which, 
simultaneously, CF is minimum and agricultural yields and economic returns are maximum. 
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Abstract  

Banana is a very popular tropical fruit commodity mostly produced by small farmers and 
farmer organizations. Farmers tend to specialize in its production as part of a cash crop for 
export economic model and in the process become locked in, thus dependent. The banana 
trade wars conflict between US traders and the EU resulted in benefiting consumers for 
lowering prices at retail level and large banana trading corporations for expanded market 
access. However, farmers ended up losing due to, one the one hand, declining prices at farm 
gate, increasing cost of production and ever demanding product quality standards imposed 
by food retailers. Due to the exploratory nature of the topic, Rapid Evidence Assessment (REA) 
was chosen as methodology to collect and collate published data from key databases. In 
recent years, farmers in many banana producing and exporting countries have not been able 
to invest in the crop which has consequently had an impact on the overall product quality. 
Therefore, in addition to strict product marketing standards and lower produce quality it is 
estimated that 2.27 million metric tonnes of the fruit have been wasted in Cost Rica alone. 
This is the equivalent of the total banana exported quantity from the country to the UK. 
Wasted fruit is usually dumped on the land or rivers further contributing to greenhouse gas 
emissions. Estimations on the nutrition loss resulting from waste indicate that the energy 
content could feed 202.4 million people for one day or the entire Costa Rican population for 
38 days considering an intake of 2,000Kcal/person/ day. Considering a more circular approach, 
waste valorisation actions are needed to revert the loss of resources. Developments in bio-
engineering have the potential to utilize compounds found in banana leaves, fingers and peels 
with application in food manufacturing. These can improve food product functionality, shelf-
life and nutrition, not to mention the overall economic and environmental gain in avoiding 
produce going to waste.  
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Abstract 

The objective of this paper is to explore the determinants of the use of climate smart 
agriculture technology (CSAT) among agrarian households of Odisha, India. The effect of 
climate change and the consequent unpredictability of weather patterns make agricultural 
production vulnerable. It calls for a solution wherein it is required to transform the existing 
agricultural practices to make it more efficient, more productive and less prone to climate 
change. So, the farm inputs should be more adaptive that can be ushered in by adopting CSAT 
by the practitioners.  It is a smart agriculture process that minimizes the negative effect of 
climate change on agricultural production and contributes towards sustainable agricultural 
system. The result of the Fractional and Beta regression reveals that higher the level of social 
capital, higher is the intensity of the use of CSAT by the households. The use of CSAT is less in 
households that are female headed and belong to the scheduled tribes in comparison to the 
households that are male headed and belong to the scheduled castes. However, the 
households having knowledge about the technology use it more than the households with no 
knowledge of CSAT. The households who think that CSAT is not women-friendly use the 
technology more in comparison to households that think that women do not have the skills to 
use the technology. The intensity of the use of CSAT is higher for households where the female 
takes agricultural decisions. Further, the use of CSAT is less in families where land is owned by 
the male members only. This calls for institutional arrangements to ensure wider usage of 
social capital, land ownership by the female members and their economic empowerment by 
providing them better wages and livelihood so that agrarian households will be interested to 
use CSAT in agriculture that can ultimately cater to the growing demand of food. 
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Introduction 

The growth in world population between now and 2050 will be around one-third of the 
current population, and the present agricultural system needs to be transformed to meet the 
increasing food demands of the growing population. For the expected rise in demand, the 
increase in agricultural production should be 60% by 2050 (FAO, 2013). However, the effect 
of climate change and the consequent unpredictability of weather patterns make agricultural 
production vulnerable that calls for a solution wherein it is required to shift the existing 
agricultural practices to make it more efficient, more productive and less prone to climate 
change. So, the farm inputs should be more adaptive that can be ushered in by adoption of 
climate smart technology (CST) by the practitioners.  It is a smart agriculture process that 
minimizes the negative effect of climate change on agricultural production and contributes 
towards sustainable agricultural system. However, despite the enormous advancements in 
agricultural research and development, CST usage has remained low in developing countries 
like India; one probable reason could be apprehension of the end users towards the possible 
adverse effects of such technologies. Additionally, due to their inability to recognize and 
support ongoing, interactive social learning and innovation processes that help farmers 
manage the changing complexity in their farming systems, traditional top-down and linear 
processes of generating and transferring agricultural innovations to end users have shown 
limited progress in promoting technology adoption (Kilelu, Klerkx, and Leeuwis 2013; Lundy, 
Gottret, and Ashby 2005).  

According to recent research, in order to successfully adopt CST and practices, researchers 
and development practitioners must take into account agricultural systems approach 
innovations, which encompass all social and economic activities related to the creation, 
dissemination, adaptation, and use of new technical, institutional, and organizational 
knowledge and resources for the benefit of all stakeholders (Adekunle and Fatunbi 2012; Hall 
2005; Hall et al. 2006). The idea of innovation platforms (IPs), which are increasingly seen as 
possible catalysts for promoting smallholder market participation, inclusive agricultural 
innovation, and knowledge transfer in agriculture, is an important idea in the agricultural 
systems approach (Adekunle and Fatunbi 2012; Schut et al. 2017). The IPs can assist the 
creation of social networks to stimulate the mobilization of resources necessary to boost 
adoption and diffusion of agricultural technology and knowledge through active interactions 
and learning among actors (Schut et al. 2017). Building such networks is in line with theory 
and research that acknowledge social capital1 as a significant resource that people may use to 
address issues in their daily lives (Obaa and Mazur 2017; Small 2009). 

Though the concept of social capital was introduced in 1916, it was linked to economic growth 
and development in the 1902 (Lollo, 2012). Social capital was expected to facilitate the 
formation of platform to achieve economic development (Putnam, 1993). However, there is 
no convergence on the definition of social capital among the thinkers (Chou, 2006; Sabatini, 
2007; Karanja et al., 2016), leading to non-clarity of the concept. However, networks, norms, 
and trust in social interactions are typically cited in literature as characteristics of social capital, 
which facilitate collaboration and coordination of people to achieve desired goals and mutual 
gain (Narayan and Cassidy, 2001; Putnam, 1993). The non-clarity of the concept makes it more 
difficult to measure it quantitatively. Despite the challenges associated with defining and 

 

1 For a detailed definition of social capital, see Claridge 2004 
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measuring social capital, numerous research has advanced the notion that its primary 
contribution is to ease information flow among people, which may promote adoption 
processes (Läpple and Van Rensburg, 2011; Ramirez, 2013; Micheels and Nolan, 2016). 
According to Pannell et al. (2006), adoption is a learning process that involves gathering 
knowledge and developing practical skills. Additionally, adding to the discussion of the social 
nature of learning, Eastwood et al. (2012) note that adoption of technology is only the tip of 
the iceberg in terms of future changes in management practices and adoption of new 
technologies, with networks and trust serving as primary drivers of this dynamic. Despite the 
obvious benefits of this interaction, it can also have unfavourable outcomes, such as when 
poor performance of the technology used by some farmers results in a widespread rejection 
of the technology among the community. Agurto-Adrianzen (2009) also found that rural 
families tended to respond more forcefully to a new technology's poor performance than to 
one that performed well. 

A good number of literatures has acknowledged the role of climate smart technology 
adaptation in agriculture to improve the productivity (e.g., Chhetri et al. 2017 s; Mwongera et 
al. 2017; Senyolo et al. 2018; Patle et al., 2020; Daum, 2023; Zougmoreet et al., 2016; Kiani et 
al. 2022; Sayed, 2022; Rosenstock et al. 2022; Amertet et al. 2023; and Bhavani et al., 2023). 
Similarly, studies have also explored the factors determining the use of CST (e.g. Tanti, 2022 
has discussed the institutional and social factors in addition to other factors). 

 The technology adaptation in agriculture is broadly studied with a standard utility 
model where farmer’s characteristics (human capital) and farm structure (physical capital) are 
the main determinants (Foster and Rosenzweig, 2010; Abdulai et al., 2011; Abdulai and 
Huffman, 2014; Wossen et al., 2015). Such studies ignore the fact that individual decisions are 
entangled with the societal structure (Oreszczyn et al., 2010). Further, this complex social 
structure shapes institution that accommodates holistic (physical, economic, and cultural) 
environment of the individuals. As discussed earlier, since adaptation of CSAT is a behavioural 
decision to be taken by the adopters, the factors related to social capital are significant in the 
decision-making process related to adoption. However, it is unclear how various elements of 
social capital combine to determine the producer's behaviour. Understanding these 
connections may provide insight into the social capital variables that can influence decision-
making processes and lead to a particular behaviour. This statement raises two queries. What 
is the connection between social capital and how farmers use technology, and how are 
different aspects of social capital related to one another? Therefore, one needs to develop a 
social capital framework (SCF) to understand the holistic impact of all forms of capital on the 
adaptation of technology especially the CST in the light of changing farm behaviour due to the 
challenges of climate change. The present study is an endeavour towards this goal. The rest 
of the paper is organized as follows: the following section discusses methods and analytical 
framework of the study along with the research design. The third section discusses results of 
the study while the last section concludes the study with policy implications. 

Methods 

Data, Sampling, and Analytical Framework  

In the study, a combination of multi-stage simple random sampling and judgmental sampling 
techniques was used.  The households directly and/or indirectly involved in agriculture and/or 
allied activities are the units of observation. Therefore, the present study has used primary 
data collected from the households (selected through proper sampling technique) to elicit 
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relevant conclusions. Thus, the present study has used primary data collected from the rural 
agrarian households of Odisha, India during October 2019. Odisha is situated on the East Coast 
of India along the Bay of Bengal and shares its borders with Jharkhand to the North, West 
Bengal to the North-East, Chhattisgarh to the West, and Andhra Pradesh to the south. It 
encompasses an area of 155,701 sqkms. The State is bestowed with diverse climatic conditions 
and has a coastline extending to 480 kms. The climate is predominantly tropical, characterized 
by high temperature, high humidity, medium to high rainfall, and mild winter. The average 
normal rainfall is 1451 mm per annum, of which 75-80% is received during June to September 
(Agri Odisha, 2022a). Despite high rainfall, natural calamities like drought, flood, and cyclones 
visit the state quite frequently. Primary data were collected through a self-administered semi-
open questionnaire, which was specifically developed for this study.  Before data collection, a 
pilot survey was undertaken to validate the questionnaire. 

Universe of the study  

The study is carried out in Odisha, one of the states of Eastern India. The state of Odisha is 
divided into ten Agro-climatic Zones (ACZs, given in Table 1) as per different agro-climatic 
parameters, therefore each ACZ is unique and different from the other. Since, the objective 
of this study is to understand the association of social capital and use of climate smart 
agricultural technology, it is required to have representation of agrarian households from all 
ACZs.  

Sampling methods  

Based on the climate, annual rainfall, and soil type, each ACZ includes different numbers of 
revenue districts or part thereof. Each ACZ can be considered as a homogeneous group and 
thus a stratum. Therefore, to have a proper representation of the ACZs, some districts were 
selected through proportional sampling method, e.g., since the North Western plateau ACZ 
consists of two districts, namely, Sundargarh and Deogarh, only one district, i.e., Sundargarh 
was selected in the sample, whereas four districts, namely, Cuttack(P), Nayagarh, Puri, and 
Khurda were selected from East & South Eastern plateau in the sample. This proportional 
sampling would help in the proportional representation of the ACZs in the ultimate sampling 
process (see Table 1). Accordingly, the present study covered 17 revenue districts out of the 
total 30 districts of Odisha.  

 After selection of the districts, one revenue block (each district is comprised of some 
revenue blocks for administrative proposes in Odisha) from each district was selected through 
a simple random technique. This gave us a total of 17 blocks across ten ACZs of Odisha. From 
each revenue block, one Gram Panchayat (GP) was selected through the lottery method of 
simple random sampling technique method. After selecting GPs, two revenue villages from 
each GP were chosen through a combination of judgmental sampling and simple random 
sampling technique method. While selecting the revenue villages, the village-level socio-
economic and demographic information was collected from the 2011 census database. It was 
observed that in some GPs, there were some villages with very few households (even less than 
20). Therefore, at that stage of the sampling process, a combination of judgmental sampling 
and a simple random sampling technique was used so that the selected village has at least 30 
households directly and/or indirectly involved in agriculture and/or allied activities. 
Additionally, while selecting the villages, the distance of the village from the GP office was 
considered. One village nearer to the GP and another farther from the GP office were selected. 
This criterion was considered during the selection of the villages as it is assumed that the 



Proceedings of the 6th Symposium on Agri-Tech Economics for Sustainable Futures 95 

villages nearer to the GP office (office from where different policy interventions are controlled 
and/or regulated, and through which extension services are provided to the farmers) may reap 
the benefit of government policy interventions and extension services better than the villages 
far away from the GP office (Singer-Prebish hypothesis, center-periphery relation). Thus, the 
present study covered a total of 34 villages (two villages from each GP). After selecting the 
villages, the details on the socio-economic and demographic profiles of the households were 
collected from the 2011 census data. Additionally, discussions were held with the village heads 
and the Sarpanch (elected representative of the GP) to supplement the household information 
of the 2011 census data.  From each village, 30 households were selected through 
judgemental sampling technique so that different levels of the size of landholding, asset, 
income, education, sanitation infrastructure as well as caste and religion are properly 
represented in the selected sample households. Thus, in total, the present study has 1020 
sample households for data collection and analysis (30 households each from 34 villages). 
However, after careful screening and cleaning of data, the effective sample size is 1001. 

Analytical Framework 

The present study has identified eighteen (18) different types of climate smart agriculture 
technology (CSAT) practices adopted by the farmers of Odisha. Therefore, a CSAT adaptation 
index (CSATAI) is developed to understand the intensity of the use of CSAT by a farming 
household. The CSAT practices are: 1. Seed variety; 2. Pest control; 3. Fertilizer use; 4. Soil test; 
5. Row planting; 6. Irrigation; 7. Composting; 8. Marketing; 9. Access to credit; 10. Insurance; 
11. Tractor; 12. Power tiller; 13.  Seed sowing machine; 14. Sprayer; 15. Weeding machine; 16. 
Crop-cutting machine; 17. Fan; 18. Storage facility. The CSATAI is calculated by using the 
method of weighted arithmetic mean (the weights being uniform) and is defined as: 

CSATAI =
∑ 𝐼𝑖

18
1

18
.  

Possession and/or adaptation of any technology by the household is assigned the value “1” 
and non-possession is “0”.  The household having all the technology will have CSATAI =1 and 
having no indicators will have CSATAI =0. Thus, the value of CSATAI will lie between 0 to 1, 
i.e.,(0 ≤ (CSATAI) ≤ 1). For the empirical estimation purpose, however, there is an issue of 
the Dependent Variable (DV) being a fraction. In the present case, the Regression equation 
would be like this: 

CSATAI = (𝐼𝑉)𝛽 + ε...........(1) 

Where “ε” is the error term and is assumed to be satisfying all the assumptions of CLR 
technique, IV is the matrix of all independent variables including intercept, intercept dummy, 
and slope dummy and β is the vector of regression coefficients. Here, the population 
assumption under CLR should be: 

𝐸(CSATAI)~𝑁𝑜𝑟𝑚𝑎𝑙 ((𝐼𝑉)�̂�, σε
2)……... (2) 

where “σε
2” is 𝑉𝑎𝑟(ε). This normality assumption of “CSATAI” is not reasonable as it is a ratio. 

This gives rise to two types of the problem; firstly, the problem of heteroscedasticity, which 
implies the variance is smaller near the extreme values. The second problem is with respect 
to the asymmetry of the distribution violating the normality assumption. Therefore, it is more 
appropriate to use a regression model that assumes that the dependent variable follows a 
continuous distribution with supporting the value between zero and one. In the literature, 
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Table 1: Sampling Process (Source: Agri Odisha, 2022b) 

1st Stage 2nd Stage 3rd Stage 4th Stage 5th Stage 6th Stage 7th Stage 

State ACZs 

Selected 
District 

Blocks (One 
block from each 
district) 

GPs (One GP 
from each 
block) 

Villages 

Households 
ACZs Climate Mean 

annual 
rainfall 
(in mm) 

Soil type District(s) 

Odisha North 
Western 
plateau 

Hot & 
moist 

1648 Red & 
yellow 

Sundargarh, 
Deogarh 

Sundargarh Rajgangpur Laing Two villages 
from each GP 

30 HH from  
Village (Total 
1020 HH, but 
effectively 
1001 HHs are 
studied here)  

North 
Central 
plateau 

Hot & 
moist 

1535 Red loamy Mayurbhanj, 
Keonjhar (Except 
Anandapur) 

Keonjhar Ghatagaon Patilo 

North 
Eastern 
coastal 
plateau 

Hot & 
moist 
sub-
humid 

1568 Alluvial Balasore, Bhadrak, 
Jajpur (except 
Sukinda), 
Anandapur 

Bhadrak, Jajpur 
(except 
Sukinda) 

Dhamnagar; 
Jajpur 

Dalanga; 
Khairabad 

East & 
south 
eastern 
plateau 

Hot & 
humid 

1449 Coastal 
alluvial 
saline (near 
the 
coastline) 

Cuttack(P), 
Jagatisighpur, 
Kendrapara, Puri, 
Khurda, Nayagarh, 
Ganjam(P) 

Cuttack(P), 
Puri, Nayagarh, 
Khurda,  

Narasinghpur; 
Kakatpur; 
Nayagarh; 
Khurda 

Jayamangala; 
Kakatpur; 
Khuntabadha; 
Khurda 

North 
Eastern 
ghat 

Hot & 
moist 
sub-
humid 

1597 Laterite 
and brown 
forest 

Ganjam(P), 
Gajapati, Rayagada, 
Kandhmal, 
Boudh(P) 

Boudh(P), 
Ganjam(P), 

Charichhak; 
Sheragoda 

Purunakatak; 
Mahupada 

Eastern 
ghat high 
land 

Warm & 
humid 

1522 Red mixed 
red & 
yellow 

Koraput(P), 
Nabarangpur(P) 

Koraput(P) Semiliguda Pitaguda 

South 
Eastern 
ghat 

Warm & 
humid 

1522 Red, mixed 
red & black 

Malkangiri, 
Koraput(P) 

Malkangiri Mathili Mathili 

Western 
undulating 

Warm & 
moist 

1527 Black, 
mixed red 
and black 

Kalahandi, 
Nuapada, 

Kalahandi Golamunda Sinapali 
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Nawarangpur 
(Dabugaon) 

West-
central 
table land 

Hot & 
moist 

1527 Red, heavy 
textured 
colour 

Bolangir, 
Subarnapur, 
Boudh(P), 
Sambalpur, 
Bargarh, 
Jharsuguda 

Jharsuguda, 
Bargarh 

Jharsuguda; 
Bargarh 

Badmal; 
Khuntapalli 

Mid Central 
Table land 

Hot & 
dry sub-
humid 

1421 Red loamy, 
laterite 
mixed red 
& black 

Dhenkanal, Angul, 
Cuttack(P) & 
Sukinda 

Dhenkanal, 
Angul 

Kankadahad; 
Pallahara 

Bam; Rajdang 

Purposive Purposive 

 
Proportional 
Stratified 
Sampling 

Simple Random 
Sampling 

Simple Random 
Sampling 

Judgmental 
Sampling and 
a Simple 
Random 
Sampling 

Judgmental 
Sampling and a 
Simple Random 
Sampling 

 

Note: P stands for part of the district.
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such regression models are now available, known as the Beta regression model (Paolino, 2001; 
Kieschnick & McCullough, 2003; Ferrari & Cribari–Neto, 2004; Cepeda & Gamerman, 2005). 
Following Carrasco et al. (2014), the beta regression model for the present study is specified, 
estimated, interpreted, and discussed as: 

CSATAI = (𝐼𝑉)𝛽 + u.........(3) 

where 𝐸(CSATAI)~𝐵𝑒𝑡𝑎 ((𝐼𝑉)�̂�, σu
2) and 𝑢~𝑁{0, σu

2}. Additionally, the fractional regression 

model as suggested by Papke and Wooldridge (1996) is estimated to compare the results. 
Further, the marginal effect of the independent variables is interpreted and compared.  
Estimation will be done through statistical software STATA 13.0 edition (StataCorp, 2013; 
Bruin, 2006). Table 2 presents the descriptions of the dependent and independent variables 
used in the study.  

Table 2: Descriptions of Variables with reference category 

Variables Descriptions Nature of variables 

   

Dependent Variable: Climate Smart Agriculture Technology Adaptation Index (CSATAI) 

Climate Smart Agriculture 
Technology Adaptation 
Index (CSATAI) 

Weighted Arithmetic Mean (WAM) 
of the 18 CSAT practices (1. Seed 
variety; 2. Pest control; 3. Fertilizer 
use; 4. Soil test; 5. Row planting; 6. 
Irrigation; 7. Composting; 8. 
Marketing; 9. Access to credit; 10. 
Insurance; 11. Tractor; 12. Power 
tiller; 13.  Seed sowing machine; 14. 
Sprayer; 15. Weeding machine; 16. 
Crop-cutting machine; 17. Fan; 18. 
Storage facility 

Ratio,0 ≤ (CSATAI) ≤ 1 

Independent Variables 
Level of Social Capital 
(LSC)1 

Four levels of Social Capital Index 
(SCI) score. The SCI is created by the 
Principal Component Analysis (PCA) 
from eight (8) aspects of social 
behaviour in 5-point likert scales (for 
the technical aspect of PCA, see 
Kumar, et. al., 2007). The PCA 
generated SCI then is standardised 
so that 0≤ SCI≤1.  The aspects 
include the frequency of; mobile use, 
attending social, cultural, religious, 
economic, political meeting(s), 
watching television in a group and 
visit of the relatives to the 
household.    

Categorical 
Lower=SCI≤0.25 
Moderate=0.251≤ SCI≤0.50 
Higher=0.501≤ SCI≤0.75 
Highest= SCI≥0.751 

Agriculture Expenditure 
Index (AEI) 

It is the Total Agriculture 
Expenditure of a household divided 
by the maximum Agriculture 
Expenditure among all the 
households 

Ratio 
0≤ AEI ≤1 

Caste Category (Caste) Caste the household head belongs Qualitative; Reference category: SC 

 

1 The operational definition of social capital here is “it’s a multidimensional qualitative social network that can affect the behavioral decision of an individual 
and/or household to reap economic benefits.” 
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to? 
1. Scheduled Caste (SC), 2. 
Scheduled Tribe (ST), 3. Other 
Backward Caste (OBC), 4. Others 
(includes upper caste/forward 
category) 

Dummy, 1=ST, 0=Otherwise 
Dummy, 1= OBC, 0=Otherwise 
Dummy, 1=General, 0=Otherwise 

Age (AG) Age of the household’s head (In 
years) 

Quantitative 

Family Type (FT) It includes 
1. Joint family (JF), 2. Nuclear family 
(NF) 

Qualitative; Reference category: Nuclear 
family (NF) 

Gender (Gen) Gender of the head of the 
household. 
1. Male, 2. Female 

Qualitative; Reference Category= Male  
Dummy, 1= Female, 0=Otherwise 

Sanitation index (SI) Sanitation Index (SI) of the entire 
household. It is constructed by 
considering eight (08) indicators (I) 
of sanitation and they are 1) living in 
a pucca house; 2) availability of toilet 
facilities; 3) availability of bathroom 
facilities; 4) availability of purified 
drinking water facilities; 5) 
frequency of using soap for bathing 
purpose; 6) use of phenyl to clean 
bathroom, toilet, and surface; 7) use 
of hand wash; and 8) use of any 
detergent to clean utensil.  

Ratio. 
The SI is calculated by using the method 
of weighted arithmetic mean (the 
weights being uniform) and is defined 

as:𝑆𝐼 =
∑ 𝐼𝑖

8
1

8
. Possession of an indicator 

by the household is assigned the value 
“1” and non-possession of the indicator 
is “0”.  The household having all the 
indicators will have SI=1 and having no 
indicators will have SI=0. Thus, the value 
of SI will lie between 0 to 1, i.e.,(0 <
(𝑆𝐼) < 1). 

HDI of the household 
(HHDI) 

Human development index of the 
household. It is computed by taking 
the weighted arithmetic mean (the 
weights being uniform) of three 
indicators. Firstly, the total health 
expenditure1 (total family 
expenditure on health during last 
one year); secondly, the total 
education expenditure (total family 
expenditure on education during 
last one year); and thirdly the total 
income (income from primary 
occupation plus income from 
secondary occupation by during last 
one year). To calculate the 
dimension indices (DI) of health, 
education, and income, minimum 
and maximum values/goalposts are 
chosen. 

Ratio. 
The DI are calculated as: 
𝐷𝐼

=
𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒
 

And the HDI is constructed as: 
𝐻𝐷𝐼 = ∑ 𝐷𝐼𝑖 3⁄ , i= Health, Education, 
and Income. The value of HDI will lie 
between 0 to 1, i.e., (0 ≤ (𝐻𝐷𝐼) ≤ 1). 

Knowledge about the 
CSAT (KCSAT) 

Knowledge about the CSAT by the 
household 

Qualitative; Dummy, 1=Yes, 0=No 

Level of Education (LEDU) Level of education the head of the 
household has completed. 

Qualitative; Reference category: 
Illiterate  
Dummy, 1= primary (7th or less), 

 
1 The collected data on the health expenditure is the Curative Health Expenditure of the households which means with poor 
health this expenditure will increase. The households had some Preventive Health Expenditure, the information of which is 
used to compute the Sanitation Index. Thus, to make the HDI directly related to the health dimension, 1-the Standardized 
Health Dimension is used to calculate the HDI. 
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0=Otherwise 
Dummy, 1= secondary (8th to 12th), 
0=Otherwise 
Dummy, 1= higher ( above 12th ), 
0=Otherwise 

Land Index (LANDI) It is the Total Land owned by a 
household divided by the maximum 
Land owned among all the 
households 

Ratio 
0≤ LANDI ≤1 

Reasons for females not 
using CSAT (RFCSAT) 

What are the reasons for females 
not using CSAT? 
1. Not Women-friendly, 2. No 
adequate skill 3. Socio-cultural 
reasons 

Qualitative 
Reference Category= Women using CSAT 

Gender wise agricultural 
decisions taken (GAD) 

Who takes the decision on 
agriculture in the household? 
1. Male, 2. Female, 3. Both Male and 
Female 

Qualitative; Reference Category= Male  
Dummy, 1= Female, 0=Otherwise 
Dummy, 2= Both, 0=Otherwise 

Gender-wise Land 
ownership of the 
household (GWL) 

Who owns the land in the 
household? 
0.Noland 1. Male, 2. Female, 3. Both 
Male and Female 

Qualitative; Reference Category= Noland 
Dummy, 1= Male, 0=Otherwise 
Dummy, 2= Female, 0=otherwise 
Dummy, 3=Both, 0=Otherwise 

Results and Discussion 

As mentioned earlier, the total effective number of households for the study is 1001. The 
summary statistics of all the variables described in Table 2 are presented in Table 3. Perusal 
of Table 3 reveals that the mean score of CSATAI, LSC, AEI, SI, HDI, and Land index is 0.464, 
0.370, 0.052, 0.393, 0.074, and 0.038 respectively, which is comparatively low. However, the 
average score of the households on the knowledge about CSAT is 0.818. This implies that a 
fairly good number of households have ideas about climate-smart agricultural technology. But 
the low adoption rate of the CSAT may be due to other factors.  

In fact, the cross-tabulation of LSC reveals that in case of the households having higher LSC, 
the level of CSAT is more whereas most of the households using CSAT have a lower AEI (Table 
4). In Table 5, it is found that the households where the head of the household’s age is less 
than 60 years, the intensity of use of CSAT is higher than households with heads above 60 
years of age. Similarly, the households with nuclear family structure uses CSAT more than the 
ones with joint family structure. Further, families with males as the head of the households 
adopt more CSAT than families headed by female members. 

The cross-tabulation of caste category and sanitation index is presented in Table 6. It shows 
that the OBC households have a high level of CSAT followed by SC and ST categories. Further, 
households where the SI ranges from 0.251-0.500, the level of CSAT is more in comparison to 
households having other levels of sanitation. Moreover, in Table 7, it is found that most of the 
households having low HHDI have more levels of CSAT. This implies that these households are 
improving their position in order to increase their level of CSAT.  

The households where the male takes agricultural decisions have a higher level of CSAT while 
the households having knowledge about the CSAT have a lower level of CSAT. Table 8 shows 
that percentage of households having a higher level of education have more levels of CSAT 
while most of the households using CSAT have a lower land index. In addition, the households 
where the reason for females not using CSAT is inadequate skill, have a higher level of CSAT 
(Table 9). Most of the households with male land ownership have a higher level of CSAT. 
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Table 3: Descriptive Statistics 

Variable  Obs  Mean  Std. Dev.  Min  Max 

CSATAI 1001 0.464 0.221 0.055 0.889 
LSC 1001 0.370 0.174 0.000 1.000 
AEI 1001 0.052 0.072 0.000 1.000 
Caste 1001 2.278 0.933 1.000 4.000 
Age 1001 45.663 11.629 17.000 84.000 
Joint Family 1001 0.671 0.470 0.000 1.000 
Gender 1001 0.879 0.326 0.000 1.000 
Sanitation Index 1001 0.393 0.192 0.018 1.000 
HHDI 1001 0.074 0.068 0.001 0.694 
KCSAT 1001 0.818 0.386 0.000 1.000 
Level of education 1001 5.614 3.965 0.000 15.000 
Land Index 1001 0.038 0.105 0.000 0.998 
RFCSAT 1001 1.531 0.821 0.000 3.000 
GAD 1001 1.544 0.839 1.000 3.000 
GWL 1001 1.156 0.504 0.000 3.000 

Table 4: Cross-tabulation of level of CSAT with level of social capital and level of agricultural 
expenditure (%) 

Level of 
CSAT 

Level of Social Capital Level of Agricultural Expenditure 

0-
0.250 

0.251-
0.500 

0.501-
0.750 

0.751 & 
above 

Total 0-
0.250 

0.251-
0.500 

0.501-
0.750 

0.751 & 
above 

Total 

0-0.250 12.39 9.89 0.30 0.00 22.58 22.48 0.00 0.00 0.00 22.58 
0.251-
0.500 

15.18 24.38 3.80 0.00 43.36 42.46 0.60 0.00 0.00 43.36 

0.501-
0.750 

1.20 10.29 4.70 0.30 16.48 16.08 0.40 0.00 0.00 16.48 

0.751 & 
above 

0.20 4.90 10.29 2.20 17.58 17.48 0.10 0.00 0.00 17.58 

Total 28.97 49.45 19.08 2.50 100 98.50 1.10 0.10 0.30 100 
Pearson chi2(9) = 459.412***; Kendall’s tau-b =   0.523; ASE = 
0.019 

Pearson chi2(9) = 13.308; Kendall's tau-b =   0.013; 
ASE = 0.021 

Note: *** denotes 1% level of significance 

Table 5: Cross-tabulation of level of CSAT with age, family type, and gender (%) 

Level of 
CSAT 

Age Family Type Gender 

≤ 60 
Years 

> 60 
Years 

Total Joint Nuclear Total Female  Male Total 

0-0.250 12.39 10.19 22.58 5.59 16.98 22.58 1.60 20.98 22.58 
0.251-
0.500 

28.87 14.49 43.36 15.38 27.97 43.36 5.39 37.96 43.36 

0.501-
0.750 

10.19 6.29 16.48 6.19 10.29 16.48 1.30 15.18 16.48 

0.751 & 
above 

10.69 6.89 17.58 5.69 11.89 17.58 3.80 13.79 17.58 

Total 62.14 37.86 100.00 32.87 67.13 100.00 12.09 87.91 100.00 
Pearson chi2(9) = 8.876**; Kendall’s tau-b = 
-0.029; ASE = 0.030 

Pearson chi2(9) = 9.724**; Kendall’s 
tau-b = -0.057; ASE = 0.028 

Pearson chi2(9) = 23.093***; 
Kendall’s tau-b = -0.098; ASE = 0.029 
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Table 6: Cross-tabulation of level of CSAT with caste category and level of Sanitation Index 
(%) 

Level 
of 
CSAT 

Caste category Level of Sanitation Index 

SC ST OBC General Total 0-
0.250 

0.251-
0.500 

0.501-
0.750 

0.751& 
above 

Total 

0-
0.250 

4.00 12.29 5.19 1.10 22.58 9.49 7.09 5.59 0.40 22.58 

0.251-
0.500 

13.49 6.49 21.28 2.10 43.36 12.09 14.29 15.88 1.10 43.36 

0.501-
0.750 

3.60 3.30 7.69 1.90 16.48 3.60 8.59 4.30 0.00 16.48 

0.751& 
above 

5.79 3.00 7.29 1.50 17.58 3.00 6.39 7.79 0.40 17.58 

Total 26.87 25.07 41.46 6.59 100 28.17 36.36 33.57 1.90 100 
Pearson chi2(9) = 151.287***; Kendall’s tau-b = 0.071; ASE = 
0.026 

Pearson chi2(9) = 59.166***; Kendall’s tau-b = 0.129; 
ASE = 0.027 

Note: *** denotes 1% level of significance.  

Table 7: Cross-tabulation of level of CSAT with level of HHDI, Gender wise agricultural 
decision (GAD), and Knowledge about the CSAT (%) 

Level 
of 
CSAT 

Level of HHDI Gender wise agricultural decision 
(GAD) 

Knowledge about the 
CSAT 

0-
0.250 

0.251-
0.500 

0.501-
0.750 

0.751& 
above 

Total Male Female Both Total Yes No Total 

0-
0.250 

22.48 0.10 0.00 0.00 22.58 14.39 2.60 5.59 22.58 7.09 15.48 22.58 

0.251-
0.500 

41.86 1.50 0.00 0.00 43.36 32.07 2.60 8.69 43.36 8.19 35.16 43.36 

0.501-
0.750 

15.78 0.70 0.00 0.00 16.48 12.19 0.80 3.50 16.48 2.10 14.39 16.48 

0.751& 
above 

16.58 0.80 0.20 0.00 17.58 9.69 2.90 5.00 17.58 0.80 16.78 17.58 

Total 96.70 3.10 0.20 0.00 100.00 68.33 8.89 22.78 100.00 18.18 81.82 100.00 
Pearson chi2(9) = 16.900***; Kendall’s tau-b = 0.087; ASE = 
0.025 

Pearson chi2(9) = 32.692***; 
Kendall’s tau-b = 0.030; ASE = 0.029 

Pearson chi2(9) = 
52.056***; Kendall’s tau-b 
= 0.208; ASE = 0.026 

Note: *** denotes 1% level of significance.  

Table 8: Cross-tabulation of level of CSAT with level of education and level of Land Index (%) 

Level 
of 
CSAT 

Level of education Land Index 

Illiterate Primary Secondary Higher Total 0-
0.250 

0.251-
0.500 

0.501-
0.750 

0.751& 
above 

Total 

0-
0.250 

4.10 8.49 9.29 0.70 22.58 22.38 0.00 0.00 0.20 22.58 

0.251-
0.500 

5.89 16.18 18.18 3.10 43.36 42.76 0.10 0.10 0.40 43.36 

0.501-
0.750 

3.30 6.29 5.29 1.60 16.48 16.28 0.10 0.00 0.10 16.48 

0.751& 
above 

2.70 5.49 7.49 1.90 17.58 17.18 0.00 0.00 0.40 17.58 

Total 15.98 36.46 40.26 7.29 100.00 98.60 0.20 0.10 1.10 100.00 
Pearson chi2(9) = 18.576***; Kendall’s tau-b = 0.040; ASE = 0.027 Pearson chi2(9) = 6.303; Kendall’s tau-b = 0.029; 

ASE = 0.029 

Note: *** denotes 1% level of significance.  
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Table 9: Cross-tabulation of level of CSAT with RFCSAT and GWL (%) 

Level of 
CSAT 

Reason for females not using CSAT Gender-wise land ownership 

Wome
n using 
CSAT 

Not 
Women-
friendly 

No 
adequate 
skill  

Socio-
cultural 
reason 

Total No land 
ownership 

Male Female Bot
h 

Total 

0-0.250 4.00 7.39 8.59 2.60 22.58 0.00 19.38 1.80 1.40 22.58 
0.251-
0.500 

3.60 9.49 27.57 2.70 43.36 0.00 41.56 0.30 1.50 43.36 

0.501-
0.750 

2.30 5.00 6.29 2.90 16.48 0.30 14.59 0.50 1.10 16.48 

0.751& 
above 

2.80 8.09 6.39 0.30 17.58 0.20 13.49 2.30 1.60 17.58 

Total 12.69 29.97 48.85 8.49 100.00 0.50 89.01 4.90 5.59 100.00 
Pearson chi2(9) = 102.693***; Kendall’s tau-b = -0.061; ASE = 0.029 Pearson chi2(9) = 69.092***; Kendall’s tau-b = 0.052; 

ASE = 0.035 

Note: *** denotes 1% level of significance. 

Table 10 presents the results of both Beta and Fractional probit regression models. Since the 
direction of the marginal effect is same in both the regression models with slightly different 
magnitudes, the result of one model (Beta regression) can be interpreted. The households 
having moderate, higher, and highest LSC relative to lower LSC increases the CSATAI by 0.121, 
0.331, and 0.438, respectively. This implies that at a higher level of social capital, the intensity 
of the use of CSAT is higher. Thus, we can conclude that promoting social capital among 
agrarian households can intensify the use of CSAT among farmers.  

The households belonging to the ST category reduce CSATAI by 0.080 compared to the 
households belonging to the SC category. This implies that the tribal households in Odisha that 
are marginalised from the main land have a lower intensity of use of the CSAT.  Additionally, 
the female-headed household reduces the CSATAI by 0.041 in comparison to the male-headed 
household. This result highlights the gender bias in the use of CSAT in Odisha. One probable 
reason could be that the CSAT used in Odisha may not be conducive for the women to use it 
in practice. The SI and HDI were considered as the human capital determinants of use of CSAT. 
The result reveals that sanitation index and HDI of the households increase the CSATAI by 
0.131 and 0.461, respectively, implying there by better human capital raises the use of CSAT 
among agrarian households. Similarly, the households having knowledge about the CSAT 
increase the CSATAI by 0.089. This result could be an indication of confirmation bias in the 
model.  

Perusal of Table 10 also reveals that the level of education has nothing to do with the use of 
CSAT. Similar conclusion is also drawn for the agricultural expenditure and age of the head of 
the household. Surprisingly, the land index that is a major natural and/or physical capital for 
the agrarian households also does not affect the decision of the household to use CSAT.  
However, the households who stated not women-friendly as the reason for females not using 
modern equipment have higher CSATAI compared to the households who stated other 
reasons such as: women with inadequate skills or other socio-cultural reasons. On the 
contrary, the households stating no adequate skills relative to women using CSAT as the 
reason for females not using modern equipment have lower CSATAI. This implies that if we 
can promote CSAT that is women friendly, then the agrarian households may be inclined to 
use CSAT. The households where female takes agricultural decision has higher CSATAI by 0.068 
than the households with male agricultural decision maker. Besides, for households where 
male members are the owner of the land the CSATAI decreases by 0.233. On the other hand, 
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where females are the owners of the land or both the female and male are the owners of the 
land, then the CSATAI increases by 0.184 and 0.190, respectively. Such phenomena highlight 
the role of women and their contribution in using the CSAT in Odisha, India. 

Table 10: Regression results 

Dependent Variable: 
CSATAI 

Beta Regression Fractional Probit Regression 

Independent Variables Coefficient 
(Std. err.) 

Marginal effect Delta-
method (Std. error) 

Coefficient 
(Std. err.) 

Marginal effect Delta-
method  (Std. error) 

Level of Social Capital (LSC)   
0.251-0.500 0.527*** 0.121*** 0.309*** 0.116*** 
 (0.060) (0.013) (0.028) (0.011) 
 {0.000} {0.000} {0.000} {0.000} 
0.501-0.750 1.415*** 0.331*** 0.869*** 0.330*** 
 (0.077) (0.017) (0.045) (0.016) 
 {0.000} {0.000} {0.000} {0.000} 
0.751 and above 1.962*** 0.438*** 1.272*** 0.459*** 
 (0.132) (0.024) (0.085) (0.025) 
 {0.000} {0.000} {0.000} {0.000} 
AEI 0.201 0.045 0.093 0.034 

 (0.196) (0.044) (0.120) (0.044) 
 {0.305} {0.305} {0.439} {0.439} 
Caste   
ST -0.359*** -0.080*** -0.238*** -0.087*** 
 (0.081) (0.018) (0.040) (0.015) 
 {0.000} {0.000} {0.000} {0.000} 
OBC -0.033 -0.008 -0.045 -0.016 
 (0.061) (0.014) (0.034) (0.012) 
 {0.587} {0.588} {0.186} {0.186} 
General 0.075 0.017 0.018 0.007 
 (0.101) (0.023) (0.059) (0.022) 
 {0.453} {0.452} {0.755} {0.755} 
Age (AG)  0.002 0.000 0.001 0.001 
 (0.002) (0.000) (0.001) (0.001) 
 {0.328} {0.328} {0.250} {0.250} 
Joint Family (JF) 0.093 0.021 0.005 0.002 
 (0.062) (0.014) (0.030) (0.011) 
 {0.137} {0.134} {0.871} {0.871} 
Gender  -0.182** -0.041** -0.118*** -0.043*** 
 (0.076) (0.017) (0.046) (0.017) 
 {0.017} {0.017} {0.010} {0.010} 
SI  0.589*** 0.131*** 0.276*** 0.101*** 
 (0.144) (0.032) (0.078) (0.028) 
 {0.000} {0.000} {0.000} {0.000} 
HHDI  2.069*** 0.461*** 1.206*** 0.440*** 
 (0.407) (0.090) (0.227) (0.082) 
 {0.000} {0.000} {0.000} {0.000} 
KCSAT  0.400*** 0.089*** 0.240*** 0.087*** 
 (0.090) (0.020) (0.045) (0.016) 
 {0.000} {0.000} {0.000} {0.000} 
Level of Education (LEDU)   
Primary  -0.040 -0.009 -0.063 -0.023 
 (0.090) (0.020) (0.042) (0.015) 
 {0.655} {0.655} {0.136} {0.137} 
Secondary  -0.028 -0.006 -0.034 -0.012 
 (0.104) (0.023) (0.044) (0.016) 
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 {0.788} {0.788} {0.441} {0.441} 
Higher 0.044 0.010 -0.018 -0.006 
 (0.144) (0.032) (0.067) (0.025) 
 {0.759} {0.759} {0.791} {0.791} 
Land index (LANDI) 0.169 0.038 0.067 0.024 
 (0.146) (0.032) (0.102) (0.037) 
 {0.246} {0.245} {0.514} {0.650} 
Reasons for females not using modern equipment (RFCSAT)   
Not women-friendly 0.192** 0.043** 0.113** 0.041** 
 (0.091) (0.020) (0.054) (0.020) 
 {0.034} {0.034} {0.034} {0.034} 
No adequate skills  -0.244*** -0.054*** -0.142*** -0.052*** 
 (0.077) (0.017) (0.048) (0.017) 
 {0.002} {0.002} {0.003} {0.003} 
Socio-cultural reasons -0.208 -0.046 -0.048 -0.018 
 (0.159) (0.035) (0.065) (-0.018) 
 {0.191} {0.186} {0.454} {0.454} 
Gender-wise Agricultural decisions taken (GAD)   
Female 0.303*** 0.068*** 0.145** 0.053** 
 (0.102) (0.023) (0.064) (0.023) 
 {0.003} {0.003} {0.024} {0.024} 
Both 0.098 0.022 0.058* 0.021* 
 (0.061) (0.014) (0.034) (0.013) 
 {0.109} {0.111} {0.091} {0.091} 
Gender-wise Landownership (GWL)   
Male -1.073*** -0.233*** -0.706*** -0.250*** 
 (0.165) (0.033) (0.114) (0.037) 
 {0.000} {0.000} {0.000} {0.000} 
Female 0.852*** 0.184*** 0.575*** 0.202*** 
 (0.195) (0.400) (0.134) (0.045) 
 {0.000} {0.000} {0.000} {0.000} 
Both 0.879*** 0.190*** 0.620*** 0.218*** 
 (0.192) (0.400) (0.132) (0.044) 
 (0.000} {0.000} {0.000} {0.000} 
Constant 2.099***  0.013  
 (0.073)  (0.156)  
 {0.000}  {0.934}  

Number of observations 1,001  1,001  
Wald chi2 (25) 1009.77***  1169.57***  
Log pseudolikelihood 482.33863  -637.78699  
Pseudo R2   0.0774  

Note: *, **, and *** denote 10%, 5%, and 1% levels of significance, respectively. Standard error and p-value are 
given in () and {}, respectively. 

Concluding remarks and policy implications 

To summarise, it can be said that the intensity of the usage of CSAT increases in tandem with 
the level of social capital that is present. Therefore, we are able to draw the conclusion that 
increasing the amount of social capital among agrarian households can increase the use of 
CSAT among farmers. Further, CSAT is utilised by the tribal households in Odisha that are cut 
off from the mainland to a lesser extent than the other households in the state.  In addition, 
the CSATAI is reduced by 0.041 points when comparing the female-headed home to the male-
headed household. This result demonstrates the gender bias that exists in the use of the CSAT 
in the state of Odisha. One of the possible explanations for this is that the CSAT that is utilised 
in Odisha is not conducive for usage by women in practice. Further, CSAT adoption rates are 
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higher among agrarian households with better human capital that calls for providing better 
sanitation and other facilities for these households. In a similar vein, families with at least one 
member being familiar with the CSAT result in a 0.089-point gain in the CSATAI that implies 
that if we want the households to use CSAT then we need to popularise it among the users. 
The intensity of use of CSAT is higher for households where female takes agricultural decision 
and families where land is owned by the male members only, the use of CSAT is less. This calls 
for institutional arrangements to ensure wider usages of social capital, land ownership by the 
female members and their economic empowerment by providing them better wages and 
livelihood so that agrarian households will be interested to use CSAT in agriculture that 
ultimately can cater to the growing demand of food.  
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Extended Abstract 

Meat traceability aspect has been addressing concerns on food safety and other allied issues. 
Properly structured meat supply chain can handle concerns of meat quality, source and the 
entire process from farm to plate increasing stakeholder satisfaction. In fact, an efficient meat 
supply chain would certainly reduce wastage and contamination. Recording and transferring 
relevant information across all the nodes holds the key here.  

Traditionally Radio Frequency Identification Devices (RFID), Barcode readers and isotopic 
technologies have been used. The same can be extended to meat wastage data as well. The 
major area to address is, extension & standardization of information and readiness of use from 
both supermarket and restaurant perspectives. Concerns such as food safety-adulteration, 
wastage can be addressed by an apt traceability system. Therefore, corporations are looking 
out for an efficient and scalable system to accommodate these three interlinked problems in 
the long run. 

We propose a blockchain based meat supply chain for solving such a complex yet real world 
problem. Blockchain, a distributed digital ledger which can record transactions in sequential 
multiple series of blocks can be extremely useful. This being a decentralized system no single 
entity is there for the safekeeping, thus ensuring security. The cardinal aim of this research is 
to identify and deploy a suitable blockchain based prototype model for both supermarkets 
and restaurants, addressing waste-safety-traceability parameters in the meat supply chain. 
First, this would ideally be implemented for restaurants & supermarkets for ensuring quality 
meat products through regulated standards of storage and handling. As we know that 
blockchain typically offers safety-reliability-standardisation and cost-effectiveness when 
implemented properly.  

We discuss a mathematical construct here to arrive at an index for meat quality complying 
with standards mentioned by the regulators. Underlying product has been Beef over here; 
further, we provided a reference measurement (scale-based) while gathering fundamental 
parameters from the past studies on Beef at a global level(Bansback, 2014; Cornforth, D. and 
Hunt, 2008; Delmore, 2007; Frank et al., 2019; Voges, et al., 2007). 

Proposed Blockchain Model 

Proposed model captures data from various nodes, processes them through the blockchain 
and evaluates it. Model takes into consideration refrigeration, packaging, storage time; out of 
which prototype explains parameter considered for shelf life in three stages (open shelf life, 
before cooking, after cooking, are depicted as panels namely A, B & C respectively). This is a 
customisable model for food safety, security, wastage and traceability for specific situations 
(data sources, regulatory authorities, climatic conditions etc.). 
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The proposed model can be explained in four steps:  

STEP 1: First, data has to be captured from specific stakeholders who are involved in this 
process either through sensors or manually. The producers (butchers & meat processing 
people) can input the data through a mobile application. Pictures of every stage can be 
captured and stored in the same application. This will generate a hash in the first block of the 
blockchain. The authenticity certificate (by regulators) has to be added to the block as well. 
photograph and authenticity certificates can be cross checked against the original reporting 
in the blockchain. Moreover, date of production and ID of the producer should be hashed and 
stored as well. Apart from this all intermediaries have to add dates and product specifications 
including quantity to the blockchain on receipt of the product. Each package can be traced 
back to the source by RFID or QR code. Various other measures such as temperatures has to 
be tagged on the first block as well(Hilten et al., 2020; Kamath, 2018; Patel et al., 2023). There 
are three Panels in consideration (A and B are for supermarkets in 0specific as they indicate 
open shelf-life and before cooking; whereas, B and C are for restaurants as they illustrate 
before cooking with after cooking). We propose a public-permissioned single ledger with pre-
selected participants can be implemented(Jeppsson & Olsson, 2017; Varghese et al., 2019).  

STEP 2: Procuring & standardising the boundary values of the proposed MQI Index is specific 
for different categories of meats. Five major cuts of Beef, clustered into three clusters (serving 
as many as eleven end products at restaurants) have been considered as per various 
regulatory authorities. The shelf lives at open, before cooking and after cooking are procured 
from UK standard of FSA studies. As we know, shelf lives vary with the storage/transit 
temperature. Further, all shelf lives are converted into standard hours (day). We’ve assigned 
the weightages in an inverse order (highest weightage for the least number of days of storage). 
The total weightage for a product is 1. This is a generalised model to fit any type of meat 
(having definite shelf life).  

STEP 3: We used curve estimation to identify correlation between shelf life and respective 
weightages for all the three Panels (Open Shelf-Life, before Cooking & after cooking). Since, 
weightages are derived from existing literature, therefore, curve fitting is crucial to bridge the 
gap between theory & practice. 

STEP 4: We finally could create the index (MQI) incorporating the boundary applying minimum 
and maximum values into the curve fit correlations. Thus, we derive specified range (using an 
algorithm), inside which the food can remain consumable, however not outside.   
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Abstract 

This study explores the relationship between agriculture, economic growth, and climate 
change in the European Union (EU) from 2000 to 2019. Using proxies for each variable, the 
research employs cointegration and causality tests to assess their dynamic interconnections. 
Results indicate long-run relationships and causal links, emphasising the agricultural sector's 
continued contribution to economic growth and its climate change implications. The study's 
findings offer valuable insights for policymakers, economists, and business personnel, 
supporting sustainable policies and greener economic development in the EU. Future research 
opportunities lie in further investigating these complex interrelationships to promote a more 
sustainable future. 
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Introduction 

Agriculture, historically a significant driver of economic growth, has experienced declining 
contributions to the European Union’s (EU) economy in recent years (Dammers and Keiner, 
2006). This decline coincides with rising concerns about food security and the environmental 
impact of the agricultural sector (Bertoni et al., 2018). As such, this research aims to 
comprehensively explore the economic dimension of agriculture and its interplay with climate 
change in the EU, during the period from 2000 to 2019. The study seeks to bridge the gap 
between these crucial aspects and shed light on the sector's impact on the economy, potential 
for sustainable growth, and challenges posed by climate change. Understanding the intricate 
connections between economics and the environment in agriculture can provide insights to 
inform policy decisions such as in case of the Common Agricultural Policy (CAP) and pave the 
way for a more sustainable future. 

Objectives 

The main objectives of this research are to examine the relationships between the agricultural 
sector, economic growth, and climate change in the EU by evaluating the long-run 
relationships among them, by employing their proxies/representative variables such as 
agricultural Total Factor Productivity (TFP), EU GDP growth, and greenhouse gas (GHG) and 
CO2 emissions. Lastly, drawing insights on their interlinkages by investigating the causality 
between the variables, identifying the direction and strength of the relationships.  

In order to achieve the objectives of this research, the research methodology is chosen in a 
way that it aids in addressing the research problem which is identified in the current research 
as the lack of literature that collectively addresses the issue of the declining importance in the 
EU economy, heavy investment in agriculture with limited economic growth role raises 
questions on its effectiveness for sustainable development, considering high emissions. 
Additionally, the lack of an overarching proxy/representative of the agricultural sector also 
limits the ability to quantify the role/contribution of the sector to the economic growth.  

Methodology 

This research adopts a positivist ontological perspective and employs a quantitative research 
design by employing secondary data. The data is collected from reliable sources, including the 
USDA ERS (USDA ERS, 2022), The World Bank (The World Bank, 2023), and the OECDiLibrary 
(OECD, 2023). The chosen time frame of 2000-2019 ensures the relevance and generalisability 
of the results, providing policy implications for current scenarios. 

The empirical analysis to assess the causal linkage between the variables in question is 
performed through a three-step systematic process. Firstly, the Im, Pesaran and Shin (IPS) (Im, 
Pesaran and Shin, 2003) unit root test is carried out to check for stationarity in the dataset 
which might lead to spurious results, followed by which is the Johansen’s cointegration test 
(Johansen, 1988) to assess the long run relationships among the variables. The final test 
carried out on the variables is the Dumitrescu Hurlin (DH) panel causality test (Dumitrescu and 
Hurlin, 2012) which is a model for non-causality based on the granger causality test. The 
EViews software which is widely used for econometric testing is employed to carry out the 
tests. In order to carry out the tests, the logarithmic values (LN) of data are computed which 
would aid in further analysis.  
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Results 

The results of the IPS test upon the indication of unit roots (non-stationarity) in the individual 
datasets in level, the test was run once again however by employing first differenced data. 
The results of the first differenced datasets have proved that the datasets are free of unit 
roots, thereby making them suitable for further analysis. Moving on, Johansen’s cointegration 
test has indicated the presence of cointegration among all the variables that were assessed in 
pairs, thereby implying that these variables are related in the long run. Lastly, the granger 
causality test was carried out to assess the factor of causality among the variables and also 
the direction of causality. The test was carried out on the variables that were once again 
assessed in pairs. The results indicated that there was presence of causality among the 
variables though the direction was varied. LNTFP was found to granger cause all the other 
proxies (LNGDP, LNGHG, and LNCO2) in a unidirectional manner. On the other hand, the 
direction of causality between LNGDP and climate change proxies (LNGHG and LNCO2) was 
bidirectional, with these proxies granger causing each other.  

Discussion and Conclusion 

Utilising the first differenced stationary data, the Johansen’s cointegration test results signify 
that the agricultural sector, economic growth, and climate change exhibit a long-run 
relationship, offering valuable insights into the agricultural sector's contribution to economic 
growth and its implications on climate change. The findings support the argument that the 
agricultural sector remains linked to economic growth in the recent years (2000-2019). 
Furthermore, the cointegration between the proxies of the agricultural sector and climate 
change provides evidence of implications associated with climate change during the study 
period. It strengthens the main argument of the study that the agricultural sector's activities 
may contribute to climate change within the EU.  

The analysis of causality offers valuable insights into the interrelationships among the 
variables, providing a comprehensive understanding of the dynamic relationships between 
the agricultural sector, economic growth, and climate change in the EU. The presence of 
Granger causality suggests that changes in the agricultural sector's productivity (TFP) have 
implications for economic growth and climate change factors during the period of analysis of 
this current study (2000-2019). 

The presence of Granger causality is a crucial finding that this research had aimed to explore. 
The established causal relationship indicates that the agricultural sector has indeed caused 
economic growth during the period of this study. Addressing the secondary research problem, 
the analyses consistently point to the agricultural sector's contribution to regional economic 
growth and its associated climate change implications. The cointegration test confirming long-
run relationships among the variables, along with the established causality, validates the 
assumptions of this study. The use of sectoral TFP as an overarching proxy for agriculture has 
been instrumental in providing a comprehensive representation of the entire industry, 
enabling this research to achieve its objectives effectively. 

To validate the results, inferences are drawn from various individual studies that explored 
similar variables. This research's outcomes can be successfully compared to the work of 
Katircioglu, (2006), Tiffin and Irz, (2006), Baer-Nawrocka, (2016), and Popescu, (2017) in 
assessing the relationship between the agricultural sector and economic growth, as well as 
Lapinskienė, Peleckis and Radavičius, (2015), Zafeiriou and Azam, (2017), Kulyk and 
Augustowski, (2020), and Makutėnienė et al., (2022) in examining the link between the 
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agricultural sector and climate change (emissions). Although these studies used different 
representative variables and methodologies, the similarity in scope and aims allowed for 
meaningful comparisons. 

Managerial/policy implications 

For policymakers, economists, and business personnel, this study offers conclusions on the 
agricultural sector's continued contribution to EU's economic growth. Furthermore, 
understanding climate change implications supports the pursuit of CAP goals and necessary 
policy changes for sustainable development in the EU. The recent time focus (2000-2019) adds 
relevance and relatability to the study's outcomes.  

Academically, this research contributes by exploring interrelationships between the variables, 
inviting further explanatory analysis by researchers in different domains. 

Scope for future research 

The scope for future research is wide-ranging, with opportunities to expand on the current 
study's findings and delve deeper into the complexities of the interrelationships between the 
agricultural sector, economic growth, and climate change. Through insightful and 
comprehensive investigations, researchers can contribute to shaping sustainable policies and 
promoting greener economic development in the EU. 
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Abstract 

The environmental effect of the Ukraine war has been studied mainly from the point of view 
of physical destruction. However, little is known about the effect of the war on the trade 
system, and how this affects the environment. The objective of this research is to contribute 
to filling this gap by proposing a novel approach that measures the impact of the complexities 
of international trade and the environment. It consists of incorporating two different models 
into a single approach: the Life Cycle Analysis (LCA) model for environmental assessment; and 
the International Agri Food Trade Network (IAFTN) model for trade simulations under 
imperfect competition. The proposed approach was employed to simulate quantitatively the 
possible environmental impact of the Ukraine war on the trade system using oilseed rape 
(OSR) as a study case. The results revealed that a decrease in the production of OSR in Ukraine 
is accompanied by a reduction in environmental pressure in this country. However, 
environmental damage is exported and transmitted to other countries in the trade network 
system. This suggests that mitigating environmental strategies should be designed 
cooperatively in order to reduce the negative trade side effects of the war at the global scale.  
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Extended Abstract  

Ukraine is one of the world’s top agricultural producers and exporters and plays a critical role 
in supplying oilseeds and grains to the global market. More than 55 percent of Ukraine’s land 
area is arable land. Agriculture provides employment for 14 percent of Ukraine’s population. 
Agricultural products are Ukraine’s most important exports. In 2021 they totalled $27.8 billion, 
accounting for 41 percent of the country’s $68 billion in overall exports (USDA, FAS). Before 
the war in Ukraine, agriculture accounted for 10% of GDP in 2021, 86 million tons of grains 
and legumes were harvested in 2021 (Ministry of Agrarian Policy and Food of Ukraine, 2019 – 
2022). Ukraine is a key exporter of these range of products:  1st place in world exports 
sunflower oil (4.6 million tons); 3rd place in the world export of rapeseed (2.7 million tons); 
4th place in the world export of barley (5.7 million tons); 6th place in the world export of corn 
(24.7 million tons) (FAO, Ukrstat). Ukraine is the world’s seventh-largest wheat producer and 
is forecasted to be the fifth-largest exporter for the 2021/22 marketing year. In 2021, 
Ukrainian wheat exports were valued at $5.1 billion, with Egypt, Indonesia, Turkey, Pakistan, 
and Bangladesh as the primary destinations (FAO, Ukrstat). Before the beginning of the war, 
the main flow of grain for export passed through the seaports of Mykolaiv, Odesa and 
Chornomorsk. By sea in 2021, Ukraine exported 49.5 million tons of grain out of 51.2 million 
tons. No more than 2–5% of the total volume was transported by land (by rail or road 
transport) (Ukrstat). 

However, the full-scale invasion of the Russian Federation on the territory of Ukraine led to 
the blocking of grain exports through closed sea lanes, the mining of approaches to ports and 
the dominance of the Russian fleet in the Black Sea. The blockade of seaports led to a 
significant reduction in exports: from 6-7 million tons per month to 1.5-2 million tons.  

The entire agricultural sector also suffered damage. Losses of available cultivated areas - over 
25%, irrigated lands – over 70%, berries - about 25%, gardens - 20%. About 5% of agricultural 
land was damaged. Infrastructure facilities: agricultural, warehouse, transport, energy, and 
processing industry suffered significant destruction. There was an increase in the cost of 
production due to the increase in the prices of fertilizers, fuel and seeds (FAO, Ukrstat). 

Since February, the ports of Odesa and Odesa region ("Pivdenniy" port), Chornomorsk, 
Bilhorod-Dnistrovskyi, Mykolaiv ("Olvia" port) have been closed. The ports of Kherson, 
Mariupol, Berdyansk and Skadovsk have been captured by the invaders. At least 100 ships 
were blocked in the Black Sea ports. (N. Iveruk, 2022). After a month of war, in March 2022, 
according to information from various sources, from 200 to 370 thousand tons of grain, and 
in April 2023 - 1 million tons were exported from Ukraine by joint efforts. Thus, Ukraine was 
able to export no more than 20% of pre-war indicators (N. Iveruk, 2022). 

The EU member states reached agreements on the diversification of export routes from 
Ukraine, which consisted in combining the maximum possibilities of rail and road transport, 
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river ports of Ukraine and seaports of other countries for grain export. Ukrzaliznytsia 
(Ukrainian railway company) announced its readiness to urgently organize the delivery of 
agricultural products by rail to the borders with Romania, Hungary, Slovakia, and Poland.  

As a result, grain and oilseeds exporters began to frantically look for other options and turned 
to exporting their products through the western land borders and ports on the Danube River 
(Reni, Izmail, Kiliia, and Ust-Danube). Chaos on the western borders at railway crossings 
quickly began to grow because of the number of stalled grain wagons. In addition, lines of 
trucks tens of kilometers long, especially on the Ukraine-Poland border, had formed (I. 
Mykhaylov, 2022). 

The four ports on the Danube River have limited capacity (about 600,000 tons per month of 
commodities shipped to barges that transfer grain and oilseeds to the nearby Romanian Port 
of Constanta for further transportation), and they were quickly flooded with the flow of trains 
and trucks filled with grain (I. Mykhaylov, 2022). 

There were many reasons for the bottle necks at the borders (C. Hebebrand, 2023).There are 
different scales of railways in Ukraine and its Western European neighbours. The cargo either 
must be transshipped from Ukrainian wagons to European ones or wheel sets must be 
changed. There are limited capacities at border crossings to transship cargo or to change 
wheel sets. There are different dimensions of Ukrainian and European wagons, so Ukrainian 
wagons with the changed wheel sets can run on very limited European routes. There are 
different allowed weights of trains. While Ukrainian trains can weigh 5,400 tons in some 
European countries the weight of trains must not exceed 2,700 tons. Because of this, in some 
cases grain had to be divided and an additional set of documents had to be provided. There 
are limited rolling stock and throughput of the European railroads. There are limited capacities 
of the grain terminals on the Baltic Sea. Bureaucratic delays at the border associated with 
customs clearance, border inspection, and phytosanitary and veterinary control. In contrast, 
to exporting grain by sea only one set of certificates is required for the entire cargo. When 
exporting grain by rail, it requires one set of certificates per wagon or truck. 

However, setting up new logistics required time and additional funds (experts claimed that 
the cost of new logistics has increased 4 times), and even where it is possible to install it, the 
possibilities of transporting Ukrainian grain are limited (a maximum of 600,000 tons of grain 
per month) (N. Iveruk, 2022). 

Since the beginning of the war, the increase in logistical costs was largely due to rail 
transportation within Ukraine, this was influenced by tariffs for the use of wagons, the speed 
of transportation and a number of other factors. According to individual estimates, after the 
start of the war, logistical costs solely for the use and transportation of Ukrainian grain carriers 
increased to $ 85 per ton (calculated on the average transportation distance and average 
standard speed), or 4.5 times. Forwarding services and other logistical costs in Ukraine can 
range from 10 to 40% of additional cost. Together with the transshipment of grain and the 
cost of logistics outside of the Ukraine, the logistics component in the price of grain can reach 
up to $180-200/t (compared to $30-40/t before the start of the war) (Agroportal, D. Luvch. 
2022). 

The blocking of grain in Ukrainian ports has led to an intensive increase in world prices for 
wheat, and therefore for food products. Thus, in March, global food prices increased by almost 
12.6%.  
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The Black Sea Grain Initiative was signed on July 22 in Istanbul and provides measures for the 
unblocking of three Ukrainian ports (Odesa, Chornomorsk and Pivdenny) for the export of 
Ukrainian agricultural products. Since then, over 900 ships full of grain and other foodstuffs 
have left three Ukrainian ports: Chornomorsk, Odesa and Yuzhny / Pivdennyi. 

At the same time, in order to preserve the competitiveness of Ukrainian grain producers, it is 
important to solve the problems related to internal railway transport. Decisions that may be 
introduced by the Government include the revision of the tariff system, reduction of the cost 
of using grain trucks, Improvement of the transportation planning system, demand monitoring 
system (to avoid a shortage of wagons) and subsidizing Ukrainian agricultural producers. With 
the Russian-Ukrainian war entering its second year, prices of grains, fertilizers, and other 
agricultural commodities have reduced somewhat from their early post-invasion highs, and 
supply disruptions have moderated. (C. Hebebrand, 2023).  

Taking into account the above, we note that in these conditions, the industry of grain storage 
and export is influenced by many factors and the main task remains unchanged to ensure the 
export of grain from Ukraine with the lowest costs while maintaining quality. 

As a result, the conducted study summarized the problems faced by the agriculture of Ukraine, 
namely the branch of grain storage and export with the beginning of the Russian invasion. 
Lessons on improved infrastructure may be important in other regions of the world. Open 
trade is key in ensuring food security in the face of war. Investment in sustainable food 
systems needs to be increased at the country level. As was mentioned above some decisions 
(tariff system, reduction of the cost) should be introduced by the local Government. Enhancing 
flexibility in the sources for food, feed, and agricultural inputs is essential. 
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Abstract  

Traditional land application of poultry litter (PL) as a fertiliser has led to numerous 
environmental issues, including eutrophication and soil acidification. An alternative 
valorisation option is, therefore, sought.  Anaerobic digestion (AD) of PL is an emerging field 
that shows promise and benefits from both energy and fertiliser production. This study aimed 
to compare the economic, environmental, and social costs and benefits of land application 
and AD of PL using a modified economic life cycle assessment (LCA) approach. Using economic 
data from literature and industry reports, a model for each method was created to calculate 
key economic markers, including net present value (NPV). LCA was incorporated into the 
model with the environmental emissions of each method being calculated for Global Warming 
Potential (GWP), Acidification Potential (AP), Freshwater Eutrophication (FE), Photochemical 
Ozone Potential (POP), and Particulate Matter Formation Potential (PMFP) impact categories. 
The social value of these impact categories was applied to the emissions data to calculate a 
socio-environmental cost (or benefit) for each method. Using Monte Carlo simulation, the 
model shows that AD performs worse when focusing purely on the economic category with 
an NPV of £707.17 per tonne of PL, compared to £1838.36 per tonne for land application of 
fresh PL. However, when factoring in the environmental costs, both methods generated a 
negative NPV. However, AD is shown to be less environmentally damaging than direct land 
application with an NPV of -£1354.17 per tonne of PL compared to -£5788.34 for direct land 
application. Furthermore, the model showed that it is possible to optimise the AD process to 
generate a positive economic and socio environmental NPV, through operational control of 
biogas and energy production. Further research is needed in this area to determine the 
optimal parameters to operate a PL mono-digestion AD process for economic and socio-
environmental gain.  
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Introduction 

Greenhouse gas (GHG) emissions from poultry litter (PL) are of significant concern. The high 
nitrogen concentration in PL, and its volatilisation through conversion to ammonia gas (NH3), 
has notable detrimental effects on the environment due to its involvement in the production 
of acid rain (Choi and Moore Jr, 2008). When ammonia enters the atmosphere and condenses, 
the resultant rainwater has a higher pH, giving it a greater ability to dissolve sulphur dioxide 
(Nahm, 2005). The sulphur dioxide and ammonia form into ammonium sulphate, and, when 
entering the soil, oxidise and release sulphuric and nitric acids (Pote and Meisinger, 2014). In 
addition, the volatilisation of ammonia significantly increases the atmospheric fallout of 
nitrogen, which adds to the eutrophication of waterbodies (Nahm, 2005). Cabrera et al. (1993) 
explain that up to 50% of the nitrogen within PL is emitted as either ammonia or nitrous oxide 
gas, particularly when PL is land spread. This loss of nitrogen not only reduces the value of the 
fertiliser, but also has notable impacts on the atmosphere. Forster et al. (2007) states that the 
global warming potential (GWP) of nitrous oxide is around 300 times that of carbon dioxide 
(298 kg of CO2-equivalents per kg). Methane is reported to have a global warming potential 
24 times higher than carbon dioxide (Forster et al., 2007). Ahn et al. (2011) estimates that 62 
megatons of CO2 equivalents of methane and nitrous oxide have been emitted globally from 
animal manures since the start of the industrial age. 

Good PL management is, therefore, a necessity, from environmental, economic, and nutrient 
recycling viewpoints. The traditional use of PL has been land application to recycle nutrients, 
predominantly N, P and K (Lorimor and Xin, 1999). Due to the high costs associated with 
transportation, the majority of fresh PL is spread within a 5km radius of the poultry production 
facility. Furthermore, until recently, application rates were calculated to meet the N 
requirement of the crop, which often results in an elevated and unnecessary P application. 
This means that much of the land surrounding intensive poultry facilities have reached their 
agronomic and regulatory threshold for soil P. This threshold means that the farmer gains 
notable agronomic benefits with higher crop yields, whilst excess P (and N) is leached into 
nearby watercourses and impacts water quality (Harmel et al., 2009). Therefore, it is necessary 
to adopt an improved assessment of PL usage and processing within agro ecosystems to 
determine optimal applications for soil health, agricultural yield, and water quality. This 
assessment also needs to consider the economic impact of utilising PL as a fertiliser or 
diverting its use into biomass for energy production. 

To reduce the economic and environmental impact of waste disposal options for PL, an 
alternative option to land spreading, which has been considered more frequently over recent 
years, is the valorisation of this waste stream. There are numerous strategies for poultry 
manure valorisation currently described in the literature. These include composting of PL 
(Vandecasteele et al. 2014), thermal energy recovery using pyrolysis (Kim et al. 2009), 
combustion (Lynch et al. 2013) and gasification (Palma and Martin, 2013) or biological energy 
recovery through the use of technologies such as anaerobic digestion (AD) (Rao et al, 2013). 
This research will complete a social cost benefit and life-cycle comparison between traditional 
land spreading of PL with AD coupled with energy recovery technology. 

Aim and Objectives 

The primary aims and objectives of this research are shown in Table 1; in brief the research 
compares the use of AD with combined heat and power (CHP) energy recovery and organic 
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fertiliser production with traditional land spreading of PL; this includes an assessment of 
economic viability and social and environmental impact evaluation.  

Primarily, the theoretical system is modelled using baseline data from previously published 
literature along with calculated data from Ecoinvent and includes a ‘hot spot’ analysis 
assessment to determine the significant parameters within the foreground system that have 
the largest social and environmental impacts. In the sensitivity analysis, some of these 
parameters are varied to determine their effect on the overall results. As previously explained, 
the system has been expanded to include background processes to allow for the impact of 
energy and materials recovery from the waste to be considered; this includes the production 
of inorganic fertiliser through the production and use of digestate, along with the 
displacement of fossil fuel produced electricity and heat energy using CHP energy recovery.  

Ideally, site-specific data would be used for the foreground processes; however, the use of AD 
for PL valorisation is a relatively new and complex topic with limited practical application; 
therefore, theoretical and average data from the literature has been used. As Heijungs and 
Guinée (2007) caution that LCA studies sometimes produce conflicting results, all assumptions 
made in this research are described as succinctly as possible to enable a reproduction of the 
analysis. The study focuses on five LCA impact categories that have been chosen due to their 
environmental significance. These are global warming potential (GWP) as an indicator of 
climate change and greenhouse effect; acidification potential (AP) as an indicator of the 
production and impact of acid rain; freshwater eutrophication (FE) as an indicator of the 
eutrophication impact of nitrate and phosphate leaching into freshwater; photochemical 
ozone potential (POP) from the emission of NOx and the creation of photo-smog, and 
particulate matter formation potential (PMFP) from the emission of small particulate matter 
(PM2.5) and its effect on human health. These impact categories are internationally accepted 
through ISO 14044 recommendations (ISO, 2006). A 100-year time horizon assessment has 
been used as per the IPCC recommendations. 

Table 1. Project aims 

Aim Purpose 

Assess Economic Viability Determine the economic feasibility of anaerobic digestion as a valorisation 
method compared to traditional land spreading 

Environmental Impact 
Evaluation 

Evaluate the potential environmental benefits and drawbacks of each option in 
terms of emissions and eutrophication 

Social Cost-Benefit Analysis Perform a comprehensive social cost-benefit analysis (SCBA) to capture both 
economic and social implications of each method 

Table 2. Project objectives 

Objective Purpose 

Cost Analysis    a. Calculate the initial investment costs for AD, including construction, 
equipment, and setup expenses. 
   b. Estimate operational costs for AD, considering OPEX and maintenance costs 
   c. Compute the net present value (NPV), benefit-cost ratio (BCR), and payback 
period for AD and land spreading. 

Environmental Impact 
Assessment 

   a. Quantify emissions from AD and traditional land spreading. 
   b. Estimate the social cost of emissions using appropriate valuation methods. 
   c. Assess the cost of eutrophication caused by nitrate and phosphate leaching 
and compare it across different methods. 

Sensitivity Analysis    a. Conduct sensitivity analyses to assess the impact of changing key 
parameters on the economic indicators and environmental outcomes. 
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Methods 

Whilst there are numerous strategies that have been developed and presented in the 
literature that attempt to integrate LCA into process design and optimisation frameworks, the 
majority of these are within the chemical process design field. Indeed, Grossmann and Guillén-
Gosálbez (2010) stated that the major limitation of LCA application to process systems is the 
lack of systematic methodology for melding the LCA impacts with good economic 
performance. This was largely addressed by the multi-objective optimisation approach 
presented by Gerber, Gassner and Marechal (2011), which focused on environmental, 
economic, and thermodynamic impacts on life cycle performance. However, these authors 
were focused on just one product, that of electricity from biowaste. In this study, two products 
are considered: energy and organic fertiliser production. As such, a modified LCA and techno-
economic approach have been used.  

The economic evaluation follows a cost-benefit analysis approach. This model focuses on the 
estimate of capital and operational costs and the associated calculation of the net present 
value, benefit cost ratio and payback period. The estimate of capital costs is based on 
equipment and installation cost estimates provided by IRENA (2012). A financial spreadsheet 
was designed and utilised to incorporate the costs and benefits of each valorisation method. 
The capital cost was estimated based on the required digestor size to treat the total mass of 
feedstock (20,000 tonnes of PL). A dynamic interest rate function is applied to appropriately 
discount future cash flows considering changing economic conditions. A constant salvage 
value is considered for the AD to account for asset value at the end of its life. Net present 
value (NPV) and benefit-cost ratio are calculated using time series data and dynamic interest 
rate. The formula for calculating NPV is as follows: 

𝑁𝑃𝑉 =  
𝑅𝑡

(1 + 𝑖)𝑡
 

where 𝑁𝑃𝑉 = Net present value; 𝑅 = net cash flow at time t; 𝑖 = discount rate and 𝑡 = time of 
the cash flow.  

Benefit cost ratio (BCR) is calculated as follows: 

𝐵𝐶𝑅 =  

∑
𝐶𝐹𝑡 [𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠]

(1 + 𝑖)𝑡
𝑛
𝑡=0

∑
𝐶𝐹𝑡 [𝐶𝑜𝑠𝑡𝑠]

(1 + 𝑖)𝑡
𝑛
𝑡=0

 

where 𝐶𝐹 = cash flow; 𝑖 = discount rate; 𝑛 = number of periods; and 𝑡 = time of the cash flow. 
OPEX costs incorporate the annual running costs of the plant and are split into fixed and 
variable costs. Fixed costs include labour, scheduled maintenance, routine component 
replacement and insurance, whilst variable costs include non-biomass fuel costs, unplanned 
maintenance, equipment replacement and incremental servicing costs. These OPEX costs are 
estimated using estimates provided by IRENA (2012). All costs are presented on a 2023 basis 
and the main financial assumptions are tabulated in Section 3. 

For the environmental impact, a modified LCA approach has been utilised. Clift (2013) explains 
that life cycle assessment (LCA) is one of the most significant and widely utilised tools for 
assessing and comparing the environmental impact of alternative technologies. The tool 
enables the quantification of energy and materials within a complete supply chain, or life 
cycle, of services or goods, whilst also identifying wastes and/or emissions from these life 
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cycles (Azapagic et al., 2003). Furthermore, Azapagic et al., (2003) explain that LCA enables 
the identification of system ‘hot spots’, which are the areas that exert the most significant 
impacts on the environment, thereby enabling the modification of systems to more 
sustainable approaches. However, from this it is necessary to determine a rational approach 
to allocate the environmental costs or impacts of each of the processes. This allocation issue 
has been debated by Clift et al. (2000) and Heijungs and Guinée (2007) but ably clarified by 
Eriksson et al. (2007) who support the broadening of the system boundaries to account for 
the environmental benefits of recovered resources whilst including the avoided burdens 
associated with conventional systems. An avoided burden is effectively a saved impact that 
arises from the reuse, recycling or energy generation from waste and is generally subtracted 
from the categorised impacts to generate a reduced overall environmental impact. This is the 
approach that is applied throughout this research. As such, ‘foreground’ and ‘background’ 
processes are initially identified as per the Integrated Waste Management approach defined 
by Clift et al. (2000). The ‘foreground’ processes are those that are directly influenced by 
study-based decisions, whilst the ‘background’ processes are those that interact with the 
foreground processes through the supply or receipt of energy or materials.  

There is always an element of uncertainty with LCA, particularly when theoretical, rather than 
site specific, data are used. For this study, average data is used that has been obtained and 
collated from previously published, peer-reviewed literature. In addition, calculated emission 
data published by Ecoinvent has been used where available. 

To improve the robustness of the process, a sensitivity analysis is performed by running Monte 
Carlo simulations of the model’s 14 variables: 

These variables are: 

• Biogas yield (m3) 

• Biogas potential (l/kg) 

• Biogas conversion efficiency (%) 

• Methane content (%) 

• Total energy production (kWh) 

• Electrical conversion efficiency (%) 

• Heat conversion efficiency (%) 

• Total electricity production (kWh) 

• Total heat production (kWh) 

• Parasitic load percentage (%) 

• Mineral fertiliser cost (£) 

• Fixed O&M costs (£) 

• Variable O&M costs (£) 

• Capital cost (£) 

 

These variables were given range values that were determined from previously published 
literature. The results were studied under two different levels of analysis; Analysis 1 considers 
purely economic parameters (CAPEX, OPEX, yield, energy production, etc) whilst Analysis 2 
considers all these costs plus the costs of environmental emissions (GWP, AP, FE, etc). All 
financial parameters were calculated over a 20-year life span, considered to be feasible for an 
AD plant. For the land application method, mineral fertiliser cost is the only considered 
variable. 

For the Monte Carlo simulation, all of the variables were considered at once; therefore, 
multiple regression analysis was performed in order to determine the most influential 
variables on NPV. Limitations include reliance on input data quality, potential uncertainties 
due to changing economic conditions, and evolving technology performance. 
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Assumptions 

Biogenic CO2 

Emissions of biogenic CO2 are defined by the US EPA (2011) as “emissions from a stationary 
source directly resulting from the combustion or decomposition of biologically based 
materials other than fossil fuels”. In line with the approach used by Christensen et al. (2009) 
and Manfredi et al. (2011), this research considered biogenic CO2 emissions as neutral with 
regards to global warming, as they are a part of the natural carbon cycle. Therefore, for the 
purpose of this study, the biogenic carbon within the organic matter (PL or digestate) is 
sequestered into the soil and removed from the atmosphere, therefore its characterisation 
factor from organic sources is considered to be zero throughout the study.  

Transportation 

As this research is following a comparative LCA approach, processes that are identical within 
each alternative are omitted as they are not considered to impact on the overall results 
(Finnveden, 2008). This includes the transportation of PL between stages, from the PL house 
to the storage tank or stockpile and from here to the field. The cost of spreading of the PL and 
digestate is also valued equally, despite potentially different distances being covered from 
stockpiles and the treatment plant. As explained by Patterson et al. (2011), the environmental 
impact of transportation distances on LCA results is arbitrary and therefore is unlikely to 
impact on the overall result.  

System expansion for electricity, heat and fertiliser production 

To ascertain the impact of the background process, it is necessary to apply a system expansion 
approach. This involves the identification of the type and quantity of the product, i.e., energy 
and digestate / organic fertiliser, that is replaced by the technology (Fruergaard and Astrup, 
2011). Consequential LCA studies often use marginal technology data and are focused on the 
significances of policy or broader changes; conversely, attributional LCA studies are used to 
describe a proposed or specific current process and often use average technology data to 
calculate the avoided burdens linked with the system expansion (Fruergaard et al., 2009). As 
this research focuses on a specific, though assumed, process, it is a form of attributional 
analysis, thereby allowing the use of average data for organic fertiliser and energy production 
to be used.  

The avoided burdens of electricity and heat export to the National Grid have been collated 
from data presented by Evangelisti et al., (2014) and utilises an average UK mix of technologies 
and fuels. The results of the avoided burdens per kWh of energy produced (heat and 
electricity) are shown in Table 3 and reported for four of the five environmental impact 
categories considered (no data was reported for particulate matter formation). 

Table 3. Avoided burdens per kWh of energy for substitution of heat and electricity 
produced (Evangelisti et al, 2014). 

Impact category National Grid mix UK Thermal energy natural gas 

Global warming potential (kg CO2 eq) 0.167 0.004 

Acidification potential (kg SO2 eq) 0.00058 0.00001 

Photochemical oxidant potential (kg NOx eq) 0.000032 0.000001 

Nutrient enrichment (eutrophication) potential 
(kg NO3 eq) 

0.00051 0.000008 
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In order to calculate the avoided burdens through the substitution of PL or digestate as an 
organic fertiliser on inorganic fertiliser production and use, the nutrient availability to the 
crops has been used. Inorganic fertiliser substitution has been discussed previously in the 
literature (Bernstad and la Cour Jansen, 2011; Moller et al., 2009). Moller et al. (2009) 
supported the use of average burden calculations for the production of N, P and K fertilisers. 
As such, for the purpose of this study, average data from a fertiliser life cycle assessment by 
Skowroñska and Filipek (2014) has been used, as shown in Table 4. Table 5 shows the 
economic LCA values per kg of each gaseous emission for each impact category. 

Table 4. Avoided burdens associated with digestate or PL use compared to inorganic 
fertiliser (from Skowroñska and Filipek, 2014). 

Parameter Unit Avoided burden 

GWP  kg CO2 eq/kg fertiliser produced 1.79 

AP kg SO2 eq/kg fertiliser produced 6.07 

FE kg PO4 eq/kg fertiliser produced 0.53 

Table 5. Economic LCA values for each environmental impact category. 

LCA Values GBP (£) 

1kg CO2 eq 0.11 

1kg SO2 eq 7.99 

1kg PM2.5 31.96 

1kg PO4 eq 4.31 

1kg NMVOC eq 4.58 

 
Use of digestate as a replacement fertiliser 

Whilst digestate is a by-product from AD, its use as a substitute for inorganic fertilisers is 
becoming more mainstream. For the purpose of this study, it is assumed that all produced 
digestate is spread on the land as a fertiliser with the quality of the digestate mirroring that of 
the feedstock. This follows the method proposed by Moller et al. (2009) whereby it is assumed 
that the AD process results in no net loss of nitrate, phosphate, or potassium. Application of 
the digestate and PL as organic fertiliser has been assumed on a rate of 120:60:40, N:P:K, 
respectively, which is considered suitable for standard maize cultivation and complies with 
the use of agricultural fertilisers within the UK (UK Government, 2008). 

Case study scenario 

Tables 6 – 9 provide the data and source of assumptions and values used in the model along 
with the theoretical farm situation. Table 6 describes the theoretical farm situation, detailing 
volume of PL, NPK application rate, electricity and heat usage in the poultry house along with 
key parameters that are included or omitted from the study. 

Table 6. Theoretical Farm Situation 

Assumption Value Notes 

Poultry litter quantity 20,000 tonnes Broiler poultry farm housing 14,500 birds 

Land application radius 5km Surrounding land of 6250 hectares 

NPK application rate 120:60:40 Standard maize cultivation 

Electricity consumption 20,341 kWh/yr For poultry unit operations 

Heat consumption 140,000 kWh/yr For poultry unit operations 

Scale of valorisation options Small-scale on-
farm technology 

Technologies built on farm premises 
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Transportation and 
emissions, excluding 
spreading costs 

Not included Transport between farm and field considered to be similar 
for each method so not included 

GHG Emissions from poultry 
unit 

Not included Assumed to be the same for both methods 

Cost and emission 
differences 

Calculated Between fertiliser / digestate / and PL applications  

Economic analysis   

Spreading costs £10.15 per tonne Literature values range from £9.76 /t (Vervoort and 
Keeler, 1999) to £10.54 /t (Huijsmans et al., 2004) 
adjusted for inflation and exchange rate. 

Table 7 outlines a number of assumptions for each of the valorisation methods that were 
considered likely to impact emissions within the model. 

Table 7. Assumptions for Different Valorisation Methods 

Assumption Land spreading Anaerobic digestion 

Energy source for poultry house (Electricity National Grid CHP 

Electricity cost £0.34 per kWh  

Energy source for poultry house (Heat) LPG CHP 

Heat cost £0.10 per kWh  

Poultry litter storage Field windrow Bunded, covered tank 

Maximum storage period 6 months N/A 

Table 8 details the digestor size and assumed hydraulic retention time used for the case study.  

Table 8. Anaerobic Digestor Assumptions (fixed) 

Assumption / Calculation Value Reference / Notes 

Digester size calculation Size (m³) = Flow rate (m³) x 
Hydraulic retention time (days) 

 

Flow rate 125 m3/day Assumption: Given maximum daily 
feedstock flow rate 

Hydraulic retention time 40 days Mahdy et al., 2020 

Digester size 5000m3  

Table 9 provides the variable ranges that are included in the Monte Carlo simulation for the 
model sensitivity analysis.  

Table 9. Anaerobic Digestor Assumptions (variables) 

Assumption / Calculation Value Reference / Notes 

Capital cost  £4,188,990 - £9,934,275 IRENA, 2012 

OPEX Range 2.1-7% of installed cost IRENA, 2012 

Biogas potential Range 88 -226 l/kg fresh weight. Jurgutis et al., 2020 

Biogas production efficiency 45 - 60%  

Methane content of biogas 48 - 62% Assumption 

Electrical conversion efficiency 30 - 50%  

Heat conversion efficiency 30 - 50%  

Parasitic load (electricity) Range 4% - 31.4% of the electrical 
energy production 

Gikas, 2014; Murphy and Power, 
2006; Murphy and Thamsiriroj, 
2013; Walker et al., 2017 

Parasitic load (heat) 22.65% (Range 15% - 30.3%) of the 
heat energy production 

Aui, Li and Wright, 2019; Walker et 
al., 2017 

 

 



Proceedings of the 6th Symposium on Agri-Tech Economics for Sustainable Futures 130 

Results 

Analysis 1. Economic Analysis 

The average net present value (NPV), benefit cost ratio (BCR), payback period and modified 
internal rate of return for the two options were calculated from a purely economic viewpoint 
and are recorded in Table 10. Figure 1 shows the NPV range for the two methods calculated 
through Monte Carlo analysis. Comparison of key financial parameters between land 
application and AD are shown in Figure 2.  

Table 10. Net Present Value (NPV) for 1 tonne of poultry litter (economic comparison) 

Valorisation Method NPV  
(£/t) 

BCR  
(return per £ invested) 

Payback 
period 

MIRR (%) 

Land spreading 1838.36 12.55 n/a n/a 
Anaerobic Digestion 707.17 1.63 5.34 6.86 

 

Figure 1. Sensitivity analysis results comparing NPV values for anaerobic digestion and land 
application. 

 

Figure 2. Comparison of the cash inflow and cash outflow of anaerobic digestion and land 
application. 
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Analysis 2. Economic and environmental analysis  

Average NPV and BCR were calculated for both methods using the Monte Carlo simulation. 
Due to the negative results, payback period and MIRR are not calculated. Table 11 presents 
the results.  

Table 11. Net Present Value (NPV) and BCR for 1 tonne of poultry litter (economic and 
environmental comparison) 

Valorisation Method NPV (£) BCR (return per £ invested) 

Land spreading - £5788.34 0.33 
Anaerobic Digestion -£1354.17 0.74 

 

The avoided burdens of fertiliser (4687 tonnes) and heat used (140,000kWh) and electricity 
produced (average 3648416.8kWh) were subtracted from the environmental emissions data 
to calculate and compare overall environmental costs for each method (Figure 3). In Figure 3, 
negative figures denote a net environmental gain when comparing each method against the 
use of equivalent mineral fertilisers and through National Grid electricity and heat substitution 
from the AD. 

 

Figure 3. Environmental cost comparison between land application and anaerobic digestion 
per tonne of poultry litter 
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The mean, standard deviation, min, and max data were collated from the Monte Carlo 
simulations of all ten variables and analysed alongside the NPV, BCR and payback period. This 
sensitivity analysis utilised all collated data, therefore, was focusing on the overall costs of 
each method, inclusive of environmental costs. Figure 4 shows the NPV comparison from this 
sensitivity analysis.   

 

Figure 4. NPV comparison between AD and land application from Monte Carlo sensitivity 
analysis 

 

This comparison displayed expected results, with the AD option showing a higher, therefore 
better, NPV than that of traditional land application. Whilst the comparison between the two 
options is notable, the range within the AD NPV is worthy of further investigation. A negative 
NPV value was expected from this analysis, as the emissions from the construction of the AD 
plant and associated operational emissions will have negative impacts on the environment; 
however, the sensitivity analysis showed that in certain scenarios, a positive NPV was gained. 
By ranking the data sets using NPV value, and selecting all of those with a positive NPV, further 
analysis was undertaken.  

Multiple regression analysis was carried out to determine the relationship between NPV and 
the independent variables. The correlation matrix is shown in Table 12.  
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Table 12. Multiple regression analysis – Correlation matrix (pearson) 
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By plotting the absolute correlation coefficients on a tornado chart, the variables with the 
strongest influence can be determined (Figure 5).  

 

Figure 5. Correlation coefficients for the 14 independent variables and their influence on 
NPV. 
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Discussion 

Table 10 provided the NPV, BCR, payback period and MIRR for AD compared with traditional 
land application from a purely economic viewpoint. The payback period of 5.34 years for the 
AD plant is similar to the findings of Kabir et al. (2015) and Orive et al. (2016), who reported 
<8 years and 6.7 years, respectively, in their techno-economic assessments of AD 
performance. Whilst neither of these studies considered PL as a feedstock, the digestor size 
and feedstock volume are comparable to the scenario described in this study. In addition, the 
NPV of £707.17 per tonne of feedstock is comparable to that reported by Li et al. (2021) 
($972.7 per tonne of feedstock) but far higher than those reported by Li et al. (2020) ($75 per 
tonne feedstock). However, the latter study compared 2 systems in 3 different scenarios, all 
of which were purchasing a lower methane potential feedstock, therefore, resulting in low gas 
production and low product sale revenue. Both aforementioned studies focused on small-
scale, on farm AD plants, suggesting they are directly comparable with our study.  

When including the environmental costs, the NPV of both AD and land application became 
negative, suggesting that neither option is economically and environmentally viable. This 
finding is supported by Bora et al. (2020) in their comprehensive LCA and TEA study focusing 
on multiple valorisation options for PL. There are, however, several key differences between 
this study and that of Bora et al. (2020). Firstly, the Bora study uses a real scenario in the USA, 
rather than a theoretical UK scenario. Secondly, the volume and composition of the PL differ 
considerably in our study, thereby altering the required digestor size, capital and operational 
costs, biogas yield and associated energy production. Furthermore, Bora et al. (2020) did not 
use PL as a direct AD feedstock but used hydrothermal liquefaction as a pretreatment step.  

The five environmental impact categories considered in the LCA component of this study have 
varying influence on the economic feasibility of the valorisation methods. There is an overall 
difference of £387.20 per tonne of PL between AD (£149.9) and land application (£537.1), with 
particulate matter formation and acidification potential exerting the most influence with 
values of £207.42 and £328.21, respectively, for land application, and £130.36 and £54.32, 
respectively, for AD. These high values were expected for the traditional land application 
approach, due to high ammonia and hydrogen sulphide emissions during land application. 
There is a notable difference in these environmental impacts when comparing land application 
to AD, with a reduction of £49.42 and £273.89 per tonne of PL for particulate matter formation 
and acidification potential, respectively. However, despite the reduction, these two impact 
categories are still relatively high in AD and are the main contributors to the economic 
infeasibility of the scenario. With 1kg of particulate matter and 1 kg of sulphur dioxide being 
priced at £31.96 and £7.99, respectively, they are the two highest costing impacts out of the 
five considered. In order to understand the reasons for this, one needs to recognise the 
notable levels of hydrogen sulphide and ammonia that are emitted during the degradation of 
biomass during the AD process. Ammonia is easily oxidised to NO2, then hydrated to nitric acid, 
whilst hydrogen sulphide is oxidised to SO2 then hydrated to sulphuric acid, thereby both 
contributing the acidification potential. With regards to particulate matter formation, again 
ammonia is key as PM2.5 constitutes high levels of ammonium ions formed when ammonia gas 
reacts with NOx and SOx in the atmosphere. These levels can be reduced in AD through the 
upgrading of biogas to biomethane by implementing membrane separation, or water 
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scrubbing, followed by the use of a thermal power plant. This process would effectively lower 
the ammonia and hydrogen sulphide emissions to levels that are on a par with natural gas. 

Within AD, the GWP impact is also of note with a negative value, suggesting that AD has a 
positive impact on the environment. This negative figure is largely due to the avoided burdens 
of both fertiliser production and electricity production afforded by the use of AD. Indeed, 
whilst the GWP impact costs for AD amount to £12.82 per tonne of PL, the avoided burdens 
through energy and fertiliser productions amount to £47.59 per tonne of PL, thereby resulting 
in an enviro-economic gain of £34.77.  

With regards to the small number of positive NPV results arising from the Monte Carlo 
simulation, results of the multiple linear regression indicated that there was a very strong 
collective significant effect between the Biogas Potential, Biogas efficiency, Methane content, 
Electrical conversion efficiency, Heat conversion efficiency, Parasitic load value, Mineral 
fertiliser cost, Biogas yield, Total energy production, Fixed O&M Cost, Variable O&M cost, 
Capital cost, Total electricity production, Total heat production, and NPV, (F(7, 65) = 
893.38, p <.001, R2 =0.99, R2

adj =0.99). The individual predictors were examined further and 
indicated that Biogas Potential (t = -3.256, p = .002), Biogas efficiency (t = -37.564, p < .001), 
Methane content (t = 59.002, p < .001), Electrical conversion efficiency (t = -13.358, p < .001), 
Heat conversion efficiency (t = -44.538, p < .001), Parasitic load value (t = -41.758, p < .001) 
and Mineral fertiliser cost (t = 2.927, p = .005) were significant predictors in the model. 

The tornado chart in Figure 5 showed that mineral fertiliser cost is strongly positive, suggesting 
that the higher the price of mineral fertiliser, the more cost-effective AD becomes. This is 
obvious as the average avoided financial burden of fertiliser purchase from the Monte Carlo 
simulation is in excess of £2.7m. Conversely, biogas potential, biogas efficiency, methane 
content, heat conversion efficiency, and parasitic load are strongly negative, suggesting that 
the more energy that is produced, the lower the NPV becomes. This is surprising; however, 
this may be due to higher environmental impact emissions being associated with higher 
energy production.  

Within our study, it is assumed that there is no cost for feedstock or no financial value for the 
digestate fertiliser; these are scenarios that could have a significant impact on the economic 
feasibility of the AD plant. Furthermore, Renewable Heat Incentive payments, and other 
government initiatives, are also not considered. As such, further research should consider 
these aspects to determine the economic impact that these scenarios would have on the 
feasibility of AD use.  

Conclusion 

In conclusion, AD shows notable promise as a cost effective and environmentally beneficial 
valorisation option for PL. Whilst the average NPV from the Monte Carlo simulation for both 
land application and AD was negative, the simulation showed that it is possible to generate a 
positive NPV for AD with a favourable payback period through the operational optimisation of 
the technology. Surprisingly, the optimisation involves reducing the biogas and energy yield. 
Further research into this is required to fully understand the optimisation process. However, 
it should also be noted that the positive socio-environmental-economic NPV is also largely 
determined by the cost of mineral fertiliser as an avoided burden as the average cost of 
fertiliser needed exceeds £2.7 million and is the highest variable cost. Further research is also 
required to compare this valorisation method with other options, such as gasification, 
pyrolysis and incineration. By using the model created in this study, this comparison would 
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provide a comprehensive socio-enviro-economic model to evaluate the costs and benefits of 
these valorisation methods with AD, in order to determine the optimal technology. 
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Abstract 

Increasing demand for food with minimal traces of chemicals is challenging viticulture to move 
away from chemical weeding. In France, there is increasing trend towards mechanical 
weeding, but it is repetitive, labour intensive, and costly to farmers. Autonomous robotic 
systems may help tackle the labour challenge while also providing opportunities to improve 
input use efficiency and minimize CO2 emission. This study provides a cost benefit analysis of 
robotic mechanical weeding relative to conventional practices of chemical weeding and 
mechanical weeding using tractor based on a case study in France. The results show that the 
robotic system generates a little less net present value but considerably reduces labour and 
fuel use compared to conventional practice.  
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Introduction 

Rising demand for high quality food with minimal traces of chemicals is calling for sustainable 
intensification of food production. In viticulture, for example, due to growing pressure 
towards pesticide-free weeding (Lucchi & Benelli, 2018; Jacquet, et al., 2021), mechanical 
weeding is considered but it involves high direct cost (mainly labour and fuel cost) to farmers 
when done with conventional tractor operation. In the face of increasing scarcity and high 
cost of labour in European agriculture, autonomous (robotic) solutions for repetitive, time-
consuming and tedious field operations such as mechanical weeding could help tackle the 
labour challenge in European agriculture (ROBS4CROPS, 2020). Robotic applications are 
hoped to offer promising opportunities to improve input use efficiency (Gonzalez-de-Santos, 
et al., 2017), curb GHG emission (Gonzalez-de-Soto, et al., 2015), and minimize soil 
compaction (Duckett, et al., 2018) which potentially translates to yield gain (Shockley, et al., 
2019).  

An EU funded project called ROBS4CROPS (R4C) aims to develop reliable and fully autonomous 
robotic solutions for weeding and spraying of crop protection chemicals. Testing and further 
development of the robotic solutions undertakes in Large Scale Pilots (LSPs) in Greece, France, 
Spain and the Netherlands on real farm conditions. Farmers’ groups who are actively engaged 
in the project run the LSPs. The R4C pilot in France is aimed to reduce environmental impact 
of vine growing by replacing chemical weed control in vineyards with mechanical weeding. 
The predominant practice of vine grape weeding in Loire-valley region of France is application 
of crop protection chemicals. However, with increasing pressure towards minimal pesticide 
use, mechanical weeding is gaining more attention. However, mechanical weeding with a 
tractor driver is economically not attractive (5-7 passes per year, total cost 800 € ha-1). 
Moreover, it is difficult to attract and retain experienced tractor drivers who can operate the 
different weeding implements that are used. According to local LSP managers of the 
Robs4crops project, labour is indeed an issue for the farmers in the case study area.   

Despite expectations, the costs and benefits of such robotic solutions are not yet clear. There 
is hence a need to provide context relevant cost-benefit estimates for farmers and 
stakeholders. The main objective of this study is to provide farm level cost benefit analysis of 
using autonomous mechanical weeding in the case study area. The costs and benefits 
associated with the R4C robotic weeding system were evaluated against existing practices of 
chemical weeding and mechanical weeding using conventional tractor. 

Methods 

This study employs a farm-level cost-benefit model from the farmer’s perspective. Major 
components of the economic model include operation schedule and farm characteristics, 
vehicle and implement performance characteristics; agronomic, weather and labor availability 
constraints; investment; robot autonomy and human monitoring/supervision; labor time and 
transport; and input consumption. Induced effects such as soil compaction and health risk are 
under consideration but not included in the current results due to lack of estimates.  

In the French LSP, CEOL robot, which is developed specifically for vineyards, is used. CEOL is a 
diesel-powered autonomous robot suited for vineyard weeding. CEOL has a length of 1.7 
meter, adjustable width of 0.72-1.1m, track width of 18cm, and lifting capacity of 300 kg. Its 
positioning and guidance box (AGCbox) is guided by GNSS RTK with centimetre precision 
(AgreenCulture, 2022). It has autonomous operating speed of 6 km/hr and remote-control 
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range of 100 meters. It is equipped with safety sensors (sensitive bumper and obstacle 
detection).  

The current study focuses only on weeding with-in rows because CEOL is not used for 
between-row weeding. Error! Reference source not found. shows implements and robotic p
latform used for the French LSP. The same implements are used for the conventional and 
robotic system, but the later also includes sensors, software and supporting systems needed 
for full functionality of an autonomous system.  

 

Serrated disc 

 

Inter-vine knives 

 

CEOL robot with implements attached to it 

 

Harrow disc 

 

Kress fingers 

Figure 1 Implements and robotic platform at French LSP 

Table 1 shows an operation schedule and the implements used for each operation. Chemical 
weeding is done 3 times during a production season (November, March and June) with 
glyphosate as the main product used.  

Table 1 Mechanical weeding schedule 

Weeding operation  Implement used November February March April May June July 

Ridging Serrated discs 1  1     
Cut weed roots Inter-vine knives  1  1    
Hoe the soil Harrow disc*     1   
Scrap soil surface Kress-fingers      1 1 

* Also called Lump-breaker discs 

Cost estimate includes capital cost (for vehicles, implements, and sensors) and operating cost 
(labor, fuel, herbicide, water, transport, soft wares, and repair and maintenance (R&M). Labor 
hours for the robot consider 15% human operation. It is assumed that a person 
supervising/monitoring a robot can use 75% of the time doing other tasks (e.g., field 
monitoring, planning, etc).   

An attempt was made to incorporate a range of relevant aspects in the estimation of costs 
and benefits of the systems considered. A very fundamental concept having serious 
implication in the cost estimation is working capacity (worked area per time unit also referred 

to as area capacity. It is calculated as: 𝐴𝑟𝑒𝑎𝐶𝑎𝑝 =
𝑤 .  𝑠 .  𝐹𝐸

10
, where 𝐴𝑟𝑒𝑎𝐶𝑎𝑝 = area capacity 

(ha/h); w= working width; and s= working speed (km/h) and FE=field efficiency (assumed to 
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be 70%). Transport time per hectare per operation day was calculated by dividing estimated 
transport time from barn to field and between fields by the farm area that can be operated 
per working day for the respective systems considering agronomic, labour availability and 
weather constraints. Annual ownership cost includes depreciation cost, interest cost, housing 
and insurance. Housing and insurance costs are each assumed to be 1% of vehicle purchase 
price. Operating cost includes cost of labor, fuel, transport, herbicide, water to make spray 
solution, software and utilities, and repair and maintenance costs. In line with (Maria G. 
Lampridi, 2019; Vahdanjoo, et al., 2023), repair and maintenance costs were estimated as:  

𝑅𝑀𝑐𝑜𝑠𝑡 = 𝑅𝐹1 ∗ (
ℎ

1000
)

𝑅𝐹2

∗ 𝑃𝑃; where 𝑅𝑀𝑐𝑜𝑠𝑡=repair and maintenance cost (€); 

h=accumulated working hours of machinery (h); RF1 and RF2 are repair and maintenance 
factors; PP=purchase price of machinery (€). RFs used for vehicle and implements are (0.003, 
2) and (0.17, 2.2), respectively.  

Investment cost (vehicle and implements), assumed life time and working capacity (speed and 
width) of vehicles/platforms for the respective cases under comparison are provided in Table 
2.  

 

Table 2 Vehicle lifetime, investment cost and operating features 

Parameter 
Tractor 
chemical 
weeding  

Tractor 
mechanical 
weeding 

Robot 
mechanical 
weeding 

Vehicle life time in years 15 15 10 

Vehicle available hours per year 1067 1067 1000 

Vehicle investment (€/unit of vehicle) 90000 90000 110000 
Implements investment (€)* 14000 13050 13150 

Working width (m) 4 2 2 

Working speed (km/h) 8 5.75 4.5 

Available (workable) hours per day for weeding operation (h) 6 8 10 

*In addition to implements shown in Figure 1, the robotic system also includes sensors (speed and work quality 
monitoring sensors). The only implement for the chemical weeding case is the sprayer (including tank).  

 

Net Present Values (NPV) are calculated using standard formula real discount rate of 4%. The 
study adopted a partial budget approach where only costs and benefits that are believed to 
vary between the conventional and robotic systems are considered.  

Data used in the economic model were compiled from several sources: literature, R4C project 
internal documents, discussions with project partners (expert opinion), and historical farm 
account data. Most of the operation parameters (schedule, working speed and width, etc.), 
input consumption (labour, fuel, herbicide), investment, price (input price + crop price), yield 
was provided by Terrena, which is a farm advisory company implementing the R4C LSP in 
France. Data on accounting parameters, indicators for & regulation of socio-environment 
impacts and access modes to technology and know-how were compiled from a combination 
of literature review and expert opinion. Given that the robotic system is at an early yet 
promising stage of development, some of the model parameters involve uncertainties (e.g., 
investment cost, supervision time, work capacity). To partly account for these uncertainties, 
sensitivity analyses have been conducted. 
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The following working assumptions were made for the basic scenario:  

• Apart from weeding, other management practices remain the same. 

• Either chemical or mechanical weeding but not a combination 

• Crop yield and quality is the same under robotic and conventional systems. 

• At current state of technology (and in the coming few years), a person can remotely 
supervise only one robot during farming operation. 

• No extra insurance and storage cost for robotic implements. 

Results 

The economic calculations are done for a reference farm of 30 ha with average field size of 5, 
and average ‘field to field’ and ‘farmstead to field’ distance of 2 km. As can be read from Table 
3, the robotic system generates relatively higher annual NPV compared to conventional 
mechanical weeding (€1265 versus €1165). Labor use and fuel consumption is also 
considerably reduced by about 29% and 69%, respectively. The latter is due to the big 
difference between per hectare fuel consumption of the reference tractor and CEOL robot for 
the target operation (15 L versus 4 L). 

Table 3 Results from basic scenario 

  Measurement unit 
Chemical 
weeding: 

Tractor 

Mechanical weeding: 
Tractor 

Mechanical 
weeding: Robot 

Operation hours  h/ha/yr 1.12 8.93 10.36 

Area capacity per day ha/day 13.44 6.44 6.3 

Labour use h/ha/yr 2 10 7 

Fuel consumption L/ha/yr 20 116 40 

NPV €/ha/lifetime 13747 12772 10008 

NPV per annum €/ha/yr 1237 1149 1234 

 

Due to the ‘same yield’ assumption, the difference in net benefit comes from differences in 
cost among the cases considered. Thus, understanding differences in the composition of cost 
components is important. In the case of the robotic system, ownership cost accounts for about 
55% of total cost in wide contrast to conventional chemical weeding (17%). Owing to longer 
use hours of machinery, R&M cost accounts for a considerable share in the case of mechanical 
weeding. The fact that the share of R&M cost for robotic mechanical weeding compared to 
conventional mechanical weeding is relatively lower does not mean that R&M cost per year is 
lower under the robotic system. It is rather a reflection of shorter discounting period for the 
robot given the functional form used to calculate R&M cost which grows exponentially with 
the accumulated hours of machinery use. For the mechanical weeding cases, fuel cost 
accounts for only 5% and 14% of total cost under respectively the robotic and conventional 
systems, whereas the corresponding share of labour cost is about 21% and 27%. Results from 
sensitivity analysis (not reported in this paper) show that the relative economic attractiveness 
of the robotic system (as compared to conventional practice) is sensitive to changes in 
investment cost, working speed, fuel and labour price, among others.  

Discussion and Conclusion 
With possibly lower investment cost for sprayer, and few operation repetitions needed per 
season, chemical weeding could have significantly lower direct economic cost for farmers. 
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However, the growing pressure against its use (owing to social and environmental costs) is 
shifting attention towards mechanical weeding. This study intended to assess the potential of 
a robotic system to help tackle the labour challenge in an economically viable manner for 
farmers. Under the working assumptions and baseline data used for this study, the robotic 
system significantly reduces labour and fuel use compared to mechanical weeding with 
tractor. Relative economic attractiveness of mechanical weeding with robot (compared to 
conventional system) is sensitive to changes in working speed, investment cost, and prices of 
labour and fuel, among others.  

The findings show that ownership as well as repair and maintenance costs account for a 
significant share of total cost for the robotic system implies that marginal reductions in 
investment costs for the robotic system would significantly improve its net benefit to farmers. 
Given the functional form and parameters used in the estimation, R&M costs appear to be 
high. This needs to be validated based on real R&M cost data possibly from the case study 
area. Further investigation is underway (in close collaboration with local partners running the 
R4C experiment) to gain improved data inputs especially related to the robotic system. 

Further advances in sensor technologies, communication platforms, better internet 
connectivity on farms, etc., would create conducive environments for robotic solutions and 
bring about rewarding benefits for farmers and stakeholders.  Long-term success of robotic 
systems of course depends on accessibility of complimentary services (such as robot servicing, 
data analytics), clear regulations and compliance regarding data ownership, context-relevant 
market models, etc., all calling for quality collaboration among stakeholders.  
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Abstract 

Reducing fertilizer and increasing efficiency are inevitable requirements to solve the structural 
contradiction of agricultural development and promote the sustainable development of 
agriculture. A relatively high proportion of small farmers is the basic pattern of Chinese 
agriculture, and small-scale and decentralized management are generally regarded as the key 
organizational and institutional obstacles to reducing fertilizer and increasing efficiency. This 
paper reveals the internal logic of organizing production resources through agricultural 
productive service agent to achieve the desired goal of fertilizer reduction and efficiency 
increase in terms of household management organization quality. Using the provincial (city 
and district) panel data in China from 2000 to 2020 to empirically estimate the impact of 
agricultural productive services on fertilizer use intensity and fertilizer application efficiency. 
The results show that agricultural productive services can significantly reduce the intensity of 
chemical fertilizer use and improve its efficiencies, which has an obvious effect of fertilizer 
reduction and efficiency increase. After using the instrumental variable method to overcome 
the potential endogeneity problem of the model, the basic conclusions still hold. Further 
heterogeneity analysis shows that the organization of production resources through inter-
regional services does not have a significant effect on fertilizer reduction and efficiency 
increase. Based on these, this paper draws relevant policy implications for promoting fertilizer 
reduction and efficiency increase based on agricultural productive services. 
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Extended abstract 

Introduction 

Weed control is an essential operation in commercial agriculture. Weeds compete with crops 
for sunlight, air, space, moisture and nutrients, and harbour vertebrate and invertebrate 
pests, resulting in reduced crop yields and quality (Epee Misse et al., 2020; Perez-Ruiz et al., 
2012; Quan et al., 2022). Due to their relatively low cost and modest labour requirements, 
herbicides have become the most common weed control strategy in conventionally grown 
row crops (Griffin and Lowenberg-DeBoer, 2017; Pandey et al., 2021). Despite providing 
economic benefits, the persistent use of herbicides bears several ecological and social risks. 
These include a decline in off-target plant species, contamination of soil and water resources, 
soil acidification, threats to workers’ safety, and consumer hazards caused by herbicide 
residues in food (Bates et al., 2012; Jacquet et al., 2022; Quan et al., 2022; Wei et al., 2010). 

A reduction in ecosystem services and the development of herbicide-resistant weed 
populations perpetuate herbicide use in a negative feedback loop (Bates et al., 2012; Kunz et 
al., 2018; Pandey et al., 2021; Quan et al., 2022; Wei et al., 2010). For, example, a study by 
Varah et al. (2020) reported that resistance of Alopecurus myosuroides, commonly known as 
black-grass, has an annual cost of £0.4 billion in England. In the UK, the development and 
adoption of innovative weed control practices are supported by regulatory frameworks that 
aim to mitigate the risks associated with pesticide use. For example, the Plant Protection 
Products (Sustainable Use) Regulations of 2012 required the UK Government to enact a 
National Action Plan promoting the sustainable use of pesticides (DEFRA, 2013; UK 
Government, 2012). Considering the heavy reliance on herbicides of UK farmers (FERA Science 
Ltd, 2021), solutions such as autonomous mechanical weeding (AMW) may play a key role in 
the UK transition to agroecological farming. However, trade-offs with short-term profitability 
and other farm-level goals must be considered. 

The hypothesis of this study is that, regardless of the ecological orientation of a farmer 
decision-maker, the replacement of herbicide broadcasting (HB) with AMW depends on the 
following economic factors: (i) the cost of the AMW equipment; (ii) the reduced labour needs 
in autonomous farming; (iii) yield penalties resulting from factors linked to the AMW system; 
and (iv) premium prices paid for herbicide-free crops.  

Methods 

To investigate the interactions between decision-maker types and the adoption of AMW on 
UK arable farms, the present study built a multi-objective optimisation tool based on the 
Hands Free Hectare Linear Programming model (HFH-LP) developed at Harper Adams 
University (see Lowenberg-DeBoer et al., 2021). The model is based on a weighted goal 
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programming technique (Hazell and Norton, 1986: p.88), and coded via the General Algebraic 
Modelling System (GAMS Development Corporation, 2023). It uses UK farm budget data from 
Agro Business Consultants (2022) and Redman (2022). The multi-objective HFH-LP model 
considers three farm-level goals, namely: ROLMRT1, soil compaction, and greenhouse gas 
emissions. These goals are combined with four weed control treatment scenarios and two sets 
of objective function weights reflecting the economic and ecological orientation of the 
decision-maker. The modelled farm is a 295-ha farm located in the UK West Midlands and it 
is divided in 12-ha fields. 295 ha is the average farm size above 100 ha in England (DEFRA, 
2022), while 12 ha is the average field size in the UK West Midlands (ESDAC, 2023). The model 
allocates farm resources in such a way that decision-maker utility is maximised, and 
constraints related to factors of production are not violated. The objective function used in 
the model is as follows:  

        min 𝐺 =  𝑤1(
𝐺1

−

𝐺𝑜𝑝𝑡
) + ∑

𝑤2

2

3
𝑔=2 (1 −

𝐺𝑔
−

𝐺𝑤𝑟𝑠
)                                                                 (1) 

Where, G = the utility loss of the decision-maker to be minimised by the model; w1 = the 
economic weight assigned to the ROLMRT goal; w2 = the ecological weight assigned to the two 
ecological goals; Gopt = the maximum ROLMRT that can be achieved by the modelled farm 
business; G1

- = the ROLMRT deviation from Gopt; Gwrs = the highest levels of deep soil 
compaction and direct GHG emissions that can be generated on the modelled farm; Gg

- = the 
deviations from Gwrs for the two ecological goals; g = goal indexes, with g = 2 for deep soil 
compaction and g = 3 for direct GHG emissions. 

The crops included in this analysis are winter wheat, spring barley, winter oilseed rape, spring 
and winter field beans, and sugar beet. The equipment sets used in the four scenarios for 
operations other than weed control are equally divided between conventional (i.e., human-
driven) and autonomous. The different weed control strategies assumed in the scenarios are: 
(i) conventional HB in crops other than sugar beet + AMW in sugar beet; (ii) AMW in all crops; 
(iii) autonomous HB in crops other than sugar beet + AMW in sugar beet; and (iv) AMW in all 
crops. The AMW system used is the FD20 seeding and weeding robot developed by FarmDroid 
Aps in Denmark (FarmDroid Aps, 2023). Decision-maker types are defined through three 
weight combinations i.e., w1 = 1, w2 = 0 (a profit-oriented farmer); w1 = 0.8, w2 = 0.2 (a 
moderately ecologically oriented farmer); and w1 = 0.6, w2 = 0.4 (a strongly ecologically 
oriented farmer).  

Results and Discussion 

The results of this study highlight some of the technical and economic difficulties for cereal 
and oilseed farmers willing to move away from HB practices. Performing AMW in narrowly 
spaced crops with technologies such as the FD20 is currently infeasible. Wider crop rows and 
the economic infeasibility of hiring labour for manual weeding follow-ups in low-value crops 
result in significant yield penalties. The FD20 is electrically powered and allows for herbicide-
free farming. However, the reduced fuel and herbicide uses in the herbicide-free scenarios 
(Scenarios 2 and 4) do not compensate for the increased carbon footprint per kg of crop 
produced when yield penalties are considered. The ecological benefit identified in this study 
is the absence of deep soil compaction when using the FD20 in combination with small-scale 
autonomous equipment. When the FD20 is used in conjunction with large-scale conventional 

 
1 ROLMRT = Return to operator labour, management, and risk taking.  
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equipment, deep soil compaction is always maximum regardless of how intensively the FD20 
is used. Key results for the three farm-level goals under analysis and the farmer utilities 
achieved across scenarios and decision-maker types are presented in Table 1. 

Table 1 – ROLMRT, deep soil compaction, direct GHG emissions and farmer utility by 
scenario and decision-maker type 

SCENARIO 
ROLMRT 
(GBP) 

Deep soil 
compaction 
(Mgkm/ 
farm)*** 

Direct GHG 
emissions 
(kgCO2eq/ 
farm) 

Utility by decision-maker 
type**** 

w1 = 1 
w2 = 0 

w1 = 0.8 
w2 = 0.2 

w1 = 0.6 
w2 = 0.4 

1. AMW* (sugar beet) 
+ HB** (other crops), 
Conv. Eq. 

43,744 1,841 19.9 42% 41% 40% 

2. AMW* (all crops), 
Conv. Eq. 

-18,060 1,841 20.7 -17% -6% 5% 

3. AMW* (sugar beet) 
+ HB** (other crops), 
Auto. Eq. 

105,333 0 20.1 100% 98% 95% 

4. AMW* (all crops), 
Auto. Eq. 

51,738 0 21.0 49% 57% 64% 

Note: *AMW = Autonomous mechanical weeding. **HB = Herbicide broadcasting. ***Mgkm = tonne kilometre; 
this is a proxy for the pressure on the soil exerted by agricultural equipment; for more information on this 
measure, see Stoessel et al. (2018). ****ROLMRT, deep soil compaction, and direct GHG emissions values do not 
vary across the three decision-maker types except for ROLMRT and direct GHG emissions in Scenario 4. However, 
values for Scenario 4 only differ by a maximum of £11 for ROLMRT and 0.1 kgCO2eq for direct GHG emissions. 
The values shown in table are for a strongly ecologically oriented decision-maker type.  

 

Both conventional and autonomous growers would obtain higher utility by restricting the use 
of the FD20 to high-value crops such as sugar beet, especially when grown for a premium 
market. For conventional farmers, the average level of utility obtained when adopting AMW 
does not appear to be sufficiently high to justify its use. The higher utility in the autonomous 
scenarios is mainly due to higher net returns achieved thanks to the reduced labour 
requirements and lower equipment costs, and because of the absence of deep soil 
compaction when field operations are conducted with small-sized autonomous equipment. 
Such a higher utility indicates that autonomous farms are more capable of absorbing 
additional costs for specialised equipment such as the FD20. This could be even more the case 
if the weeding efficacy of the FD20 was improved, fleet supervision of multiple FD20 units was 
legally and technically possible, and on-farm practices mitigating GHG emissions to achieve 
net zero were performed. 

Sensitivity analyses indicate that the monetary penalties resulting from AMW in low-value 
crops could be recovered if the modelled farm was paid herbicide-free premiums of 37% in 
Scenario 2 and 21% in Scenario 4. Alternatively, the achievement of competitive production 
costs in the herbicide-free scenarios would require a reduction of the FD20 purchase price by 
more than 100%. This highlights the issue of the FD20 being a specialised piece of equipment. 
Spreading its cost across a wider range of field operations or using a less costly mechanical 
weeding tractor implement would result in substantially lower production costs.   

Regardless of the ecological orientation of the farmer decision-maker, the following economic 
factors play a role in replacing herbicide broadcasting with autonomous mechanical weeding: 
(i) AMW equipment cost; (ii) lower labour requirements; (iii) yield penalties resulting from 
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factors linked to the AMW system; and (iv) herbicide-free crop price premiums. Thus, the 
results of this study are in support of the declared hypothesis. 
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Autonomous mechanical weeding; Arable farming. 
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Extended Abstract  

The Pasture to Plate (P2P) project led by Harper Adams University (HAU) and University of 
Bath has received £2m funding from UK Research and Innovation/Biotechnology and 
Biological Sciences Research Council (UKRI/BBSRC). Over 3 years the project will investigate 
technology which produces food products from grass. Grassland makes up over 70% of all UK 
agricultural land, with substantial quantities of grass never used. At present, the only way of 
producing food from grass is to convert it into meat and milk by feeding it to animals. This is 
a very inefficient process as animals typically convert only 5% of the grass food fractions into 
meat and 10% into milk (total system efficiency). The overall aim of this project is to develop 
a chemical and biotechnological process for converting grass into a range of novel food 
ingredients that will replace environmentally damaging imports. As this process is ten times 
more efficient than producing meat, it could massively increase UK food output and has the 
potential to create a new multi-billion-pound UK food industry. 

Fifty percent of the UK’s harvestable grassland is underutilised and has the potential to 
produce more high protein edible material than the UK’s annual, total meat, dairy, and egg 
production combined, in addition to providing several times more food oil than the UK 
currently imports. Better utilisation of grass as a food source, using the P2P approach, could 
increase UK food production to the point where the UK becomes a net food exporter by 2050, 
helping ease the impact of future disruptions to international supply chains, and helping 
reduce greenhouse gas emissions. The extraction process produces a wide range of edible 
food fractions including oils, proteins, essential vitamins, and carbohydrates. These have the 
potential to rapidly replace imported ingredients such as soy and palm oil in all mainstream, 
vegetarian, and vegan foods, dramatically reducing food miles, transport costs, fuel emissions, 
and the commercial incentive to destroy rainforests. 

HAU will lead the social science part of this project. Assessing consumer readiness to engage 
with grass products in food is paramount to the success of the project. Using social life cycle 
assessment (LCA) and working with our industrial partners, we aim, in the short-term, to 
determine consumer and industry acceptance, as well as demonstrating the feasibility of these 
edible fractions as replacements in a range of plant-based dairy and meat substitute and other 
food products (Work Package 5: Social Science: Consumer acceptability and market 
positioning). This will include a UK-wide study on consumer attitudes to the use of grass 
derived food fractions as ingredients. It will also assess food industry readiness to adopt novel 
grass-based food ingredients, and, in a collaborative study with Saputo and our other 
commercial partners, evaluate which food products would be most suitable for the inclusion 
of grass derived food fractions as ingredients. 
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Consumer perceptions are key when introducing new food products to the market, especially 
so when novel technologies are being used (Herrera and Blanco, 2011). Evidence from 
previous research attempting to introduce novel technologies in food production suggests 
that grass for human consumption may struggle to gain positive perceptions. Exploring this 
further, including its application, education and marketing techniques is an important aspect 
of this project. This is important as research shows that encouraging people to try a novel food 
product for the first time is one of the biggest challenges when introducing new, unfamiliar 
food technologies (Manohar, Rehman and Sivakumaran, 2021). It has also been found to be 
beneficial to market the tastiness of a product to potential consumers to encourage them to 
try it for the first time rather than health benefits (Manohar, Rehman and Sivakumaran, 2021). 

The food and drink industry is utilising an increasing number of alternative protein sources 
due to improvements in technology and the creative use of existing protein sources (NIRAS, 
2023). However, consumers have been found to be reluctant to uptake plant-based 
alternative foods in some cases, likely due to the options currently on the market not proving 
that they are better than meat or animal product alternatives. This shows that there is a need 
for products which take into account consumers key requirements if wanting to encourage 
consumers to reduce meat consumption further. These requirements have been identified as 
healthy, environmentally sustainable, have high welfare and not overly processed/perceived 
to be natural.  

The output from the research being undertaken in work package 5 will include a paper 
investigating consumer willingness and objections to the concept of grass as a food ingredient 
based on survey and focus group studies. An initially broad survey will gain an overview of 
consumer perceptions, followed by full consumer focus groups and sensory panels as the 
products develop. A paper surveying food industry professionals’ views of the opportunities, 
and barriers to, the inclusion of grass fractions in food products from both a technical 
standpoint and also encompassing brand perceptions will be produced. This will include 
representative industry views from all sections of the food chain downstream of the farm. It 
will leverage the consortia’s network of associated food manufacturing and food service 
businesses that may have applications for, or interest in, grass food fractions as ingredients. 
Later in the project, a paper on consumer acceptance of foods made with grass extracts 
including data from taste panels drawn from a statistically representative pool of consumers 
by age, gender, and dietary choices, including vegetarians and vegans, will evaluate food 
products incorporating the different grass-derived food fractions. This will assess acceptability 
of taste, odour, texture and appearance with a focus on quality and willingness to buy and 
consume when commercially available.  

The first survey is aimed at understanding UK consumer attitudes to the use of grass-derived 
food fractions as ingredients in foods and their readiness to adopt novel grass-based food 
ingredients into their diets. The survey will assess the consumer intentions to consume / 
include grass-based proteins in their diet and its influencing factors. Although it is most likely 
that the majority of consumers eat a sufficient amount of protein, the demand for protein 
alternatives continues to increase as meat and animal product consumption decreases. These 
trends are relatively prevalent across all demographics, along with increasingly widespread 
health trends for high protein diets. This survey will build upon initial findings from a pilot 
study that found 76.2% of respondents agreed or strongly agreed that drastic changes must 
be made in order to feed the 2050 population. Younger participants (age 18-24) were most 
open to the benefits of novel food technologies however it also identified the oldest 
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demographic (65+) had a significant interest in the sustainability of food innovations. From 
the while sample 41.7% of respondents were willing to try grass-derived proteins while 24.8% 
and 33.6% answered no and maybe, respectively. Respondents agreed with both positive and 
negative statements regarding grass-based foods reinforcing the notion that consumers are 
interested in the potential benefits of the technology but also have reservations such as 
digestibility and enjoyment. 

The proposal for the presentation at the conference would be to present an overview of the 
P2P project, the plan for the social science research encompassing Work Package 5 and 
presentation of the data collected in the initial consumer survey of intention.  
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