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Abstract  

This study investigates the impact of extreme temperatures on the adoption of climate-resilient 

groundnut varieties among smallholder farmers in West Africa. Using household panel data from 

Ghana, Mali, and Nigeria, matched with high-resolution temperature data, we show that exposure 

to extreme heat, measured by extreme heat degree days (EHDDs) increases the probability of 

adoption and area under adoption of climate-resilient groundnut varieties. This adaptive response 

is accompanied by a reduction in land allocated to non-improved varieties. Conversely, exposure 

to optimal growing temperatures reduces adoption and area under adoption. Heterogeneity analysis 

shows the strongest impacts in Nigeria, and among non-poor and low production farmers. 

Moreover, we find that extreme heat increases the likelihood of sustained adoption and the area 

under adoption for sustained adopters, indicating the importance of promoting long-term use of 

climate-resilient varieties. These findings are robust to alternative specifications, estimation 

methods, and measures of adoption.  

Keywords: High temperatures, Climate Resilient, Groundnut, West Africa   

JEL Codes: O13, Q12, Q15. 
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1. Introduction  

Climate change and extreme weather events continue to be important development and 

environmental challenges plaguing societies. Its effects are quite widespread with visible impacts 

on the agricultural sector. Here, extreme weather events have been shown to reduce agricultural 

production (Kakpo et al., 2022) with ensuing implications on food security and livelihoods. Given 

this, there is a push for adaptation but also mitigation in the agricultural sector through the 

promotion of climate-smart agriculture (Tabe-Ojong et al., 2023a). Despite some efforts, it is not 

entirely clear how households adapt to extreme weather and whether they rely on some of these 

climate-smart agricultural practices especially through the use of inputs especially climate-resilient 

crop varieties that are developed to be resistant to extreme temperatures and also to pests and 

diseases. So far, the literature on the impact of extreme weather events is replete with analysis on 

yields and profits (Sesmero et al., 2017; Maggio et al., 2021; Wing et al., 2021), child nutrition              

(Blom et al., 2022), as well as risks (Liebenehm et al., 2024), prices (Letta et al., 2022), and market 

resilience of food supply chains (Hadachek et al., 2024). 

 

We investigate the impacts of extreme temperatures on the adoption of climate-resilient groundnut 

varieties. We compute different measures of extreme weather (extreme heat degree days (EHDDs) 

and growing heat degree days (GDDs). By adoption of climate-resilient groundnut varieties, we 

examine both extensive and intensive margins where we look at both the dichotomous measure of 

adoption and the extent of adoption. The intensive margin speaks to aspects of land use and 

expanding crop land. Here, we also estimate some substitution effects by looking at the area of 

land under landrace and local varieties. Given the reported dis-adoption of some of these climate-

resilient crop varieties, we also examine aspects of sustained adoption by looking at how high 

temperatures could push households to continuously adopt these climate-resilient seeds.  

 

In the interest of explaining these relationships, we perform some heterogeneity analysis where we 

look at two different sub-groups: poor vs non poor and low production vs high production. 

Moreover, we conduct a cross-country analysis to examine differences in adoption impacts across 

the three countries in our sample. We rely on a rich farm household survey from three countries in 

West Africa: Ghana, Mali, and Nigeria and link this with geospatial weather data. Given the panel 

nature of our data, we specify different panel data estimators including the Mundlak-Chamberlain 

device and the household fixed effect estimator. Our identification strategy exploits plausibly 

quasi-random variations in the distribution of extreme temperatures across space and time. We find 
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that extreme heat measured through EHDDs significantly increases the adoption of climate-

resilient groundnut varieties both at the extensive and intensive margins. Specifically, an extra 

extreme heat degree day in the previous growing season increases the probability of adopting 

climate resilient groundnut varieties by 0.5 percentage point.  

 

Extreme temperatures also increase the area under these climate-resilient groundnut varieties. An 

additional EHDD leads to a 1.13% increase in the area under improved varieties. Relatedly, we 

observe some substitution effects between the area of land under these climate-resilient groundnut 

varieties and the land under landrace and local varieties. We observe a reduction in land under 

landrace and local varieties under extreme temperatures. Similarly, we also compute the growing 

degree days (GDDs) which represents the most ideal temperatures under which groundnut is grown 

for optimum production. Under this scenario, we find opposing and inverse results suggesting that 

farmers may not use these climate-resilient varieties under optimum growing conditions. These 

point to the adaptive role of these climate-resilient varieties as households are using them to 

respond to extreme weather events. 

  

Our heterogeneity analysis reveals some interesting insights. The cross-country analysis shows the 

strongest impacts of extreme heat on adoption in Nigeria, followed by Ghana and Mali. Impacts 

by wealth status indicate both poor and non-poor households increase adoption in response to 

extreme heat, with stronger effects for non-poor households. By production level, we find larger 

impacts on adoption for low production households but larger impacts on area for high production 

households. We also conduct several robustness checks and show that our findings are robust to 

different identification strategies, estimation models and different measures of extreme 

temperatures including exposure to extreme temperatures in the pre-planting period. 

 

Our paper adds and contributes to a growing literature on climate change adaptation in agriculture, 

specifically to climate-smart agriculture in several ways. First, we show that households respond 

to extreme temperatures by relying on the adoption of climate-resilient groundnut varieties, a 

typical climate-smart agricultural practices. The relationship between climate change and input 

use is often overlooked as the focus seems to be more on yields and profits which are not aspects 

of adaptation. Here, we look at input use and highlight that households are indeed responding to 

climate change. Most of the existing studies on adapting to extreme weather and shocks have been 

limited to fertilizers and pesticides which are growing season or within season adaptation practices 
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(Bareille & Chakir, 2023; Jagnani et al., 2021; Liebenehm et al., 2023b; Maggio et al., 2022; 

Tambet & Stopnitzky, 2021; Wimmer et al., 2023). Our focus on climate-resilient seeds is different 

as their use is influenced by previous extreme weather shocks since farmers makes their current 

seed decisions based on previous shocks. To our knowledge, only Liebenehm et al., (2023) and 

Wang et al., (2022) have examined the implications of extreme temperatures on the adoption of 

drought resistant crop varieties. Using two common staples, rice and maize, both studies found 

contrasting results suggesting that the implications of extreme temperatures and dry anomalies 

may be context and farm system dependent. 

 

Second and related to the first, we show that some of the adaptation of households involves 

cropland expansion. Farmers faced with extreme temperature may behaviorally adapt by adopting 

climate-resilient crop varieties and by expanding the land under which these crops are cultivated. 

We do not explore where this land expansion is coming from, but it could potentially stem from 

land reallocation or from increased deforestation. Previous studies have found evidence of such 

land reallocation and deforestation mechanisms (Aragón et al., 2021; He & Chen, 2022). Our 

addition here is in showing that negative temperature shocks could induce greater land expansion 

for the cultivation of an important legume, groundnut which has been highlighted to be pro-poor 

and environmentally friendly with immense food and nutrition security implications. The third 

contribution relates to the observed substitution effects as households are reducing the area of land 

under landrace/ local varieties to increase the land under these climate-resilient varieties. These 

substitution effects critically reflect the decision making of farm households but more importantly 

that households are adapting to extreme temperature shocks through land reallocation. 

 

The fourth contribution relates to the heterogeneity analysis. Here, we explore how the impacts of 

extreme heat on adoption and area under adoption vary across different subgroups of farmers, 

categorized by income, production level, education, and age. The heterogeneity analysis shows 

that the adoption impacts of extreme temperature events are inclusive irrespective of the wealth 

and production level of the household. The fifth contribution stems from the focus of groundnuts, 

a legume which has been described as pro-poor and environmentally friendly with the potentials 

to stir agricultural transformation while simultaneously increasing consumption and food and 

nutrition security (Tabe-Ojong et al., 2023b). Groundnut is an important stale crop that is both 

consumed and marketed by smallholder households in many rural areas of West Africa. It is used 

as a less costly replacement of the usually expensive alternative protein sources such as meat and 
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fish. Given the food security situation in the region, which is both caused by climate change 

through droughts, the use of climate-resilient groundnut varieties could address these food security 

issues and improve the livelihoods of smallholder farmers. The final contribution is about the 

cross-country analysis where we move beyond a single case study to look at three different 

countries in the region. Most of the existing studies usually focus on just single countries which 

makes generalization difficult. We bridge this gap by relying on three countries which significantly 

pushes up our external validity. Akin to this, we also have panel data which enables us to control 

for unobserved heterogeneity. Moreover, we have geo-referenced data that we merge with weather 

data from satellite imagery enabling us to move towards causality as we assume plausibly quasi-

random variations in the distribution of extreme temperatures across space and time. Our focus on 

West Africa is also worth mentioning as it is one of the historical warm areas of Africa where 

maximum temperatures average about 32°C and with high risks of experience intense heat waves 

(Blom et al., 2022).  

 

2. Context and conceptualization 

To structure our understanding of the relationship between extreme temperatures and the adoption 

of climate-resilient crop varieties, we present a brief conceptual framework where we highlight 

how households may behaviorally adapt to extreme weather events and what guides this decision. 

We also explore some of the traits and characteristics of these climate-resilient varieties that make 

them suited for building adaptation to extreme temperature events. Specifically, we look at how 

these climate-resilient groundnut varieties are bred to respond to both biotic and abiotic stress. By 

biotic stress, we refer to stresses that arise from other living organisms such as insects, weeds, 

fungi, viruses, and pests. Abiotic stress on the other hand refers to environmental stresses such as 

extreme temperatures, soil salinity and droughts. In many cases, abiotic and biotic stresses are 

related such that one can be seen as an explanatory mechanism of the other. For instance, extreme 

weather events could cause the buildup of pests and diseases which could affect plants (Patterson 

et al., 1999; Rosenzweig et al., 2001). 

 

The climate-resilient varieties we study are different improved varieties that have been developed 

and disseminated by the International Crops Research Institute for the Semi-Arid Tropics 

(ICRISAT) as part of the USAID’s Feed the Future program, the Gates Foundation-funded Tropical 

Legumes I, II, and III projects, and the recent USAID-funded groundnut upscaling project from 

2015–2019. Some of these varieties include Samnut 22, Yenyawoso, and Nkatiesari in Ghana; 
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ICGV 86124 (Niètatiga), ICGV 86015 (Yriwatiga), ICGV 86024 (Bonitiga), and Fleur 11 

(Allason) in Mali; and Samnut 23, Samnut 24, Samnut 25, and Samnut 26 in Nigeria (Ajeigbe et 

al., 2020). These climate-resilient groundnut varieties are considerable different from landraces as 

they have specialized traits and characteristics that enable them respond to both biotic and abiotic 

stress in a number of ways: (1) they are drought and heat resistant and able to withstand the extreme 

temperatures and drought related events in the Sahel region: (2) they are pest and disease resistant 

especially with respect to common groundnut pests and diseases such as the root rot, rust, aflatoxin, 

and the rosette virus (Tabe-Ojong et al., 2023c); and (3) they are high yielding with ensuing 

implications for food security (Lokossou et al., 2022). Beyond this biotic and abiotic characteristic, 

they also have other special characteristics that make them attractive to smallholder households. 

First, some of these climate-resilient seeds have special market characteristics like better and 

bigger seed sizes with more nutrient and nutrition security implications (Tabe-Ojong et al., 2022). 

Talking about market related traits, these climate-resilient groundnut varieties have other 

production associated traits such as early maturation, easy blanching and harvesting and high 

shelling percentage and high oil extraction rate. 

 

The adoption of climate-resilient crop varieties as a behavioral adaptation to climate change can 

be regarded as both an ex-ante and an ex-post strategy. It could be ex-ante in the case when 

households adopt these climate-resilient crop varieties in response to previous extreme temperature 

and droughts. In this case, households also undertake land (re)allocation decisions by changing the 

crop allocation decisions of different crops but also the different varieties of the crops (Kusunose 

et al., 2020; Liebenehm et al., 2023). In contrast, one could also view the adoption of climate-

resilient groundnut varieties as an ex-post response if we assume that farmers will only use these 

climate-resilient varieties after experiencing the deleterious effect of extreme temperatures and 

droughts, keeping everything constant. In this sense, adaptation can be looked upon as a risk 

reduction strategy where households self-insure themselves against potential extreme temperature 

events to avert livelihood losses.  

 

Given the yield related traits as well as the pest and disease tolerance of these climate-resilient 

varieties, we expect these groundnut varieties to be increasingly adopted under extreme 

temperatures and drought as a means of increasing agricultural productivity. Of course, increasing 

agricultural productivity under extreme temperatures and droughts also requires investments in 

other productive investments such as fertilizers as well as defensive investments such pesticides 
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(Jagnani et al., 2021). However, the climate-resilient seeds have some of these traits such as being 

resistant to pests and diseases especially the groundnut rosette virus and aflatoxin. In terms of 

productivity, they are high yielding and even important for soil fertility and soil health. Being a 

legume, groundnut is important for the synthesis of atmospheric nitrogen and making nitrogen 

available both for itself and other crops through biological nitrogen fixation. 

 

3. Data  

3.1. Farm household Data 

Our analysis draws from a rich panel dataset, spanning the years 2017 through 2019, collected 

from households in Ghana, Mali, and Nigeria. The survey was launched in 2017 with an extensive 

outreach, involving 900 households in Ghana, 1,350 in Mali, and 2,500 in Nigeria. As the study 

progressed, financial and stability concerns, notably in the Mopti region of Mali, necessitated the 

reduction of the sample sizes. This strategic adjustment led to a final collection of data from 498 

households in Ghana, 840 in Mali, and 1,530 in Nigeria for the conclusive phase of the project. 

Despite the hurdles faced, the survey succeeded in sustaining low attrition rates in all three 

countries – 8% in Ghana, 7% in Mali, and 4% in Nigeria. Despite these low attrition rates, we 

estimated some attrition probit regressions where we show that attrition is not an issue with the 

analysis. The final dataset involves a total of 2,868 households giving a sample size of 8,604 

observations. The household survey collected a wide range of information including household 

demographic characteristics (age, gender, education, marital status, household size, etc.), income 

generating activities (groundnut production, off-farm activities), adoption of improved groundnut 

varieties, and access to extension services.   

 

3.2. Weather Data 

We match the household panel data with daily minimum and maximum temperature data collected 

at the 0.05x0.05 (approximately 5 km x 5 km) degree resolution, from the Climate Prediction 

Center1 (CPC) Global Unified Temperature data, provided by the NOAA PSL. Minimum and 

maximum temperature values are extracted at the district level2 and used to determine exposure to 

harmful and optimal temperatures by generating the extreme heat degree days (EHDD) and the 

growing degree days (GDD) for the growing season prior to each survey year. EHDD measures 

 
1 https://www.cpc.ncep.noaa.gov/  
2 We were unable to collect temperature data at the household level since we did not have information on 
household GPS locations. Although our data is at the household level, households living in the same district 

experience similar temperature shocks due to the idiosyncratic nature of climate anomalies. As such, we 

expect district-level temperature shocks to produce similar results as household level ones.  

https://www.cpc.ncep.noaa.gov/
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the cumulative amount of time temperature exceeds a given threshold (we use 32°C3 as the 

threshold for the EHDD for our analysis), whereas GDD measures the cumulative exposure to 

temperatures within the optimal range for crop growth. We also measure exposure to precipitation 

using the cumulative rainfall during the previous growing season and its square. Rainfall data 

comes from the Climate Hazards Group InfraRed Precipitation (CHIRPS)4 and is collected at the 

0.05x0.05 degree resolution. Although some regions in Ghana and Nigeria have two rainy seasons, 

we adopted the May-September period as the relevant growing season for this study, as most of 

our households live in the northern part of these countries (Appendix Figure A1), where only one 

rainy season (that begins in May and lasts until September) prevails. Similarly, Mali only 

experiences one rainy season, spanning from May to September.  

 

Figure 1 depicts the distribution of daily temperature by year (panel a) and by country (panel b). 

The figure shows there is ample variability in daily temperature across years and countries. Nigeria 

exhibits the greatest variability in temperature, with peak percentages spanning temperature ranges 

of 26-30°C. In contrast, Ghana has the highest, sharpest peak around 28-29°C, indicating this is 

the most frequent and consistent temperature range for the country. Mali falls somewhere in 

between, with discernible peaks but exhibiting more variability than Ghana. These differences 

suggest varying degrees of temperature fluctuations experienced across the different geographic 

regions and time periods in our sample. Notably, the most frequent temperatures hover around 28-

30°C across countries and years, demonstrating how households in our sample might be subject to 

very high temperatures on a regular basis. 

                            Panel a: By year                                             Panel b: By country  

 

Figure 1: Distribution of daily temperature by year and by country 

 
3 See section 4.1 for a complete description of the approach used to determine this threshold.  
4 https://data.chc.ucsb.edu/products/CHIRPS-2.0/  

https://data.chc.ucsb.edu/products/CHIRPS-2.0/
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Notes: Panel a displays the distribution of daily temperatures over time and Panel b displays the distribution of daily 

temperatures across the three countries. Each bar represents the percentage of days falling within a one-degree Celsius 

temperature bin. The green vertical line represents the average temperature in our sample (28 °C).  

 

To further examine the extent of exposure to extreme heat across countries and over time, we 

calculate the average EHDD for each country and year in our sample, shown in Figure 2. Over the 

years, Nigeria consistently experienced the highest average EHDD values, followed by Mali and 

Ghana. Ghana’s average EHDD remained relatively stable across the years, while Mali showed 

more fluctuations. In contrast, Nigeria’s average EHDD increased from 2017 to 2019. This 

suggests that, on average, Nigerian households in the sample were exposed to more intense and 

increasing extreme heat over the years compared to those in Ghana and Mali. 

 

 

 
Figure 2: Average EHDD by country and year 

Notes: Each thick bar represents the average EHDD in a given country by year. The black thin bars shows 

95% confidence intervals. The EHDD is calculated using 32°C as threshold for harmful temperature.  

 

Table 1 presents summary statistics for the variables included in the analysis. Panel A shows the 

outcome variables related to groundnut adoption: an indicator variable used to measure the 

adoption decision, the area cultivated with improved groundnut varieties, which measures the 

intensity of adoption and an alternative measure of the adoption decision: willingness to adopt 

improved seeds. 

 

On average, 39% of households adopted improved groundnut seeds, with adoption rates increasing 

from 37% in 2017 to 42% in 2019. The mean area under improved seeds is 0.55 hectares, also 

increasing over time. Willingness to adopt fluctuated, from 45% in 2017 down to 33% in 2018 and 

back up to 46% in 2019. Panel B summarizes key weather variables. Extreme Heat Degree Days 

(EHDD) averaged 83 over the full sample but declined from 2017-2019. Growing Degree Days 
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(GDD), averaged 900 and saw an inverted U-shape over time. Mean rainfall was 789 mm, dipping 

in 2018 but rebounding to the highest level in 2019 at 886 mm. 

 

Table 1: Summary statistics 

Notes: Standard deviations are in parentheses.  

 
 

Panel C presents household characteristics. Average household size is 11, ranging from 11 to nearly 

12 over the 3 years. Most households hold membership in agricultural associations and had 

received past training on groundnut production, though association membership declined while 

 2017 2018 2019 Total 
 (N=2,868) (N=2,868) (N=2,868) (N=8,604) 

Panel A: Outcome Variables 

Adoption (1=yes) 0.37 

 (0.48) 

0.38  

(0.49) 

0.42  

(0.49) 

0.39  

(0.49) 
Area under improved seeds (ha) 0.53  

(1.04) 

0.52  

(1.04) 

0.60  

(1.01) 

0.55 

 (1.03) 

Willingness to adopt  0.45 
 (0.50) 

0.33  
(0.47) 

0.46  
(0.50) 

0.41 
 (0.49) 

     

Panel B: Weather Variables 

EHDD 83.94  

(33.90) 

79.35  

(34.52) 

86.76 

 (34.91) 

83.35 

 (34.57) 

GDD 902.66  

(80.19) 

910.53  

(71.48) 

887.20  

(72.73) 

900.13  

(75.51) 
Rainfall 771.92  

(171.29) 

709.70  

(128.70) 

886.53  

(144.63) 

789.38  

(166.23) 

     
Panel C: Household Characteristics 

Household size 11.02  

(6.88) 

11.02 

(6.88) 

11.76 

(8.89) 

11.27 

(7.61) 
Membership to Association (1=yes) 0.27 

(0.45) 

0.27 

(0.45) 

0.16 

(0.37) 

0.24 

(0.42) 

Training on groundnut production (1=yes) 0.39 

(0.49) 

0.39 

(0.49) 

0.28 

(0.45) 

0.35 

(0.48) 
Number of visits from public extension agents 1.99 

(2.61) 

1.99 

(2.61) 

2.03 

(2.03) 

2.00 

(2.43) 

Number of visits from private extension agents 0.93 
(1.43) 

0.93 
(1.43) 

1.22 
(1.44) 

1.03 
(1.44) 

Access to credit (1=yes) 0.02 

(0.14) 

0.02 

(0.14) 

0.04 

(0.20) 

0.03 

(0.16) 

Dependency ratio 1.66 
(1.21) 

1.66 
(1.21) 

1.83 
(1.46) 

1.72 
(1.30) 

Rented land (1=yes) 0.03 

(0.18) 

0.03 

(0.18) 

0.04 

(0.19) 

0.04 

(0.18) 
Access to off-farm income (1=yes) 0.09 

(0.29) 

0.09 

(0.29) 

0.12 

(0.32) 

0.10 

(0.30) 

Farmers perception on soil quality (1=Bad) 0.02 
(0.15) 

0.02 
(0.15) 

0.07 
(0.26) 

0.04 
(0.20) 
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training became less common over time. Households received around 2 annual visits from public 

extension agents, increasing slightly over time, and 1 visit from private agents. About 3% of  

households have access to credit or off-farm income-generating activities. The rented land rate and 

perception of poor soil quality increased from 2017-2019. 

 

Figure 3 depicts a comparison of improved seeds adoption rates among the three countries 

overtime. Nigeria consistently exhibits the highest adoption rates among the three countries, with 

a steady increase from approximately 49% in 2017 to 53% in 2018 and a further rise to around 

55% in 2019. Ghana has the second-highest adoption rates, but the adoption rate fluctuates over 

the three years, decreasing from around 34% in 2017 to 29% in 2018, then increasing to 32% in 

2019. Mali has the lowest adoption rates, with the rate floating around 17% in both 2017 and 2018 

followed by an increase to 24% in 2019. Despite the fluctuations in Ghana’s adoption rates, both 

Nigeria and Mali display consistent growth in the adoption of improved seeds over the three-year 

period, while Ghana’s adoption rate decreases initially but recovers in 2019. 

 

Figure 3: Adoption rate of improved groundnut varieties by year and by country 

 

Figures 4 and 5 shed light on the area allocated to improved groundnut varieties. Figure 4 illustrates 

the distribution of area under improved seeds across all countries and years, revealing a strong 

rightly-skewed distribution, with 58% of households having zero area under improved seeds. 

Figure 5 shows the average area under improved seeds in hectares (ha) for each country and year, 

highlighting notable differences among the three countries. Nigeria has the highest average area 

under improved seeds in all 3 years, ranging from approximately 0.75 ha in 2017 to 0.9 ha in 2019. 
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Figure 4: Distribution of area under improved seeds 

 

Ghana’s average area under improved seeds fluctuated over the three years, starting at around 0.4 

ha in 2017, decreasing to about 0.25 ha in 2018, and then increasing to roughly 0.35 ha in 2019. 

Mali exhibits the lowest average area under improved seeds among the three countries, with values 

of approximately 0.25 ha in 2017 and 2018, followed by an increase to around 0.3 ha in 2019. 

 

Figure 5: Average area groundnut varieties by year and by country  

Notes: Each thick bar represents the average of area under improved seeds in a given country by 

year. The black thin bars shows 95% confidence intervals.  

 

 

4. Estimation Strategy 

 

This section presents our estimation strategy for examining the effects of extreme heat and optimal 

growing temperatures on the adoption of improved groundnut varieties at both the extensive and 

intensive margins. Our approach consists of two main steps. First, we employ a data-driven method 
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to determine the threshold for harmful temperature, which we use to calculate the EHDD and 

GDD. In the second step, we estimate the effects of EHDD and GDD on adoption and area under 

adoption using a two-part model. 

 

4.1. Estimating the threshold for harmful temperature 

 

We estimate the threshold for harmful temperature using a data-driven approach (Aragon et al., 

2021). First, we bin our daily average temperature variable into thirteen 1°C bins (from < 24°C to 

>35°C)5. We then generate the proportion of days which fall within each temperature bin during 

the growing season. Next, we estimate the relationship between temperature bins and our two 

outcome variables (adoption dummy and area under adoption) using equation 1.  

 

𝑌𝑖𝑗𝑡 = 𝛼0 + ∑ 𝛾𝑘𝑻𝑩𝒊𝒕𝒌
𝑀

𝑘=1
+ 𝑿𝒊𝒋𝒕

′ 𝜶𝟏 + 𝛿𝑡 + 𝜇𝑖 + 𝜀𝑖𝑗𝑡         (1) 

  

Where 𝑌𝑖𝑗𝑡 is a vector of outcome variables, which includes a dummy for adoption and the area 

under adoption in hectares (ha) for household 𝑖, in district 𝑗 and growing season 𝑡. 𝑻𝑩𝒊𝒕𝒌 is a 

vector of 1°C temperature bins. We use the last temperature bin (>35°C) as benchmark and omit it 

from our estimation. 𝑿𝒊𝒋𝒕
′  is a vector of household controls including household size, cooperative 

membership, training in groundnut production, number of visits from public extension agents, 

number of visits from private extension agents, access to credit, dependency ratio, land tenure, 

access to off-farm income, rainfall, and farmer’s perception of their soil quality.  𝛿𝑡 represents year 

fixed-effects and captures time-varying determinants of adoption and area under adoption. 𝜇𝑖 

controls for time-invariant household heterogeneity, and 𝜀𝑖𝑗𝑡 is the error term. We estimate 

equation (1) using Ordinary Least Squares (OLS) and cluster standard errors at the household level.   

 

4.2. Estimating the effects of extreme heat and optimal growing temperature 

 

We exploit the quasi-random variation in extreme temperatures across space and time to estimate 

the effect of household’s exposure to extreme heat and optimal growing temperatures on adoption 

at the extensive and intensive margins. Specifically, our study aims to capture the lagged effects 

of temperature shocks on adoption and area under adoption. Our focus on lagged temperature 

effects is justified by the fact that households are likely to make input use decisions before the start 

 
5 We used <24°C and >35°C as the first and last bins respectively because the percentage of days that fall 

within those bins are the smallest.   
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of the agricultural season and based on their most recent exposure to weather shocks (Jain et al., 

2015).  

 

Given the nature of our dependent variables, we employ a two-part model to estimate the effects 

of temperature shocks on adoption and area under adoption. First, we specify the following linear 

probability model (LPM) to investigate the relationship between temperature shocks and adoption 

at the extensive margin:  

 

𝐼𝑖𝑗𝑡 = 𝛽0 + 𝛽1𝐸𝐻𝐷𝐷𝑖𝑗𝑡−1 + 𝛽2𝐺𝐷𝐷𝑖𝑗𝑡−1 + 𝑿𝒊𝒋𝒕
′ 𝛽3  + 𝛿𝑡 + 𝜇𝑖 + 𝜀𝑖𝑗𝑡          (2) 

 

Where 𝐼𝑖𝑗𝑡 is an indicator variable for adoption, which takes on the value 1 if the household has 

adopted improved groundnut varieties in growing season t, and 0 otherwise. 𝐸𝐻𝐷𝐷𝑖𝑗𝑡−1 refers to 

the extreme heat degree day in the previous growing season, and measures exposure to harmful 

temperature. To account for non-linear effects of temperature on adoption, we control for exposure 

to optimal growing temperature by employing the growing degree days in the previous growing 

season: 𝐺𝐷𝐷𝑖𝑗𝑡−1. Similar to equation (1), we include household demographic controls, 

household, and year fixed effects. We estimate equation (2) employing household fixed effects, 

and we cluster standard errors at the household level. We check the robustness of our results using 

spatially corrected Conley standard errors (Conley, 1999). In this LPM set up, the coefficients of 

interest, 𝛽1 and 𝛽2, measure the change (in percentage points) in the probability of adoption and 

area under adoption as a result of one additional extreme heat degree day and one additional 

growing degree day, respectively. 

  

In the second part of our two-part model, we estimate the effects of temperature shocks on the area 

under adoption, conditional on adoption, still using the household fixed effect estimator with the 

untransformed dependent variable. This approach is consistent with the recommendations of 

Mullahy & Norton (2024) for handling non-negative, skewed outcomes with a mass at zero.  We 

estimate the following equation to examine the effects of temperature on adoption at the intensive 

margin:  

 

𝐴𝑖𝑗𝑡 = 𝛼0 + 𝛼1𝐸𝐻𝐷𝐷𝑖𝑗𝑡−1 + 𝛼2𝐺𝐷𝐷𝑖𝑗𝑡−1 + 𝑿𝒊𝒋𝒕
′ 𝛼3 + 𝜃𝑡 + 𝜆𝑖 + 𝜔𝑖𝑗𝑡          (3) 
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Where 𝐴𝑖𝑗𝑡 is the area allocated to improved groundnut varieties by household 𝑖, in district  𝑗 and 

growing season 𝑡. This regression includes household demographic variables and controls for 

household and year FE. Estimates for the parameters in equation 3 are presented in table 3, with 

our preferred specification in column 4. 𝛼1 and 𝛼2 measure the change in area under adoption due 

to an extra EHDD and an extra GDD, respectively.  

 

5. Main Results 

5.1 Threshold for Harmful Temperature 

Estimation results for equation (1) reveal a non-linear relationship between temperature and 

adoption of climate resilient groundnuts both at the extensive and intensive levels (Figure 6)6. 

Notably, the effect of temperature on adoption and area under adoption is positive for lower 

temperature bins (below 24-25°C), suggesting that a slight increase in temperature from lower 

levels may initially encourage adoption of climate-resilient groundnut varieties. However, as 

temperature rises further, the effect on adoption and area under adoption becomes negative, 

indicating that the incentive to adopt these varieties diminishes as temperature approaches 

potentially harmful levels. The effect on adoption and area under adoption becomes positive again 

for the highest temperature bins (above 32°C), with the strongest positive effects observed in this 

range. Moreover, we find similar non-linear effects between temperature and an alternative 

measure of adoption (willingness to adopt), with the largest effects being observed for temperature 

above 32°C (Appendix Figure A2). This suggests that once temperatures reach a critical threshold 

where crop yields are significantly affected, farmers are more likely to adopt climate-resilient 

varieties and allocate more land to their cultivation as an adaptation strategy to mitigate the adverse 

impacts of extreme heat (Di Falco & Veronesi, 2013).  

 

We also show that temperature effects on output become negative above 32°C (figure 7), further 

reinforcing the notion that farmers adopt climate-resilient varieties as a response to the detrimental 

impacts of extreme heat on crop yields. We then use 32°C as the threshold for harmful temperature 

in the calculation of EHDD and we use 22°C7 as the lower bound of the threshold for optimal 

temperature.  

 

 
6 These estimation results are also presented in Appendix Table A1.  
7 Since the focus of our analysis is to estimate the impacts of extreme heat, we did not determine the lower 

bound for optimal temperature for groundnut production. Instead, we use the FAO lower-bound threshold 

for optimal groundnut production.     
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                           Panel a: Adoption decision                         Panel b: Area under adoption  

 
Figure 6: Effects of temperature on adoption decision and area under adoption. 

Notes: Panel a shows the impacts of temperature on adoption decision, and panel b shows the impacts of temperature 

on area under adoption. Full results are presented in column 1 and column 3 of Appendix Table A1, respectively. The 

circles represent the point estimates, and the gray band indicates 95% confidence intervals. Additional controls include 

household size, cooperative membership, training in groundnut production, number of visits from public extension 

agents, number of visits from private extension agents, access to credit, dependency ratio, land tenure, access to off-

farm income, rainfall, and farmer’s perception of their soil quality. Regression also includes household and year fixed 

effects. Robust standard errors clustered at the household level.  

 
 

 
Figure 7: Effects of temperature on output 

Notes: Full results are presented in column 4 of Appendix Table A1. The circles represent the point estimates, and the 
gray band indicates 95% confidence intervals. Additional controls include household size, cooperative membership, 

training in groundnut production, number of visits from public extension agents, number of visits from private 

extension agents, access to credit, dependency ratio, land tenure, access to off-farm income, rainfall, and farmer’s 

perception of their soil quality. Regression also includes household and year fixed effects. Robust standard errors 

clustered at the household level.  

 

5.1. Effects of Extreme Heat and Optimal Temperature on Adoption  

 

Table 2 shows the results for the effects of temperature shocks on the adoption decision. Columns 

(1) and (2) show the results without household controls, with column 2 including both year and 

household FE, while column 1 only controls for year FE. Columns (3) includes household controls 

and year FE, but no household FE. Column 4 is our preferred specification, and includes household 
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controls, year FE, and household FE. Our results provide strong evidence that exposure to extreme 

heat in the previous growing season increases the likelihood of adopting improved groundnut 

varieties. Specifically, an additional extreme heat degree day in the previous growing season 

increases the proportion of households using improved groundnut varieties by 0.5 percentage point 

(Table 1, column 4). These findings align with previous research showing that farmers often adopt 

climate-resilient crop varieties as an adaptation strategy in response to extreme weather events (Di 

Falco & Veronesi, 2013).  

 

Our results further show that exposure to optimal growing temperatures in the previous season 

reduces the likelihood of adoption. An additional growing degree in the previous growing season 

is associated with a 0.2 percentage point decrease in the probability of adoption. This result is 

consistent with the idea that farmers may be less inclined to adopt new varieties when they 

experience favorable growing conditions, as they may perceive less need for adaptation (Burke & 

Emerick, 2016). Membership in a farmers' group, training on groundnut production, access to 

extension services (both public and private), access to credit, and access to off-farm income are 

positively associated with adoption. These factors likely contribute to farmers' awareness, 

knowledge, and financial capacity to adopt improved varieties (Kassie, Teklewold, Jaleta, et al., 

2015; Teklewold et al., 2013). Conversely, household size and rented land have negative or 

insignificant effects on adoption, possibly due to resource constraints or tenure insecurity (Abdulai 

& Huffman, 2014).  

 

5.2. Effects of Extreme Heat and Optimal Temperature on Area Under Adoption 

 

The results in Table 3 show that exposure to extreme heat has a positive and statistically significant 

effect on the area allocated to improved groundnut varieties. One extra extreme heat degree day 

increases the area under improved varieties by 0.006 hectare (Table 3, Column 4). Given that the 

average area under adoption in 2017 is 0.53 hectare, our point estimates imply that an extra extreme 

heat degree day increases the area under adoption by 1.13%. These findings are consistent with 

our earlier results on the adoption decision and provide further evidence that farmers allocate more 

land to climate-resilient varieties in response to extreme heat exposure (Aragón et al., 2021; Di 

Falco & Veronesi, 2013; He & Chen, 2022).  

 

In contrast, the coefficient estimates for GDD are negative and statistically significant in most 

specifications, suggesting that exposure to optimal growing temperatures reduces the area 
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allocated to improved groundnut varieties. An additional growing degree day in the previous 

growing season is associated with a 0.003 hectare (or 0.6 %) decrease in the area under improved 

groundnut varieties (Table 3, Column 4). This finding is consistent with the idea that farmers may 

perceive less need for adaptation to climate change when growing conditions are optimal (Burke 

& Emerick, 2016). 

 

Table 2: Linear Probability Model Estimates of the effects of temperature shocks on adoption 

 (1) (2) (3) (4) 

EHDDt−1 0.002*** 0.003*** 0.004*** 0.005*** 

 (0.000) (0.001) (0.000) (0.001) 

GDDt−1 -0.001*** -0.001 -0.002*** -0.002*** 

 (0.000) (0.000) (0.000) (0.000) 

Observations 8,604 8,604 7,726 7,726 

R-squared 0.031 0.009 0.114 0.052 

Controls No No Yes Yes 

Household FE No Yes No Yes 

Year FE Yes Yes Yes Yes 
Notes: Sample includes all three panel years: 2017, 2018, and 2019. Dependent variable is adoption dummy. 

All regressions include year dummies. Robust standard errors clustered at the household level are in 
parentheses. *** significant at 1%, ** significant at 5%, * significant at 10%. Controls include household 

size, cooperative membership, training in groundnut production, number of visits from public extension 

agents, number of visits from private extension agents, access to credit, dependency ratio, land tenure, access 

to off-farm income, rainfall, and farmer’s perception of their soil quality. 

 

Table 3: OLS Estimates of the Effects Temperature Shocks on Area under Adoption 

 (1) (2) (3) (4) 

EHDDt−1 0.003*** 0.003** 0.006*** 0.006*** 

 (0.001) (0.002) (0.001) (0.002) 

GDDt−1 -0.003*** -0.000 -0.004*** -0.003** 

 (0.000) (0.001) (0.000) (0.001) 

Observations 8,604 8,604 7,726 7,726 

R-squared 0.031 0.009 0.114 0.052 

Controls No No Yes Yes 

Household FE No Yes No Yes 

Year FE Yes Yes Yes Yes 
Notes: Sample includes all three panel years: 2017, 2018, and 2019. Dependent variable is area allocated to 

improved groundnut varieties in ha. All regressions include year dummies. Robust standard errors clustered 

at the household level are in parentheses. *** significant at 1%, ** significant at 5%, * significant at 10%. 
Controls include household size, cooperative membership, training in groundnut production, number of 

visits from public extension agents, number of visits from private extension agents, access to credit, 

dependency ratio, land tenure, access to off-farm income, rainfall, and farmer’s perception of their soil 

quality. 
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5.4 Heterogeneity analysis 

5.4.1 Cross-country analysis 

 

While our main results provide valuable insights into the overall effects of extreme heat on the 

adoption and area under adoption of improved groundnut varieties, it is crucial to recognize that 

these impacts may vary across different geographical contexts. Our unique dataset allows us to 

explore this heterogeneity and gain a more nuanced understanding of how farmers in different 

regions respond to extreme heat. In this section, we present a cross-country analysis of the impacts 

of EHDD and GDD on adoption and area under adoption, by emphasizing the similarities and 

differences in farmers’ adaptation strategies across the three West African nations. 

 

Table 4 presents the results of our cross-country analysis, where we find heterogenous variations 

in magnitudes and statistical significance on the impact of extreme heat on adoption and area under 

adoption. However, the baseline insights are maintained as we find consistent effects in all the 

three countries. The lone exception is for Mali where the intensive adoption of climate-resilient 

seeds is not statistically different from zero. This suggests that farmers in the three countries are 

highly responsive to extreme heat and adopt improved groundnut varieties and allocating more 

land to these varieties as a coping mechanism though at varying rates.  

 

These nuanced cross-country differences in the impacts of extreme heat on adoption and area under 

adoption may be attributed to factors, such as differences in agro-ecological conditions, 

institutional support, access to information and resources, and cultural practices (Makate, 2019; 

Wossen et al., 2017). For instance, the stronger response of Nigerian farmers to extreme heat could 

be due to the country’s higher exposure to climate risks or the presence of more effective extension 

services that promote the adoption of climate-resilient varieties (Wossen et al., 2017). Our cross-

country analysis demonstrates the importance of considering the heterogeneity in farmers’ 

responses to extreme heat when designing and implementing policies and interventions aimed at 

promoting climate change adaptation in smallholder agriculture. Tailoring these efforts to the 

specific needs and contexts of different regions and countries can help ensure their effectiveness 

in building the resilience of farming communities to the challenges posed by rising temperatures. 
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Table 4:  Cross-Country Analysis of Extreme Heat Impact on Adoption and Area under 

Adoption 

 Ghana  Mali  Nigeria 

 Adoption Area  Adoption Area  Adoption Area 

EHDDt−1 0.021*** 0.014*  0.005* 0.006  0.013*** 0.017*** 

 (0.005) (0.007)  (0.002) (0.008)  (0.002) (0.003) 

GDDt−1 -0.007*** -0.006***  -0.005* -0.008  -0.007*** -0.010*** 

 (0.001) (0.001)  (0.002) (0.006)  (0.001) (0.002) 

Observations 1,363 1,363  2,287 2,287  4,076 4,076 

R-squared 0.135 0.086  0.226 0.125  0.128 0.089 

Controls Yes Yes  Yes Yes  Yes Yes 

Household FE Yes Yes  Yes Yes  Yes Yes 

Year FE Yes Yes  Yes Yes  Yes Yes 
Notes: Sample includes all three panel years: 2017, 2018, and 2019. The table presents estimates from 

equation 2 (Adoption column) and equation 3 (Area column), for each country. All regressions include 

controls, and household and year fixed effects. Robust standard errors clustered at the household level are in 

parentheses. *** significant at 1%, ** significant at 5%, * significant at 10%. 

 

 

5.4.2. Heterogeneity Analysis by Wealth and Production level 
 

As argued in our conceptual framework, agricultural technology adoption decisions depend on 

households’ financial liquidity and endowments level. To better understand how these factors 

influence households' responses to temperature shocks, we explore the heterogeneous effects of 

EHDD and GDD on adoption and area under adoption by wealth. Additionally, we investigate 

heterogeneous effects by production level to better understand how households’ adaptive capacity 

may vary depending on their output level. To do so, we compute the average income and production 

for each household across the three years of our panel and use these values to determine the top and 

bottom terciles of total household income and total output.  

 

Table 5 presents the results of our heterogeneity analysis by wealth, comparing the effects of 

extreme heat on adoption and area under adoption for poor households (bottom tercile of average 

total household income) and non-poor households (top tercile). We find that both poor and non-

poor households increase their adoption and area under adoption in response to extreme heat, with 

the effect being higher for non-poor households. This means that while both groups are responsive 

to extreme heat, non-poor households may have a greater ability to adopt improved varieties due to 

their higher income and better access to resources  (Dercon & Christiaensen, 2011; Deressa et al., 

2009; Fentie & Beyene, 2019).  
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Table 5: Heterogenous effects of EHDD and GDD on adoption and area under adoption by 

wealth 

 Adoption  Area 

 Poor Non-poor  Poor Non-poor 

EHDDt−1 0.007*** 0.008***  0.006*** 0.016*** 

 (0.001) (0.002)  (0.001) (0.006) 

GDDt−1 -0.002*** -0.004***  -0.002** -0.010*** 

 (0.001) (0.001)  (0.001) (0.004) 

Observations 2,574 2,580  2,574 2,580 

R-squared 0.104 0.092  0.087 0.057 

Controls Yes Yes  Yes Yes 

Household FE Yes Yes  Yes Yes 

Year FE Yes Yes  Yes Yes 
Notes: Sample includes all three panel years: 2017, 2018, and 2019. The table presents estimates from equation 

2 (Adoption column) and equation 3 (Area column) for poor versus non-poor households. Poor households are 

those who fall within the bottom tercile of the average total household income, and non-poor households are 

those within the top tercile. All regressions include controls, household, and year fixed effects. Robust standard 

errors clustered at the household level are in parentheses. *** significant at 1%, ** significant at 5%, * 

significant at 10%. 

 

Similarly, we find positive and statistically significant effects of EHDD on area under adoption 

across both groups, with the effect being larger for non-poor households.  This shows that non-poor 

households are able to allocate more land to improved varieties in response to extreme heat, 

possibly due to their larger landholdings and greater financial capacity to invest in climate-resilient 

technologies (Di Falco & Veronesi, 2013; Teklewold et al., 2019).  

 

With regards to production level heterogeneity (Table 6), we show larger effects for households 

with high production levels. The larger EHDD effects on area under adoption for households with 

higher production levels can be explained by several factors. First, households with higher 

production levels may have larger landholdings, which allows them to allocate more land to 

improved varieties in response to extreme heat without compromising their overall crop portfolio 

(Sesmero et al., 2018; Michler et al., 2019). Second, these households could have more financial 

resources, which enables them to invest in the necessary inputs and technologies required to expand 

the cultivation of improved varieties (Kassie et al., 2015; Manda et al., 2020). Finally, households 

with higher production levels may have better access to information, extension services, and input 

markets, which can provide them with the knowledge, support, and resources needed to effectively 

increase the area under improved varieties when faced with adverse weather conditions (Aragon et 

al., 2021; Jain et al., 2015).  
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Table 6: Heterogenous effects of EHDD and GDD on adoption and area under adoption by 

production level 

 Adoption  Area 

 Low 

Production 

High 

Production 

 Low 

Production 

High 

Production 

EHDDt−1 0.009*** 0.003**  0.005*** 0.013** 

 (0.001) (0.002)  (0.001) (0.005) 

GDDt−1 -0.002*** -0.002**  -0.001 -0.009** 

 (0.001) (0.001)  (0.001) (0.003) 

Observations 2,572 2,574  2,572 2,574 

R-squared 0.148 0.072  0.135 0.045 

Controls Yes Yes  Yes Yes 

Household FE Yes Yes  Yes Yes 

Year FE Yes Yes  Yes Yes 
Notes: Sample includes all three panel years: 2017, 2018, and 2019. The table presents estimates from 

equation 2 (Adoption column) and equation 3 (Area column) for poor versus non-poor households. 

Households with low output are those who fall within the bottom tercile of the average groundnut 
output, and households with high output are those within the top tercile of average groundnut 

production. All regressions include controls, household, and year fixed effects. Robust standard errors 

clustered at the household level are in parentheses. *** significant at 1%, ** significant at 5%, * 

significant at 10%. 

 

 

5.5 Substitution Effects  

 

Our analysis so far has focused on the impact of extreme heat on the adoption and area under 

adoption of improved groundnut varieties. However, it is important to consider how these changes 

in adoption patterns may affect the allocation of land to non-improved (local) varieties. While 

some studies have shown that farmers may increase their total cultivated area as an adaptation 

strategy to cope with extreme weather events (Aragón et al., 2021; Taraz, 2017), our analysis 

reveals that, farmers may be expanding the area under improved varieties at the expense of land 

allocated to non-improved varieties. 

 

To investigate these substitution effects, we estimate the impact of extreme heat and optimal 

growing temperatures on the area allocated to non-improved groundnut varieties, which is equal 

to the total area allocated to groundnut cultivation minus the area under adoption of improved 

groundnut varieties. Table 7 presents the results of this analysis. Our preferred specification 

(column 4) shows a positive and strong statistically significant effect of EHDD on area under non-

improved seeds. An additional EHDD leads to a 0.012 hectare (or approximately 1.2 %)8 decrease 

in the area under non-improved groundnut varieties. This finding suggests that as farmers 

 
8The average area allocated to non-improved seeds in 2017 is 1.04. As such, this point estimates implies that an extra 

EHDD increases the area under non-improved seeds by (0.012/1.04) *100  ≈	1.2%. 
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experience more extreme heat, they not only adopt improved varieties and allocate more land to 

them but also reduce the area allocated to local varieties. This substitution effect may be driven by 

farmers desire to maximize yields and minimize the risk of crop failure under adverse weather 

conditions, as improved varieties are often bred to be more resilient to abiotic stresses (Fisher & 

Carr, 2015; Kassie et al., 2015). 

 

Conversely, one extra growing degree day is associated with a 0.008 hectare (or 0.8%)9 increase 

in the area allocated to non-improved groundnut varieties, with this estimate also being significant 

at the 1% level. This result indicates that when farmers experience more optimal growing 

temperatures, they tend to allocate more land to non-improved groundnut varieties. This may be 

because farmers perceive less need for the stress-tolerant traits of improved varieties under 

favorable weather conditions and may prefer to cultivate local varieties that are better adapted to 

their specific agro-ecological contexts and have desirable culinary or cultural properties (Waldman 

et al., 2014). 

 

Table 7: Effects of Extreme Heat on area with non-improved groundnut varieties 

 Area with non-improved groundnut varieties 

 (1) (2) (3) (4) 

EHDDt−1 -0.002* -0.007*** -0.007*** -0.012*** 

 (0.001) (0.002) (0.001) (0.002) 

GDDt−1 -0.000 0.003** 0.001** 0.008*** 

 (0.000) (0.001) (0.001) (0.001) 

Observations 8,604 8,604 7,726 7,726 

R-squared 0.012 0.006 0.089 0.064 

Controls No No Yes Yes 

Household FE No Yes No Yes 

Year FE Yes Yes Yes Yes 

Notes: Sample includes all three panel years: 2017, 2018, and 2019. The table presents the estimates 

of equation 4.  The dependent variable is the area under no adoption of improved seeds, which is 

equal to the total area allocated groundnut cultivation minus the area under adoption of improved 

seeds. Our preferred specification is in column 4, and includes controls, year and household FEs. All 

regressions include year fixed effects. Robust standard errors clustered at the household level are in 

parentheses. *** significant at 1%, ** significant at 5%, * significant at 10%.  

 

These substitution effects have important implications for agricultural development and climate 

change adaptation strategies. While the adoption of improved varieties can enhance farmers 

resilience to extreme heat, it is crucial to ensure that this does not come at the cost of reduced area 

under non-improved seeds, as local varieties may have valuable genetic diversity and unique traits 
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that are important for long-term adaptation and food security (Atlin et al., 2017; Qaim, 2020). 

Policies and interventions should aim to promote a balanced approach that encourages the adoption 

of improved varieties while also supporting the conservation and sustainable use of local crop 

diversity. Furthermore, the positive impact of optimal growing temperatures on the area under non-

improved seeds highlights the importance of considering the heterogeneous effects of weather 

conditions on farmers’ varietal choices. Extension services and agricultural development programs 

should tailor their recommendations and support to the specific needs of farmers under different 

weather scenarios, promoting improved varieties where they are most needed while also 

recognizing the value of local varieties under favorable conditions. 

 

5.6. Sustained Adoption 

 

One critical concern in the adoption of climate-resilient agricultural technologies is the potential 

for disadoption, where farmers may initially adopt improved varieties but later discontinue their 

use (Fentie & Beyene, 2019; Michler et al., 2019; Maggio et al., 2022; Tabe-Ojong et al., 2023c). 

Disadoption can undermine the long-term effectiveness of these technologies in helping farmers 

adapt to climate change and may limit the realization of their full benefits (Chinseu et al., 2019). 

To better understand this challenge, we investigate the effects of extreme heat and optimal 

temperatures on sustained adoption, both in terms of the likelihood of continued adoption and the 

area under adoption for those who adopt consistently.  

 

Table 8 presents the results of our analysis of sustained adoption, with columns (1) and (2) focusing 

on the probability of adoption for two and three years, respectively, and columns (3) and (4) 

examining the impact on area under adoption for households that have adopted for two and three 

years, respectively. Our findings here suggest that exposure to extreme heat not only encourages 

initial adoption but also promotes the sustained use of improved varieties over time.  

 

Table 8: Effects of EHDD and GDD on sustained adoption  

 Adoption  Area 

 2 years 3 years  2 years 3 years 

EHDDt−1 0.001*** 0.002***  0.020*** 0.007** 

 (0.000) (0.000)  (0.008) (0.003) 

GDDt−1 -0.001*** -0.001***  -0.016*** -0.001 

 (0.000) (0.000)  (0.004) (0.002) 

Observations 7,726 7,726  1,240 1,641 

R-squared 0.044 0.156  0.303 0.024 

Controls Yes Yes  Yes Yes 

Household FE No No  Yes Yes 
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Year FE Yes Yes  Yes Yes 
Notes: Sample includes all three panel years: 2017, 2018, and 2019. The table presents estimates 

of equation 2 (Adoption column) and equation 3 (Area column) for households who have i) 

adopted improved groundnut varieties for 2 out of the 3 years of our panel and ii) households 

who have adopted all 3 years. In the adoption column, the dependent variables are indicator 

variables for whether a household adopts improved seeds for 2 out of the 3 years of our panel (2 
years sub-column), or whether the household adopts for all 3 years (3 years sub-column). In the 

area column, we estimate equation 3 for the sub-group of households who have adopted 

improved seeds for 2 out of the 3 years of our panel (2 years sub-column), or whether the 

household adopts for all 3 years (3 years sub-column). All regressions include year fixed effects. 

Robust standard errors clustered at the household level are in parentheses. *** significant at 1%, 

** significant at 5%, * significant at 10% 

 

Taken together, these findings suggest that the experience of extreme heat events not only triggers 

initial adoption but also encourages farmers to continue using improved varieties over multiple 

growing seasons. Sustained adoption is crucial for building the resilience of smallholder farming 

systems to the impacts of climate change and ensuring the long-term food security and livelihoods 

of rural communities (Lybbert & Sumner, 2012; Rippke et al., 2016). The findings also highlight 

the importance of designing policies and interventions that not only promote initial adoption but 

also support sustained use of climate-resilient technologies. This may involve providing ongoing 

extension services, facilitating access to inputs and markets, and creating an enabling institutional 

environment that encourages long-term investment in climate change adaptation (Acevedo et al., 

2020). 

 

 

5.7. Robustness checks  

 

We conducted several robustness checks to confirm and bolster the validity of our estimates.  

 

First, we re-estimated our preferred specification using the Correlated Random Effects (CRE) 

approach, also known as the Mundlak device (Appendix Table A4, Columns 1 and 2). The CRE 

model allows for the correlation between the unobserved heterogeneity and the explanatory 

variables, thus addressing potential endogeneity issues (Mundlak, 1978). By including the means 

of the time-varying covariates as additional regressors, the CRE approach captures the between-

individual effects while still controlling for unobserved heterogeneity. Our results remain robust 

to this alternative specification. 

 

Second, we employ Probit and Tobit models with CRE (Appendix Table A4, columns 3 and 4) to 

account for the binary nature of the adoption decision and the censored nature of the area under 
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adoption, respectively. The Probit model is a non-linear probability model that estimates the 

likelihood of adoption, addressing the limitations of the LPM in terms of predicted probabilities 

falling outside the [0,1] range (Wooldridge, 2010). The Tobit model, on the other hand, is designed 

to handle censored dependent variables, such as the area under adoption, which has a lower limit 

of zero (Tobin, 1958). Our findings are robust to these alternative estimation methods. 

 

We also check the robustness of our adoption results using an alternative measure of adoption: 

willingness to adopt (Appendix Table A4, column 5). This measure captures farmers’ intention to 

adopt improved varieties, which may be less affected by short-term constraints such as access to 

credit (Adesina & Zinnah, 1993; Doss, 2006). Our findings are consistent to this alternative 

measure of adoption. 

 

In addition, we also estimate a Heckman selection model to account for the potential selection bias 

arising from the fact that the area under improved varieties is only observed for adopters (Appendix 

Table A6). The Heckman model estimates a two-stage process: first, a selection equation that 

determines the likelihood of adoption, and second, an outcome equation that estimates the area 

under adoption conditional on being an adopter (Heckman, 1979). By modeling the selection 

process explicitly, the Heckman approach addresses the potential bias caused by the non-random 

selection of adopters. Our results remain robust to this alternative specification. 

 

Next, we conduct a placebo test using EHDD from the pre-planting period of the same growing 

season instead of the previous growing season (Columns 6 and 7). As expected, the 

contemporaneous effects of extreme temperature on adoption and area under adoption are 

statistically insignificant. This test serves two important purposes. First, it allows us to rule out the 

possibility that exposure to extreme heat right before the growing season might affect adoption 

and area under adoption. Second, the placebo test highlights the importance of the lagged effects 

of temperature shocks on adoption decisions. By showing that the coefficient on the pre-planting 

EHDD variable is insignificant, we show that farmers indeed make adoption decisions based on 

their past exposure to extreme heat, rather than on current weather conditions. 

 

Moreover, the insignificant EHDD results from the placebo test underscore the fact that given the 

financial implications of adoption, it might be hard for farmers to adopt improved varieties shortly 

after experiencing temperature shocks. Adopting new technologies often involves significant 
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upfront costs, such as purchasing fertilizers, pesticides, and other inputs (Duflo et al., 2011; Foster 

& Rosenzweig, 2010). In the face of immediate weather shocks, farmers may prioritize short-term 

coping strategies, such as adjusting labor allocation or drawing down savings, rather than investing 

in long-term adaptation measures like adopting improved varieties (Dercon, 2002; Morduch, 

1995). The lagged effects captured in our main specification suggest that farmers need time to 

mobilize resources and make informed decisions about adopting new technologies in response to 

past weather shocks.  

 

Finally, we use the Conley (1999) standard errors with thresholds of 500 km, 1000 km, and 2000 

km (appendix table A5). Conley standard errors account for potential spatial correlation in our 

outcome variables or covariates, which may arise due to unobserved factors that are geographically 

clustered (Conley, 1999; Hsiang, 2010). Our results remain robust to this correction for spatial 

correlation, with the coefficients on EHDD and GDD remaining significant and of similar 

magnitude across all distance thresholds. 
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7. Conclusion  

 

This study investigates the impacts of extreme heat on the adoption of improved groundnut 

varieties among smallholder farmers in West Africa. Using panel data from household surveys 

conducted in 2017, 2018, and 2019, we employed a fixed effects model to estimate the effect of 

extreme heat degree days (EHDD) and growing degree days (GDD) on the likelihood of adoption 

and the area allocated to improved varieties. Our findings reveal that exposure to extreme heat in 

the previous growing season significantly increases both the probability of adoption and the area 

under adoption of improved groundnut varieties. Conversely, exposure to optimal growing 

conditions, as measured by GDD, reduces the likelihood of adoption and the area allocated to these 

varieties. 

 

We explore treatment effects heterogeneity across various socioeconomic dimensions, including 

production levels, and income. Our analysis of heterogeneity by wealth reveals that both poor and 

non-poor households increase their adoption and area under adoption in response to extreme heat, 

with the effect being more pronounced for non-poor households. This suggests that while both 

groups are responsive to extreme heat, non-poor households may have a greater ability to adopt 

improved varieties and allocate more land to them due to their higher income and better access to 

resources. Regarding production levels, we found larger extreme heat effects on adoption for 

households with low production levels, while the effect on area under adoption was larger for 

households with high production levels.  

 

Our findings have important implications for climate change adaptation in the context of 

smallholder agriculture. The increase in likelihood of adoption and area under adoption as 

responses to extreme heat highlights the potential of climate-resilient crop varieties as a key 

strategy for enhancing the adaptive capacity of smallholder farmers in the face of climate change 

(Asfawa et al., 2016). As temperatures continue to rise and the frequency and intensity of extreme 

heat events increase, the development and dissemination of improved varieties that can withstand 

these harsh conditions will become increasingly crucial. Our findings underscore the importance 

of policies and interventions that promote the breeding, release, and adoption of such varieties, as 

well as those that address potential barriers to adoption and area allocation, such as lack of access 

to information, credit, or input markets. The results also suggest that policies should focus not only 

on promoting initial adoption but also on supporting sustained adoption, as the benefits of climate-
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resilient varieties are found to increase with the duration of adoption. By facilitating the 

widespread adoption of climate-resilient varieties, these efforts can help build the resilience of 

smallholder agricultural systems and safeguard the livelihoods of millions of farmers in the face 

of a changing climate. 
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Appendix 

 

Table A1: Effects of temperature on Adoption, Area under adoption, and Output 

 Adoption Access 
Area under 

adoption 
Ln(output) 

T <24 
-0.0266*** 

(0.00607) 

-0.00241 

(0.00568) 

-0.0239* 

(0.0118) 

0.111*** 

(0.0276) 

T24-25 
0.0180** 

(0.00553) 

0.0406*** 

(0.00555) 

0.0399*** 

(0.0118) 

0.0525* 

(0.0257) 

T25-26 
-0.00519 

(0.00509) 

0.0107* 

(0.00519) 

0.0173 

(0.0104) 

0.0330 

(0.0228) 

T26-27 
-0.00245 

(0.00345) 

0.0137*** 

(0.00306) 

0.00673 

(0.00508) 

0.00273 

(0.0226) 

T27-28 
-0.00577 

(0.00358) 

0.00728* 

(0.00332) 

0.0117* 

(0.00564) 

0.00716 

(0.0223) 

T28-29 
-0.0105** 

(0.00391) 

-0.0122** 

(0.00412) 

0.000492 

(0.00842) 

-0.0226 

(0.0220) 

T29-30 
-0.000762 

(0.00448) 

0.0219*** 

(0.00421) 

0.0168* 

(0.00768) 

-0.0293 

(0.0201) 

T30-31 
-0.0193*** 

(0.00453) 

0.000477 

(0.00445) 

-0.0132 

(0.00789) 

-0.00723 

(0.0247) 

T31-32 
0.0141** 

(0.00517) 

0.00480 

(0.00520) 

0.0315*** 

(0.00884) 

-0.00366 

(0.0224) 

T32-33 
0.00817 

(0.00508) 

0.0128* 

(0.00497) 

0.0415*** 

(0.0105) 

-0.0825*** 

(0.0225) 

T33-34 
0.0125* 

(0.00498) 

0.0364*** 

(0.00532) 

0.0241** 

(0.00935) 

-0.0821*** 

(0.0233) 

T34-35 
0.0207*** 

(0.00485) 

0.0210*** 

(0.00495) 

0.0323*** 

(0.00787) 

-0.0534* 

(0.0215) 

Observations 7726 7726 7726 7726 

R-squared 0.0507 0.0052 0.0403 0.0139 

Controls Yes Yes Yes Yes 

Household FE Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

Notes: Sample includes all three panel years: 2017, 2018, and 2019. The table presents the 

effects of temperature captured using dummies for temperature bins (T24 , T24-25 , …, T34-

35) where each bin represents the proportion of days in the growing season with average 

daily temperature within that bin.  Column 1 shows the marginal effects of each temperature 

bin on the adoption decision. In column 2, we show the results for an alternative measure 

of adoption: the willingness to adopt improved groundnut varieties. Column 3 presents the 

marginal effects of each temperature bin on area under adoption and Column 4 shows the 

marginal effects of each bin on output. All regressions include controls, household and year 

fixed effects. Robust standard errors clustered at the household level are in parentheses. 

*** significant at 1%, ** significant at 5%, * significant at 10% 

  



 36 

 

 

 

Table A2: Robustness checks: Alternative specifications and measures of our key variables  

 (1) (2) (3) (4) (5) (6) (7) 

 Adoption 

CRE 

Area CRE Probit 

CRE  

Adoption 

Tobit CRE  

Area 

Willingness 

To Adopt 

Pre-

Planting 

Adoption 

Pre-

Plantin

g Area 

EHDDt-1 0.005*** 0.007*** 0.024*** 0.025*** 0.003***   

 (0.000) (0.001) (0.002) (0.002) (0.001)   

GDDt-1 -0.003*** -0.004*** -0.013*** -0.013*** -0.003***   

 (0.000) (0.000) (0.001) (0.001) (0.000)   

EHDDt      0.000 -0.002* 

      (0.000) (0.001) 

GDDt      -0.001*** -0.001 

      (0.000) (0.001) 

Observations 7,726 7,726 7,726 7,726 7,726 7,726 7,726 

R-squared 0.2801 0.1403 - - 0.074 0.081 0.052 

Controls Yes Yes Yes Yes Yes Yes Yes 

Household FE Yes Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes Yes 

Notes: Sample includes all three panel years: 2017, 2018, and 2019. The table presents the results of 

our robustness checks using alternative estimation methods and alternative measures of our 

treatment and outcome variables. Column 1 and 2 show robustness using the Correlated Random 

Effects (CRE) approach. Columns 3 and 4 show the results of our robustness using Probit and Tobit 

for adoption and intensity of adoption, respectively. Column 5 presents robustness results using 

Willingness to adopt (as an alternative measure of adoption). Columns 6 and 7 presents the results 

of our Placebo tests where we use the Pre-Panting EHDD and GDD of the same growing season.  

All regressions include controls, household and year fixed effects. *** significant at 1%, ** 

significant at 5%, * significant at 10%. Standard errors are clustered at the household level. 

 

  



 37 

 

 

Table A3: Robustness Checks: Spatial Correction Using Conley S.E. 

 500 km   1000 km  2000 km 

 Adoption Area  Adoption Area  Adoption Area 

EHDDt−1 0.005** 0.006**  0.005** 0.006**  0.005** 0.006** 

 (0.002) (0.003)  (0.002) (0.002)  (0.002) (0.003) 

GDDt−1 -0.002*** -0.003**  -0.002*** -0.003**  -0.002*** -0.003*** 

 (0.001) (0.001)  (0.001) (0.001)  (0.000) (0.001) 

Observations 7,726 7,726  7,726 7,726  7,726 7,726 

R-squared 0.703 0.655  0.703 0.655  0.703 0.655 

Controls Yes Yes  Yes Yes  Yes Yes 

Household FE Yes Yes  Yes Yes  Yes Yes 

Year FE Yes Yes  Yes Yes  Yes Yes 

Notes: Sample includes all three panel years: 2017, 2018, and 2019. The table presents estimates 

from equation 2 (Adoption column) and equation 3 (Area column), using the Conley (1999) 

standard errors with thresholds 500 km, 1000 km and 2000 km. All regressions include controls, 

household and year fixed effects. *** significant at 1%, ** significant at 5%, * significant at 10%. 

Standard errors are clustered at the household level. 

 

 

 

 

 

Table A4: Robustness check using Heckman Selection Model 

 (1) (2) 

 Area Adoption 

Ln (EHDDt−1) 0.304*** 1.440*** 

 (0.097) (0.119) 

Ln (GDDt−1) -2.410*** -8.918*** 

 (0.434) (0.597) 

Observations 7,726 7,726 

Controls Yes Yes 

Household FE Yes Yes 

Year FE Yes Yes 

 Notes: Sample includes all three panel years: 2017, 2018, and 

2019. The table presents estimates of the Heckman selection 

model. A random-effects Probit model is used to estimate the 

adoption equation and an OLS is used to estimate the outcome 

(Area) equation. All regressions include controls, and household 

and year fixed effects. *** significant at 1%, ** significant at 5%, 

* significant at 10%. Standard errors are clustered at the household 

level. 

  



 38 

 
Figure A1: Spatial distribution of hot days 

 
Notes: This map shows the distribution of hot days in districts where households in our sample live. Hot days are days 

with average temperature above 32°C.  

 

 

 
 

Figure A2: Effects of temperature on willingness to adopt. 
Notes: Full results are presented in column 2 of Appendix Table A1. The circles represent the point estimates, and the 

gray band indicates 95% confidence intervals. Additional controls include household size, cooperative membership, 

training in groundnut production, number of visits from public extension agents, number of visits from private 

extension agents, access to credit, dependency ratio, land tenure, access to off-farm income, rainfall, and farmer’s 

perception of their soil quality. Regression also includes household and year fixed effects. Robust standard errors 

clustered at the household level. 
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Figure A2: Temporal distribution of hot days: 1990 – 2020. 

 
Notes: This graph shows the historical (1990 – 2020) temporal distribution of hot days. Hot days are days with average 

temperature above 32°C.  

 

 
Figure A3: Box plot of EHDD by year   
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Figure A6: Box plot of EHDD by country   

 

 

 

 
Figure A4: Box plot of GDD by year 
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Figure A5: Box plot of GDD by country 

 

 

 

 
Figure A6: Distribution of area under improved seeds by year 
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Figure A7: Distribution of area under improved seeds by country 

 

 

 

 


