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Abstract 

Pests (insects, pathogens, and vegetation) pose significant difficulties for producers. Pre-existing 

issues exacerbate the impact of pests on farmers of specialty crops. Concurrently, decreasing 

yields and rising pest management expenditures. Consequently, biological scientists have created 

a tool (risk prediction model) to prevent economic loss by predicting pest pressure in the field. 

The risk prediction model is useful for producers before and during planting season. It is 

unknown, however, how much producers are willing to accept or pay for this information. Using 

the generalized mixed logit model, this study aims to estimate specialty crop producers' 

willingness to pay for risk prediction model information in a smartphone pest management 

application. The study utilizes primary data from a survey of specialty crop farmers across the 

United States. We find growers have a high preference for smartphone pest management 

technology. As a result, growers have significant preferences and willingness to pay for most of 

the technology attributes. We find specialty crop growers trust educational/research institutions 

regarding pest management information on their farms. We attribute these results to the 

education and production systems used by growers as the drivers of their willingness to pay 

estimates. These results highlight the primary stakeholder concerns and readiness to mitigate 

pests and contribute to institutional aids available to growers.  

Introduction 

The current climate presents farmers with formidable and multifaceted challenges. Among these, 

pests and diseases are particularly daunting adversaries, compounded by the effects of climate 

change, which exacerbate the damage they inflict on crops and increase the cost of control 

measures. The issue of pest management has evolved to encompass integrated pest management, 

organic and sustainable pest management, the role of technology, and socioeconomic and policy 



aspects. Researchers have focused on the adoption and policy aspects of pest management 

technologies to mitigate the impact of pests and diseases. However, there has been a neglect to 

consider the value placed on these technologies by the farmers who utilize them. Therefore, it is 

essential to understand the socioeconomic and policy aspects of pest management by examining 

the value growers place on pest management technologies. 

This research examines the extent to which farmers in the U.S. specialty crop industry 

value pest management technologies and information from smartphone agricultural applications. 

The U.S. Department of Agriculture-Agricultural Marketing Service (USDA-AMS) defines 

specialty crops as fruits, vegetables, tree nuts, dried fruits, horticulture, and nursery crops, 

including floriculture (USDA-AMS). The study employs a discrete choice experiment (DCE) 

approach to gauge growers' willingness to adopt pest management technologies, including those 

for insect pests, diseases (pathogens), and weeds, made available through smartphone 

applications. The hypothesis is that growers will exhibit a positive attitude toward adopting pest 

management technologies. Furthermore, it is anticipated that specific attribute levels, such as 

those associated with educational/research organizations, will be considered more trustworthy by 

growers than by private agricultural companies and government agencies, including the USDA.  

Specialty crop growers place a high preference for pest management technologies. These 

pest management technologies are considered normal goods. Consequently, as growers' income 

increases, their demand for pest management technologies increases, all things being equal. 

Notably, data obtained from academic, or research institutions are considered more reliable than 

those obtained from private agricultural companies and government agencies. Growers 



demonstrate a high preference for pest management technologies that leverage historical pest 

presence information on their farms. As well as those with high predictive accuracy. 

Integrated pest management (IPM) is a human capital-based technology and has garnered 

significant attention over time (Harper et al., 1990). However, studies on the willingness to pay 

for information related to IPM typically focus on farm educational services (extension services). 

These studies have explored various aspects of accessing extension offices (Diekmann et al., 

2012) and extension services across different regions and countries (Feder and Slade, 1986; 

Bindlish and Evenson, 1997; Owens et al., 2003; Ajayi, 2006; Horna et al., 2007; Van den Berg 

and Jiggins, 2007; Charatsari et al., 2011; Aker, 2011; Davis et al., 2012; Ozor et al., 2013; 

Uddin et al., 2016; Ogunmodede et al., 2022). Furthermore, other studies have also examined the 

effects of extension services on pesticide usage (Godtland et al., 2004; Tripp et al., 2005; Van 

den Berg and Jiggins, 2007; Pan et al., 2018). Additionally, other studies have considered 

growers' willingness to pay for specific information beyond extension services, such as soil 

management information (Diafas et al., 2013). Research has also been conducted on growers' 

willingness to pay for technologies on and off the farm. This includes technologies such as seeds, 

Internet broadband, animal vaccines, and pest management. Studies that have analyzed the 

willingness to pay estimates for these technologies include Bennett and Balcombe (2012), 

Channa et al. (2019), Gharib et al. (2021), Jeffcoat et al. (2012), Nyangau et al. (2022), and Shee 

et al. (2019). 

Despite the advancements in literature by various researchers, only a few have addressed 

the topic of smartphone agricultural technology adoption and the related willingness to pay for 

crop protection (Bonke et al., 2018) and irrigation (Jaafar and Kharroubi, 2021). This study, 



however, examines the willingness to pay for smartphone agricultural technology and the source 

of information provided for pest management. The smartphone agricultural technology in this 

study is a comprehensive decision-support tool that predicts past and current pest infestations on 

farms. Furthermore, our study differs from previous research by employing the Discrete Choice 

Experiment (DCE) methodology to analyze adoption and willingness to pay for pest 

management information rather than using binary dependent variable estimators. The adoption of 

agricultural mobile applications in the U.S. has been slower than in other sectors. Despite the 

numerous advantages they offer (Xin et al., 2015). This study provides insight into this issue by 

concentrating on the U.S. specialty crop industry.  

The remainder of the paper is organized as follows: specialty crops and pest management 

strategies, choice experiment survey design and survey, methodology, results, and discussion and 

conclusion. 

Specialty crops and pest management strategies 

Plants classified as specialty crops must be grown or managed for human consumption, 

medicinal purposes, and aesthetic gratification (USDA-AMS). According to the USDA Census 

of Agriculture 2017, more than 15 million acres were farmed, and more than one million people 

were employed in specialty crop production on 99,463 farms (USDA Census of Agriculture, 

2019). The states with the most land are California, Washington, North Dakota, Montana, and 

Florida (USDA Census of Agriculture, 2019). The specialty crop industry accounted for one-

third of U.S. crop receipts and one-sixth of all agricultural product receipts in 2017, totaling 

$64.7 billion (USDA-ERS, 2020). The national production of 26 estimated vegetable and melon 

commodities comprised 658 million cwt in 2022 (USDA-NASS, 2023). Tomatoes, onions, and 



sweet corn collectively accounted for 53% of total vegetable production (USDA-NASS, 2023). 

In addition, the total utilized production of vegetables in 2022 reached $16.5 billion, a 27% 

increase from the previous year (USDA-NASS, 2023). The concurrent growth in the specialty 

crop industry is complemented by an increase in vegetable consumption from 146.8 lbs. to 153.3 

lbs. per capita from 2000 to 2019 (Lucier and Parr 2020). The increases in consumer 

consumption were attributed to health benefits and the government’s effort to promote fruits and 

vegetables (Lucier and Parr 2020).  

Tomatoes are regarded as one of the most essential and widely consumed vegetables in 

the U.S. In 2022, tomatoes are counted as the top three in acres harvested and total production 

(USDA-NASS, 2023). Subsequently, tomatoes also accounted for one of the highest-valued 

utilized production for 2022, up 27 percent from the previous year (USDA-NASS, 2023). In 

2022, tomatoes were planted on 271,000 acres and harvested on 263,800 acres, 1.8 percent less 

than in 2021 (USDA-NASS, 2023). Despite the growth in the specialty crop industry using 

tomatoes as an example, like other crops, specialty crops are susceptible to pests (insect pests, 

diseases (pathogens), and weeds) (USDA, 2017). The tomato industry is threatened by pests and 

diseases such as yellow leaf curl virus (TYLCV), which is caused by whitefly insects and can 

lead to significant economic losses due to increased production costs and reduced crop yield 

(Polston and Lapidoth, 2007). The TYLCV is the most treacherous pest to tomato fields (Camara 

et al., 2013; Moriones and Navas-Castillo, 2000; Picó et al., 1996). Typically, symptoms are 

evident in infected plants after 2 to 3 weeks post-inoculation (Bian and Gao, 2020; Srinivasan et 

al., 2012). The observed symptoms of infected plants include curling and yellowing of leaves, 

mottling, and chlorotic leaf margins (Bian and Gao, 2020; Camara et al., 2013). Farmers often 

struggle to manage whiteflies and associated viruses effectively due to the arduous task of 



selecting resistant cultivars, production methods, insecticide combinations, and optimal 

transplant dates to minimize the risk of infection (Bian, 2020). This stems from farmers' inability 

to accurately estimate the whitefly population and potential disease prevalence of their properties 

(Bian, 2020). Therefore, controlling parasites and diseases to maximize economic gains is 

challenging for producers (Bian, 2020). Timely and specific pest and disease management 

information is critical for viral infections and disease control presented by the risk prediction 

model to predict pest pressure in-field, such as the whitefly population and virus incidence 

among crops (Anco et al., 2020).  

Risk prediction models serve as a timely pest management information tool to address 

whitefly population and virus incidence among crops in the field (Anco et al., 2020). The 

technology incorporated into farm smartphone applications functions as a decision support tool 

(DST). The DST assists farmers with additional information for decision-making under 

uncertainty (Bonke et al., 2018; Shtienberg, 2013). Advancements in technology have allowed 

for the merging of DST with smartphones that have access to the Internet, providing farmers 

with flexible usage options (Bonke et al., 2018). These mobile apps cover a spectrum of 

activities, from the field to the market (Costopoulou et al., 2016). In total, 665 farm management 

mobile apps are reported by Costopoulou et al., 2016. These apps span various categories, 

including animal production, farm management, crops, pests and diseases, agricultural 

technology and innovation, agricultural machinery, spraying-related activities, and weather 

forecasting, among a total pool of 1140 agricultural mobile applications (Costopoulou et al., 

2016). Due to the associated and potential benefits of smart-agricultural mobile applications, 

some researchers have investigated farmers' willingness to pay in the context of crop protection 

and irrigation (Bonke et al., 2018; Jaafar and Kharroubi, 2021). 



In the adoption literature for smartphone agricultural technologies, previous studies have 

studied adoption and willingness to adopt using a binary outcome variable (Bonke et al., 2018; 

Jaafar & Kharroubi, 2021; Michels et al., 2020). However, there is no knowledge regarding a 

stated choice approach to elicit farmers’ willingness to pay for agricultural mobile tools. The 

stated choice experiments use quantitative methodology to evaluate the relative importance of 

various product attributes that affect consumer decision-making. (Louviere et al., 2000). This 

study contributes to the literature by using a stated choice experiment to investigate the effect of 

specific smartphone agricultural application attributes. 

Additionally, some factors affect the adoption of farm technologies. Prominent amongst 

them is price. The price of precision farming tools and DST has been cited as influencing the 

limited adoption rates (Bonke et al., 2018; Matthews et al., 2008). There are several free and paid 

mobile applications for farming on the market. However, paid mobile applications are more 

advanced in data management, timely decision-making, and usability among farm workers. 

According to researchers, the awareness and attitudes of farmers, which play a crucial 

role in their decision to adopt new practices, are influenced by their socioeconomic 

characteristics (Daberkow and McBride, 2003; McBride et al., 1999; Rogers, 1995). These 

sociodemographic characteristics include farm size, human capital (education, technical skills, 

and innovative abilities), land tenure systems, and information sources (Daberkow and McBride, 

2003; Feder, 1985; Feder et al., 1985; Fernandez-Cornejo et al., 2001; Khanna, 2001; Lambert et 

al., 2015; Larson et al., 2008; McBride and Daberkow, 2003; Schimmelpfennig and 

Schimmelpfennig, 2016; Walton et al., 2010). Specifically, the relationship between farm size, 



behavioral characteristics (risk attitude), and information-seeking behavior of farmers has been 

established by previous studies. (Feder et al., 1985; Fernandez-Cornejo et al., 2001).  

Adopting new technologies in agriculture has been observed to follow a sequential 

pattern, with farmers' risk attitudes playing a significant role in this process (Khanna, 2001; 

Leathers and Smale, 1991). This is because technological innovation in agriculture is inherently 

riskier than traditional methods (Daberkow and McBride, 2003). Risk poses a barrier to adopting 

new techniques, and previous studies have had mixed conclusions regarding the effect of risk 

attitudes on technology adoption (Aimin, 2010; Chavas and Nauges, 2020). Marra et al. (2003) 

highlighted three components of risk that affect technology adoption: farmers' perception of the 

probabilities of the distribution of net returns, variance of net returns, and strength in the 

direction of risk attitude. However, most studies have focused on the strength of direction (risk 

aversion) (Canales et al., 2023). In contrast, this study differs from the directional component of 

risk by Marra et al. (2003) and measures farmers' variations in preferences for smartphone pest 

management technology using insurance uptake. Moreover, growers have become more 

proactive in seeking information about innovation, and this effort is directly related to the 

expected gain from that knowledge (Feder, 1985; Feder et al., 1985). Therefore, adopting new 

technologies depends on diverse information sources that may vary depending on the stage of 

adoption (McBride & Daberkow, 2003). To the best of our knowledge, none of the previous 

studies have considered the sources of information in a choice set to estimate farmers' 

preferences and willingness to pay estimates for these sources. 

In contrast to existing studies, this paper examines the valuation of pest management 

technology (smartphone agricultural apps) and information by specialty crop growers regarding 



three main attributes: source of information, historical pest presence, and current pest prediction 

accuracy. The study explores the individual willingness to pay estimates of these attributes and 

the effects of sociodemographic characteristics on WTP outcomes. The results can provide 

critical policy interventions of information dissemination channels, high-range technology 

predictive accuracies, and the importance of past information on the current season's production. 

Choice Experiment Design and Survey 

We developed a choice experiment for a risk prediction model, emulating a mobile application 

interface. The attributes we selected were carefully chosen to reflect the essential characteristics 

and objectives of constructing the risk prediction model. These attributes were also designed to 

mirror the features of existing pest management mobile applications, such as SIRRUS, CROPX, 

and Climate FieldView, currently available on the market. 

The risk prediction model comprises key features such as measuring past pest 

occurrences and the identification of pests present on the farm. Furthermore, acknowledging the 

importance of information in pest management, our design incorporates the source of 

information used to predict pest presence on the farm. To establish the cost of the risk prediction 

model, we consulted the subscription fees of existing applications in the market, including 

SIRRUS, CROPX, and Climate FieldView. The risk prediction model attributes and associated 

attribute levels in our choice experiment are presented in Table 1 and defined as follows: 

 

 

 

 



Table 1. Risk prediction model attributes and attributes levels. 

Model attributes Levels 

Source of information Government agencies, education/research 

institutions, private agriculture companies  

Historical pest Included, not included. 

  

Quantifying current pest (Accuracy) 77%, 85%, 92% 

Price $16, $25, $34, $42 

Identifying pests accurately is the first step in formulating effective pest control 

strategies, and the reliability of sources such as entomologists and field guides plays a crucial 

role in this regard. Therefore, understanding the biological behavior of pests from a reliable 

source underscores the importance of information for effective management. These 

comprehensive sources of information offer extensive insights into pest life cycles, habitats, and 

timing, which are crucial for formulating precise pest management strategies. Furthermore, 

Integrated Pest Management (IPM), which combines multiple pest control methods to limit the 

impact of pests (Peshin and Dhawan, 2009), relies on information to avert the misuse of 

pesticides, which can result in detrimental environmental consequences (Aktar et al., 2009). 

In the stated choice experiment, growers were presented with three sources of 

information from which the data used to develop the risk prediction model were obtained: 

Government agencies, education/research institutions, and private agriculture companies. Each 

was presented as a bundled choice along with other attributes. Historical pest presence represents 

the risk prediction model’s use of previous farm information on pests, diseases, and weeds to 

predict the presence of current pests on the farm. Attribute levels were included based on actual 

existing market applications, thus, included or not included. Furthermore, we incorporate the 

predictive accuracy of pest presence on farms into our analysis. The selection of attribute levels 



is informed by prior research that utilized different statistical modeling tools to forecast pest 

presence on agricultural lands. Specifically, the studies by Ibrahim et al. (2022), Marković et al. 

(2021), and Shang and Zhu (2018) reported predictive accuracies of 85%, 77%, and 91%, 

respectively. All things being equal, the higher the predictive accuracy, the better the 

effectiveness of the smartphone pest management tool and information. 

Finally, the price attribute represents the monthly subscription cost for utilizing the risk 

prediction model. The choice of monthly subscription costs was determined by referencing real 

market prices obtained from sources such as SIRRUS, CROPX, and Climate FieldView. The 

available attribute levels are $16, $25, $34, and $42. 

The experimental design was created using the SAS Macro within SAS (Statistical 

Analysis System). The SAS Macro output produces a full factorial design, from which we can 

choose a minimum number of choice-sets with high D-efficiency and relative D-efficiency. To 

construct the stated choice experiment for our survey, we employed a fractional-factorial design 

of 10, achieving a D-efficiency of 100 and a relative D-efficiency of 72.57 derived from a 72 

(3×2×3×4=72) full-factorial design (Louviere et al., 2000). The 10 choice sets were blocked into 

two versions (5 choice sets each) and respondents were randomly assigned to one of the two 

blocks. Each of the choice tasks features two smartphone application interfaces (risk prediction 

model) alongside a status quo option, the “none” option (see Figure 1). The inclusion of the 

“none” option not only helps make the selection more realistic as respondents can opt out of a 

smartphone application interface option if they are unsatisfied with the product selection set 

(Gao et al., 2019), but by eliminating the pressure to select subpar options, it ensures higher-

quality data collection (Johnson and Orme, 2003). 



 

Figure 1. An example of a choice task presented to growers. 

To mitigate the hypothetical bias, a statement was provided to participants indicating that 

their selections in each task would be considered final and binding. As depicted in Figure 1, an 

illustration of a choice task is provided. 

The online survey was conducted by a market research firm (Qualtrics) to a panel of 

specialty crop growers in the United States. Our survey was tested with focus groups as 

suggested by Johnston et al. (2017). The focus group comprised extension agents, farmers, 

graduate students, and researchers with expertise in survey design for growers, to ensure 

comprehension of the questions posed by the survey. The survey was sampled in two parts, first, 

100 samples were collected with a soft launch of 10% of the online panel. The soft launch 

allowed us to check the flow and consistency of our survey instruments and how respondents 

viewed each question. We discovered issues with the screening questions and added an extra one 

to allow us to sample the right group of growers. Participants were required to be, at least 18 

years or older and grow vegetables and pulses or fruits and tree nuts. 



After screening, respondents were asked about their specialty crop production. Acres of 

farm operation, specific names of specialty crops grown, production, insurance coverage, and 

challenges encountered in production. Respondents were asked about their use of smartphone 

pest management technology. Furthermore, respondents were presented with an example of a 

smartphone pest management technology, detailing its benefits and use. After the example, we 

presented attributes of the smartphone pest management technology and a cheap talk to reduce 

hypothetical bias before proceeding to the choice experiment (see Appendix A1). At the end of 

the survey, respondents reported their demographic information, such as position in the farm’s 

production, years of farming, education, and total farm sales value from the farm in the past two 

years.  

Methodology 

Growers' preferences and willingness to pay for smartphone pest management technology and 

information were studied using a discrete choice modeling framework. This framework is based 

on Lancaster's Consumer Theory (Lancaster, 1966) and the Random Utility Theory (McFadden, 

1972). The Lancaster theory considers the intrinsic complementarity of a product, which 

encompasses the inherent characteristics or properties appealing to the respondent. Consequently, 

a product comprises a set of attributes from which utilities are derived (Liu et al., 2019). The 

core assumption of the Random Utility Theory is that a person's utility consists of a deterministic 

component and an unobservable random component (Liu et al., 2019). As a result, the choice 

from a set of alternatives is primarily influenced by its perceived utility. In this context, the 

option perceived as most beneficial is likely to be chosen, as it offers the highest level of utility 

(McFadden, 1972). Therefore, following the random utility theory (McFadden, 2001), the farmer 



𝑘’s utility from choosing the risk prediction model alternative 𝑖 from a choice set of 𝐽 alternatives 

in a choice situation 𝑡 can be specified as 

𝑈𝑘𝑖𝑡 = 𝑉𝑘𝑖𝑡 + 𝑘𝑖𝑡                                                              [1] 

 

where 𝑉𝑘𝑖𝑡 is the deterministic component, and 𝑘𝑖𝑡 is the random component of the utility 

function. The random utility model can be rewritten as  

  

𝑈𝑘𝑖𝑡 = 
𝑖
∗𝑋𝑘𝑖𝑡 + 𝑘𝑖𝑡                                                             [2]  

 

where 𝑋𝑘𝑖𝑡 is the attributes of the risk prediction model, 
𝑘𝑖𝑡

 is a vector of unknown 

preferences coefficients that weigh the exogenous attributes (Chen et al., 2023). 𝑘𝑖𝑡 is the 

random component of the utility, capturing the unobservable confounders affecting the utility.  

Based on the distribution of the random component of the utility function and the functional 

form of the utility, various models can be hypothesized (Van Wezemeal et al., 2014; Bazzani et 

al., 2017; Liu et al., 2019; Chen et al., 2023). For example, equation [2] can be estimated using 

the conditional logit model (CL) and multinomial logit model (MNL), assuming homogeneity in 

preferences among individuals and 𝑘𝑖𝑡 is independently and identically distributed (i.i.d.) with a 

Gumbel distribution (Meas et al., 2014; Liu et al., 2019; Chen et al., 2023). Previous research has 

emphasized the importance of heterogeneity from both methodological and empirical standpoints 

(Lusk, Roosen, and Fox 2003; Greene, Hensher, and Rose, 2006; Ortega et al., 2011; Greene and 

Hensher, 2013; Wongprawmas and Canavari 2017). The incorporation of heterogeneity can lead 

to biased estimates in conditional and multinomial logit models (MNL). To address this issue, 



Revelt and Train (1998) proposed the mixed logit model (MIXL), which accounts for varying 

preference coefficients across individuals (Chen et al., 2023). 

Assuming respondents within the same group have similar preferences, the mixed logit 

model presents a choice probability as an average of logit terms, each weighted by a value from 

the density function. The logit terms are calculated with different values of the coefficient vector 

β (Chen et al., 2023). In most applications, the mixed logit model’s coefficient vector weights on 

smartphone pest management attributes are assumed to have a multivariate normal distribution 

(Liu et al., 2019). However, previous studies have argued that the multivariate normal 

distribution used in the mixed logit model may lead to serious misspecification of the model 

(Louviere et al.,1999; 2002; 2008; Louviere and Eagle 2006; Louviere and Meyer 2007; Liu et 

al., 2019; Chen et al., 2023). Subsequently, these studies have suggested that the majority of the 

heterogeneity in attribute weights is caused by scale effects (Liu et al., 2019). This implies that 

for some farmers the scaling of the error term is weightier than others, this is described as scale 

heterogeneity (Liu et al., 2019; Chen et al., 2023). The introduction of scale allows researchers to 

account for nearly lexicographic preferences among growers (respondents), a common drawback 

in choice experiments (Fiebig et al., 2010; Liu et al., 2019). Therefore, the scaled multinomial 

logit model (S-MNL) captures scale heterogeneity (Fiebig et al., 2010). In addition to the scaled 

multinomial logit, Fiebig et al., 2010 developed a generalized mixed logit model that nests mixed 

logit and scaled multinomial logit models. Fiebig et al. (2010) found that the generalized mixed 

logit model demonstrated greater efficiency compared to the mixed logit model (Chen et al. 

(2023). In addition, Greene and Hensher (2010), concluded the improvement of the generalized 

mixed logit model over the standard mixed logit model (Chen et al., 2023). Modeling the 



generalized mixed logit model after Fiebig et al., (2010), Greene and Hensher (2010), and 

Greene (2012) consider the utility function as follows. 

 

𝑈𝑘𝑖𝑡 = 
𝑖
∗𝑋𝑘𝑖𝑡 + 𝑘𝑖𝑡                                                             [4]  

 

where 𝑘𝑖𝑡 is independently and identically drawn (i.i.d.) with the Gumbel distribution, and  
𝑘𝑖𝑡

 

is specified as  


𝑖

= 𝑖 ∗  + [ + 𝑖(1 + )] ∗ 𝐿 ∗ 𝑢𝑖                          [5]  

 

and 𝑢𝑖 follows a certain distribution, 0    1 and 

 𝑖 = exp (−
2

2
+  ∗ 𝑤𝑖) , 𝑤𝑖  ~ 𝑁(0,1)                                                            [6]    

 

From the generalized mixed logit model, nested mixed logit, and scaled multinomial logit 

models, when  = 0 and 𝐿  0, the generalized mixed logit model converges to a mixed logit 

model. When  = 0 and 𝐿 = 0, the generalized mixed logit model results in a scaled multinomial 

logit model. 

Empirical Framework 

This analysis considers three models, Model 1 is the mixed logit model, Model 2 is the scaled 

multinomial logit model, and Model 3 is a generalized mixed logit model. The individual farmer 

preferences for pest management information provided by the risk prediction model are as 

follows:  



𝑈𝑘𝑖𝑡 = 𝑁𝑜𝑛𝑒 + 
1

. 𝑃𝑟𝑖𝑐𝑒𝑘𝑖𝑡 + 
2

. 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑟 𝑟𝑒𝑠𝑒𝑎𝑟𝑐ℎ 𝐼𝑛𝑠𝑡.𝑘𝑖𝑡+

 
3

. 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝐴𝑔. 𝐶𝑜𝑚𝑝𝑎𝑛𝑦𝑘𝑖𝑡 + 
4

. 𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐_ 𝑃𝑒𝑠𝑡𝑘𝑖𝑡 + 
5

. 𝐸𝑔𝑖𝑡ℎ𝑦5𝑘𝑖𝑡 + 
6

. 𝑁𝑖𝑛𝑒𝑡𝑦2𝑘𝑖𝑡 +

𝑘𝑖𝑡                                                                                                                              [7]  

Where 𝑘 is the individual farmer participants in the choice experiment, 𝑖 represents the 

alternative risk prediction model in a choice scenario 𝑡. 𝑁𝑜𝑛𝑒 is an alternative specific constant, 

representing the “none” option. 𝑃𝑟𝑖𝑐𝑒𝑘𝑖𝑡 is a metric variable representing a linear relation with 

utility represented by four designed price levels. 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑟 𝑟𝑒𝑠𝑒𝑎𝑟𝑐ℎ 𝐼𝑛𝑠𝑡.𝑘𝑖𝑡 and 

𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙 𝑐𝑜𝑚𝑝𝑎𝑛𝑦 𝑘𝑖𝑡 are categorical variables that represent the source from 

which information provided by the risk prediction model is obtained. 𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡𝑘𝑖𝑡 is used as 

a base category for the source of information. 𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐_ 𝑃𝑒𝑠𝑡𝑘𝑖𝑡 represents the inclusion of 

quantifying historical pest presence on the farm to make future predictions, with no inclusion as 

the base category. 𝐸𝑔𝑖𝑡ℎ𝑦5𝑘𝑖𝑡 and 𝑁𝑖𝑛𝑒𝑡𝑦2𝑘𝑖𝑡 are the predictive accuracy of the risk prediction 

model with 𝑆𝑒𝑣𝑒𝑛𝑡𝑦7𝑘𝑖𝑡 being the base category. The non-price attribute coefficients are 

commonly assumed to follow a normal distribution (Bazzani et al., 2017) with price and “none” 

option coefficients assumed fixed (Liu et al., 2019). 𝑘𝑖𝑡 is independently and identically drawn 

(i.i.d.) error term. 

 To calculate the willingness to pay (WTP), this study utilized dummy coding for the non-

price attributes. The willingness to pay (WTP) is calculated by −
𝛽𝜗

𝛽𝑝
 , where 𝛽𝜗 is the coefficient 

of non-price attribute 𝜗, and 𝛽𝑝 is the estimated price coefficient. All three models were 

estimated using R studio using 1000 Halton draws for the simulations considering the panel 

structure of the data.  

 

 



Results 

Summary of Survey Response 

A total of 250 growers were surveyed across the entire country. Respondents' production and 

demographic characteristics are presented in Table 2. The average percentage of vegetables and 

pluses growers represents almost 40% of our sample, almost 4% more than the national 

percentage reported by the 2017 census of agriculture (USDA-NASS, 2019). Regarding the size 

of farm production, the proportion of fewer than 1000 acres is 97.2%, larger than, 93.8% 

presented by the Census of Agriculture for specialty crops grown in the U.S. (see Table 2). 

Furthermore, our sample has a relatively larger proportion of male and white race farmers, 

compared to the Census of Agriculture report by 19.2% and 3.4%, respectively. Lastly, by race, 

our sample presents 2.8% and 3.2% of Black or African American and mixed-race growers, 

respectively which is higher than the 1.4% and 1.1% represented in the 2017 Census of 

Agriculture. 

Table 2. Summary Statistics of Farmer and Farm Characteristics. (N=250) 

 
4 USDA Census of Agriculture 2017 Specialty Crop  
5 Total percent of farm size below 1000 acres 

Variable 

Percentage 

(Mean) 

2017 census of 

agriculture4 

Vegetables and Pulses 39.6% 34.8% 

Acres  
 

0-9 acres 18.4% - 

10-49 acres 13.6% - 

50-179 acres 27.2% - 

180-499 acres 22% - 

500-999 acres 16% 93.8%5 

1000-1999 acres 2.4% - 



Table 2. Continued 

 

Our sampled growers reported their main pest concern, insect pests (52.2%), diseases or 

pathogens (24.9%), weeds (21.3%), and others (1.6%) (see Table 4). Growers also reported 

previous adoption of smartphone pest management technology (68.4%) with 22.8% non-usage 

and 8.8% with no knowledge of a smartphone pest management technology. Scouting frequency 

was also reported with 50.4% and 47.5% of growers scouting always and sometimes, 

respectively. The rest of the growers (2.1%) rarely scout. In addition to the above, we show 

charts of acre proportions and systems of production untaken by our sampled growers (see 

Figure 2). Furthermore, in Figure 3, we explore previous app adoption and experience in 

farming, where growers with 8-10 years of experience have the highest adoption rate, followed 

by more than 20 years, and 5-7 years of experience. 

 

 
6 USDA Census of Agriculture 2017 Specialty Crop  

Variable 

Percentage 

(Mean) 

2017 census of 

agriculture6 

2000 acres or more 0.4% - 

Sex  
 

Female 18.4% 37.6% 

Male 81.6% 62.4% 

Race  
 

White 90.8% 92% 

American Indian or Alaska Native 0.8% 1.4% 

Black/African American 2.8% 1.4% 

Mixed race 3.2% 1.1% 



Table 4. Main Pest concern, rate of adoption, and scouting frequency. 

 

 

Figure 2. The share of acres by production methods. 

Variable Obs. 

Percentage 

(Mean) 

Main Pest concern 
  

Other 249 1.6% 

Insects 249 52.2% 

Disease/Pathogens 249 24.9% 

Weeds 249 21.3% 

Previous App Usage 
  

I do not know 250 8.8% 

Yes 250 68.4% 

No 250 22.8% 

Scouting 
  

Sometimes 242 47.5% 

Rarely 242 2.1% 

Always 242 50.4% 



 

Figure 3. Rate of adoption by farming experience.  

Regression results from empirical models 

Table 5 reports utility/preference estimates for Model 1 (Mixed logit model), Model 2 

(Scaled Multinomial logit), and Model 3 (Generalized Multinomial logit). The results from the 

mixed logit and generalized mixed logit models indicate that growers regard all attributes of the 

pest management technology as highly relevant. Consequently, the estimates were different from 

zero at, at least a 10% significant level. Moreover, the significance of tau, which captures the 

scale heterogeneity of preferences, indicates that growers weigh each attribute differently (Liu et 

al., 2019). Finally, the statistical and sign directions between the models (Models 1 and 3) are 

mostly consistent. Therefore, we discuss Model 3, the generalized mixed logit model. Model 3 

presents, a better fit to the data with the highest Log Likelihood value (-889.42) and lowest 

Akaike Information Criterion (AIC) statistic (1808.831). Additionally, we conducted a log-

likelihood ratio test that confirmed Model 3, as the best fit for the data at a 1% significance level. 

The price estimate is negative and significant at the 1% level. This means that an increase 

in the price of a smartphone agricultural app reduces growers' utility/preference provided by the 

choice. Likewise, the alternative specific constant or status quo is negatively significant at 1%. 



This indicates a disutility from not choosing any available smartphone app options. In contrast, 

the source of information used by the pest management technology, growers have a positive 

preference for educational/research institutions and private agricultural companies that provide 

data for pest presence predictions. However, growers prefer educational/research institutions 

(0.762) more to private agricultural companies (0.610), with government agencies as the 

reference attribute. Past pest presence on farms has a positive and significant coefficient, 

implying a higher utility/preference by growers when the historic pest feature is included in a 

choice. Regarding the predictive accuracy of smartphone pest management technology, growers 

prefer a higher predictive technology option to a lower-tier option. This is evident in the 

coefficient of the Ninety-two percent accuracy (1.244) which is higher than Eighty-eight percent 

(0.466), with seventy-seven percent as the reference point. 

Table 5. Results: Preferences Estimates for Smartphone Pest Management Applications. 

Variables (1) (2) (3) 

 Mixed Logit  Scaled Multinomial 

Logit  

GN Mixed 

Logit 

Price -0.034*** 

(0.005) 

-0.933 

(2.521) 

-0.0794*** 

(0.021) 

Educational/Research 

Institution 

0.333*** 

(0.113) 

3.955 

(8.950) 

0.762*** 

(0.275) 

Private Agricultural Company 0.265** 

(0.119) 

1.932 

(3.933) 

0.610** 

(0.266) 

Historical Pest 0.819*** 

(0.101) 

19.458 

(49.474) 

1.828*** 

(0.444) 

Accuracy: Ninety-Two 0.670*** 

(0.128) 

7.821 

(20.921) 

1.244*** 

(0.377) 

Accuracy: Eighty-Eight 0.256** 

(0.110) 

6.182 

(17.932) 

0.466* 

(0.238) 

None/Status Quo -6.118*** 

(1.003) 

-4381.827 

(20876.664) 

-14.885*** 

(4.148) 

Tau  4.549** 

(1.998) 

-1.146*** 

(0.180) 



Table 5. Continued. 

Variables (1) (2) (3) 

 Mixed Logit  Scaled Multinomial 

Logit  

GN Mixed 

Logit 

Gamma   -0.224** 

(0.094) 

Log-Likelihood -896.3 -970.34 -889.42 

AIC 1818.607 1956.687 1808.831 

BIC 1885.309 1997.734 1885.795 

Observations 1250 1250 1250 

Note: Standard errors in parentheses *** 1%, ** 5%, and * 10% significance level. 

Since the generalized mixed logit model (Model 3) is preferred, the individual 

willingness to pay mean estimates are derived from Model 3, in Table 5. We used the delta 

method7 approach in our estimation. Table 6 presents the individual willingness to pay estimates, 

illustrating that growers are willing to pay the most for past pest presence consideration 

($23.025/month) in the smartphone pest management technology. Next, regarding the source of 

information used by the smartphone pest management technology, growers are willing to pay 

more for educational/research institutions ($9.605/month) compared to private agricultural 

companies ($7.677/month). Furthermore, regarding the predictive accuracy of the smartphone 

pest management technology, growers are willing to pay a premium of $9.809/month to use the 

highest pest-predictive accurate technology option. The outcome on the accuracy, suggests that 

growers place a higher value on advancement technologies that have low pest prediction 

uncertainties. Lastly, we report the willingness to accept/compensation due to growers when 

these smartphone pest management technologies are made unavailable. If the pest management 

technology becomes unavailable, growers have expressed their willingness to receive a monthly 

 
7 The delta method estimates non-linear function variances with random variables by taking the first-order Taylor 

series expansion around the mean of the variables and calculating the variance of the expression (Greene, 2003; 

Hole, 2007). 



payment of $187.435. This reflects the importance placed on pest management technology by 

growers. 

Additionally, we estimate the standard deviation of all significant attributes (see 

Appendix A2). The standard deviation illustrates the heterogeneity in the preferences and 

willingness to pay for smartphone pest management technology. Figure 4 shows the 

heterogeneity in the willingness to pay for past pest presence, private agricultural companies, and 

eighty-eight predictive accuracies. 

 

Table 6. Results: Mean WTP Estimates Smartphone Pest Management Technology 

Variables (1) (2) (3) 

 Mixed Logit Scaled 

Multinomial 

Logit 

GN Mixed 

Logit 

Educational/Research Institution 9.809***  

(3.597) 

4.237 

(4.705) 

9.605*** 

(2.847) 

Private Agricultural Company 7.798**  

(3.662) 

2.069 

(2.402) 

7.677*** 

(2.875) 

Historical Pest 24.103*** 

(3.995) 

20.846*** 

(3.776) 

23.025*** 

(3.102) 

Accuracy: Ninety-Two 19.728***  

(4.463) 

8.378*** 

(2.607) 

15.671*** 

(3.345) 

Accuracy: Eighty-Eight 7.540**  

(3.338) 

6.623** 

(2.602) 

5.862** 

(2.666) 

None/Status Quo -180.040*** 

(36.650) 

-4694.310 

(9997.462) 

-187.435*** 

(32.033) 

Observations 250 250 250 

Note: Standard errors in parentheses *** 1%, ** 5%, and * 10% significance level. 



 

Figure 4. WTP($) for Historic Pests, Accuracy, and Source of Information. 

 

Factors Influencing Individual WTP for Smartphone Pest Management Technology 

To estimate the factors influencing individual WTP, we derived the individual-specific 

posterior distribution from the sequence of observed choices in the experiments (Train 2009; 

Chen et al., 2022). We use seemingly unrelated regressions with dependent variables, alternative 

specific constant (ACS), accuracy, past pest presence, and source of information used by the 

smartphone pest management technology. Independent variables used in the analyses include 

socio-demographic characteristics, main pest concern, experience with similar app usage, 

scouting, insurance, and production methods. Seemingly unrelated regression allows for 

comparison of mean individual-specific willingness to pay amongst different types of 



respondents while accounting for multiple correlated hypotheses since the individual-level 

willingness to pay is generated from the same model estimates (Chen et al., 2022). The results 

from the seemingly unrelated regression are presented in Table 7.  

For the willingness to pay for the status quo (none) option, we find that education and 

primarily organic production systems prevent the nonuse of pest management technology. 

Likewise, the predictive accuracy of the technology, education, and organic production systems 

positively affects the individual willingness to pay. The main pest concerns, insects, diseases, 

and weeds significantly lowered the WTP for past pest presence features of the pest management 

tool. Similarly, growers who scout their farms have an inverse effect on the willingness to pay 

for past pest presence features. In contrast, all conventional, primarily organic production 

systems, and insured growers prefer past pest features in the smartphone pest management tool 

compared to all other production systems. However, male, and white race growers have an 

inverse effect on the individual willingness to pay for past pest features.  

Regarding the source of information used by the smartphone pest management tool, the 

main pest concern for insects and weeds significantly lowers the willingness to pay for 

information from an educational/research institution while having no significant effect on the 

information provided by private agricultural companies. For production systems, primarily 

organic farming significantly affects the willingness to pay for information from education/ 

research institutions. On the other hand, conventional producers have a significantly reduced 

willingness to pay for private agricultural companies’ information. Growers below the age of 64 

are less willing to pay for information from education/research institutions. Again, male and 



white race growers also showed a low willingness to pay for information from 

education/research institutions. 

Table 7. Results: from Seemingly Unrelated Regression on Individual WTP Estimates.  

 (1)  (2) (3) (4) (5) (6) 

Variable Status Quo Accuracy: 

Ninety-

Two 

Accuracy: 

Eighty-

Eight 

Historical 

Pest 

Educ/Res 

Institute 

Private 

Ag 

company 

Experience 

with App 

-0.012 

(0.086) 

0.125 

(1.357) 

0.032 

(0.507) 

8.126 

(6.270) 

0.9207 

(0.9547) 

-2.031 

(1.251) 

Insects 0.366 

(0.270) 

-5.509 

(4.204) 

-2.023 

(1.587) 

-19.414** 

(9.232) 

-5.615** 

(2.745) 

-1.211 

(2.694) 

Diseases 0.214 

(0.273) 

-3.201 

(4.235) 

-1.114 

(1.617) 

-14.973* 

(8.775) 

-3.758 

(2.788) 

-0.672 

(2.631) 

 

Weeds 0.298 

(0.280) 

-4.458 

(4.361) 

-1.60 

(1.650) 

-22.699** 

(10.053) 

-5.057* 

(2.822) 

-1.174 

(2.796) 

Always 

scouting 

0 .197 

(0.139) 

-3.032 

(2.189) 

-1.134 

(0.820) 

-21.895** 

(10.355) 

-2.029 

(1.410) 

-0.616 

(1.691) 

Sometimes 

scouting 

0.159 

(0.136) 

-2.475 

(2.144) 

-0.924 

(0.805) 

-23.771** 

(10.514) 

-1.563 

(1.383) 

0.274 

(1.689) 

Insurance 0.048 

(0.011) 

-0.821 

(1.692) 

-0.313 

(0.641) 

11.341* 

(6.833) 

1.172 

(1.101) 

-1.562 

(1.761) 

All 

Conventional 

-0.065 

(0.125) 

1.000 

(1.953) 

0.272 

(0.734) 

24.887*** 

(8.988) 

0.811 

(1.325) 

-1.486 

(1.420) 

All Organic -0.015 

(0.087) 

0.272 

(1.380) 

0.094 

(0.533) 

8.477 

(5.554) 

-0.259 

(0.903) 

0.493 

(1.474) 

Primarily 

Conventional 

0.149 

(0.110) 

-2.337 

(1.726) 

-0.981 

(0.648) 

4.702 

(6.634) 

-1.168 

(1.121) 

-2.529* 

(1.416) 

Primarily 

Organic 

-0.152* 

(0.083) 

2.407* 

(1.309) 

0.829* 

(0.491) 

26.247*** 

(5.932) 

1.511* 

(0.880) 

0.509 

(1.088) 

Education -0.019* 

(0.909) 

0.304* 

(0.170) 

0.126* 

(0.064) 

2.991*** 

(0.808) 

0.177 

(0.113) 

-0.022 

(0.126) 

Age18 - 44 0.262 

(0.171) 

-3.986 

(2.712) 

-1.487 

(1.01) 

-7.119 

(10.345) 

-4.897*** 

(1.774) 

0.660 

(2.211) 

Age45 - 64 0.240 

(0.169) 

-3.603 

(2.675) 

-1.348 

(1.01) 

-1.516 

(9.254) 

-4.424*** 

(1.706) 

1.813 

(2.488) 

Male 0.124 

(0.085) 

-1.797 

(1.349) 

-0.808 

(0.513) 

-17.310*** 

(5.866) 

-2.140** 

(0.837) 

0.616 

(1.444) 



Table 7. Continued  

 (1)  (2) (3) (4) (5) (6) 

Variable Status Quo Accuracy: 

Ninety-

Two 

Accuracy: 

Eighty-

Eight 

Historical 

Pest 

Educ/Res 

Institute 

Private 

Ag 

company 

White 0.301  

(0.234) 

-4.432 

(3.580) 

-2.162 

(1.615) 

-22.636*** 

(8.551) 

-4.793* 

(2.461) 

-0.202 

(2.974) 

All other 

race 

0.415 

(0.256) 

-6.344 

(3.931) 

-2.841 

(1.738) 

-20.579* 

(10.660) 

-3.980 

(2.659) 

-3.319 

(3.228) 

Constant -1.786*** 

(0.375) 

27.413*** 

(5.896) 

10.674*** 

(2.260) 

29.705 

(19.981) 

22.199*** 

(3.773) 

11.235** 

(4.996) 

Chi2 p-value 0.0073 0.0087 0.0090 0.000 0.0003 0.2457 

R-squared 0.106 0.102 0.109 0.215 0.138 0.066 

Obs. 250 250 250 250 250 250 

Note: Standard errors in parentheses *** 1%, ** 5%, and * 10% significance level. 

 

Discussion and Conclusion 

The 2017 Census of Agriculture reported a total of 435,610 specialty crop growers 

(USDA-NASS, 2019). The willingness to pay estimates from our representative sample reveals 

that growers place a high value on past pest presence, the source of information used by the app, 

and the accuracy of the pest prediction component of the app. The total individual willingness to 

pay for past pest presence is $10.03 million/month8 and 120.4 million per year. This 

contextualizes the valuation and concern for information on past pest presence in analyzing 

future pests.  

Likewise, regarding the source of information used by the app, the total willingness to 

pay for information from an educational/research institution is approximately $4.2 million/month 

($50.2 million/year). The total individual willingness to pay for information from private 

 
8 This value is obtained by multiplying the willingness to pay estimates by the number of specialty crop producers 

reported by the 2017 Census of Agriculture. 



agricultural companies is approximately $3.3 million/month and $40.1 million/year. The 

differences in the premium paid between these two attributes emphasize the degrees of trust 

growers place in information and the source from which it is obtained. The presence of extension 

workers from educational institutions such as land grant universities can explain the value placed 

on information from these institutions. However, the literature presents a mixed record of 

success for agricultural extension programs (Pan et al., 2018). A significant achievement of 

extension programs has been the outcome of field school research on pesticide knowledge and 

adoption (Godtland et al., 2004; Tripp, Wijeratne, and Piyadasa 2005; Van den Berg and Jiggins 

2007; Pan et al., 2018). Despite the mixed success, decentralized models have argued that 

information flows from researchers to extension agents, and from extension agents to contact 

farmers (Kondylis et al., 2017). The decentralized information flow indicates contacts with 

farmers by researchers through extension agents, hence a level of trust between these groups, 

evident by almost a $1 million/month difference between educational/research institutions and 

private agricultural companies' total willingness to pay. 

Regarding the predictive accuracy for pests, the total individual willingness to pay is 

approximately $6.8 million/month and $2.5 million/month for ninety-two and eighty-eight 

percent, respectively. The difference in the total willingness to pay and the lack of heterogeneity 

towards ninety-two percent predictive accuracy proves agricultural producers' homogenous 

preference for a high-quality technology in pest management. 

The USDA has since 2009 funded projects under the Plant Protection Act’s Section 7721 

as part of a national program to strengthen infrastructure for pest detection, surveillance, and 

mitigation (USDA-APHIS, 2023). Over a 15-year period (2009-2023), $809 million has been 



invested, averaging $53.93 million annually (USDA-APHIS, 2023). The yearly funding includes 

plant and animal health pest detection (USDA-APHIS, 2023). Despite the annual investment, it 

is less than what specialty crop farmers are willing to pay annually for past pest presence 

information on their farms ($120.4 million). Our results reveal producers support accurate, 

reliable, and trustworthy information for pest management. 

The effect of education on technology adoption has been studied extensively across the 

literature (Harper et al., 1990; Khanna, 2001; Walton et al., 2010; Watcharaanantapong et al., 

2013; Lambert et al., 2015; Schimmelpfennig and Schimmelpfennig, 2016). Likewise, we 

measure the effect of education on technology adoption using the alternative specific constant 

(status/none). Education an integral part of the human capital increases adoption of the 

smartphone pest technology; educated growers value the benefits these smartphone pest 

management brings to their farms. This conclusion is in line with Khanna 2001 and reduces the 

timing of adoption as concluded by Watcharaanantapong et al., 2013.  In addition, education 

increases the willingness to pay for other attributes of the technology, improving the significance 

of education in adopting pest management technologies.  

Similarly, organic growers, regard smartphone pest management technology as highly 

beneficial on their farms. Again, organic growers increase the willingness to pay for most of the 

smartphone pest management technology attributes. The reason for this can be explained by the 

definition of organic farming by Lampkin (1994), “to create integrated, humane, environmentally 

and economically sustainable production systems, which maximize reliance on farm-derived 

renewable resources and the management of ecological and biological processes and interactions, 

to provide acceptable levels of the crop, livestock, and human nutrition, protection from pests 



and disease, and an appropriate return to the human and other resources”. The highlight of 

protection from pests and diseases increases the importance of smartphone pest management 

technology by organic growers to maximize farm-derived renewable resources for crop output. 

Finally, the socio-demographic characteristics of growers play a significant role in the 

willingness to pay for some smartphone pest management technology options. Age (-), male (-), 

white (-), and all other races (-). These demographic outcomes indicate a negative effect of 

demographics on willingness to pay levels.  

Conclusion 

We study the willingness to pay for pest management information using a smartphone pest 

management technology. The results suggest that growers prefer to have a technology that helps 

and provides information regarding pests (insects, diseases (pathogens), and weeds) on their 

farms. Therefore, past pest presence options in their toolkit and reliance on information produced 

by educational and research institutions with high predictive accuracy. Organic specialty crop 

farming increases the preferences and willingness to pay for specific pest management features 

compared to all other production systems. Similarly, education increases growers' adoption and 

willingness to pay for pest management technology. Although most of our sampled growers have 

had experience with a similar tool described for pest management, we realized that experience 

with technology did not significantly affect the adoption and willingness to pay for technology 

features. 

Additionally, scouting for pests decreased growers' concern for past pest presence on 

their farms. This is explained by the frequency of data received from scouting on their farms 

compared to growers who do not regularly scout. Demographic effects on information sources 



and past pest presence on farms are worth highlighting to understand how preference for 

technology varies across growers. 

In summary, we highlight the significance of pest management tools for specialty crop 

production, an expanding and increasingly significant sector within the U.S. economy. The 

growers' estimated valuations are more than government-provided support towards pests. The 

total willingness to pay highlights the importance of addressing the issue of pests in farm 

production, influencing productivity and farm profit of growers. Despite the conclusions raised 

by the study, future research can investigate crop-specific grower preferences and willingness to 

pay. The crop-specific analyses can be scaled nationally to understand growers’ preferences 

using the farm resource region designated by the USDA-ERS. Again, to capture the crop-specific 

grower preferences and willingness to pay. The regional approach invites the use of weather and 

climate variables' effects on smartphone pest management technology adoption and attributes. 

 

 

 

 

 

 

 

 

 

 

 



Appendices 

A1: Survey Cheap Talk. 

 

A2 

Table A2. Mean WTP Standard Deviation for Smartphone Pest Management Technology 

Variables Models 

 Mixed Logit GN Mixed 

Logit 

Sd. Educational/Research Institution 0.011 

(166.448) 

6.067 

(6.571) 

Sd. Private Agricultural Company 15.631***  

(9.697) 

9.915* 

(6.003) 

Sd. Historical Pest 39.326***  

(6.410) 

33.393*** 

(4.466) 

Sd. Accuracy: Ninety-Two 1.046  

(98.298) 

0.961 

(17.551) 

Sd. Accuracy: Eighty-Eight 9.373 

(13.247) 

0.919 

(10.422) 

Sd. None/Status Quo 171.373***  

(37.268) 

-205.986*** 

(38.080) 

     Note: Standard errors in parentheses *** 1%, ** 5%, and * 10% significance level. 
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