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Impact of Extreme Weather Events on the U.S. Domestic Supply Chain of Food 

Manufacturing 

Hyungsun Yim1 and Sandy Dall’erba2 

 

Abstract 
     

In the United States, like in other countries around the world, agri-food security is challenged by a 
growing population and less predictable weather conditions. Extreme weather events such as droughts and 
extreme rainfall increase the volatility of agricultural yield for producers. This means changes in 
comparative advantages, in the domestic trade of agricultural products and, in turn, in the manufacturing 
of food products since the former are necessary inputs in the production of the latter. We investigate how 
locally sourced agricultural inputs are substituted with inputs imported from other states. We construct a 
structural framework for manufactured food production as a function of labor, capital and agricultural 
inputs. We first estimate a model for the trade in animals and fish (SCTG01), one for cereal grains 
(SCTG02), and one for the other agricultural products (SCTG03) which is composed mainly of fruits, 
vegetables and soybeans. It will constitute the first step of our two-stage analysis. In the second stage, we 
will estimate a nested production function for processed food at the state level. Our combination of two 
structural models allows us to quantify the extent to which food manufacturing in any single state is 
dependent on local weather shocks affecting the production of locally grown inputs and of weather shocks 
taking place in faraway locations where the remaining inputs are imported from. The findings provide 
details on the key linkages in the domestic food supply chain and are informative for the design of 
policies aiming at mitigating the impacts of climate change on the U.S. food and agricultural sector.  
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1 Introduction 

In the United States, like in other countries around the world, agri-food security is challenged 

by a growing population and less predictable weather conditions. While climate change has 

already led some areas of the United States to experience more frequent and intense extreme 

weather events, the change is expected to accelerate in the decades to come (IPCC, 2022). 

Extreme weather events such as droughts and extreme rainfall increase the volatility of 

agricultural yield for producers (Deschênes & Greenstone, 2012; Lesk et al., 2016; Schlenker & 

Roberts, 2009) which may mean changes in comparative advantages, in the domestic trade of 

agricultural products (Burke & Emerick, 2016; Costinot et al., 2016; Dall’Erba et al., 2021; Magalhães 

Vital et al., 2022) and, in turn, in the manufacturing of food products since the former are 

necessary inputs in the production of the latter (Cheng et al., 2022; Malik et al., 2022; McCorriston & 

Sheldon, 1991; Rosenzweig & Parry, 1994). A recent example is drought-struck Nebraska who in 

2012 had to import 2.65 times as many agricultural commodities from other U.S. states than 

under regular weather conditions in order to feed its livestock and maintain its food 

manufacturing activities. For states who do not specialize in agriculture but need to maintain 

their purchases of crops and livestock for food manufacturing and for their citizens, this type of 

event might mean more competition and higher prices for food, even if the said weather event 

took place thousands of miles from them (Bertassello et al., 2023; Gouel & Laborde, 2021; Laber et 

al., 2023; Malik et al., 2022; Reimer & Li, 2010).   

Central to society’s capacity to address these challenges is the ability of trade to guarantee 

the resiliency of supply chains from producers to the agri-food industry and then to final 

consumers. For the current trade economics literature that highlights trade as a market-mediated 

strategy to recover the aftermath of a shock on the supply of agricultural and food commodities, 

the focus has traditionally been more at the international level (Costinot et al., 2016; Ferguson & 

Gars, 2020; Gouel & Laborde, 2021; Magalhães Vital et al., 2022; Reilly & Hohmann, 1993; Schenker, 

2013). Yet, in spite of the United States producing up to 87 percent of its agricultural 

commodities for the domestic market (Dall’Erba et al., 2021), there is a paucity of studies focusing 

on U.S. domestic flows. The few exceptions include Dall’Erba et al. (2021), (Burke & Emerick, 

2016), and (Nava et al., 2023).  

Compared to the international level, the domestic focus this manuscript adopts means that the 

capacity of adaptation is limited by the range of nationally produced crops, country-wide weather 
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conditions, and the national transportation network. However, the trade impact principles remain 

the same: production losses following a sudden drought or a flood are substituted with imports, 

hence leading to trade creation or diversion (Dall’Erba et al., 2021; Ferguson & Gars, 2020; Gouel & 

Laborde, 2021). As a result and in the short-run, trade has the potential to mitigate the disruptive 

effects of extreme weather. However, in the long run, climate change is expected to drive 

adaptation in the agricultural sector through efforts such as crop-rotation, adoption of heat- and 

drought-resistant plant and livestock varieties, livestock herd reductions in drought years, 

shifting production northward and towards the Colorado Rockies (McCarl et al., 2016; Miao et al., 

2016). This challenge highlights the critical need to properly address the complex impact of 

extreme weather events on the trade of agricultural commodities and, in turn, on the 

manufacturing of food in the United States. 

In order to understand the vulnerability and resilience of the U.S. agri-food supply chain to a 

changing climate, we investigate the extent to which locally sourced agricultural inputs are 

substituted with inputs imported from other states. We construct a structural framework for the 

production of manufactured food as a function of labor, capital and agricultural inputs. The key 

novelty is that we assume that there is constant elasticity of substitution (CES) between 

agricultural inputs that are sourced locally and imported from other states. This framework is 

firmly grounded in the theory of the gravity model of bilateral trade where inputs sourced from 

different trading partners have Armington-CES (Yotov et al., 2016). The bottom line is that we 

investigate interregional and intersectoral relationships embedded in the production process of 

the downstream sector by structurally combining the gravity model of trade and CES production 

function, an endeavor that has never been done before. A similar work by (Boehm et al., 2019) 

analyzes how an exogenous shock from the Japanese input sector is transmitted downstream in 

the United States. However, this study estimates the firm-level constant elasticity of substitution 

with respect to only observed inputs and does not link cross-country trade flows with the gravity 

model.  

The application will allow us, first, to answer how extreme weather shocks (drought and 

wetness measured through SPEI, the Standardized Precipitation Evapotranspiration Index) in 

both origin and destination states affect the interstate of livestock and staple crops. This gravity 

model estimation relies on an extensive state-to-state panel dataset of the Freight Analysis 

Framework (FAF) which records all domestic flows categorized by Standard Classification of 
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Transported Goods (SCTG) sector codes. As such, we will estimate a model for the trade in 

animals and fish (SCTG01), one for cereal grains (SCTG02), and one for the other agricultural 

products (SCTG03) which is composed mainly of fruits, vegetables and soybeans. It will 

constitute the first step of our two-stage analysis.  

In the second stage, we will estimate a nested production function for processed food at the 

state level. We will account for the elasticity of substitution between locally produced and 

imported agricultural inputs from the CES input production function. Our combination of two 

structural models allows us to quantify the extent to which food manufacturing in any single 

state is dependent on local weather shocks affecting the production of locally grown inputs and 

of weather shocks taking place in faraway locations where the remaining inputs are imported 

from. 

The rest of this paper is organized as follows: Section 2 describes how we combine the 

structural equations of two distinct models, one based on trade gravity and one based on nested 

production function, in order to include both interregional and intersectoral linkages in the 

analysis of food manufacturing. Section 3 presents the data and shows some statistics of their 

distribution over our study period. Section 4 presents the estimates of the effect of extreme 

weather on agricultural trade and on food manufacturing. This section displays some robustness 

checks as well. Finally, section 5 summarizes the results and provides some concluding remarks. 

2 Theoretical Framework 

In this section, we formulate our modelling approach of a production function with inputs 

that are sourced from another sector and another location. The properties of the aggregate 

production function follow a Cobb-Douglas (CD) production function with labor, capital, and the 

input aggregate from the upstream sector. Within the input aggregate, inputs from different 

locations are set to have the properties of CES preferences straight from the structural gravity 

framework of trade (Anderson & Van Wincoop, 2003).  

The final output of manufactured food 𝑌𝑌𝐹𝐹  follows a CD production function of aggregate 

capital 𝐾𝐾𝐹𝐹(superscript F denotes food manufacturing), aggregate labor 𝐿𝐿𝐹𝐹 as well as a composite 

of agricultural inputs 𝐼𝐼𝐴𝐴  (superscript A denotes agricultural production) needed in the food 

manufacturing sector. Following the structural gravity framework, we set the composite of inputs 

as a CES aggregate of agricultural inputs that are produced locally 𝐼𝐼𝑗𝑗𝐴𝐴 and that are sourced from 
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all other states 𝐼𝐼−𝑗𝑗𝐴𝐴  (Armington, 1969). This is expressed as: 

𝑌𝑌𝑗𝑗𝐹𝐹 = 𝐴𝐴𝐹𝐹�𝐿𝐿𝑗𝑗𝐹𝐹�
𝛼𝛼
�𝐾𝐾𝑗𝑗𝐹𝐹�

𝛽𝛽(𝐼𝐼𝐴𝐴)𝛾𝛾 (1) 

where 𝐴𝐴𝐹𝐹 is the technological productivity of the manufactured food sector, 𝛼𝛼,𝛽𝛽 𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾 are factor 

shares, and 𝐼𝐼𝐴𝐴 is noted as (2). By setting the aggregate CD production function, we assume that 

capital, labor, and the agricultural input aggregate have an elasticity of substitution equal to 1, 

which means that changes in their relative price will not vary the ratio of these inputs. 

𝐼𝐼𝐴𝐴 = �𝛿𝛿�𝐼𝐼𝑗𝑗𝐴𝐴�
𝜃𝜃

+ (1 − 𝛿𝛿)�𝐼𝐼−𝑗𝑗𝐴𝐴 �
𝜃𝜃
�
1
𝜃𝜃 (2) 

We are interested in estimating the substitution parameter 𝜃𝜃  to attain the elasticity of 

substitution between locally sourced and imported agricultural inputs 𝜎𝜎𝜃𝜃 = 1 (1 − 𝜃𝜃)⁄ . The 

elasticity of substitution is nonnegative as defined by production theory. In addition, agricultural 

inputs from different sources are expected to be substitutes (𝜎𝜎𝜃𝜃 > 1). Traded agricultural inputs 

are assumed homothetic and common across states. The parameter 𝛿𝛿 is the share of 𝐼𝐼𝑗𝑗𝐴𝐴 within the 

aggregate measurement of agricultural input. Section 2.1. below will explain how to measure 𝐼𝐼𝑗𝑗𝐴𝐴 

and 𝐼𝐼−𝑗𝑗𝐴𝐴  while Section 2.2. will cover the food production function (equation 1) with CES 

between agricultural inputs (equation 2). 

2.1. Agricultural inputs based on the gravity model of trade 

2.1.1. Structural model 

Agricultural inputs that enter the manufactured food production process (1) require from us 

to distinguish local from imported inputs. It is accomplished by relying on a state-to-state 

structural gravity model of trade as described in Anderson & Van Wincoop (2003). Equations 

(3a) and (3b) reflect how agricultural inputs produced locally, 𝐼𝐼𝑗𝑗𝐴𝐴, correspond to the intrastate 

trade, and inputs sourced from elsewhere 𝐼𝐼−𝑗𝑗𝐴𝐴  are the sum of all interstate trade imported from all 

other states.  

𝐼𝐼𝑗𝑗𝐴𝐴 =  𝐼𝐼𝑖𝑖𝑗𝑗𝐴𝐴𝐹𝐹 , 𝑖𝑖 = 𝑗𝑗 (3𝑎𝑎) 

𝐼𝐼−𝑗𝑗𝐴𝐴 =  �𝐼𝐼𝑖𝑖𝑗𝑗𝐴𝐴𝐹𝐹

𝑖𝑖

 , ∀ 𝑖𝑖 ≠ 𝑗𝑗 (3𝑏𝑏) 
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 𝐼𝐼𝑖𝑖𝑗𝑗𝐴𝐴𝐹𝐹 =
𝑋𝑋𝑖𝑖𝐴𝐴𝑌𝑌𝑗𝑗𝐹𝐹

𝑋𝑋
 �
𝑡𝑡𝑖𝑖𝑗𝑗
Π𝑖𝑖P𝑗𝑗

�
1−𝜎𝜎𝜌𝜌

(4) 

In equation (4), 𝐼𝐼𝑖𝑖𝑗𝑗𝐴𝐴𝐹𝐹 is the interstate trade of agricultural commodities from origin state i used by 

destination state j for food manufacturing; 𝑋𝑋𝑖𝑖𝐴𝐴 is the production of agriculture in the exporting 

state i; 𝑌𝑌𝑗𝑗𝐹𝐹 is the total expenditure of the manufactured food sector in importing state j while 𝑋𝑋 =

 ∑ 𝑋𝑋𝑖𝑖𝑖𝑖  is total agricultural output. The exporting state’s size 𝑋𝑋𝑖𝑖𝐴𝐴  is defined as (5a) and the 

importing state’s size 𝑌𝑌𝑗𝑗𝐹𝐹 is defined as (5b): 

𝑋𝑋𝑖𝑖𝐴𝐴 = 𝑓𝑓�𝑆𝑆𝑖𝑖𝐴𝐴,𝑍𝑍𝑖𝑖𝐴𝐴� (5𝑎𝑎) 

𝑌𝑌𝑗𝑗𝐹𝐹 = 𝑓𝑓�𝑆𝑆𝑗𝑗𝐴𝐴,𝑍𝑍𝑗𝑗𝐴𝐴,𝑍𝑍𝑗𝑗𝐹𝐹� (5𝑏𝑏) 

We consider the situation where extreme weather shock 𝑆𝑆𝐴𝐴 is given to the size terms of the 

importing and exporting states. There is no equivalent 𝑆𝑆𝐹𝐹 term needed since food manufacturing 

activities take place indoor and thus are not subject to a direct detrimental effect of weather. 

Trade for agricultural inputs is dependent on weather shocks both at origin and destination as 

well as on the capacity of exporters to produce agricultural commodities (𝑍𝑍𝑖𝑖𝐴𝐴), on the importers’ 

capacity to produce local agricultural goods ( 𝑍𝑍𝑗𝑗𝐴𝐴 ) and on the demand for agricultural 

commodities to be used as intermediate inputs for manufactured food or to be consumed by 

households (𝑍𝑍𝑗𝑗𝐹𝐹). The expected impact of extreme weather shocks on 𝐼𝐼𝑖𝑖𝑗𝑗𝐴𝐴𝐹𝐹 has been documented 

in Dall’erba et al. (2022): for the exporters of agricultural goods, production losses following a 

weather shock 𝑆𝑆𝑖𝑖𝐴𝐴 would mean less available output to be exported 𝑋𝑋𝑖𝑖𝐴𝐴 and/or relying on stocks 

for exports. For importers, production losses following a shock 𝑆𝑆𝑗𝑗𝐴𝐴 are substituted with imports, 

hence creating trade 𝑌𝑌𝑗𝑗𝐹𝐹 . This means that the elasticity of substitution 𝜎𝜎𝜃𝜃  between locally 

produced and imported agricultural inputs changes in the event of extreme weather disruption 

taking place at the point of origin, of destination or in both locations.  

     The second term of expression (4) are trade cost terms that include bilateral 𝑡𝑡𝑖𝑖𝑗𝑗  and 

multilateral trade frictions for the exporting Π𝑖𝑖 and importing 𝑃𝑃𝑗𝑗 state. Bilateral frictions include 

state-to-state factors that can impede or encourage trade between any trading partners. For 

international relations, such factors include trade policies, tariffs, and any economic, 

geographical, and cultural determinants of trade relations. In a domestic setting, such factors 
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include distance between states, shared border, and within-state effects. Multilateral resistance 

terms measure the state’s ease or impediment to market access as defined as:  

Π𝑖𝑖
1−𝜎𝜎𝜌𝜌 = ��

𝑡𝑡𝑖𝑖𝑗𝑗
𝑃𝑃𝑗𝑗
�
1−𝜎𝜎𝜌𝜌 𝑌𝑌𝑗𝑗

𝑋𝑋
𝑗𝑗

(6𝑎𝑎) 

𝑃𝑃𝑗𝑗
1−𝜎𝜎𝜌𝜌 = ��

𝑡𝑡𝑖𝑖𝑗𝑗
Π𝑖𝑖
�
1−𝜎𝜎𝜌𝜌 𝑋𝑋𝑖𝑖

𝑋𝑋
𝑖𝑖

(6𝑏𝑏) 

In equation (6a) and (6b),  Π𝑖𝑖 is the outward multilateral resistance for the exporting state, 𝑃𝑃𝑗𝑗 is 

the inward multilateral resistance for the importing state, and the equations are the weighted 

averages of the bilateral and multilateral trade frictions of the exporting state 𝑖𝑖 and importing 

state 𝑗𝑗. Each trading partner is weighed based on the expenditure and production of the trading 

partner. 𝜎𝜎𝜌𝜌  is the CES-Armington elasticity of substitution between goods from different 

exporting states. Note that this elasticity of substitution 𝜎𝜎𝜌𝜌 is different from the one in equation 

(2): while 𝜎𝜎𝜌𝜌 in the gravity model captures the substitution between all possible destinations of 

the exporting states, the substitution 𝜎𝜎𝜃𝜃 captures the interaction between local versus imported 

inputs only.  

     Taking the log of equation (4) in a panel setting measured over years 𝑡𝑡 and across agricultural 

commodities 𝑘𝑘 gives us an estimable specification: 

𝑙𝑙𝑎𝑎𝐼𝐼𝑖𝑖𝑗𝑗𝑘𝑘𝑡𝑡
𝐴𝐴𝐴𝐴 = 𝑙𝑙𝑎𝑎𝑋𝑋𝑖𝑖𝑘𝑘𝑡𝑡

𝐴𝐴 + 𝑙𝑙𝑎𝑎𝑌𝑌𝑗𝑗𝑘𝑘𝑡𝑡
𝐴𝐴 − 𝑙𝑙𝑎𝑎𝑋𝑋𝑘𝑘𝑡𝑡 + �1 − 𝜎𝜎𝜌𝜌�𝑙𝑙𝑎𝑎𝑡𝑡𝑖𝑖𝑗𝑗 − �1 − 𝜎𝜎𝜌𝜌�𝑙𝑙𝑎𝑎Π𝑖𝑖𝑘𝑘𝑡𝑡 (7) 

                                              −�1 − 𝜎𝜎𝜌𝜌�𝑙𝑙𝑎𝑎P𝑗𝑗𝑗𝑗𝑗𝑗 + 𝜖𝜖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗 

where 𝜖𝜖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗  is the error term. Because the impacts of extreme weather shocks on agricultural 

trade is subsumed if we estimate the specification of the structural model directly, we will 

instead estimate equation (7) using a reduced-form approach as outlined in Section 2.1.2. 

2.1.2. Empirical model     

 The reduced-form approach involves approximating each of the exporter- and importer-size, 

and trade cost terms as a function of observable variables (Anderson & Van Wincoop, 2003). 

Exporter- and importer-size terms consist of:  

𝑋𝑋𝑖𝑖𝑗𝑗𝑗𝑗 = 𝑓𝑓(𝑙𝑙𝑎𝑎𝐷𝐷𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴 , 𝑙𝑙𝑎𝑎𝑊𝑊𝑖𝑖𝑗𝑗𝑗𝑗
𝐴𝐴 , 𝑙𝑙𝑎𝑎𝐺𝐺𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴 , 𝑙𝑙𝑎𝑎𝑇𝑇𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴 , 𝑙𝑙𝑎𝑎𝑅𝑅𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴 ) (8𝑎𝑎) 
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𝑌𝑌𝑗𝑗𝑗𝑗𝑗𝑗 = 𝑓𝑓(𝑙𝑙𝑎𝑎𝐷𝐷𝑗𝑗𝑗𝑗𝑗𝑗𝐴𝐴 , 𝑙𝑙𝑎𝑎𝑊𝑊𝑗𝑗𝑗𝑗𝑗𝑗
𝐴𝐴 , 𝑙𝑙𝑎𝑎𝐺𝐺𝑗𝑗𝑗𝑗𝑗𝑗𝐹𝐹 , 𝑙𝑙𝑎𝑎𝑇𝑇𝑗𝑗𝑗𝑗𝑗𝑗𝐴𝐴 , 𝑙𝑙𝑎𝑎𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗𝐴𝐴 , 𝑙𝑙𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝐴𝐴 ) (8𝑏𝑏) 

where drought 𝐷𝐷𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴  and wetness 𝑊𝑊𝑖𝑖𝑗𝑗𝑗𝑗
𝐴𝐴  are the two (growing season) weather variables of which 

mean and extreme values traditionally affect crop and livestock production; 𝐺𝐺𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴  is the 

production of agricultural commodities in the exporting state representing the exporters’ capacity 

to produce agricultural goods; 𝑇𝑇𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴  is the growing degree days of the growing season, and 𝑅𝑅𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴  is 

the precipitation during the growing season. The same corresponding variables are included for 

the importer 𝑗𝑗′𝑠𝑠 size terms. Note that the importers’ 𝐺𝐺𝑗𝑗𝑗𝑗𝑗𝑗𝐹𝐹  is the GDP of food and beverages sector 

of the importing state representing the importers’ demand for agricultural commodities to be 

used as inputs for manufactured food products. Since the GDP of food and beverages is the 

intermediate demand for agricultural commodities, it only partially represents the state-level 

demand. Hence, population 𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝐴𝐴   is included to capture household demand.  

Our bilateral trade costs consists of: 

𝑡𝑡𝑖𝑖𝑗𝑗 = 𝑓𝑓(𝑙𝑙𝑎𝑎𝐷𝐷𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑗𝑗 ,𝐶𝐶𝑖𝑖𝑗𝑗,𝐻𝐻𝑖𝑖𝑗𝑗) (9) 

where 𝐷𝐷𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑗𝑗, 𝐶𝐶𝑖𝑖𝑗𝑗, and 𝐻𝐻𝑖𝑖𝑗𝑗 capture the distance, neighbor and home-effect, respectively. 

Since Π𝑖𝑖 and P𝑗𝑗 have no explicit solution, we approximate the multilateral resistance terms 

(MRTs) following Baier & Bergstrand (2009) to work around identification issues. Empirical 

practice fully controls for both outward and inward MRTs with the use of exporter-time and 

importer-time fixed effects to avoid omitted variable bias (Yotov et al., 2016). However, this 

approach will subsume all factors that vary along the exporter-time and importer-time 

dimensions, including the extreme weather shocks. Instead, we approximate time-varying MRTs 

are as a function of production- and consumption-shared weighted average of bilateral factors – 

distance, neighbor and within-state factor variable. 

We estimate two main specifications separately for each agricultural commodity: animals 

and fish (𝑘𝑘 = 1), cereal grains (𝑘𝑘 = 2) and other agricultural goods (𝑘𝑘 = 3). Our first empirical 

specification is equation (10). Since our analysis focus includes the role of locally produced 

agricultural inputs on the production of food manufacturing, we include terms related to within-

state weather as:  

𝐼𝐼𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝐴𝐴 = exp [𝛼𝛼1𝑗𝑗ℎ𝑜𝑜𝑚𝑚𝑚𝑚𝑙𝑙𝑎𝑎𝐷𝐷𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴 × 𝐼𝐼(𝑖𝑖 = 𝑗𝑗) + 𝛼𝛼1𝑗𝑗
𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑙𝑙𝑎𝑎𝐷𝐷𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴 × 𝐼𝐼(𝑖𝑖 ≠ 𝑗𝑗) + 𝛼𝛼1𝑗𝑗𝑑𝑑𝑚𝑚𝑑𝑑𝑗𝑗𝑙𝑙𝑎𝑎𝐷𝐷𝑗𝑗𝑗𝑗𝑗𝑗𝐴𝐴 × 𝐼𝐼(𝑖𝑖 ≠ 𝑗𝑗) (10) 

                + 𝛼𝛼2𝑗𝑗ℎ𝑜𝑜𝑚𝑚𝑚𝑚𝑙𝑙𝑎𝑎𝑊𝑊𝑖𝑖𝑗𝑗𝑗𝑗
𝐴𝐴 × 𝐼𝐼(𝑖𝑖 = 𝑗𝑗) + 𝛼𝛼2𝑗𝑗

𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑙𝑙𝑎𝑎𝑊𝑊𝑖𝑖𝑗𝑗𝑗𝑗
𝐴𝐴 × 𝐼𝐼(𝑖𝑖 ≠ 𝑗𝑗) + 𝛼𝛼2𝑗𝑗𝑑𝑑𝑚𝑚𝑑𝑑𝑗𝑗𝑙𝑙𝑎𝑎𝑊𝑊𝑗𝑗𝑗𝑗𝑗𝑗

𝐴𝐴 × 𝐼𝐼(𝑖𝑖 ≠ 𝑗𝑗) 



8  

                + 𝛼𝛼3𝑗𝑗
𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑙𝑙𝑎𝑎𝐺𝐺𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴 +  𝛼𝛼3𝑗𝑗𝑑𝑑𝑚𝑚𝑑𝑑𝑗𝑗𝑙𝑙𝑎𝑎𝐺𝐺𝑗𝑗𝑗𝑗𝑗𝑗−1𝐹𝐹  

                + 𝛼𝛼4𝑗𝑗ℎ𝑜𝑜𝑚𝑚𝑚𝑚𝑙𝑙𝑎𝑎𝑇𝑇𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴 × 𝐼𝐼(𝑖𝑖 = 𝑗𝑗) + 𝛼𝛼4𝑗𝑗
𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑙𝑙𝑎𝑎𝑇𝑇𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴 × 𝐼𝐼(𝑖𝑖 ≠ 𝑗𝑗) + 𝛼𝛼4𝑗𝑗𝑑𝑑𝑚𝑚𝑑𝑑𝑗𝑗𝑙𝑙𝑎𝑎𝑇𝑇𝑗𝑗𝑗𝑗𝑗𝑗𝐴𝐴 × 𝐼𝐼(𝑖𝑖 ≠ 𝑗𝑗) 

                + 𝛼𝛼5𝑗𝑗ℎ𝑜𝑜𝑚𝑚𝑚𝑚𝑙𝑙𝑎𝑎𝑇𝑇𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴 × 𝐼𝐼(𝑖𝑖 = 𝑗𝑗) + 𝛼𝛼5𝑗𝑗
𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑙𝑙𝑎𝑎𝑅𝑅𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴 × 𝐼𝐼(𝑖𝑖 ≠ 𝑗𝑗) + 𝛼𝛼5𝑗𝑗𝑑𝑑𝑚𝑚𝑑𝑑𝑗𝑗𝑙𝑙𝑎𝑎𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗𝐴𝐴 × 𝐼𝐼(𝑖𝑖 ≠ 𝑗𝑗) 

                + 𝛼𝛼6𝑗𝑗𝑑𝑑𝑚𝑚𝑑𝑑𝑗𝑗𝑙𝑙𝑎𝑎𝐻𝐻𝐻𝐻𝑗𝑗𝑗𝑗𝐴𝐴 + 𝑓𝑓�𝑙𝑙𝑎𝑎𝐷𝐷𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑗𝑗,𝐶𝐶𝑖𝑖𝑗𝑗,𝐻𝐻𝑖𝑖𝑗𝑗� + 𝑀𝑀𝑅𝑅𝑇𝑇𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗 

                + 𝜇𝜇𝑖𝑖𝑗𝑗 + 𝜇𝜇𝐶𝐶𝐶𝐶𝑖𝑖,𝑗𝑗 + 𝜇𝜇𝐶𝐶𝐶𝐶𝑗𝑗,𝑗𝑗 + 𝜖𝜖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗] 

where 𝐼𝐼𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗  is the volume of traded agricultural goods. The first term with parameter 𝛼𝛼1𝑗𝑗ℎ𝑜𝑜𝑚𝑚𝑚𝑚 , 

captures the impact of the within-state drought indicating whether locally traded commodity (or 

commodity produced that is consumed within a state) reflects the drought impact on available 

local agricultural products (as represented by the interaction with indicator variable 𝐼𝐼(𝑖𝑖 = 𝑗𝑗)). 

The drought-effect on exports (𝛼𝛼1𝑗𝑗
𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜) and imports (𝛼𝛼1𝑗𝑗𝑑𝑑𝑚𝑚𝑑𝑑𝑗𝑗) are drought terms interacted with 

indicator variable 𝐼𝐼(𝑖𝑖 ≠ 𝑗𝑗) to reflect the effect of drought on all intrastate trade. Similarly, we 

have parameter 𝛼𝛼2𝑗𝑗ℎ𝑜𝑜𝑚𝑚𝑚𝑚 to represent within-state wetness effect for the interacted term of wetness 

and the within-state indicator 𝐼𝐼(𝑖𝑖 = 𝑗𝑗) . Wetness related terms, that are associated with 

parameters 𝛼𝛼2𝑗𝑗
𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜  (for exports) and 𝛼𝛼2𝑗𝑗𝑑𝑑𝑚𝑚𝑑𝑑𝑗𝑗 (for imports), from other states are reflected as an 

interaction of the wetness variable and intrastate indicator 𝐼𝐼(𝑖𝑖 ≠ 𝑗𝑗). We include similar interacted 

terms for within state and intrastate temperature and precipitation. 𝑓𝑓�𝑙𝑙𝑎𝑎𝐷𝐷𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑗𝑗,𝐶𝐶𝑖𝑖𝑗𝑗 ,𝐻𝐻𝑖𝑖𝑗𝑗�  is a 

summation function of trade cost variables and parameters, 𝑀𝑀𝑅𝑅𝑇𝑇𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗  is also a summation 

function of each MRT variables and the parameters. Equation (10) also includes the importer and 

exporter climate-zone by year fixed effects 𝜇𝜇𝐶𝐶𝐶𝐶𝑖𝑖,𝑗𝑗 and 𝜇𝜇𝐶𝐶𝐶𝐶𝑗𝑗,𝑗𝑗 which control for any variation of 

within climate zone characteristics including price changes. And 𝜖𝜖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗 is the error term. 

The second specification involves defining drought as extreme and mild conditions as in 

(11): 

𝐼𝐼𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝐴𝐴 = exp [𝛼𝛼1𝑗𝑗
𝑚𝑚𝑒𝑒𝑗𝑗_ℎ𝑜𝑜𝑚𝑚𝑚𝑚𝑙𝑙𝑎𝑎𝐷𝐷𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴 × 𝐼𝐼(𝑖𝑖 = 𝑗𝑗) × 𝐼𝐼��𝑆𝑆𝑃𝑃𝑆𝑆𝐼𝐼𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗� > 1.3�                                           (11) 

                  + 𝛼𝛼1𝑗𝑗
𝑚𝑚𝑖𝑖𝑚𝑚𝑑𝑑_ℎ𝑜𝑜𝑚𝑚𝑚𝑚𝑙𝑙𝑎𝑎𝐷𝐷𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴 × 𝐼𝐼(𝑖𝑖 = 𝑗𝑗) × 𝐼𝐼��𝑆𝑆𝑃𝑃𝑆𝑆𝐼𝐼𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗� < 1.3� 

                  + 𝛼𝛼1𝑗𝑗
𝑚𝑚𝑒𝑒𝑗𝑗_𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑙𝑙𝑎𝑎𝐷𝐷𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴 × 𝐼𝐼(𝑖𝑖 ≠ 𝑗𝑗) × 𝐼𝐼�|𝑆𝑆𝑃𝑃𝑆𝑆𝐼𝐼𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗| > 1.3� 

                  + 𝛼𝛼1𝑗𝑗
𝑚𝑚𝑖𝑖𝑚𝑚𝑑𝑑_𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑙𝑙𝑎𝑎𝐷𝐷𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴 × 𝐼𝐼(𝑖𝑖 ≠ 𝑗𝑗) × 𝐼𝐼��𝑆𝑆𝑃𝑃𝑆𝑆𝐼𝐼𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗� < 1.3� 

                  + 𝛼𝛼1𝑗𝑗
𝑚𝑚𝑒𝑒𝑗𝑗_𝑑𝑑𝑚𝑚𝑑𝑑𝑗𝑗𝑙𝑙𝑎𝑎𝐷𝐷𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴 × 𝐼𝐼(𝑖𝑖 ≠ 𝑗𝑗) × 𝐼𝐼�|𝑆𝑆𝑃𝑃𝑆𝑆𝐼𝐼𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗| > 1.3� 

                  + 𝛼𝛼1𝑗𝑗
𝑚𝑚𝑖𝑖𝑚𝑚𝑑𝑑_𝑑𝑑𝑚𝑚𝑑𝑑𝑗𝑗𝑙𝑙𝑎𝑎𝐷𝐷𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴 × 𝐼𝐼(𝑖𝑖 ≠ 𝑗𝑗) × 𝐼𝐼��𝑆𝑆𝑃𝑃𝑆𝑆𝐼𝐼𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗� < 1.3� 
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                  + 𝛼𝛼2𝑗𝑗ℎ𝑜𝑜𝑚𝑚𝑚𝑚𝑙𝑙𝑎𝑎𝑊𝑊𝑖𝑖𝑗𝑗𝑗𝑗
𝐴𝐴 × 𝐼𝐼(𝑖𝑖 = 𝑗𝑗) + 𝛼𝛼2𝑗𝑗

𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑙𝑙𝑎𝑎𝑊𝑊𝑖𝑖𝑗𝑗𝑗𝑗
𝐴𝐴 × 𝐼𝐼(𝑖𝑖 ≠ 𝑗𝑗) + 𝛼𝛼2𝑗𝑗𝑑𝑑𝑚𝑚𝑑𝑑𝑗𝑗𝑙𝑙𝑎𝑎𝑊𝑊𝑗𝑗𝑗𝑗𝑗𝑗

𝐴𝐴 × 𝐼𝐼(𝑖𝑖 ≠ 𝑗𝑗) 

                  + 𝛼𝛼3𝑗𝑗
𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑙𝑙𝑎𝑎𝐺𝐺𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴 +  𝛼𝛼3𝑗𝑗𝑑𝑑𝑚𝑚𝑑𝑑𝑗𝑗𝑙𝑙𝑎𝑎𝐺𝐺𝑗𝑗𝑗𝑗𝑗𝑗−1𝐹𝐹  

                  + 𝛼𝛼4𝑗𝑗ℎ𝑜𝑜𝑚𝑚𝑚𝑚𝑙𝑙𝑎𝑎𝑇𝑇𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴 × 𝐼𝐼(𝑖𝑖 = 𝑗𝑗) + 𝛼𝛼4𝑗𝑗
𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑙𝑙𝑎𝑎𝑇𝑇𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴 × 𝐼𝐼(𝑖𝑖 ≠ 𝑗𝑗) + 𝛼𝛼4𝑗𝑗𝑑𝑑𝑚𝑚𝑑𝑑𝑗𝑗𝑙𝑙𝑎𝑎𝑇𝑇𝑗𝑗𝑗𝑗𝑗𝑗𝐴𝐴 × 𝐼𝐼(𝑖𝑖 ≠ 𝑗𝑗) 

                  + 𝛼𝛼5𝑗𝑗ℎ𝑜𝑜𝑚𝑚𝑚𝑚𝑙𝑙𝑎𝑎𝑇𝑇𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴 × 𝐼𝐼(𝑖𝑖 = 𝑗𝑗) + 𝛼𝛼5𝑗𝑗
𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑙𝑙𝑎𝑎𝑅𝑅𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴 × 𝐼𝐼(𝑖𝑖 ≠ 𝑗𝑗) + 𝛼𝛼5𝑗𝑗𝑑𝑑𝑚𝑚𝑑𝑑𝑗𝑗𝑙𝑙𝑎𝑎𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗𝐴𝐴 × 𝐼𝐼(𝑖𝑖 ≠ 𝑗𝑗) 

                  + 𝛼𝛼6𝑗𝑗𝑑𝑑𝑚𝑚𝑑𝑑𝑗𝑗𝑙𝑙𝑎𝑎𝐻𝐻𝐻𝐻𝑗𝑗𝑗𝑗𝐴𝐴 + 𝑓𝑓�𝑙𝑙𝑎𝑎𝐷𝐷𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑗𝑗,𝐶𝐶𝑖𝑖𝑗𝑗,𝐻𝐻𝑖𝑖𝑗𝑗� + 𝑀𝑀𝑅𝑅𝑇𝑇𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗 

                  + 𝜇𝜇𝑖𝑖𝑗𝑗 + 𝜇𝜇𝐶𝐶𝐶𝐶𝑖𝑖,𝑗𝑗 + 𝜇𝜇𝐶𝐶𝐶𝐶𝑗𝑗,𝑗𝑗 + 𝜖𝜖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗] 

where 𝐼𝐼��𝑆𝑆𝑃𝑃𝑆𝑆𝐼𝐼𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗� > 1.3� (or 𝐼𝐼��𝑆𝑆𝑃𝑃𝑆𝑆𝐼𝐼𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗� < 1.3�) is an indicator variable for extreme (or mild) 

drought conditions with drought SPEIs above (or below) the threshold of 1.3. The parameter for 

the first term 𝛼𝛼1𝑗𝑗
𝑚𝑚𝑒𝑒𝑗𝑗_ℎ𝑜𝑜𝑚𝑚𝑚𝑚(or 𝛼𝛼1𝑗𝑗

𝑚𝑚𝑖𝑖𝑚𝑚𝑑𝑑_ℎ𝑜𝑜𝑚𝑚𝑚𝑚) reflects the extreme (or mild) drought-effect on locally 

produced agricultural product 𝑘𝑘. For extreme (or mild) drought-effect on exports, we include 

𝛼𝛼1𝑗𝑗
𝑚𝑚𝑒𝑒𝑗𝑗_𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜 (or 𝛼𝛼1𝑗𝑗

𝑚𝑚𝑖𝑖𝑚𝑚𝑑𝑑_𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜). Similarly, for extreme (or mild) drought-effect on imports, we include 

parameters 𝛼𝛼1𝑗𝑗
𝑚𝑚𝑒𝑒𝑗𝑗_𝑑𝑑𝑚𝑚𝑑𝑑𝑗𝑗 (or 𝛼𝛼1𝑗𝑗

𝑚𝑚𝑖𝑖𝑚𝑚𝑑𝑑_𝑑𝑑𝑚𝑚𝑑𝑑𝑗𝑗). 

For both equations (10) and (11), the bilateral pair fixed effects provide important benefits in 

identifying the relationship between trade volume and extreme weather variables. First, using 

state-pair fixed effects accounts for the unobservable linkages between the endogenous trade 

policy covariate and the error term in gravity regressions (Baier & Bergstrand, 2007). Second, 

the pair fixed effects provide a flexible and comprehensive account of the effects of all time-

invariant bilateral trade costs because pair fixed effects carry systematic information about trade 

costs, other than those captured by distance, shared-border, and home-effect, in addition to the 

information captured by the standard gravity variables. 

2.2. Production function of manufactured food 

Following the CD theoretical framework, the empirical specification for the second stage is 

the nested production function for manufactured food. Equations (1) and (2) that include the 

three agricultural input commodities and the importer and time dimension is expressed as 

equations (12) and (13), respectively. Production of manufactured food is a CD-aggregate of 

labor, capital, and 𝑘𝑘 subaggregates of agricultural inputs (k=3) as: 

𝑌𝑌𝑗𝑗𝑗𝑗 = 𝐴𝐴𝐿𝐿𝑗𝑗𝑗𝑗
(1−𝛽𝛽−∑ 𝛾𝛾𝑘𝑘𝑘𝑘 )𝐾𝐾𝑗𝑗𝑗𝑗𝛽𝛽𝐼𝐼𝑗𝑗𝑗𝑗𝑗𝑗

∑ 𝛾𝛾𝑘𝑘𝑘𝑘 (12) 
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Within each input aggregate, we assume CES between local and imported inputs as:  

𝐼𝐼𝑗𝑗𝑗𝑗𝑗𝑗 = [𝐼𝐼𝑗𝑗=𝑖𝑖,𝑗𝑗𝑗𝑗
𝜃𝜃𝑘𝑘 + (�𝐼𝐼𝑖𝑖,𝑗𝑗𝑗𝑗

48

𝑗𝑗≠𝑖𝑖

)𝜃𝜃𝑘𝑘]
1
𝜃𝜃𝑘𝑘  (13) 

Transforming equations (12) and (13) in log format leads to:  

𝑙𝑙𝑎𝑎𝑌𝑌𝑗𝑗𝑗𝑗 =  𝑎𝑎𝑗𝑗 + 𝑎𝑎𝑗𝑗 + �1 − 𝛽𝛽 −�𝛾𝛾𝑗𝑗

3

𝑗𝑗=1

� 𝑙𝑙𝑎𝑎𝐿𝐿𝑗𝑗𝑗𝑗 + 𝛽𝛽𝑙𝑙𝑎𝑎𝐾𝐾𝑗𝑗𝑗𝑗 (14) 

                                                       +�𝛾𝛾𝑗𝑗 �
1
𝜃𝜃𝑗𝑗

ln�𝐼𝐼𝑗𝑗=𝑖𝑖,𝑗𝑗𝑗𝑗
𝜃𝜃𝑘𝑘 + ��𝐼𝐼𝑖𝑖,𝑗𝑗𝑗𝑗

48

𝑗𝑗≠𝑖𝑖

�

𝜃𝜃𝑘𝑘

��
3

𝑗𝑗=1

+ 𝜀𝜀𝑗𝑗𝑗𝑗 

In equation (14), 𝑌𝑌𝑗𝑗𝑗𝑗 is total production of the food manufacturing sector; 𝐿𝐿𝑗𝑗𝑗𝑗 measures the 

aggregate labor; 𝐾𝐾𝑗𝑗𝑗𝑗  is the aggregate capital; 𝐼𝐼𝑗𝑗=𝑖𝑖,1,𝑗𝑗  is the local animals and fish input or the 

predicted within-state animals and fish from equation (10) or (11); 𝐼𝐼𝑗𝑗=𝑖𝑖,2,𝑗𝑗 is the predicted local 

cereal grains input; 𝐼𝐼𝑗𝑗=𝑖𝑖,3,𝑗𝑗 is the predicted value of remaining agricultural inputs locally grown; 

∑ 𝐼𝐼𝑖𝑖,1,𝑗𝑗𝑗𝑗≠𝑖𝑖  is the imported animals and fish or the sum of all the predicted interstate goods flowing 

into state 𝑗𝑗 estimated from the first stage; ∑ 𝐼𝐼𝑖𝑖,2,𝑗𝑗𝑗𝑗≠𝑖𝑖  is for the imported cereal grains; ; ∑ 𝐼𝐼𝑖𝑖,3,𝑗𝑗𝑗𝑗≠𝑖𝑖  

is for the imported remaining agricultural goods. The parameter 𝛽𝛽  is the output elasticity of 

capital, 𝛾𝛾1 is the output elasticity of the subaggregate animals and fish input, 𝛾𝛾2 is the output 

elasticity of the subaggregate of cereal grains input, 𝛾𝛾3  is the output elasticity of other 

agricultural goods input. The parameter 𝜃𝜃𝑗𝑗  is the substitution parameter between local and 

imported commodity k. 𝑎𝑎𝑗𝑗 is the state fixed effect, 𝑎𝑎𝑗𝑗 is the year fixed effect. 𝜀𝜀𝑗𝑗𝑗𝑗 is the error term.  

     The purpose is to identify the substitution parameter between local and imported agricultural 

inputs within the commodity-type aggregate. On the other hand, the CD specification of 

aggregate output for manufactured food assumes that the elasticity of substitution between each 

pair of aggregated capital, aggregated labor and sub-aggregate of agricultural commodities are 

all equal to 1. While this limits us from identifying the elasticity of substitution between some 

inputs, we are still able to attain the distributional revenue share between input categories by 

estimating 𝛼𝛼, 𝛽𝛽, and 𝛾𝛾. Our setting is based on two reasons. First, animals and fish, cereal grains 

and other agricultural products (including vegetables and fruits) are hardly substitutable across 
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commodity groups. Second, this setting is chosen to attain parsimony of estimation (Fuss et al., 

1978). If we set a nested CES production function where all the input categories are 

substitutable, we would have many more parameters to estimate. Since we are interested in the 

substitution between locally sourced and imported agricultural commodities only, we will focus 

on estimating the substitution parameter for each agricultural commodity. We also assume 

neutral technological change.  

As in equation (13), we do not impose restrictions on the substitution parameter (𝜃𝜃) between 

local and imported agricultural inputs as our baseline specification. However, statistical tests 

show that we cannot reject that the substitution parameter is non-zero with our data. Similarly, 

the null hypothesis that the elasticity of substitution (𝜎𝜎𝜃𝜃) is equal to one cannot be rejected. Thus, 

we present results for both when agricultural inputs (within each agricultural input aggregate, not 

the whole production function) are assumed CES and CD. For simulations in Section 4.3 on the 

drought-effect on manufactured food production are based on the estimates from the CD 

specification (Table 6). We do this because 1) tests reject the existence of substitution (or 

complementary) relationship between locally produced and imported inputs, and 2) the estimated 

output elasticities from both specifications are comparable. The estimation results based on our 

CES specification are presented in the Appendix (Table D7).  

As a robustness check for the nonlinear estimation of the CES production function, we show 

the results after linearizing the nested production functional form (14) through a first-order 

approximation as in Kmenta (1967) and (Papageorgiou et al., 2017). 

𝑙𝑙𝑎𝑎 �
𝑌𝑌𝑗𝑗𝑗𝑗
𝐿𝐿𝑗𝑗𝑗𝑗
� =  𝑎𝑎𝑗𝑗 + 𝑎𝑎𝑗𝑗 + 𝛿𝛿𝑙𝑙𝑎𝑎 �

𝐾𝐾𝑗𝑗𝑗𝑗
𝐿𝐿𝑗𝑗𝑗𝑗
� + ��𝜋𝜋𝑗𝑗𝑙𝑙𝑎𝑎 �

𝐼𝐼𝑗𝑗𝑗𝑗𝑗𝑗
𝐿𝐿𝑗𝑗𝑗𝑗𝑗𝑗

� + 𝜌𝜌𝑗𝑗𝑙𝑙𝑎𝑎 �
𝑀𝑀�𝑗𝑗𝑗𝑗𝑗𝑗
𝐿𝐿𝑗𝑗𝑗𝑗𝑗𝑗

� + 𝜑𝜑𝑗𝑗𝑙𝑙𝑎𝑎 �
𝑀𝑀�𝑗𝑗𝑗𝑗𝑗𝑗
𝐼𝐼𝑗𝑗𝑗𝑗𝑗𝑗

�
2

�
3

𝑗𝑗=1

+ 𝜀𝜀𝑗𝑗𝑗𝑗   (15) 

where the predicted imports is 𝑀𝑀�𝑗𝑗𝑗𝑗𝑗𝑗 = ∑ 𝐼𝐼𝑖𝑖𝑗𝑗𝑗𝑗48
𝑗𝑗≠𝑖𝑖 . The constraints are 𝜋𝜋𝑗𝑗 = 𝜌𝜌𝑗𝑗 . The distribution 

and substitution parameters in equation (14) can be retrieved from equation (15) where  𝛽𝛽 = 𝛿𝛿,      

𝛾𝛾 = 2𝜋𝜋, 𝜃𝜃𝑗𝑗 = 𝜑𝜑𝑗𝑗/8𝜋𝜋𝑗𝑗, and 𝜎𝜎𝑗𝑗 = 1/(1 − 𝜑𝜑𝑗𝑗 8𝜋𝜋𝑗𝑗⁄ ) for each 𝑘𝑘. 

3 Data 

3.1 Gravity model of agricultural trade 

The data on the state-to-state trade of animals and fish (SCTG01), cereal grains (SCTG02), 
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and other agricultural products (SCTG03) come from the Freight Analysis Framework (FAF)3 

Version 5.5 (2023) built by the Bureau of Transportation Statistics. We compile a dataset based 

on the quinquennial U.S. domestic trade flows of the FAF for the five years between 1997 – 

2017. The data we compile covers all interstate trade flows for 48 states across 5 years (34,560 

data points)4. We also include intrastate flows for its benefits (Yotov, 2022). First, including 

intrastate flows is consistent with the theoretical framework of the gravity model and the 

production function in this study where destination states choose among locally grown and 

imported agricultural inputs. Second, including intrastate flows to some extent treats the bias in 

state-specific effects because differences in intrastate flows across states can represent variations 

in trade-related factors such as trade cost and size. In each case, we include the actual volume of 

trade flows from all modes of transportation (e.g., truck, rail, water and multiple modes). We 

exclude flows that enter or leave the United States so that we include only freight movements 

and agri-food production for the domestic market. All the measures are adjusted to 2012 U.S. 

dollars using the corresponding producer price index. 

To measure the capacity to produce agricultural commodities of the exporting state, we use 

total production of agricultural commodities (SCTG01-03) calculated as the sum of the value of 

flows that are exported to all the states. For the importing states’ demand of each agricultural 

commodity (SCTG01-03), we use the lagged production of the processed food sector. Production 

is measured as the GDP of food, beverages and tobacco (NAICS312) from the Bureau of 

Economic Analysis (BEA). Output is weighted to account for the flows of each agricultural 

commodity used for the production of processed food commodities (SCTG04-09) based on the 

percentage from Table 1. This shows the flow of SCTG01-03 to each category in SCTG04-09 

based on the Input-Output table (IMPLAN, 2020). About 76.7 percent of animals and fish, 57.9 

percent of cereal grains, and 33.7 percent of the rest of agricultural products are used as 

 
3 We choose FAF over another widely used interstate trade data set, the Commodity Flow Survey (CFS), for several 
reasons. First, the CFS is collected by surveying only the firms from the shipping industry, and therefore does not 
represent the actual universe of U.S. trade flows. The Bureau of Transportation Statistics (BTS) puts together the CFS 
responses and the missing information from the Census Bureau and the Federal Highway Information (FHWA) for the FAF 
dataset. Second, the CFS does not sample trade flows for some sectors including agriculture. The FAF, on the other 
hand, incorporates shipments of agricultural industries with information from the United States Department of 
Agricultural National Agricultural Statistics Service (USDA NASS), and thus better represents shipments of crops 
and livestock. Another advantage of the FAF is that data over the years from 1997 to 2017 are comparable unlike 
the CFS for which there is extensive censoring for pre-2007 data. 
4 48 states × 48 states × 5 years × 3 commodities = 34,560 data points 
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intermediate inputs in the industry. We use the data from the BEA instead of the sum of the 

traded flows from the FAF because we need the GDP for the manufactured food industry for 

every five years from 1996 to 20115. However, the FAF documents data starting from 1997. The 

real values are deflated to 2012 U.S. dollars using the Implicit Price Deflator from the BEA.  

While most agricultural commodities are used as inputs for the processed food sector, Table 

1 shows that about 5.6-26.2 percent flows to households as final consumption. Demand by 

households (population size) is incorporated separately from industry demand. We use state 

population observations from the BEA as household consumption measure. 

For extreme weather shocks, drought and wetness, we use the Standardized Precipitation 

Evapotranspiration Index (SPEI)6 aggregated at the state level. We create the drought index as 

the absolute values of the negative measures of the SPEI and the wetness index as positive 

SPEIs. We then compute two weights with respect to time and space in order to aggregate 

daily/monthly measures to yearly data, and county-level measures to the state level. We use 

measurements during the growing season for each type of crop (USDA, 2022a); but for animals 

and fish (SCTG01), we use all-year-long SPEI values. We then aggregate county-level 

measurements to the state-level for each commodity using spatial weights based on farmland 

acres per county7. Using both spatial and temporal weights ensures that the commodity-specific 

SPEIs better resemble the climate conditions of the regions and seasons that they are actually 

grown and harvested in. For temperature, we aggregate monthly, county-level Growing Degree 

Days (GDD) to the annual state level. Yearly precipitation will be an aggregate of daily county-

 
5 Production at the state level for all the industries classified by the North American Industry Classification System 
(NAICS) code is provided for every year from 1997 forward. For 1996, we use the concordance from the SIC to 
NAICS and the SIC classified production for the food and beverage industry the same way we did for constructing 
labor in the second stage. 
6 We obtain weather data from the ERA5-Land (Muno�z Sabater, 2021) database which provides daily or monthly 
weather data at a spatial resolution of 4km from 1981 to 2019. SPEI is a standardized index which, for each locality, 
reports the deviation of current drought or wetness conditions in the region from the region’s historical distribution 
of weather conditions, accounting for both precipitation and potential evapotranspiration (PET) in quantifying 
drought and wetness. The SPEI ranges from -3 to 3 where negative/positive values indicate dry/moist conditions for 
productivity in agriculture. The SPEIs are especially practical in relating drought and agriculture since growth in 
agriculture depends on the supply of water and atmospheric demand of water. Also, the standardized measures make 
it possible to compare the SPEI values across different times and places. 
7  The weights will be based on the farmland area of each product classified in SCTG02/03 from the USDA 
Farmland Service Agency (USDA FSA) (USDA, 2022b). For SCTG01, we use information from USDA NAAS 
Census of Agriculture on county-level total sales of each livestock product for the aggregation of county-level 
observations to the state level (USDA NASS, 2023). The data from the Census of Agriculture is a comprehensive 
count of U.S. farms and ranches that grows fruit, vegetables or food animals with more than $1,000 worth of raised 
and sold products. 



14  

level precipitation to the state level. The details on the weighing scheme for weather data are in 

the Appendix B.  

We compute the MRT for each bilateral relationship including distance (or travel time), 

contiguity dummy and home-effect dummy. Distance between states is measured as the travel 

time of trucks for the shortest path between the most populated city of the origin and destination 

state. Travel time is calculated by Open Source Routing Machine (OSRM). For trade flows 

within a given state, the average shipment distance as reported by the CFS is used and averaged 

over all periods to avoid issues with geometric computation of within-state distance noted by 

Mayer and Head (2002).  This is in line with previous domestic trade literature (Dall’erba et al., 

2021) for which travel time is a more suitable proxy since it is a domestic setting where 

shipments by trucks are more prevalent (Hwang et al., 2021). 

All the remaining variables used in the estimation of the gravity model are summarized in 

Table 2. 

3.2 Food manufacturing production function 

Our sample is composed of observations over the 48 continental U.S. states and every five 

years between 1997 and 2017. The time period is constrained by the availability of the trade flow 

data. We rely on three main data sources for the variables in the second stage. Data on aggregate 

production of food manufacturing is calculated from the FAF dataset. We begin by treating the 

FAF data by excluding any flows that are either imported or exported internationally. Next, we 

define production as the sum of all intrastate and interstate trade flows as domestic production is 

either used for intermediate consumption, final consumption or inventory, all of them being 

recorded through a flow to a destination. We do this process for both volume and value for each 

of the food commodities: animal feed (SCTG04), meat/poultry preparations (SCTG05), milled 

grains and bakery products (SCTG06), other prepared foods (SCTG07), alcoholic beverages 

(SCTG08), and tobacco products (SCTG09). Finally, we aggregate all the categories into a single 

food (SCTG04-09) category by state and year to create the aggregated production of agri-food 

products. We use the volume of production for our main analysis8.  

 
8 Production of manufactured food and beverages from the BEA cannot be used as the dependent variable for the 
second stage because it is used to allocate national capital to the state level, and thus its use would result in perfect 
collinearity with computed capital. The value of production from the FAF is also used to estimate the second stage 
but results did not show robust findings that are in line with our assumptions.  
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For the data on labor, we use the total full-time and part-time employment for the two 

industries classified by the North American Industry Classification System (NAICS): food 

manufacturing (NAICS311) and beverage and tobacco product manufacturing (NAICS312). The 

BEA provides annual observations for the 50 states from 1998 onward. However, there are some 

undisclosed values we have to deal with. Details are in Appendix B. 

Since the capital stock variable is not readily available at the state level and by sector, its 

construction requires a few steps. We follow the approach of Garofalo and Yamarik (2002) to 

allocate the capital stocks proportionally to each state’s value-added for the food and beverage 

industry (Han & Lee, 2016; Maestas et al., 2023; Peri, 2012; Yamarik, 2013). We have two sources for 

national capital stock: the Federal Reserve Board (FRB, 2022) and the National Bureau of 

Economic Research and U.S. Census Bureau’s Center for Economic Studies (NBER-CES) 

Manufacturing Industry Database 9 (Becker et al., 2021). The FRB documents manufacturing 

investment and capital stock in 2012 U.S. dollars that follow the six-digit 2017 NAICS definition 

of industries from 1952 to 2020 at the national level. We then allocate the national capital stock 

for each year across states in proportion to the value-added (BEA, 2021) in food, beverages and 

tobacco manufacturing. The value-added for the industry is from the BEA. We assume that all 

the states have the same capital-output (capital-labor) ratios for the manufacturing food industry 

because the ease of capital mobility across states for the industry leads to adjustment in the 

capital-labor ratio so that capital returns are equal across states (Peri, 2012). 

When it comes to locally produced and imported intermediate crops and livestock inputs, 

their value corresponds to the sum of the predicted values calculated from the first stage. All the 

variables used in the food manufacturing production function are summarized in Table 3. 

3.3 Summary statistics 

Figure 1 graphs the national trends in SPEI for commodities 01 – 03. The year 2012 displays 

the lowest SPEI reflecting the enormous drought incidence in most of the Midwest. In 2017, both 

indices increased compared to 2012, but were still lower than the 1997 values. We now look at 

the SPEIs across the U.S. states during the historic drought in 2012. 

 
9 We use the national estimate of capital stock from the FRB because the NBER-CES data is missing the 2017 
estimates for the capital stock of food and beverages and requires extrapolation. If we apply the growth rate of the 
FRB stock from 2016 to 2017 and estimate the production function with the NBER-CES capital stock the results are 
similar from those using the FRB numbers. 
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Figure 2 maps the SPEI of each state in 2007 and 2012. We chose these two years to see the 

changes in states that experienced intense drying conditions during the historic drought of 2012. 

Relative to 2007, a majority of the U.S. states were hit by the drought in 2012. And the 2012 

drought is concentrated in the Midwest. Figure 2B depicts that Iowa, Illinois, Nebraska, 

Tennessee, Indiana, Ohio, and Kentucky experienced severe drought conditions (with 𝑆𝑆𝑃𝑃𝑆𝑆𝐼𝐼 <  −1). 

These states happen to be the major players in the production of cereal grains. Figure 2C shows a similar 

story with midwestern states experiencing drought, but now the drought is more spread out 

towards the South and Southwest. For SCTG01, see Figure 2A.  

Figure 3 shows the total food manufacturing production (commodities 04 – 09) at the state 

level. It is clear that California is a major producer with 172,999.166 million US$ of production on 

average for our sample period. Other states such as Texas (99,647.934 million $), Illinois 

(78,877.386 million $), and New York (71,658.178 million $) are also major producers of 

manufacturing food. Although not displayed here, we also graphed the agri-food production 

change from 2007 to 2012.  In the absence of trade and therefore no substitutable imports, drought-

struck states would face a shortage of inputs and thus produce less agri-foods. However, we found 

that there was a low rate of change showing that states maintained their 2007-level of agri-food 

output. What could have occurred is a trade diversion to source more agricultural products used for 

inputs in the manufactured food sector.  

Figures 4 – 6 depicts the change in import ratio from 2007 to 2012 along with the total 

production of each agricultural commodity (01 – 03). We chose 2007 and 2012 for our reference 

years to observe the changes in each state’s importing behavior relative to their locally sourced 

agricultural production before and after the major drought of 2012 (as seen in panel B of Figure 2A 

– 2C). Figure 4 panel A shows that states (e.g., Nebraska, Kansas, and Arizona) that experienced 

higher drought relative to 2007 imported more from other states. Nebraska increased its import 

ratio by about 385.16 percent even though it is already a high producing state (as seen in panel B) 

possibly to compensate for the loss of locally produced livestock (and fish) from severe drought. 

For commodity 1, some states clearly relied on production from other locations.  

For cereal grains (SCTG02), Figure 5 panel A illustrates that the top consuming states, Iowa, 

Illinois, and Nebraska, all increased their imports relative to locally grown grains. The rate of 

increase was about 542.70 percent for Iowa, and 96.16 percent for Illinois, and 97.86 percent for 

Nebraska, hence showing that even the major producers of grains (as seen in panel B) compensated 
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for their loss in local production by increasing their trade with other states. The total manufactured 

food output, on the other hand, did not increase as much in 2012.  

Figure 6 panel A shows that most of the heat-struck producers of commodity 03 that used to 

rely less on imports in 2007 imported more in 2012. For Missouri, the increase rate was about 

527.39 percent. Missouri decreased its imports from Nebraska to 1.11 from 417.80 kilo tons, and 

instead diverted its trade to Louisiana, North Dakota, Iowa, Illinois, Arkansas and Kansas for 

supply. Interestingly, these states produce less than California and Florida (as see in panel B). In 

sum, we observe a higher reliance on imports relative to locally grown agri-commodities in the 

face of severe drought. In addition, trade diversions to locations that experienced relatively less 

drought could be observed even though these locations are not the top producers of the commodity. 

This shows that the change in comparative advantages and therefore trade patterns is a more 

complex process that necessitates a more systematic analysis.  

4 Results 

4.1 Gravity model estimates 

We estimated the gravity model of trade applying the Poisson Pseudo-Maximum Likelihood 

(PPML)10 estimator (Santos Silva & Tenreyro, 2006, 2011). Table 4 reports the PPML estimates of 

equation (10) for the panel of 48 states and five years (1997, 2002, 2007, 2012, 2017). Table 5 

reports the same estimates with extreme drought defined as SPEI lower than -1.3 and mild 

drought. The dependent variables are the volume of traded agricultural commodities. Each 

column reports the result of a different agricultural commodity regressed with the corresponding 

drought, wetness, GDD and precipitation variables.  

The results display some notable features: first, we provide evidence of a positive impact of a 

drought in the destination state and imports of cereal grains (SCTG02 in column (2)). The 

reduced local supply that results from such an event is simply compensated by greater imports 

from other origin points. In addition, the results indicate a significant and detrimental impact of a 

 
10 The PPML estimator outperforms the OLS estimator to estimate the gravity model (Silva and Tenreyro, 2006; 
Yotov et al., 2016; Dall’erba et al., 2021). First, estimating the OLS estimator will drop the zero trade flows leading 
to biased estimates. We are dealing with disaggregated trade by sector, and the proportion of zero trade flows for 
animals and fish (SCTG01), cereal grains (SCTG02), and other agricultural products (SCTG03) is 25 percent, 20 
percent and 25 percent, respectively. Second, the presence of heteroskedasticity inherent in trade data leads to biased 
and inconsistent OLS estimates.  
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drought on the exports of cereal grains (SCTG02 in column (2)) and other agricultural products 

(SCTG03 in column (3)). These results confirm our expectations. A drought in the origin state 

corresponds to a loss in productivity and therefore to a lesser volume available for export. The 

relationship is not necessarily 1-to-1 as states can rely on storage from the previous year but, in 

the event of a drought, they would anyway serve the needs of the local market before exports. 

We do not find any statistically robust relationship between drought and animals and fish trade 

(SCTG01). This result might be attributable to SCTG grouping animals and fish in the same 

category and/or it could be due to the fact that a large amount of livestock raising takes place 

indoor where fans, misters and air conditioners are available (Schimmelpfennig et al., 1996). We 

also note the lack of significant impact of wetness.  

A similar yet more clear relationship between drought and trade appears in Table 5, 

especially for category 03. In our previous result (Table 4), the positive relationship between 

drought and commodity 03 inflows are statistically significant at higher than 10 percent level. 

The drought-effect on imports becomes more pronounced for extreme drought conditions as 

shown in Table 5. Notably, a 1 percent increase in extreme drought in the destination state 

increases vegetables and fruits (including other agricultural products) by 0.652 percent. Another 

result to note is that the negative relationship between drought and commodity 03 exports 

becomes larger compared to our previous specification. These results are consistent with 

robustness checks in Appendix D.  

The results confirm our expectations that the places producing more agricultural products 

export more. It seems to be particularly true for livestock production compared to crops. 

However, we do not find a clear relationship between exports and the lagged GDP of the food 

manufacturing sector and population in the destination states. Further analysis could assess the 

role of the GDP of each purchasing sector at destination. 

Finally, we find a statistically significant role of growing degree days at origin and at 

destination on the export of cereal grains (SCTG02). These results, as well as the significant role 

of precipitation on exports of SCTG03 products, indicate that states engage in trade of 

agricultural commodities to benefit from the differences between their own and their partners’ 

comparative advantages.   

4.2 Production function estimates 
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We set the main specification for the processed food sector production that is CES in local 

and imported inputs and Cobb-Douglas in capital, labor, and input aggregates. We first run the 

NLS estimation of equation (14) without imposing restrictions on the elasticity of substitution11. 

We additionally run the regression for equation (14) where we impose CD on the elasticity of 

substitution (or equal to one). and then the OLS regression after linearizing the CES function as 

in equation (14).  

The two-stage approach allows us to estimate the impact of weather shocks on the production 

of manufactured food as it occurs exclusively through trade. However, since trade is endogenous 

to the dependent variable in stage 2, we rely on a set of instruments in stage 1 that are defined by 

theory, that are statistically relevant (they influence trade) and that affect 𝑌𝑌 in stage 2 exclusively 

through trade. These instruments are the multilateral resistance terms as well as the weather 

conditions and production in the places of origin i. Table 6 reports the regression results for stage 

2 after adopting the estimated value of the trade flows from stage 1 for inputs. More precisely, 

we use the sum of imports of SCTG01-03 products by category and imports from one’s own 

state (intrastate trade). Column 1 reports the estimation results when we have extreme and mild 

drought in stage 1, and column 2 reports the regression results when we do not distinguish 

extreme to mild drought. The equation includes two-way fixed effects.  

The results displayed in columns 1 and 2 indicate that the estimates of the distribution 

parameters are mostly significantly positive. First, we find a significant output elasticity of 

approximately 0.20 between production in the manufactured food sector and capital stock; 

whereas the elasticity of labor, at 0.59, is about 2.5 times larger. This result depicts how labor-

intensive food manufacturing is, a result we expected and has been documented in Gandhi et al. 

(2020) and (Wahdat & Lusk, 2023)). Second, we find significant output elasticities for the 

agricultural input commodities. The estimates of SCTG02 commodities show an output elasticity 

(or marginal effect) of 0.057 which is similar to the significant elasticity of 0.054 for SCTG03 

commodities (both at the 10% level). The elasticity of SCTG01 commodities is not significant 

though. We attribute this result to the fact that SCTG01 commodities are not used across all 

SCTG04-09 categories such as SCTG04 (animal feed), SCTG06 (milled grains, bakery), 
 

11 For the NLS estimation, we used the “nl” command in Stata with predetermined initial values without using grid 
search. As a robustness check for the NLS estimation of the CES production function, we also run the OLS 
regression after linearization. The results for both the NLS and OLS regressions are reported in Table D7 in the 
appendix.  
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SCTG08 and 09 (beverages and tobacco). Overall, our results confirm that food manufacturing is 

an input-intensive industry, as depicted in Huang (2003), Gandhi et al. (2020) and (Wahdat & 

Lusk, 2023)).  

In addition, our results also consistently display that locally produced and imported inputs are 

neither substitutes nor complements as indicated by the measured elasticities of substitution 

equal to one (or substitution parameter 𝜃𝜃 equal to zero) as indicated by the Wald test of each 

agricultural commodity in Table D7. We believe that the lack of clear substitution or 

complementarity between locally grown and imported agricultural inputs is attributable to the 

fairly large number of commodities associated to each SCTG. For instance, SCTG02 

commodities alone include wheat, corn, rye, barley, oats, and rice. As a result, the effect of 

substituting local corn with imported corn is confounded with substitution for other commodities 

such as wheat or rice. The same applied to SCTG01 and SCTG03 commodities. These results 

indicate that while states do not prioritize local over imported inputs and vice versa, both inputs 

contribute to the production of manufactured food with significantly positive productivity. 

Robustness check with alternative capital stock measures in Appendix D confirms this result. 

4.3 Marginal effect of drought on manufactured food production 

We have analyzed the average effect of drought on agricultural trade and the effect of each 

input aggregate on manufactured food sector. However, it is still unclear where the strongest 

drought effect comes from. In this section, we graphically present the main trade linkages for the 

two main agricultural input groups (cereal grains and fruits/vegetables) and the extent to which 

each input link impacts the production of manufactured food. And all the scenarios quantify the 

effect of an increase in severe drought ( |𝑆𝑆𝑃𝑃𝑆𝑆𝐼𝐼| <  −1.3 ). 12  The full matrix derivative of 

manufactured food production, equation (A3) (as is well-known in spatial econometrics 

literature), constitute three marginal effects – the intrastate, inward, and outward effect. For the 

sake of brevity, how each effect is represented with the parameter estimates from the main 

regression analysis will not be discussed here but rather in Appendix A. The first section is 

pertinent to the marginal effects calculated in the appendix for Illinois and its trading partners.13 

We then give the aggregate effect of a national drought and the aggregate change on the 

 
12 The maps that illustrate mild drought (|𝑆𝑆𝑃𝑃𝑆𝑆𝐼𝐼| >  −1.3) impacts are available upon request to the authors.  
13 Estimates and standard errors of the marginal effects for other states are available upon request to the authors 
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manufactured food production at the national level.  

4.3.1 Drought and impacts for Illinois  

To examine which trade linkages are important for Illinois’ manufactured food sector when 

Illinois faces drought, we first investigate the intrastate effect. This is the change in 

manufactured food production in Illinois from an increase in Illinois drought. Figure 7 displays 

the increase in manufactured food production in Illinois for the average simulation years 

(average of 1997 – 2017) in million US dollars. Panel A depicts that in the face of a 1 percent 

increase in severe local drought, Illinois relies on cereal grain (SCTG02) imports for inputs in the 

manufactured food sector from Midwestern states. The compensated production gain in the 

manufactured food sector mostly come from importing cereal grains from Wisconsin (597.706 

million $), Indiana (583.688 million $), Iowa (349.342 million $), Missouri ($286.113 million $), 

South Dakota (200.561 million $), and Nebraska (127.899 million $). As depicted in panel B, the 

strongest trade linkages for vegetables, fruits, and other agricultural products (SCTG03) used as 

inputs for processed food in Illinois is more focused on partners in the Upper Midwest. Again, 

the highest gain in manufactured food production was from imports that come from Iowa 

(675.796 million $), Missouri (574.474 million $), Indiana (450.463 million $), Wisconsin 

(307.371 million $), and Minnesota (112.138 million $). And notably, the trade impact is more 

far-reaching towards California (87.756 million $ compared to 0.650 million $ for cereal grains), 

Idaho (51.246 million $ compared to 4.592 million $ for cereal grains), and Texas (83.256 

million $ compared to 12.292 million $ for cereal grains). The reliance on these three states for 

commodity 03 is nearly in proportion to their rankings of vegetables, fruit, tree nut and berry 

crops sales in 2017. 14   Nevertheless, the fact that Illinois’ manufactured food production 

increased more with commodity 03 inflows from the midwestern states means that there are 

comparative advantages for products from states that are located close-by with possibly lower 

transportation costs.  

Figure 8 presents the loss in Illinois manufactured food production from trading with states 

that experience drought. In short, the findings reveal that the loss felt by manufactured food 
 

14 According to the USDA NASS, 10 states accounted for 79 percent of U.S. vegetables sales in 2017. These states 
include California which sold 8,167.80 million US$ (42 percent) ranking first, followed by Florida (1,284.10 million 
US$) and Idaho (1,147.10 million US$). For fruits, tree nut and berry, states covered 95 percent of sales with highest 
sales from California (19,708 million US$), Washington (3,614.9 million US$), and Florida (1,298.7 million US$). 
Texas is also one of the top 10 states, accounting with 213.3 million US$ sales in 2017. 
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production in Illinois is much bigger for inflows of cereal grains (SCTG02) relative to those of 

commodity 03.  Panel A depicts that a 1 percent increase in Wisconsin, Indiana, Missouri, and 

Iowa leads to a decrease in Illinois manufactured food production due to their associated trade 

linkages of cereal grains (02). These interregional impacts are especially pronounced for severe 

drought in Wisconsin (loss of 763.531 million $) and Indiana (loss of 745.625 million $). Panel 

B reveals that loss of manufactured food sector in Illinois is associated with higher drought 

experienced in Iowa, Missouri, Indiana, and Wisconsin because Illinois relies on commodity 03 

products the most from these states. The most acute impacts are from Iowa and Missouri with 

respective loss of 123.361 million $ and 104.865 million $.  

Figure 9 depicts the loss in destination states’ manufactured food production from higher 

drought in Illinois. As seen in panel A of Figure 9, Illinois drought impacts are mostly 

concentrated in the Upper Midwest. Indiana experienced the highest loss of 646.692 million $ 

manufactured food production (1.88 percent of the sector’s average total production for 1997 – 

2017) as a result of less available cereal grain imports from drought-struck Illinois. Notably, 

these impacts are not only felt in close-by states but are also far-reaching to the manufactured 

food sector located in the Ohio Valley and the Southeast. States located in the far south such as 

Florida, Tennessee, Georgia, and Louisianna also are impacted by Illinois drought. The loss is 

largest for Florida with 544.377 million $ loss which is about 9.78 percent of total food 

manufacturing production (55,674.942 million $; 1997 – 2017 average) in Florida. For 

Tennessee, the loss was 414.302 million $ which is about 11.73 percent of total production of 

manufactured food sector (35,297.33 million $; 1997 – 2017 average). This means that while 

Florida and Tennessee are located far south from Illinois, a large proportion of their 

manufactured food production rely on cereal grain inputs sourced from Illinois, a major U.S. 

crop producer. Similar to Figure 8, the drought impacts are smaller for commodity 03 inputs 

(panel B) compared to commodity 02 inputs (panel A) which makes sense since Illinois is not a 

major producer of commodity 03 products. Nevertheless, there are closely located states (e.g., 

Missouri, Indiana, and Wisconsin) that are still weakly associated with decreased imports from 

the drought-hit Illinois.15 

4.3.2 Drought and impacts at the national level 
 

15 Here we say weakly associated because the standard errors are high relative to the estimated coefficients for 
commodity 03 inputs. The estimated effects and standard errors are reported in the Appendix. 
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Having investigated the drought impacts on food manufacturing production at the state level 

specifically for Illinois and its crop trading partners, we next analyze the effects at the national 

level. The first marginal effect is pertinent to the aggregate inward effect which is the sum of the 

effects from droughts experienced in all the trading states (except for the state itself). Figure 10 

illustrates the food manufacturing production loss in the importing state when there is higher 

drought in the rest of the country. As seen in panel A, the most prominent loss is seen in 

California amounting to 7,478.246 million $, followed by Texas with 4,307.488 million $ loss. 

This is attributable to decreased inflow of cereal grains from all the other states (potential 

exporters) that have less available stocks to export as they face severe drought. Such decrease in 

food manufacturing production for California and Texas is in commensurate with the total 

production of food manufacturing (see Figure 3). This means that high manufactured food 

producing states rely on cereal grain inputs from other states and therefore their food sector is 

more sensitive to drought happening in other locations. Notably, some states in the Northeast 

(e.g., New York and Pennsylvania) also experience sizable production loss, with decreases of 

3,097.573 million $ and 2,838.982 million $, respectively, through cereal grain imports. For 

these states, the loss is large given that they are large producers of manufactured food but also 

mainly because they rely heavily on cereal grain imports from other states to use as necessary 

inputs. For panel B, the national drought impacts due to decreased commodity 03 imports are 

smaller (and less statistically significant) compared to the loss induced from less commodity 02 

input inflows. This indicates that the state-level processed food sector relies more strongly on 

cereal grains produced in other states as opposed to imported vegetables, fruits, and other 

agricultural products (SCTG03).  

Figure 11 presents the sum of drought impacts on food manufacturing production through 

exports of commodity 02 (panel A) and 03 (panel B). The most acute loss in national production 

was from severe drought in Nebraska, Indiana, and Illinois with aggregate losses of 7,132.734 

million, 5,957.264 million, and 5,097.156 million US$, respectively (as seen in panel A). And 

importantly, the map reveals that the national production is most sensitive to droughts in the 

midwestern states. Conversely, the aggregate loss through decreased exports of commodity 03 is 

less pronounced overall and more dispersed (as seen in panel B). The key implication of this 

finding is that the substantial loss of national food manufacturing production is attributable to 

decreased cereal grain exports, especially from states located in the Northern Rockies and Plains, 
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Upper Midwest and the Ohio Valley. This is also a strong implication that these cereal grain 

exporters are responsible for the majority of these inputs sourced to be used for manufactured 

food production. Thus, the U.S. food system would be especially susceptible to drought 

concentrated in the Midwest, such as the drought that hit a majority of midwestern states in 2012. 

This adds support to the notion that crop trade linkages can have profound implications for the 

national food supply chain in the face of future extreme weather events.  

5 Conclusion 

Growing population and the increasing occurrence of extreme weather events oblige us to 

investigate further the impact of a changing climate on the food supply chain in the United 

States. This paper proposes to tackle this crucial relationship through a novel two-stage approach 

that allows us to include both interstate and intersectoral spillovers and deal with their 

endogeneity in the determination of food manufacturing production. Food manufacturing per se 

is an indoor activity, hence it is not directly affected by extreme events such as drought; 

however, its inputs - agricultural commodities grown either locally or in other states - certainly 

are. In the first stage, we consider the variation in the volume of exported agricultural 

commodities due to extreme weather in the frame of a gravity model of trade. We then apply a 

nested Cobb-Douglas production function to identify the effect of labor, capital as well as of 

local and imported agricultural inputs on the manufacturing of food. The results display three 

main findings. First, we confirm that drought in the exporting state decreases the exports of 

cereal grains (SCTG02) and of other agricultural products (SCTG03). Inversely, drought in the 

destination states obliges them to increase imports as they need to carry on with their 

manufacturing activities and previous year’s storage does not always suffice. Therefore, the 

interstate agricultural supply chain mitigates the impact of weather extremes on food availability. 

Second, stage 2 results confirm that productivity of both capital and labor is positive and larger 

for labor, hence indicating that food manufacturing is a labor-intensive industry. Third, states do 

not treat local and imported inputs as substitutes. Instead, all agricultural commodities are 

necessary inputs in the food manufacturing process. 

Overall, the results of this study provide us with a better understanding of how to maintain 

the nation’s long-run ability to cope with shifts in the food supply chain from climate shocks 

while pursuing the challenge of feeding a growing population. Moreover, the study’s findings 
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provide details on the key linkages in the domestic food supply chain and are informative for the 

design of policies aiming at mitigating the impacts of climate change on the U.S. food and 

agricultural sector. Future extensions will focus on providing results by transportation mode and 

by commodity, even though the latter approach would require crop-specific supply chain data to 

be created. Another venue of research is the inclusion of other extreme weather events (e.g., 

early frost, heavy rainfall) as well as providing projections based on climate conditions by the 

end of the century.  
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Tables and Figures 
 

Table 1: Distributional weights of SCTG01-03 inputs to SCTG04-09 
A. Before rescaling 

 
SCTG Household 

demand Export Sum 
01 02 03 04 05 06 07 08 09 

0
1 0.109 0.002 0.003 0.000 0.574 0.007 0.193 0.000 0.000 0.056 0.001 0.767 

0
2 0.082 0.031 0.004 0.137 0.000 0.355 0.052 0.035 0.000 0.019 0.174 0.579 

0
3 0.005 0.004 0.059 0.000 0.000 0.022 0.315 0.014 0.000 0.262 0.203 0.337 

B. After rescaling to include only SCTG04-09 and weights above 2 percent 

 SCTG 
Sum 

04 05 06 07 08 09 

01  0.749  0.251   1.000 

02 0.237  0.613 0.089 0.061  1.000 

03   0.066 0.934   1.000 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2: Description of the variables in the gravity model 

Variable Description Source 
Trade flows of agricultural 
commodity 𝒌𝒌 

Volume of 𝒌𝒌 traded between the origin and destination state 
(1,000 tons) FAF 

Drought Absolute value of SPEI for all SPEI < 0 in the origin and 
destination state ERA5-Land 

Wetness Value of SPEI > 0 for all SPEI > 0 in the origin and 
destination state ERA5-Land 

Ag. GDP  Total output of agricultural commodity 𝒌𝒌 in the origin state 
(2012 U.S.$) FAF 

Food GDP  GDP of food, beverages and tobacco manufacturing industry 
in the destination state (2012 U.S.$) BEA 

Growing degree days Temperature as measured in growing degree days during 
the growing season in farmland ERA5-Land 

Precipitation Precipitation during the growing season in farmland (m) ERA5-Land 
Population Total population of destination state  BEA 
Distance Travel time between origin and destination state OSRM 

Contiguity dummy Dummy variable equal to 1 if origin and destination states are 
sharing a border  

Home dummy Dummy variable equal to 1 for within-state flows  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3: Description of the variables in the production function 

Variable Description Source 

Output of processed food 
Sum of total traded processed food products (SCTG04-09) 
leaving the state representing total output of manufactured 
food in 2012 USD 

FAF 

Labor Total full- and part- time employment (or number of jobs) 
for the food, beverages, and tobacco manufacturing industry  BEA 

Capital 
National capital stock for the food, beverages, and tobacco 
manufacturing industry in 2012 US Dollars allocated by 
share of state GDP 

FRB, BEA 

Local SCTG01 Predicted intrastate trade flow of animals and fish 
(SCTG01)  

Gravity 
model 

Imported SCTG01 Sum of all predicted interstate flows of animals and fish 
(SCTG01)  

Gravity 
model 

Local SCTG02 Predicted intrastate trade flow of cereal grains (SCTG02) Gravity 
model 

Imported SCTG02 Sum of all predicted interstate flows of cereal grains 
(SCTG02)  

Gravity 
model 

Local SCTG03 Predicted intrastate trade flow of other agricultural products 
(SCTG03) 

Gravity 
model 

Imported SCTG03 Sum of all predicted interstate flows of other agricultural 
products (SCTG03)  

Gravity 
model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 4: Gravity model estimates 

 Animals and Fish 
(01) 

Cereal Grains 
(02) 

Vegetables, Fruits,  
and Other 

(03) 

 Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. 

Drought_home (𝑖𝑖 = 𝑗𝑗) 0.307 (0.306) 0.260 (0.179) -0.127 (0.146) 

Drought_orig. (𝑖𝑖 ≠ 𝑗𝑗) 0.048 (0.533) -0.531** (0.264) -0.056 (0.320) 

Drought_dest. (𝑗𝑗 ≠ 𝑖𝑖) -0.628 (0.510) 0.464* (0.289) 0.466 (0.302) 

Wetness_home (𝑖𝑖 = 𝑗𝑗) 0.047 (0.348) -0.002 (0.141) 0.127 (0.161) 

Wetness_orig. (𝑖𝑖 ≠ 𝑗𝑗) -0.107 (0.626) 0.407 (0.458) -0.331 (0.262) 

Wetness_dest. (𝑗𝑗 ≠ 𝑖𝑖) 1.792** (0.707) 0.197 (0.317) 0.351 (0.248) 

Ag GDP_orig. 0.747*** (0.115) 0.592*** (0.086) 0.448*** (0.068) 

L_Food GDP_dest. -0.161 (0.178) -0.059 (0.181) 0.063 (0.150) 

GDD_home (𝑖𝑖 = 𝑗𝑗) 0.110 (0.893) 0.216 (0.885) 0.262 (0.674) 

GDD_orig. (𝑖𝑖 ≠ 𝑗𝑗) -1.366 (1.658) 0.302 (1.545) -0.308 (1.417) 

GDD_dest. (𝑗𝑗 ≠ 𝑖𝑖) 6.701*** (1.658) -1.986* (1.168) 0.193 (1.642) 

Precipitation_home (𝑖𝑖 = 𝑗𝑗) 0.052 (0.389) 0.385 (0.255) -0.111 (0.135) 

Precipitation_orig. (𝑖𝑖 ≠ 𝑗𝑗) 0.072 (0.713) -0.434 (0.407) 0.106 (0.235) 

Precipitation_dest. (𝑗𝑗 ≠ 𝑖𝑖) -0.802 (0.648) -0.060 (0.392) 0.203 (0.247) 

Population_dest. -1.631* (0.958) 1.116 (0.815) 0.548 (0.577) 

Pseudo R-squared 0.963  0.965  0.970  

Observations 5,680  7,555  10,940  
Note: Standard errors are clustered by state pairs and are reported in parentheses. p < 0.01 ***, p < 0.05 **, p < 0.1 *. All 
estimations include state-pair, exporter climate zone-year, and importer climate zone-year fixed effects. MRTs for 
distance, neighbor and home dummy are also included for all estimations. Constant was included in the analysis but not 
reported in this table. GDD is growing degree days.  
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 5: Gravity model estimates with extreme and mild drought 

 Animals and Fish 
(01) 

Cereal Grains 
(02) 

Vegetables, Fruits,  
and Other 

(03) 

 Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. 

Extreme drought_home (𝑖𝑖 = 𝑗𝑗) 0.241 (0.312) 0.225 (0.183) -0.152 (0.143) 

Mild drought_home (𝑖𝑖 = 𝑗𝑗) 0.319 (0.305) 0.241 (0.176) -0.089 (0.150) 

Extreme drought_orig. (𝑖𝑖 ≠ 𝑗𝑗) -0.273 (0.536) -0.753** (0.323) -0.119 (0.317) 

Mild drought_orig. (𝑖𝑖 ≠ 𝑗𝑗) 0.127 (0.545) -0.454 (0.311) -0.129 (0.331) 

Extreme drought_dest. (𝑗𝑗 ≠ 𝑖𝑖) -0.039 (0.568) 0.590* (0.346) 0.652** (0.301) 

Mild drought_dest. (𝑗𝑗 ≠ 𝑖𝑖) -0.700 (0.511) 0.494* (0.298) 0.343 (0.320) 

Wetness_home (𝑖𝑖 = 𝑗𝑗) 0.049 (0.342) -0.001 (0.143) 0.152 (0.167) 

Wetness_orig. (𝑖𝑖 ≠ 𝑗𝑗) -0.182 (0.650) 0.465 (0.466) -0.365 (0.268) 

Wetness_dest. (𝑗𝑗 ≠ 𝑖𝑖) 1.720** (0.725) 0.219 (0.292) 0.260 (0.237) 

Ag GDP_orig. 0.746*** (0.115) 0.590*** (0.086) 0.448*** (0.068) 

L_Food GDP_dest. -0.163 (0.178) -0.055 (0.184) 0.059 (0.153) 

GDD_home (𝑖𝑖 = 𝑗𝑗) 0.130 (0.929) 0.217 (0.898) 0.241 (0.675) 

GDD_orig. (𝑖𝑖 ≠ 𝑗𝑗) -1.149 (1.682) 0.202 (1.532) -0.301 (1.406) 

GDD_dest. (𝑗𝑗 ≠ 𝑖𝑖) 6.328*** (1.676) -1.908* (1.151) 0.324 (1.650) 

Precipitation_home (𝑖𝑖 = 𝑗𝑗) 0.074 (0.380) 0.370 (0.255) -0.119 (0.133) 

Precipitation_orig. (𝑖𝑖 ≠ 𝑗𝑗) 0.222 (0.707) -0.482 (0.402) 0.103 (0.239) 

Precipitation_dest. (𝑗𝑗 ≠ 𝑖𝑖) -0.807 (0.660) -0.036 (0.375) 0.241 (0.240) 

Population_dest. -1.657* (0.974) 1.130 (0.826) 0.529 (0.577) 

Pseudo R-squared 0.963  0.965  0.973  

Observations 5,680  7,555  10,940  
Note: Standard errors are clustered by state pairs and are reported in parentheses. p < 0.01 ***, p < 0.05 **, p < 0.1 *. All 
estimations include state-pair, exporter climate zone-year, and importer climate zone-year fixed effects. MRTs for 
distance, neighbor and home dummy are also included for all estimations. Constant was included in the analysis but not 
reported in this table. GDD is growing degree days. 
 
 
 
 
 
 
 
 
 
 
 
 



Table 6: Production function estimates 

 
(1) 

With extreme/mild drought 
(2) 

Without extreme/mild drought 

 Coefficient Std. Error Coefficient Std. Error 
Capital 0.195** (0.082) 0.196** (0.082) 
Labor 0.590*** (0.100) 0.594*** (0.100) 
Animals and Fish (01) -0.006 (0.016) -0.005 (0.016) 
Cereal Grains (02) 0.057*** (0.021) 0.057*** (0.021) 
Vegetables, Fruits, and Other (03) 0.056+ (0.037) 0.054+ (0.037) 
State FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
Observations 240 240 240 240 

Note: Standard errors are reported in parentheses. p < 0.01 ***, p < 0.05 **, p < 0.1 *, p < 0.15 +. Column 1 shows coefficients that are 
from including agricultural input variables estimated from the gravity model (stage 1) with extreme and mild drought conditions. 
Column 2 shows results when including agricultural input variables estimated with drought conditions that are not divided into extreme 
or mild. The estimates are from regression with constraints where output elasticities of locally produced and imported inputs are the 
same. They are equivalent to the marginal effects from the nonlinear estimation of the production function with CES input aggregates 
(as explained in Appendix A). The output elasticity of labor is the estimate from the linear combination of parameters 1 − 𝛽𝛽 − 𝛾𝛾1 −
𝛾𝛾2 − 𝛾𝛾3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 1: Trend in the annual SPEI of the United States, 1997 – 2017 

 
Notes: The index at the national level is calculated by taking the average of the state-level SPEIs for each agricultural 
commodity (01 – 03). Negative (or positive) SPEI indicates drought (or wetness). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 2A: SPEI for Animals and Fish (SCTG01) commodity across states, 2007 and 2012 

 

Notes: The map shows the annual state-level SPEIs for commodity 01 for the years 2007 (Panel A) and 2012 (Panel 
B). The index ranges from -2 to 1 in our sample of 48 states. Negative (yellow) SPEI indicates drought, and positive 
(navy) SPEI indicates wetness.  

 

 

 

 

 

 



Figure 2B: SPEI for Cereal Grains (SCTG02) commodity across states, 2007 and 2012 

 

Notes: The map shows the annual state-level SPEIs for commodity 02 for the years 2007 (Panel A) and 2012 (Panel 
B). The index ranges from -2 to 1 in our sample of 48 states. Negative (yellow) SPEI indicates drought, and positive 
(navy) SPEI indicates wetness. Negative SPEIs were observed for 44 states, and 21 of these states recorded lower than 
-1 SPEIs.  

 

 

 

 

 

 



Figure 2C: SPEI for Vegetables, Fruits and Other Agricultural Products (SCTG03) commodity 
across states, 2007 and 2012 

 

Notes: The map shows the annual state-level SPEIs for commodity 03 for the years 2007 (Panel A) and 2012 (Panel 
B). The index ranges from -2 to 1 in our sample of 48 states. Negative (yellow) SPEI indicates drought, and positive 
(navy) SPEI indicates wetness.  

 

 

 

 

 

 



Figure 3: Total production of manufactured food, as average 1997 - 2017 

 

Notes: The map shows the average of the annual production of manufactured food for the five years between 1997 – 
2017. Total production is calculated as the sum of all the outflows of the agri-food commodities 04 – 09 for each state. 
All the values are in 2012 constant dollars. 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 4: Import ratio and total production of Animals and Fish (SCTG01) 

 

Notes: Panel A shows the percentage change of import ratio from 2007 to 2012. Import ratio is calculated as the 
imported amount per 1 kilo tons of locally produced commodity 01. Panel B shows the total production of commodity 
01 as the average of the annual values for 1997 – 2017. Total production is aggregated as the sum of all domestic 
outflows of commodity 01.   

 

 



Figure 5: Import ratio and total production of Cereal Grains (SCTG02) 

Notes: Panel A shows the percentage change of import ratio from 2007 to 2012. Import ratio is calculated as the 
imported amount per 1 kilo tons of locally produced commodity 02. Panel B shows the total production of commodity 
01 as the average of the annual values for 1997 – 2017. Total production is aggregated as the sum of all domestic 
outflows of commodity 02.   

 

 



Figure 6: Import ratio and total production of Vegetables, Fruits, and Other Agricultural 
Products (SCTG03) 

 

Notes: Panel A shows the percentage change of import ratio from 2007 to 2012. Import ratio is calculated as the 
imported amount per 1 kilo tons of locally produced commodity 03. Panel B shows the total production of commodity 
01 as the average of the annual values for 1997 – 2017. Total production is aggregated as the sum of all domestic 
outflows of commodity 03.   

 



Figure 7: Gain in IL food manufacturing production following a 1 percent drought 
increase in IL (gray) with imported inputs from the State of origin (colored) 

 

Notes: The figure shows gain in manufactured food production for Illinois from importing the two crop 
commodities. Each impact is estimated as 𝛾𝛾𝑘𝑘

2
∙ 𝛼𝛼𝑗𝑗𝑗𝑗 ∙

𝐼𝐼𝑖𝑖,𝐼𝐼𝐼𝐼,𝑘𝑘
𝑀𝑀𝐼𝐼𝐼𝐼,𝑘𝑘

∙ 𝑌𝑌𝑗𝑗  . . Estimates and standard errors are reported in 

Appendix E. 
 
 



Figure 8: Loss in IL food manufacturing production following a 1 percent drought 
increase in the State of origin (colored) 

 

Notes: The figure shows loss in manufactured food production for Illinois from importing the two crop 
commodities from each origin state. Each impact is calculated as 𝛾𝛾𝑘𝑘

2
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𝑀𝑀𝐼𝐼𝐼𝐼,𝑘𝑘

∙ 𝑌𝑌𝑗𝑗  . . Estimates and standard 

errors are reported in Appendix E. 
 
 



Appendix A: Marginal Effects of Drought on Manufactured Food Production 

Assuming one input group as in equation (A1), the marginal effect (or output elasticity) of 

local input 𝐼𝐼 on food production 𝑌𝑌 is (A2):  

𝑌𝑌 = 𝐴𝐴𝐿𝐿(1−𝛽𝛽−𝜃𝜃)𝐾𝐾𝛽𝛽 ��𝐼𝐼𝜃𝜃 + 𝑀𝑀𝜃𝜃�
1
𝜃𝜃�

𝛾𝛾

(𝐴𝐴1) 

 

𝑑𝑑𝑑𝑑𝑑𝑑𝑌𝑌
𝑑𝑑𝑑𝑑𝑑𝑑𝐼𝐼

= (1 − 𝛽𝛽 − 𝛾𝛾) ∙
𝑑𝑑𝑑𝑑𝑑𝑑𝐿𝐿
𝑑𝑑𝑑𝑑𝑑𝑑𝐼𝐼

+ 𝛽𝛽 ∙
𝑑𝑑𝑑𝑑𝑑𝑑𝐾𝐾
𝑑𝑑𝑑𝑑𝑑𝑑𝐼𝐼

+ 𝛾𝛾 ∙
𝐼𝐼𝜃𝜃

𝐼𝐼𝜃𝜃 + 𝑀𝑀𝜃𝜃 + 𝛾𝛾 ∙
𝑀𝑀𝜃𝜃

𝐼𝐼𝜃𝜃 + 𝑀𝑀𝜃𝜃
𝑑𝑑𝑑𝑑𝑑𝑑𝑀𝑀
𝑑𝑑𝑑𝑑𝑑𝑑𝐼𝐼

(𝐴𝐴2) 

 
In (A2), 𝐿𝐿 is labor, 𝐼𝐼 is locally grown inputs, 𝑀𝑀 is imported inputs, 𝛽𝛽 is the output elasticity of 

capital, 𝛾𝛾 is the output elasticity of the input group, and 𝜃𝜃 is the substitution parameter. With 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝐼𝐼

= 0, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝐼𝐼

= 0, and 𝜃𝜃 = 0 (as estimated in OLS and NLS regression), the direct marginal 

effect is 𝛾𝛾
2
. If we account for indirect effect through change in imported inputs (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑑𝑑𝐼𝐼
), we also 

include the fourth term as marginal effect of local input. Elasticity of substitution (𝜎𝜎) is the change 

in the ratio of inputs with respect to the change in the marginal rate of technical substitution 

(MRTS). So the elasticity of substitution, 𝜎𝜎, is not the same as 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝐼𝐼

, but since 𝜎𝜎 = 1, we assume 

that 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝐼𝐼

= 0 . We will report the (direct) marginal effect for now.  

Equation (A2) is the marginal effect of input aggregate on manufactured food production 

which constitutes only the second stage of our analysis. We need the derivative of drought (our 

exogenous extreme weather shock) on manufactured food production. Equation (A3) is the full 

matrix derivative of manufactured food production. The diagonal elements are the intrastate effects 

and is expressed as equation (A4).  The first term of equation (A4) is the change in manufactured 

food production through changes in locally produced input, 𝐼𝐼𝑗𝑗𝑗𝑗, called the local input channel. The 



1  

second term will be the same change in manufactured food production 𝑌𝑌𝑗𝑗  that occur through 

changes of imported inputs, 𝑀𝑀𝑗𝑗𝑗𝑗 , which we refer to as the import input channel.  Equation (A5) 

represents the effect with our evaluated estimates from the main analysis, where ∑ 𝐼𝐼𝑖𝑖𝑗𝑗48
𝑗𝑗≠𝑖𝑖 = 𝑀𝑀𝑗𝑗𝑗𝑗 

and the ratio of each trade flow (from 𝑖𝑖 𝑡𝑡𝑡𝑡 𝑗𝑗) out of imported inputs for state 𝑗𝑗 is 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖
𝑑𝑑𝑖𝑖𝑖𝑖

. The trade 

flow ratio will equal to 1 once summed up across all the trading states which state 𝑗𝑗 imports from 

that leaves us with (A6). The parameter 𝛾𝛾𝑗𝑗 is the output elasticity of aggregate input 𝑘𝑘 which is 

divided into two for each input channel to reflect the no-substitution effect as tests could not reject 

that the parameter is not significantly different from zero.  

𝜕𝜕𝒍𝒍𝒍𝒍𝒍𝒍
𝜕𝜕𝒍𝒍𝒍𝒍𝑫𝑫𝒌𝒌

=

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑑𝑑𝑑𝑑𝑌𝑌1
𝜕𝜕𝑑𝑑𝑑𝑑𝐷𝐷1,𝑗𝑗

⋯
𝜕𝜕𝑑𝑑𝑑𝑑𝑌𝑌1
𝜕𝜕𝑑𝑑𝑑𝑑𝐷𝐷𝑑𝑑,𝑗𝑗

⋮ ⋱ ⋮
𝜕𝜕𝑑𝑑𝑑𝑑𝑌𝑌𝑑𝑑
𝜕𝜕𝑑𝑑𝑑𝑑𝐷𝐷1,𝑗𝑗

⋯
𝜕𝜕𝑑𝑑𝑑𝑑𝑌𝑌𝑑𝑑
𝜕𝜕𝑑𝑑𝑑𝑑𝐷𝐷𝑑𝑑,𝑗𝑗⎦

⎥
⎥
⎥
⎥
⎤

(𝐴𝐴3) 

𝜕𝜕𝑑𝑑𝑑𝑑𝑌𝑌𝑗𝑗
𝜕𝜕𝑑𝑑𝑑𝑑𝐷𝐷𝑗𝑗𝑗𝑗

=
𝜕𝜕𝑑𝑑𝑑𝑑𝑌𝑌𝑗𝑗
𝜕𝜕𝑑𝑑𝑑𝑑𝐼𝐼𝑗𝑗𝑗𝑗

𝜕𝜕𝑑𝑑𝑑𝑑𝐼𝐼𝑗𝑗𝑗𝑗
𝜕𝜕𝑑𝑑𝑑𝑑𝐷𝐷𝑗𝑗𝑗𝑗

+  
𝜕𝜕𝑑𝑑𝑑𝑑𝑌𝑌𝑗𝑗
𝜕𝜕 𝑑𝑑𝑑𝑑𝑀𝑀𝑗𝑗𝑗𝑗

𝜕𝜕 𝑑𝑑𝑑𝑑𝑀𝑀𝑗𝑗𝑗𝑗
𝜕𝜕𝑑𝑑𝑑𝑑𝐷𝐷𝑗𝑗𝑗𝑗

(𝐴𝐴4) 

𝜕𝜕𝑑𝑑𝑑𝑑𝑌𝑌𝑗𝑗
𝜕𝜕𝑑𝑑𝑑𝑑𝐷𝐷𝑗𝑗𝑗𝑗

=
𝛾𝛾𝑗𝑗
2
∙ 𝛼𝛼𝑖𝑖=𝑗𝑗,𝑗𝑗 +

𝛾𝛾𝑗𝑗
2
∙ 𝛼𝛼𝑗𝑗𝑗𝑗�

𝐼𝐼𝑖𝑖𝑗𝑗𝑗𝑗
𝑀𝑀𝑗𝑗𝑗𝑗

𝑑𝑑

𝑖𝑖≠𝑗𝑗

(𝐴𝐴5) 

𝜕𝜕𝑑𝑑𝑑𝑑𝑌𝑌𝑗𝑗
𝜕𝜕𝑑𝑑𝑑𝑑𝐷𝐷𝑗𝑗𝑗𝑗

=
𝛾𝛾𝑗𝑗
2
∙ 𝛼𝛼𝑖𝑖=𝑗𝑗,𝑗𝑗 +

𝛾𝛾𝑗𝑗
2
∙ 𝛼𝛼𝑗𝑗𝑗𝑗 (𝐴𝐴6) 

The inward effect is the change in manufactured food production induced from increase in 

drought in other trading states of origin. These are the off-diagonal row elements of the derivative 

matrix (A3).  In (A7), the local channel for the inward effect ( 𝜕𝜕𝑑𝑑𝑑𝑑𝑌𝑌𝑖𝑖
𝜕𝜕𝑑𝑑𝑑𝑑𝐼𝐼𝑖𝑖𝑖𝑖

𝜕𝜕𝑑𝑑𝑑𝑑𝐼𝐼𝑖𝑖𝑖𝑖
𝜕𝜕𝑑𝑑𝑑𝑑𝐷𝐷𝑖𝑖𝑖𝑖

) pertains to 

increase/decrease in locally produced agricultural inputs induced from drought in other trading 

states that can occur through changes in multilateral resistance components. This term is equal to 

zero here since it is beyond the scope of this research where we only evaluate the first-order 
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drought impact on trading states’ size terms rather than the multilateral terms from the gravity 

model. The inward effect is thus represented as (A8) with the evaluated estimates. The aggregate 

inward effect, or the change in manufactured food production from national drought (or the row 

sum of the matrix exempt the local drought) is represented as (A9). Here, the sum of the trade flow 

ratio is also equal to one leaving us with marginal effects as (A10).  

𝜕𝜕𝑑𝑑𝑑𝑑𝑌𝑌𝑗𝑗
𝜕𝜕𝑑𝑑𝑑𝑑𝐷𝐷𝑖𝑖𝑗𝑗

=
𝜕𝜕𝑑𝑑𝑑𝑑𝑌𝑌𝑗𝑗
𝜕𝜕𝑑𝑑𝑑𝑑𝐼𝐼𝑗𝑗𝑗𝑗

𝜕𝜕𝑑𝑑𝑑𝑑𝐼𝐼𝑗𝑗𝑗𝑗
𝜕𝜕𝑑𝑑𝑑𝑑𝐷𝐷𝑖𝑖𝑗𝑗

+  
𝜕𝜕𝑑𝑑𝑑𝑑𝑌𝑌𝑗𝑗
𝜕𝜕 𝑑𝑑𝑑𝑑𝑀𝑀𝑗𝑗𝑗𝑗

𝜕𝜕 𝑑𝑑𝑑𝑑𝑀𝑀𝑗𝑗𝑗𝑗
𝜕𝜕𝑑𝑑𝑑𝑑𝐷𝐷𝑖𝑖𝑗𝑗

(𝐴𝐴7) 

𝜕𝜕𝑑𝑑𝑑𝑑𝑌𝑌𝑗𝑗
𝜕𝜕𝑑𝑑𝑑𝑑𝐷𝐷𝑖𝑖𝑗𝑗

=
𝛾𝛾𝑗𝑗
2
∙ 𝛼𝛼𝑖𝑖𝑗𝑗 ∙

𝐼𝐼𝑖𝑖𝑗𝑗𝑗𝑗
𝑀𝑀𝑗𝑗𝑗𝑗

(𝐴𝐴8) 

�
𝜕𝜕𝑑𝑑𝑑𝑑𝑌𝑌𝑗𝑗
𝜕𝜕𝑑𝑑𝑑𝑑𝐷𝐷𝑖𝑖𝑗𝑗

𝑑𝑑

𝑖𝑖

=
𝛾𝛾𝑗𝑗
2
∙ 𝛼𝛼𝑖𝑖𝑗𝑗�

𝐼𝐼𝑖𝑖𝑗𝑗𝑗𝑗
𝑀𝑀𝑗𝑗𝑗𝑗

𝑑𝑑

𝑖𝑖

  ∀ 𝑖𝑖 ≠ 𝑗𝑗 (𝐴𝐴9) 

�
𝜕𝜕𝑑𝑑𝑑𝑑𝑌𝑌𝑗𝑗
𝜕𝜕𝑑𝑑𝑑𝑑𝐷𝐷𝑖𝑖𝑗𝑗

𝑑𝑑

𝑖𝑖

=
𝛾𝛾𝑗𝑗
2
∙ 𝛼𝛼𝑖𝑖𝑗𝑗   ∀ 𝑖𝑖 ≠ 𝑗𝑗 (𝐴𝐴10) 

The outward effect, or the impact of local drought on all other states of destination, is the same 

as (A7) only with the 𝑖𝑖 𝑎𝑎𝑑𝑑𝑑𝑑 𝑗𝑗 reversed. The aggregate outward effect is the column sum of the 

derivative matrix (A3), exempt the impact on local production, is represented as (A11).  

�
𝜕𝜕𝑑𝑑𝑑𝑑𝑌𝑌𝑖𝑖
𝜕𝜕𝑑𝑑𝑑𝑑𝐷𝐷𝑗𝑗𝑗𝑗

𝑑𝑑

𝑖𝑖

=
𝛾𝛾𝑗𝑗
2
∙ 𝛼𝛼𝑗𝑗𝑗𝑗�

𝐼𝐼𝑗𝑗𝑖𝑖𝑗𝑗
𝑀𝑀𝑖𝑖𝑗𝑗

𝑑𝑑

𝑖𝑖

   ∀ 𝑖𝑖 ≠ 𝑗𝑗 (𝐴𝐴11) 
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Appendix B: Construction of the Weather Data 

B.1 Weather variables 

We use an extensive dataset on weather variables covering all the areas across the United States 

from 1981 to 2019. We obtain weather data from the ERA5- Land (Muñoz Sabater, 2021) database 

which provides daily or monthly weather data at a spatial resolution of 4km. This data is used to 

aggregate pixel readings to the county level by averaging across pixel observations located within 

the county. Then we compute two weights with respect to time and space in order to aggregate 

county-level drought index to the state-level for each of the five years in our study period (1997, 

2002, 2007, 2012, 2017). We obtain data on Standardized Precipitation Evapotranspiration Index 

(SPEI) which is provided as monthly observations. Other aggregated county-level weather 

variables are daily Growing Degree Days (GDD) and daily precipitation. 

B.2 Weighing scheme 

Since our study concerns the planting and harvesting of crops and growth of livestock at the 

state level, we need state-level yearly measurements that is more sector-specific than simple 

averages by year and by state. W e  use the 2017 farmland and planting/harvesting period 

information in two ways. First, we define the growing season as the weighted average of the middle 

date of the planting period (as the start date of the growing season) and the harvesting period (as 

the end date of the growing season) of all the products within the SCTG02 and SCTG03 categories. 

This addresses the issue that planting, harvesting and growing periods are not uniform across 

commodities. For instance, SCTG02 contains crops such as wheat, corn, barley and rice for which 

the planting and harvesting periods all differ by state. The weights will be based on the farmland 

area of each product in SCTG02 from the USDA FSA (USDA, 2022). Planting and harvesting 

periods of each product in SCTG02/SCTG03 are provided by state in the USDA NASS database 

(USDA, 2022). Livestock products are also likely to be related to extreme weather events resulting 

from change of climate but are less dependent on the seasons, thus we assume that livestock is 

produced throughout the year. 

Next, we aggregate county-level weather observations to the state-level based on the farmland 

area of each county. We sum farmland acreage of each product included in SCTG02/SCTG03 
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for each county from the USDA FSA. The weights for each county are calculated as the ratio of 

the total area used to grow SCTG02 products to the total area of the state. For SCTG01, we use 

information from USDA NAAS Census of Agriculture on county-level total sales of each live 

product for the aggregation of county-level observations to state-level measures (USDA, 2022).  
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Appendix C: Construction of Labor Data 

For some states, the undisclosed value is the only on missing observation so we can easily 

recover it as the difference between the upper region the state belongs to and the sum of the other 

states in that region1.  In the event where more than one state reports a missing observation, we 

use the proportion of the state’s employment in the upper region’s value from each year for which 

both values are recorded2. After taking the average of the rate for all observable years, we apply 

the averaged rate to the years with the missing values. This approach assumes that the proportion 

of employment within the beverages and tobacco industry out of the upper-region’s employment 

does not change significantly from year to year. For the year 1997 for which all the data are 

missing, employment data at the state level is generated using a concordance, or bridge, from the 

Standard Industrial Classification (SIC) to the NAICS following the approach of Peri (2012). The 

BEA is used to provide information on employment for each SIC industry up until 2001. In 

addition, the U.S. Census Bureau’s report on the bridge between the NAICS and SIC3 lists each 

NAICS code with the corresponding SIC coded industries that are grouped in it. For each SIC 

code, the establishments, sales, payroll and employees are also listed for each part of SIC that are 

mapped to the corresponding NAICS industry. The total values for each SIC industry are also 

listed. We need information on how much each SIC coded industry belongs to the NAICS food, 

beverages and tobacco industry (NAICS312). So, we first calculate the percentage of each SIC 

industry’s number of employees that belong to the NAICS312 (from the first part of the report) 

out of the total number of employees within the SIC industry. We then map the SIC totals to 

NAICS3124.  

 

 

 
 
 

 
1 For South Dakota (in the Plains) and Vermont (in New England) 
2 For Delaware we have 1999-2000 for reference, and for Mississippi we have 1998-2007 for reference. 
3 https://www2.census.gov/programs-surveys/cbp/technical-documentation/bridge-between-naics-and-sic/naics 
_sicbridge.pdf 
4 The SIC totals that are mapped to the NAICS312 are food and kindred products (SIC20), tobacco products (SIC21), 
1.56% of food stores (SIC54) and 0.05% of wholesale trade (SIC50-51). For Delaware and Nevada, employment for 
tobacco products (SIC21) are missing so for these states we use the average of the nearest three years. 

https://www2.census.gov/programs-surveys/cbp/technical-documentation/bridge-between-naics-and-sic/naics_sicbridge.pdf
https://www2.census.gov/programs-surveys/cbp/technical-documentation/bridge-between-naics-and-sic/naics_sicbridge.pdf
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Appendix D: CES Production Function Estimation Results 

Table D1: Production function estimates 

 Estimation result  Marginal effect 

 (1)  
Nonlinear 

(2)  
Linear  (3) 

Nonlinear 
(4) 

Linear 
𝜷𝜷 0.200** 0.201**    
 (0.089) (0.094)    
𝜸𝜸𝟏𝟏 -0.024 -0.017  -0.012 -0.009 
 (0.028) (0.030)  (0.014) (0.015) 
𝜸𝜸𝟐𝟐 0.105** 0.104**  0.053** 0.052* 
 (0.049) (0.053)  (0.025) (0.027) 
𝜸𝜸𝟑𝟑 0.128 0.130  0.064 0.065 
 (0.092) (0.105)  (0.046) (0.052) 
𝜽𝜽𝟏𝟏 -1.913 -0.114    
 (68.127) (0.189)    
𝜽𝜽𝟐𝟐 -0.339 -0.009    
 (8.683) (0.020)    
𝜽𝜽𝟑𝟑 0.149 -0.002    
 (8.189) (0.037)    
Output elasticity of labor      
𝟏𝟏 − 𝜷𝜷 − 𝜸𝜸𝟏𝟏 − 𝜸𝜸𝟐𝟐 − 𝜸𝜸𝟑𝟑 0.591*** 0.582**    
 (0.126) (0.141)    
Elasticity of substitution      
𝝈𝝈𝟏𝟏 0.343 0.900***    
 (8.024) (0.152)    
𝝈𝝈𝟐𝟐 0.747 0.991***    
 (4.843) (0.020)    
𝝈𝝈𝟑𝟑 1.175 0.998***    
 (11.303) (0.036)    
𝝈𝝈𝟏𝟏 = 𝟏𝟏 0.966 0.503    
𝝈𝝈𝟐𝟐 = 𝟏𝟏  0.877 0.660    
𝝈𝝈𝟑𝟑 = 𝟏𝟏  0.917 0.950    
State FE Yes Yes  Yes Yes 
Year FE Yes Yes  Yes Yes 
Observations 240 240  240 240 

Note: Standard errors are reported in parentheses. p < 0.01 ***, p < 0.05 **, p < 0.1 *. Marginal effects (
𝒅𝒅𝒍𝒍𝒍𝒍𝒍𝒍
𝒅𝒅𝒍𝒍𝒍𝒍𝒅𝒅

= 𝒅𝒅𝒍𝒍𝒍𝒍𝒍𝒍
𝒅𝒅𝒍𝒍𝒍𝒍𝒅𝒅

) of locally 

grown and imported inputs are estimated as 𝜸𝜸
𝟐𝟐
 based on the derivative we outline in Appendix A. Columns 1 and 3 are coefficients based 

on the nonlinear least squares (NLS) estimation. Standard errors are bootstrapped after 100 replications. Columns 2 and 4 are the 
estimates of the linear approximation estimated by ordinary least squares (OLS) with robust standard errors. For columns 1 and 2, we 
report the p-value for the test of elasticity of substitution between locally produced and imported input, 𝑯𝑯𝟎𝟎:𝝈𝝈 = 𝟏𝟏. 
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Table D2: Production function estimates with extreme and mild drought 

 Estimation result  Marginal effect 

 (1)  
Nonlinear 

(2)  
Linear  (3) 

Nonlinear 
(4) 

Linear 
𝜷𝜷 0.199** 0.201**    
 (0.097) (0.095)    
𝜸𝜸𝟏𝟏 -0.025 -0.018  -0.012 -0.009 
 (0.033) (0.030)  (0.016) (0.015) 
𝜸𝜸𝟐𝟐 0.106** 0.105*  0.053** 0.053* 
 (0.048) (0.054)  (0.024) (0.027) 
𝜸𝜸𝟑𝟑 0.133* 0.136  0.067* 0.068 
 (0.079) (0.109)  (0.040) (0.054) 
𝜽𝜽𝟏𝟏 -2.131 -0.107    
 (66.451) (0.167)    
𝜽𝜽𝟐𝟐 -0.342 -0.009    
 (0.982) (0.021)    
𝜽𝜽𝟑𝟑 0.152 -0.004    
 (16.787) (0.034)    
Output elasticity of labor      
𝟏𝟏 − 𝜷𝜷 − 𝜸𝜸𝟏𝟏 − 𝜸𝜸𝟐𝟐 − 𝜸𝜸𝟑𝟑 0.586*** 0.577***    
 (0.118) (0.186)    
Elasticity of substitution      
𝝈𝝈𝟏𝟏 0.3319 0.904***    
 (6.780) (0.137)    
𝝈𝝈𝟐𝟐 0.745 0.991***    
 (8.350) (0.020)    
𝝈𝝈𝟑𝟑 1.180 0.996***    
 (23.356) (0.034)    
𝝈𝝈𝟏𝟏 = 𝟏𝟏 0.920 0.481    
𝝈𝝈𝟐𝟐 = 𝟏𝟏  0.976 0.645    
𝝈𝝈𝟑𝟑 = 𝟏𝟏  0.994 0.902    
State FE Yes Yes  Yes Yes 
Year FE Yes Yes  Yes Yes 
Observations 240 240  240 240 

Note: Standard errors are reported in parentheses. p < 0.01 ***, p < 0.05 **, p < 0.1 *. Marginal effects (
𝒅𝒅𝒍𝒍𝒍𝒍𝒍𝒍
𝒅𝒅𝒍𝒍𝒍𝒍𝒅𝒅

= 𝒅𝒅𝒍𝒍𝒍𝒍𝒍𝒍
𝒅𝒅𝒍𝒍𝒍𝒍𝒅𝒅

) of locally 

grown and imported inputs are estimated as 𝜸𝜸
𝟐𝟐
 based on the derivative we outline in Appendix A. Columns 1 and 3 are coefficients based 

on the nonlinear least squares (NLS) estimation. Standard errors are bootstrapped after 100 replications. Columns 2 and 4 are the 
estimates of the linear approximation estimated by ordinary least squares (OLS) with robust standard errors. For columns 1 and 2, we 
report the p-value for the test of elasticity of substitution between locally produced and imported input, 𝑯𝑯𝟎𝟎:𝝈𝝈 = 𝟏𝟏. 
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Appendix E: Estimates for Maps 
Table E1: Estimates and standard errors for Figure 7 

Origin Destination 
SCTG01 SCTG02 SCTG03 

Import 
channel Std. err. Import 

channel Std. err. Import 
channel Std. err. 

Alabama Illinois 0.000 0.000 0.017 0.006 0.632 0.422 
Arizona Illinois 0.000 0.000 0.000 0.000 7.937 5.304 
Arkansas Illinois 0.001 0.003 4.321 1.614 3.129 2.091 
California Illinois 0.035 0.094 0.650 0.243 87.756 58.648 
Colorado Illinois 0.000 0.000 1.295 0.484 12.103 8.088 
Connecticut Illinois 0.000 0.000 0.000 0.000 0.334 0.223 
Delaware Illinois 0.000 0.000 0.012 0.004 0.610 0.408 
Florida Illinois 0.001 0.004 0.012 0.005 23.320 15.585 
Georgia Illinois 0.001 0.002 0.016 0.006 15.477 10.344 
Idaho Illinois 0.000 0.000 4.592 1.715 51.246 34.248 
Illinois Illinois -114.470 305.999 1019.187 380.678 -673.574 450.154 
Indiana Illinois 3.939 10.530 583.688 218.014 450.463 301.048 
Iowa Illinois 1.463 3.912 349.342 130.483 675.796 451.640 
Kansas Illinois 0.027 0.072 75.989 28.383 3.055 2.042 
Kentucky Illinois 0.535 1.430 38.552 14.400 26.636 17.801 
Louisiana Illinois 0.000 0.000 11.764 4.394 6.499 4.343 
Maine Illinois 0.000 0.001 0.042 0.016 0.489 0.327 
Maryland Illinois 0.000 0.000 0.001 0.001 0.136 0.091 
Massachusetts Illinois 0.000 0.000 0.004 0.002 0.993 0.664 
Michigan Illinois 0.751 2.007 58.139 21.716 89.496 59.811 
Minnesota Illinois 0.256 0.685 94.398 35.259 112.138 74.943 
Mississippi Illinois 0.003 0.007 3.067 1.145 24.953 16.676 
Missouri Illinois 7.578 20.257 286.113 106.866 574.474 383.925 
Montana Illinois 0.000 0.000 0.000 0.000 0.003 0.002 
Nebraska Illinois 0.089 0.239 127.899 47.772 1.545 1.033 
Nevada Illinois 0.000 0.000 0.000 0.000 0.001 0.001 
New Hampshire Illinois 0.000 0.000 0.000 0.000 0.000 0.000 
New Jersey Illinois 0.002 0.006 0.051 0.019 1.964 1.313 
New Mexico Illinois 0.000 0.000 0.000 0.000 0.525 0.351 
New York Illinois 0.327 0.875 0.853 0.319 6.585 4.401 
North Carolina Illinois 0.003 0.007 0.021 0.008 11.769 7.865 
North Dakota Illinois 0.000 0.000 164.558 61.464 85.959 57.447 
Ohio Illinois 0.422 1.129 49.197 18.375 54.904 36.693 
Oklahoma Illinois 0.008 0.022 0.005 0.002 0.310 0.207 
Oregon Illinois 0.000 0.000 3.281 1.226 27.014 18.054 
Pennsylvania Illinois 0.042 0.113 0.119 0.044 2.477 1.655 
Rhode Island Illinois 0.006 0.015 0.000 0.000 0.000 0.000 
South Carolina Illinois 0.000 0.000 0.000 0.000 2.175 1.454 
South Dakota Illinois 0.071 0.191 200.561 74.912 42.574 28.453 
Tennessee Illinois 0.102 0.272 0.456 0.170 47.501 31.745 
Texas Illinois 0.000 0.000 12.292 4.591 83.256 55.641 
Utah Illinois 0.000 0.000 0.013 0.005 5.868 3.921 
Vermont Illinois 0.002 0.006 0.000 0.000 0.008 0.006 
Virginia Illinois 0.002 0.006 0.098 0.037 16.381 10.947 
Washington Illinois 0.000 0.000 0.000 0.000 16.897 11.292 
West Virginia Illinois 0.014 0.038 0.000 0.000 0.012 0.008 
Wisconsin Illinois 2.846 7.608 597.706 223.250 307.371 205.418 
Wyoming Illinois 0.000 0.000 0.000 0.000 1.947 1.301 

 
 

 



9  

Table E2: Estimates and standard errors for Figure 8 

Origin Destination 
SCTG01 SCTG02 SCTG03 

Export 
channel Std. err. Export 

channel Std. err. Export 
channel Std. err. 

Alabama Illinois 0.000 0.001 -0.021 0.008 -0.115 0.077 
Arizona Illinois 0.001 0.001 0.000 0.000 -1.449 0.968 
Arkansas Illinois 0.007 0.018 -5.520 2.062 -0.571 0.382 
California Illinois 0.246 0.658 -0.830 0.310 -16.019 10.706 
Colorado Illinois 0.000 0.000 -1.654 0.618 -2.209 1.476 
Connecticut Illinois 0.000 0.000 0.000 0.000 -0.061 0.041 
Delaware Illinois 0.000 0.000 -0.015 0.006 -0.111 0.074 
Florida Illinois 0.010 0.028 -0.016 0.006 -4.257 2.845 
Georgia Illinois 0.006 0.017 -0.021 0.008 -2.825 1.888 
Idaho Illinois 0.000 0.000 -5.866 2.191 -9.354 6.252 
Illinois Illinois       

Indiana Illinois 27.532 73.599 -745.625 278.499 -82.228 54.954 
Iowa Illinois 10.228 27.342 -446.263 166.684 -123.361 82.443 
Kansas Illinois 0.188 0.503 -97.072 36.257 -0.558 0.373 
Kentucky Illinois 3.738 9.993 -49.248 18.395 -4.862 3.249 
Louisiana Illinois 0.000 0.000 -15.028 5.613 -1.186 0.793 
Maine Illinois 0.003 0.007 -0.053 0.020 -0.089 0.060 
Maryland Illinois 0.000 0.000 -0.002 0.001 -0.025 0.017 
Massachusetts Illinois 0.000 0.001 -0.005 0.002 -0.181 0.121 
Michigan Illinois 5.248 14.028 -74.269 27.740 -16.337 10.918 
Minnesota Illinois 1.790 4.785 -120.587 45.041 -20.470 13.680 
Mississippi Illinois 0.019 0.050 -3.918 1.463 -4.555 3.044 
Missouri Illinois 52.964 141.582 -365.491 136.515 -104.865 70.082 
Montana Illinois 0.000 0.000 0.000 0.000 -0.001 0.000 
Nebraska Illinois 0.625 1.672 -163.383 61.025 -0.282 0.189 
Nevada Illinois 0.001 0.003 0.000 0.000 0.000 0.000 
New Hampshire Illinois 0.000 0.000 0.000 0.000 0.000 0.000 
New Jersey Illinois 0.015 0.040 -0.065 0.024 -0.359 0.240 
New Mexico Illinois 0.000 0.000 0.000 0.000 -0.096 0.064 
New York Illinois 2.288 6.115 -1.090 0.407 -1.202 0.803 
North Carolina Illinois 0.019 0.052 -0.026 0.010 -2.148 1.436 
North Dakota Illinois 0.000 0.000 -210.212 78.517 -15.691 10.486 
Ohio Illinois 2.952 7.892 -62.846 23.474 -10.022 6.698 
Oklahoma Illinois 0.058 0.155 -0.007 0.003 -0.057 0.038 
Oregon Illinois 0.000 0.000 -4.191 1.566 -4.931 3.296 
Pennsylvania Illinois 0.296 0.792 -0.152 0.057 -0.452 0.302 
Rhode Island Illinois 0.040 0.108 0.000 0.000 0.000 0.000 
South Carolina Illinois 0.000 0.000 0.000 0.000 -0.397 0.265 
South Dakota Illinois 0.499 1.333 -256.203 95.695 -7.772 5.194 
Tennessee Illinois 0.712 1.904 -0.582 0.217 -8.671 5.795 
Texas Illinois 0.000 0.000 -15.703 5.865 -15.198 10.157 
Utah Illinois 0.000 0.000 -0.016 0.006 -1.071 0.716 
Vermont Illinois 0.015 0.039 0.000 0.000 -0.002 0.001 
Virginia Illinois 0.015 0.039 -0.126 0.047 -2.990 1.998 
Washington Illinois 0.000 0.000 0.000 0.000 -3.084 2.061 
West Virginia Illinois 0.099 0.264 0.000 0.000 -0.002 0.001 
Wisconsin Illinois 19.892 53.176 -763.531 285.187 -56.108 37.497 
Wyoming Illinois 0.000 0.000 0.000 0.000 -0.355 0.238 
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Table E3: Estimates and standard errors for Figure 9 

Origin Destination 
SCTG01 SCTG02 SCTG03 

Export 
channel Std. err. Export 

channel Std. err. Export 
channel Std. err. 

Illinois Alabama 0.023 0.062 -161.500 60.322 -8.387 5.605 
Illinois Arizona 0.000 0.000 0.000 0.000 -0.365 0.244 
Illinois Arkansas 0.072 0.193 -33.909 12.665 -5.746 3.840 
Illinois California 0.000 0.000 -152.868 57.098 -17.492 11.690 
Illinois Colorado 0.000 0.001 -0.011 0.004 -1.438 0.961 
Illinois Connecticut 0.000 0.000 -10.301 3.848 -0.291 0.194 
Illinois Delaware 0.000 0.000 0.000 0.000 -0.043 0.029 
Illinois Florida 0.000 0.000 -544.377 203.331 -19.389 12.958 
Illinois Georgia 0.040 0.107 -320.799 119.822 -15.795 10.556 
Illinois Idaho 0.000 0.000 0.000 0.000 -0.056 0.038 
Illinois Illinois 

      

Illinois Indiana 12.463 33.317 -646.692 241.547 -63.881 42.692 
Illinois Iowa 8.274 22.117 -362.401 135.361 -27.754 18.548 
Illinois Kansas 0.030 0.080 -1.094 0.409 -3.196 2.136 
Illinois Kentucky 3.278 8.762 -130.134 48.606 -10.620 7.098 
Illinois Louisiana 0.000 0.000 -260.082 97.144 -34.507 23.061 
Illinois Maine 0.000 0.000 0.000 0.000 -0.009 0.006 
Illinois Maryland 0.000 0.000 -55.002 20.544 -2.559 1.710 
Illinois Massachusetts 0.000 0.000 -0.310 0.116 -0.732 0.489 
Illinois Michigan 7.535 20.143 -334.456 124.923 -19.203 12.834 
Illinois Minnesota 0.033 0.088 -20.731 7.743 -4.131 2.761 
Illinois Mississippi 0.076 0.204 -152.826 57.082 -9.888 6.608 
Illinois Missouri 8.625 23.056 -498.702 186.271 -66.968 44.755 
Illinois Montana 0.000 0.000 -0.002 0.001 -0.005 0.003 
Illinois Nebraska 0.012 0.032 -0.532 0.199 -0.641 0.428 
Illinois Nevada 0.001 0.002 0.000 0.000 -0.101 0.067 
Illinois New Hampshire 0.000 0.000 0.000 0.000 -0.065 0.044 
Illinois New Jersey 0.002 0.006 -0.780 0.291 -1.957 1.308 
Illinois New Mexico 0.000 0.000 -0.075 0.028 -0.111 0.074 
Illinois New York 0.000 0.000 -219.372 81.938 -8.854 5.917 
Illinois North Carolina 0.046 0.123 -40.698 15.201 -1.354 0.905 
Illinois North Dakota 0.000 0.000 0.000 0.000 -0.022 0.014 
Illinois Ohio 1.850 4.946 -101.235 37.812 -12.177 8.138 
Illinois Oklahoma 0.020 0.055 0.000 0.000 -0.099 0.066 
Illinois Oregon 0.004 0.010 -0.008 0.003 -0.454 0.304 
Illinois Pennsylvania 1.722 4.604 -69.873 26.098 -13.700 9.156 
Illinois Rhode Island 0.000 0.000 0.000 0.000 -0.041 0.027 
Illinois South Carolina 0.000 0.000 -22.385 8.361 -0.497 0.332 
Illinois South Dakota 0.007 0.019 -0.114 0.043 -0.015 0.010 
Illinois Tennessee 2.697 7.211 -414.302 154.746 -18.728 12.516 
Illinois Texas 0.002 0.006 -130.416 48.712 -9.804 6.552 
Illinois Utah 0.000 0.000 0.000 0.000 -0.611 0.408 
Illinois Vermont 0.000 0.000 0.000 0.000 -0.656 0.438 
Illinois Virginia 0.000 0.000 -3.044 1.137 -0.454 0.304 
Illinois Washington 0.000 0.000 -0.078 0.029 -0.051 0.034 
Illinois West Virginia 0.000 0.000 0.000 0.000 -0.239 0.159 
Illinois Wisconsin 15.038 40.199 -408.045 152.409 -65.663 43.883 
Illinois Wyoming 0.023 0.062 -161.500 60.322 -8.387 5.605 
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Table E4: Estimates and standard errors for Figure 10 

State 
SCTG01 SCTG02 SCTG03 

Inward effect 
(row sum) Std. err. Inward effect 

(row sum) Std. err. Inward effect 
(row sum) Std. err. 

Alabama 31.527 84.278 -830.040 310.029 -128.1902 85.670 
Arizona 29.130 77.869 -766.918 286.453 -118.4419 79.156 
Arkansas 41.393 110.652 -1089.797 407.051 -168.3068 112.481 
California 284.044 759.301 -7478.246 2793.207 -1154.9307 771.849 
Colorado 35.037 93.660 -922.443 344.543 -142.4609 95.208 
Connecticut 17.887 47.816 -470.935 175.899 -72.7305 48.606 
Delaware 6.439 17.212 -169.518 63.317 -26.1801 17.496 
Florida 91.411 244.360 -2406.664 898.916 -371.6821 248.398 
Georgia 73.826 197.351 -1943.684 725.987 -300.1800 200.612 
Idaho 19.267 51.504 -507.253 189.465 -78.3395 52.355 
Illinois 129.507 346.196 -3409.637 1273.537 -526.5800 351.917 
Indiana 56.614 151.339 -1490.520 556.726 -230.1940 153.840 
Iowa 82.242 219.847 -2165.240 808.741 -334.3969 223.480 
Kansas 44.299 118.419 -1166.295 435.624 -180.1211 120.376 
Kentucky 35.525 94.965 -935.300 349.345 -144.4465 96.535 
Louisiana 24.939 66.668 -656.602 245.248 -101.4047 67.770 
Maine 7.968 21.301 -209.788 78.358 -32.3994 21.653 
Maryland 36.227 96.842 -953.785 356.249 -147.3014 98.443 
Massachusetts 37.188 99.411 -979.081 365.697 -151.2080 101.053 
Michigan 59.866 160.033 -1576.139 588.705 -243.4169 162.677 
Minnesota 66.899 178.832 -1761.295 657.863 -272.0121 181.788 
Mississippi 19.287 51.558 -507.789 189.665 -78.4223 52.410 
Missouri 59.490 159.028 -1566.244 585.010 -241.8888 161.656 
Montana 4.090 10.934 -107.686 40.222 -16.6309 11.115 
Nebraska 54.766 146.400 -1441.876 538.557 -222.6815 148.820 
Nevada 11.821 31.601 -311.230 116.248 -48.0660 32.123 
New Hampshire 6.261 16.738 -164.848 61.573 -25.4590 17.014 
New Jersey 76.668 204.947 -2018.495 753.930 -311.7338 208.334 
New Mexico 10.400 27.800 -273.798 102.267 -42.2851 28.259 
New York 117.654 314.511 -3097.573 1156.978 -478.3851 319.708 
North Carolina 95.758 255.978 -2521.092 941.656 -389.3542 260.208 
North Dakota 7.886 21.082 -207.633 77.553 -32.0666 21.430 
Ohio 101.172 270.450 -2663.625 994.893 -411.3667 274.919 
Oklahoma 26.091 69.746 -686.922 256.573 -106.0873 70.899 
Oregon 28.471 76.108 -749.573 279.974 -115.7631 77.365 
Pennsylvania 107.832 288.255 -2838.982 1060.391 -438.4487 293.018 
Rhode Island 3.776 10.093 -99.404 37.129 -15.3518 10.260 
South Carolina 23.022 61.542 -606.119 226.392 -93.6082 62.559 
South Dakota 10.493 28.050 -276.258 103.185 -42.6649 28.513 
Tennessee 57.954 154.922 -1525.800 569.903 -235.6426 157.482 
Texas 163.610 437.359 -4307.488 1608.894 -665.2428 444.587 
Utah 18.846 50.379 -496.171 185.326 -76.6281 51.211 
Vermont 9.394 25.113 -247.334 92.382 -38.1979 25.528 
Virginia 70.137 187.490 -1846.561 689.711 -285.1806 190.588 
Washington 47.184 126.131 -1242.245 463.992 -191.8508 128.215 
West Virginia 4.727 12.636 -124.451 46.484 -19.2200 12.845 
Wisconsin 92.984 248.565 -2448.075 914.383 -378.0776 252.672 
Wyoming 1.390 3.716 -36.598 13.670 -5.6521 3.777 

 

 

 



12  

Table E5: Estimates and standard errors for Figure 11 

State 
SCTG01 SCTG02 SCTG03 

Outward effect 
(column sum) Std. err. Outward effect 

(column sum) Std. err. Outward effect 
(column sum) Std. err. 

Alabama 31.402 83.943 -149.729 55.925 -100.049 66.864 
Arizona 122.363 327.099 -19.202 7.172 -224.094 149.764 
Arkansas 19.589 52.364 -148.791 55.575 -80.293 53.660 
California 29.837 79.761 -374.555 139.900 -545.975 364.879 
Colorado 9.485 25.354 -584.021 218.138 -114.676 76.639 
Connecticut 21.623 57.802 -158.655 59.259 -97.036 64.850 
Delaware 31.903 85.282 -817.682 305.413 -63.241 42.265 
Florida 31.423 84.000 -99.475 37.155 -346.205 231.371 
Georgia 48.467 129.560 -341.520 127.561 -230.088 153.769 
Idaho 26.902 71.914 -914.393 341.536 -326.225 218.018 
Illinois 61.851 165.339 -5097.156 1903.844 -448.758 299.908 
Indiana 108.222 289.297 -5957.264 2225.104 -333.352 222.781 
Iowa 74.744 199.805 -4051.801 1513.392 -451.881 301.995 
Kansas 85.025 227.288 -5006.458 1869.967 -148.323 99.125 
Kentucky 66.041 176.541 -631.962 236.045 -145.233 97.060 
Louisiana 42.665 114.052 -312.322 116.656 -172.207 115.087 
Maine 10.368 27.715 -36.189 13.517 -31.748 21.218 
Maryland 58.079 155.257 -946.934 353.690 -165.181 110.391 
Massachusetts 23.587 63.052 -137.532 51.370 -74.929 50.076 
Michigan 31.587 84.439 -2195.350 819.987 -402.337 268.885 
Minnesota 114.206 305.293 -3741.872 1397.630 -373.140 249.372 
Mississippi 92.356 246.885 -207.433 77.478 -111.931 74.804 
Missouri 105.413 281.788 -2861.994 1068.986 -299.934 200.448 
Montana 23.941 63.998 -919.034 343.269 -64.525 43.123 
Nebraska 43.501 116.287 -7132.734 2664.155 -340.818 227.771 
Nevada 105.741 282.665 -2.038 0.761 -103.417 69.114 
New Hampshire 11.396 30.462 -21.228 7.929 -15.999 10.692 
New Jersey 25.229 67.441 -596.645 222.854 -368.880 246.525 
New Mexico 29.584 79.083 -99.656 37.223 -16.686 11.151 
New York 62.818 167.924 -1085.400 405.409 -352.418 235.523 
North Carolina 97.041 259.409 -439.857 164.292 -198.434 132.615 
North Dakota 5.009 13.391 -3616.203 1350.692 -329.170 219.987 
Ohio 81.854 218.811 -5005.963 1869.782 -352.465 235.555 
Oklahoma 95.740 255.932 -995.590 371.864 -203.255 135.837 
Oregon 70.307 187.945 -306.140 114.347 -345.219 230.712 
Pennsylvania 140.215 374.821 -1106.175 413.169 -227.210 151.846 
Rhode Island 11.416 30.518 -5.460 2.039 -24.288 16.232 
South Carolina 102.710 274.563 -208.490 77.873 -136.253 91.059 
South Dakota 39.537 105.689 -2168.033 809.784 -271.194 181.241 
Tennessee 49.189 131.492 -878.597 328.166 -300.442 200.788 
Texas 8.830 23.605 -1126.274 420.676 -332.674 222.328 
Utah 30.648 81.928 -37.146 13.874 -21.879 14.622 
Vermont 2.797 7.478 -138.829 51.854 -8.234 5.503 
Virginia 43.907 117.371 -711.531 265.765 -145.836 97.463 
Washington 17.648 47.177 -414.931 154.981 -259.887 173.685 
West Virginia 38.717 103.498 -81.017 30.261 -20.805 13.904 
Wisconsin 32.200 86.076 -2324.254 868.135 -165.173 110.386 
Wyoming 25.288 67.598 -89.535 33.442 -38.884 25.986 
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