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• Basis represents the difference between the futures price and the
local cash price.

• The ability to forecast crop basis is essential for marketing
decisions.

• Combined with information from the futures market, improving
knowledge of how basis may evolve over a short period of time
into the future can provide valuable insights, ultimately leading to
improved farmer financial performance.

• Elevator-level nearby daily basis data were collected from the Data
Transmission Network (DTN).

• The nearby basis is the difference between the spot price and the
nearby futures price, excluding the delivery month

• Data were collected from nine elevators chosen based on attributes
and data availability.

• Three of the selected elevators were ethanol plants with varying
capacities.

• Models were estimated using daily observations from May 25, 2009, to
October 25, 2020

• The performance of the estimated models was tested using daily
observations from October 26, 2020, to September 7, 2023.

• Models were estimated daily using data available up to the point the
forecast was made, without altering the initially identified structure of
the model.

• In total, 201,204 forecasts were generated by the nine models across
nine locations over forecast horizons ranging from one week to four
weeks

Background

Data

Results

Objective

Develop models to forecast the nearby corn basis for elevators with
varying attributes and highlight the tradeoffs in forecast accuracy
between simple and complex models.

Model

Historical Average Supplemented with Current Information: The
sixth model uses a two-year historical average, enhanced with
current market information. Current market information is defined

as the deviation of the current nearby basis from its historical

average.

This approach is based on methods by Dhuyvetter & Kastens (1998)
and Taylor et al. (2006).
A neural network auto-regressive model with a single hidden layer was
fitted following the approach of Shmueli & Lichtendahl (2018).

Nine models were identified and estimated

Table 1 Mean Absolute Errors for Corn Basis Forecasts, Nov 2020 - Sep 2023

Method Forecast Horizon (Weeks) Horizon Average

1 2 3 4

Ethanol Plants

2 Year Average 40.44 40.44 40.44 40.44 40.44

Historical Average with 
Current Information 9.84* 14.34* 17.43* 20.16* 15.44

Holt-Winter 10.40* 15.18* 18.52* 21.46* 16.39

ARIMA 8.14* 12.65* 15.96* 18.91* 13.92

Artificial Neural Network 8.71* 13.37* 16.94* 19.81* 14.71

Non Ethanol Plants

2 Year Average 31.38 31.38 31.38 31.38 31.38

Historical Average with 
Current Information 8.05* 12.25* 15.27* 17.86* 13.36

Holt-Winter 8.69* 13.12* 16.19* 18.85* 14.21

ARIMA 6.51* 10.65* 13.74* 16.42* 11.83

Artificial Neural Network 7.66* 12.42* 15.87* 18.83* 13.70

Method Forecast Horizon (Weeks) Horizon Average

1 2 3 4

A Year Ago -2.61 -2.61 -2.61 -2.61 -2.61

3 Year Average -2.67 -2.67 -2.67 -2.67 -2.67

4 Year Average -12.74 -12.74 -12.74 -12.74 -12.74

5 Year Average -22.04 -22.04 -22.04 -22.04 -22.04

Historical Average with 
Current Information

74.85 62.36 53.50 45.85 59.14

Holt-Winter 73.07 59.85 50.67 42.65 56.56

ARIMA 79.47 67.08 57.89 49.84 63.57

Artificial Neural 
Network 

76.69 62.97 52.81 44.29 59.19

Historical Averages: The first five models use basic historical
averages for forecasting, each utilizing data from different time
spans ranging from one to five years.

The presence of an asterisk (*) indicates a statistically significant difference in mean absolute error when 
compared to the two-year average (2YR) at the 5% significance level.
The difference in MAE between ethanol and non-ethanol plants was significant for all methods except the 
Artificial Neural Network

Table 2 Improvement in Forecast Accuracy Relative to 2-Year Average Benchmark 
Forecasts (%)

The improvement in forecast accuracy is calculated as a percentage change in forecast accuracy from the 2-year 
average to an alternative model. Results presented in Table 2 are averages computed  across all elevators

Discussion

• Forecasting basis for ethanol plants is more
challenging than for non-ethanol plants, as
evidenced by consistently higher mean absolute
values across all methods

• The optimal forecasting method remains
consistent across different elevator attributes,
although method accuracy varies by attribute

• Using MAE as the metric, the ARIMA model was
identified as the optimal model, showing the
smallest forecast error across all locations and
horizons.

• The results show poor performance from the
historical average models except for the
historical average supplemented with current
market information.

Policy Implication

• The results show that the historical average model,
enhanced with current market information,
significantly improves forecast accuracy compared
to traditional historical average models, with only a
negligible loss in accuracy compared to complex
time series models (ARIMA and Artificial Neural
Network).

• This suggests that the supplemented historical
average model could be a practical, simpler
alternative, particularly in extension settings where
ease of adoption is essential.
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