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Abstract

Pests (insects, pathogens, and vegetation) pose significant difficulties for producers. Pre-existing
issues exacerbate the impact of pests on farmers of specialty crops. Concurrently, decreasing
yields and rising pest management expenditures. Consequently, biological scientists have created
a tool (risk prediction model) to prevent economic loss by predicting pest pressure in the field.
The risk prediction model is useful for producers before and during planting season. It is
unknown, however, how much producers are willing to accept or pay for this information. Using
the generalized mixed logit model, this study aims to estimate specialty crop producers'
willingness to pay for risk prediction model information in a smartphone pest management
application. The study utilizes primary data from a survey of specialty crop farmers across the
United States. We find growers have a high preference for smartphone pest management
technology. As a result, growers have significant preferences and willingness to pay for most of
the technology attributes. We find specialty crop growers trust educational/research institutions
regarding pest management information on their farms. We attribute these results to the
education and production systems used by growers as the drivers of their willingness to pay
estimates. These results highlight the primary stakeholder concerns and readiness to mitigate

pests and contribute to institutional aids available to growers.

Introduction

The current climate presents farmers with formidable and multifaceted challenges. Among these,
pests and diseases are particularly daunting adversaries, compounded by the effects of climate
change, which exacerbate the damage they inflict on crops and increase the cost of control
measures. The issue of pest management has evolved to encompass integrated pest management,

organic and sustainable pest management, the role of technology, and socioeconomic and policy



aspects. Researchers have focused on the adoption and policy aspects of pest management
technologies to mitigate the impact of pests and diseases. However, there has been a neglect to
consider the value placed on these technologies by the farmers who utilize them. Therefore, it is
essential to understand the socioeconomic and policy aspects of pest management by examining

the value growers place on pest management technologies.

This research examines the extent to which farmers in the U.S. specialty crop industry
value pest management technologies and information from smartphone agricultural applications.
The U.S. Department of Agriculture-Agricultural Marketing Service (USDA-AMS) defines
specialty crops as fruits, vegetables, tree nuts, dried fruits, horticulture, and nursery crops,
including floriculture (USDA-AMS). The study employs a discrete choice experiment (DCE)
approach to gauge growers' willingness to adopt pest management technologies, including those
for insect pests, diseases (pathogens), and weeds, made available through smartphone
applications. The hypothesis is that growers will exhibit a positive attitude toward adopting pest
management technologies. Furthermore, it is anticipated that specific attribute levels, such as
those associated with educational/research organizations, will be considered more trustworthy by

growers than by private agricultural companies and government agencies, including the USDA.

Specialty crop growers place a high preference for pest management technologies. These
pest management technologies are considered normal goods. Consequently, as growers' income
increases, their demand for pest management technologies increases, all things being equal.
Notably, data obtained from academic, or research institutions are considered more reliable than

those obtained from private agricultural companies and government agencies. Growers



demonstrate a high preference for pest management technologies that leverage historical pest

presence information on their farms. As well as those with high predictive accuracy.

Integrated pest management (IPM) is a human capital-based technology and has garnered
significant attention over time (Harper et al., 1990). However, studies on the willingness to pay
for information related to IPM typically focus on farm educational services (extension services).
These studies have explored various aspects of accessing extension offices (Diekmann et al.,
2012) and extension services across different regions and countries (Feder and Slade, 1986;
Bindlish and Evenson, 1997; Owens et al., 2003; Ajayi, 2006; Horna et al., 2007; VVan den Berg
and Jiggins, 2007; Charatsari et al., 2011; Aker, 2011; Davis et al., 2012; Ozor et al., 2013,
Uddin et al., 2016; Ogunmodede et al., 2022). Furthermore, other studies have also examined the
effects of extension services on pesticide usage (Godtland et al., 2004; Tripp et al., 2005; Van
den Berg and Jiggins, 2007; Pan et al., 2018). Additionally, other studies have considered
growers' willingness to pay for specific information beyond extension services, such as soil
management information (Diafas et al., 2013). Research has also been conducted on growers'
willingness to pay for technologies on and off the farm. This includes technologies such as seeds,
Internet broadband, animal vaccines, and pest management. Studies that have analyzed the
willingness to pay estimates for these technologies include Bennett and Balcombe (2012),
Channa et al. (2019), Gharib et al. (2021), Jeffcoat et al. (2012), Nyangau et al. (2022), and Shee

etal. (2019).

Despite the advancements in literature by various researchers, only a few have addressed
the topic of smartphone agricultural technology adoption and the related willingness to pay for

crop protection (Bonke et al., 2018) and irrigation (Jaafar and Kharroubi, 2021). This study,



however, examines the willingness to pay for smartphone agricultural technology and the source
of information provided for pest management. The smartphone agricultural technology in this
study is a comprehensive decision-support tool that predicts past and current pest infestations on
farms. Furthermore, our study differs from previous research by employing the Discrete Choice
Experiment (DCE) methodology to analyze adoption and willingness to pay for pest
management information rather than using binary dependent variable estimators. The adoption of
agricultural mobile applications in the U.S. has been slower than in other sectors. Despite the
numerous advantages they offer (Xin et al., 2015). This study provides insight into this issue by

concentrating on the U.S. specialty crop industry.

The remainder of the paper is organized as follows: specialty crops and pest management
strategies, choice experiment survey design and survey, methodology, results, and discussion and

conclusion.

Specialty crops and pest management strategies

Plants classified as specialty crops must be grown or managed for human consumption,
medicinal purposes, and aesthetic gratification (USDA-AMS). According to the USDA Census
of Agriculture 2017, more than 15 million acres were farmed, and more than one million people
were employed in specialty crop production on 99,463 farms (USDA Census of Agriculture,
2019). The states with the most land are California, Washington, North Dakota, Montana, and
Florida (USDA Census of Agriculture, 2019). The specialty crop industry accounted for one-
third of U.S. crop receipts and one-sixth of all agricultural product receipts in 2017, totaling
$64.7 billion (USDA-ERS, 2020). The national production of 26 estimated vegetable and melon

commodities comprised 658 million cwt in 2022 (USDA-NASS, 2023). Tomatoes, onions, and



sweet corn collectively accounted for 53% of total vegetable production (USDA-NASS, 2023).
In addition, the total utilized production of vegetables in 2022 reached $16.5 billion, a 27%
increase from the previous year (USDA-NASS, 2023). The concurrent growth in the specialty
crop industry is complemented by an increase in vegetable consumption from 146.8 Ibs. to 153.3
Ibs. per capita from 2000 to 2019 (Lucier and Parr 2020). The increases in consumer
consumption were attributed to health benefits and the government’s effort to promote fruits and

vegetables (Lucier and Parr 2020).

Tomatoes are regarded as one of the most essential and widely consumed vegetables in
the U.S. In 2022, tomatoes are counted as the top three in acres harvested and total production
(USDA-NASS, 2023). Subsequently, tomatoes also accounted for one of the highest-valued
utilized production for 2022, up 27 percent from the previous year (USDA-NASS, 2023). In
2022, tomatoes were planted on 271,000 acres and harvested on 263,800 acres, 1.8 percent less
than in 2021 (USDA-NASS, 2023). Despite the growth in the specialty crop industry using
tomatoes as an example, like other crops, specialty crops are susceptible to pests (insect pests,
diseases (pathogens), and weeds) (USDA, 2017). The tomato industry is threatened by pests and
diseases such as yellow leaf curl virus (TYLCV), which is caused by whitefly insects and can
lead to significant economic losses due to increased production costs and reduced crop yield
(Polston and Lapidoth, 2007). The TYLCV is the most treacherous pest to tomato fields (Camara
et al., 2013; Moriones and Navas-Castillo, 2000; Pico et al., 1996). Typically, symptoms are
evident in infected plants after 2 to 3 weeks post-inoculation (Bian and Gao, 2020; Srinivasan et
al., 2012). The observed symptoms of infected plants include curling and yellowing of leaves,
mottling, and chlorotic leaf margins (Bian and Gao, 2020; Camara et al., 2013). Farmers often

struggle to manage whiteflies and associated viruses effectively due to the arduous task of



selecting resistant cultivars, production methods, insecticide combinations, and optimal
transplant dates to minimize the risk of infection (Bian, 2020). This stems from farmers' inability
to accurately estimate the whitefly population and potential disease prevalence of their properties
(Bian, 2020). Therefore, controlling parasites and diseases to maximize economic gains is
challenging for producers (Bian, 2020). Timely and specific pest and disease management
information is critical for viral infections and disease control presented by the risk prediction
model to predict pest pressure in-field, such as the whitefly population and virus incidence

among crops (Anco et al., 2020).

Risk prediction models serve as a timely pest management information tool to address
whitefly population and virus incidence among crops in the field (Anco et al., 2020). The
technology incorporated into farm smartphone applications functions as a decision support tool
(DST). The DST assists farmers with additional information for decision-making under
uncertainty (Bonke et al., 2018; Shtienberg, 2013). Advancements in technology have allowed
for the merging of DST with smartphones that have access to the Internet, providing farmers
with flexible usage options (Bonke et al., 2018). These mobile apps cover a spectrum of
activities, from the field to the market (Costopoulou et al., 2016). In total, 665 farm management
mobile apps are reported by Costopoulou et al., 2016. These apps span various categories,
including animal production, farm management, crops, pests and diseases, agricultural
technology and innovation, agricultural machinery, spraying-related activities, and weather
forecasting, among a total pool of 1140 agricultural mobile applications (Costopoulou et al.,
2016). Due to the associated and potential benefits of smart-agricultural mobile applications,
some researchers have investigated farmers' willingness to pay in the context of crop protection

and irrigation (Bonke et al., 2018; Jaafar and Kharroubi, 2021).



In the adoption literature for smartphone agricultural technologies, previous studies have
studied adoption and willingness to adopt using a binary outcome variable (Bonke et al., 2018;
Jaafar & Kharroubi, 2021; Michels et al., 2020). However, there is no knowledge regarding a
stated choice approach to elicit farmers’ willingness to pay for agricultural mobile tools. The
stated choice experiments use quantitative methodology to evaluate the relative importance of
various product attributes that affect consumer decision-making. (Louviere et al., 2000). This
study contributes to the literature by using a stated choice experiment to investigate the effect of

specific smartphone agricultural application attributes.

Additionally, some factors affect the adoption of farm technologies. Prominent amongst
them is price. The price of precision farming tools and DST has been cited as influencing the
limited adoption rates (Bonke et al., 2018; Matthews et al., 2008). There are several free and paid
mobile applications for farming on the market. However, paid mobile applications are more

advanced in data management, timely decision-making, and usability among farm workers.

According to researchers, the awareness and attitudes of farmers, which play a crucial
role in their decision to adopt new practices, are influenced by their socioeconomic
characteristics (Daberkow and McBride, 2003; McBride et al., 1999; Rogers, 1995). These
sociodemographic characteristics include farm size, human capital (education, technical skills,
and innovative abilities), land tenure systems, and information sources (Daberkow and McBride,
2003; Feder, 1985; Feder et al., 1985; Fernandez-Cornejo et al., 2001; Khanna, 2001; Lambert et
al., 2015; Larson et al., 2008; McBride and Daberkow, 2003; Schimmelpfennig and

Schimmelpfennig, 2016; Walton et al., 2010). Specifically, the relationship between farm size,



behavioral characteristics (risk attitude), and information-seeking behavior of farmers has been

established by previous studies. (Feder et al., 1985; Fernandez-Cornejo et al., 2001).

Adopting new technologies in agriculture has been observed to follow a sequential
pattern, with farmers' risk attitudes playing a significant role in this process (Khanna, 2001;
Leathers and Smale, 1991). This is because technological innovation in agriculture is inherently
riskier than traditional methods (Daberkow and McBride, 2003). Risk poses a barrier to adopting
new techniques, and previous studies have had mixed conclusions regarding the effect of risk
attitudes on technology adoption (Aimin, 2010; Chavas and Nauges, 2020). Marra et al. (2003)
highlighted three components of risk that affect technology adoption: farmers' perception of the
probabilities of the distribution of net returns, variance of net returns, and strength in the
direction of risk attitude. However, most studies have focused on the strength of direction (risk
aversion) (Canales et al., 2023). In contrast, this study differs from the directional component of
risk by Marra et al. (2003) and measures farmers' variations in preferences for smartphone pest
management technology using insurance uptake. Moreover, growers have become more
proactive in seeking information about innovation, and this effort is directly related to the
expected gain from that knowledge (Feder, 1985; Feder et al., 1985). Therefore, adopting new
technologies depends on diverse information sources that may vary depending on the stage of
adoption (McBride & Daberkow, 2003). To the best of our knowledge, none of the previous
studies have considered the sources of information in a choice set to estimate farmers'

preferences and willingness to pay estimates for these sources.

In contrast to existing studies, this paper examines the valuation of pest management

technology (smartphone agricultural apps) and information by specialty crop growers regarding



three main attributes: source of information, historical pest presence, and current pest prediction
accuracy. The study explores the individual willingness to pay estimates of these attributes and
the effects of sociodemographic characteristics on WTP outcomes. The results can provide
critical policy interventions of information dissemination channels, high-range technology

predictive accuracies, and the importance of past information on the current season's production.

Choice Experiment Design and Survey

We developed a choice experiment for a risk prediction model, emulating a mobile application
interface. The attributes we selected were carefully chosen to reflect the essential characteristics
and objectives of constructing the risk prediction model. These attributes were also designed to
mirror the features of existing pest management mobile applications, such as SIRRUS, CROPX,

and Climate FieldView, currently available on the market.

The risk prediction model comprises key features such as measuring past pest
occurrences and the identification of pests present on the farm. Furthermore, acknowledging the
importance of information in pest management, our design incorporates the source of
information used to predict pest presence on the farm. To establish the cost of the risk prediction
model, we consulted the subscription fees of existing applications in the market, including
SIRRUS, CROPX, and Climate FieldView. The risk prediction model attributes and associated

attribute levels in our choice experiment are presented in Table 1 and defined as follows:



Table 1. Risk prediction model attributes and attributes levels.
Model attributes Levels
Source of information Government agencies, education/research
institutions, private agriculture companies

Historical pest Included, not included.
Quantifying current pest (Accuracy) 77%, 85%, 92%
Price $16, $25, $34, $42

Identifying pests accurately is the first step in formulating effective pest control
strategies, and the reliability of sources such as entomologists and field guides plays a crucial
role in this regard. Therefore, understanding the biological behavior of pests from a reliable
source underscores the importance of information for effective management. These
comprehensive sources of information offer extensive insights into pest life cycles, habitats, and
timing, which are crucial for formulating precise pest management strategies. Furthermore,
Integrated Pest Management (IPM), which combines multiple pest control methods to limit the
impact of pests (Peshin and Dhawan, 2009), relies on information to avert the misuse of

pesticides, which can result in detrimental environmental consequences (Aktar et al., 2009).

In the stated choice experiment, growers were presented with three sources of
information from which the data used to develop the risk prediction model were obtained:
Government agencies, education/research institutions, and private agriculture companies. Each
was presented as a bundled choice along with other attributes. Historical pest presence represents
the risk prediction model’s use of previous farm information on pests, diseases, and weeds to
predict the presence of current pests on the farm. Attribute levels were included based on actual
existing market applications, thus, included or not included. Furthermore, we incorporate the

predictive accuracy of pest presence on farms into our analysis. The selection of attribute levels



is informed by prior research that utilized different statistical modeling tools to forecast pest
presence on agricultural lands. Specifically, the studies by Ibrahim et al. (2022), Markovi¢ et al.
(2021), and Shang and Zhu (2018) reported predictive accuracies of 85%, 77%, and 91%,
respectively. All things being equal, the higher the predictive accuracy, the better the

effectiveness of the smartphone pest management tool and information.

Finally, the price attribute represents the monthly subscription cost for utilizing the risk
prediction model. The choice of monthly subscription costs was determined by referencing real
market prices obtained from sources such as SIRRUS, CROPX, and Climate FieldView. The

available attribute levels are $16, $25, $34, and $42.

The experimental design was created using the SAS Macro within SAS (Statistical
Analysis System). The SAS Macro output produces a full factorial design, from which we can
choose a minimum number of choice-sets with high D-efficiency and relative D-efficiency. To
construct the stated choice experiment for our survey, we employed a fractional-factorial design
of 10, achieving a D-efficiency of 100 and a relative D-efficiency of 72.57 derived from a 72
(3x2x3x4=72) full-factorial design (Louviere et al., 2000). The 10 choice sets were blocked into
two versions (5 choice sets each) and respondents were randomly assigned to one of the two
blocks. Each of the choice tasks features two smartphone application interfaces (risk prediction
model) alongside a status quo option, the “none” option (see Figure 1). The inclusion of the
“none” option not only helps make the selection more realistic as respondents can opt out of a
smartphone application interface option if they are unsatisfied with the product selection set
(Gao et al., 2019), but by eliminating the pressure to select subpar options, it ensures higher-

quality data collection (Johnson and Orme, 2003).



Please select the subscription services/mobile application alternative that you prefer.

Option A Option B Option C
v . Source of
5 .s;mn‘(”'.’f information
; L b Education/research
Government agency S
[ institution
Historical pest Historical pest
Included Not Included . —
NONE
"('l‘“l’ll("\' ."‘l‘l'lll'lll'}v
85 percent 92 percent
Price/month Price/month
$16 $42

Figure 1. An example of a choice task presented to growers.

To mitigate the hypothetical bias, a statement was provided to participants indicating that
their selections in each task would be considered final and binding. As depicted in Figure 1, an

illustration of a choice task is provided.

The online survey was conducted by a market research firm (Qualtrics) to a panel of
specialty crop growers in the United States. Our survey was tested with focus groups as
suggested by Johnston et al. (2017). The focus group comprised extension agents, farmers,
graduate students, and researchers with expertise in survey design for growers, to ensure
comprehension of the questions posed by the survey. The survey was sampled in two parts, first,
100 samples were collected with a soft launch of 10% of the online panel. The soft launch
allowed us to check the flow and consistency of our survey instruments and how respondents
viewed each question. We discovered issues with the screening questions and added an extra one
to allow us to sample the right group of growers. Participants were required to be, at least 18

years or older and grow vegetables and pulses or fruits and tree nuts.



After screening, respondents were asked about their specialty crop production. Acres of
farm operation, specific names of specialty crops grown, production, insurance coverage, and
challenges encountered in production. Respondents were asked about their use of smartphone
pest management technology. Furthermore, respondents were presented with an example of a
smartphone pest management technology, detailing its benefits and use. After the example, we
presented attributes of the smartphone pest management technology and a cheap talk to reduce
hypothetical bias before proceeding to the choice experiment (see Appendix Al). At the end of
the survey, respondents reported their demographic information, such as position in the farm’s
production, years of farming, education, and total farm sales value from the farm in the past two

years.

Methodology

Growers' preferences and willingness to pay for smartphone pest management technology and
information were studied using a discrete choice modeling framework. This framework is based
on Lancaster's Consumer Theory (Lancaster, 1966) and the Random Utility Theory (McFadden,
1972). The Lancaster theory considers the intrinsic complementarity of a product, which
encompasses the inherent characteristics or properties appealing to the respondent. Consequently,
a product comprises a set of attributes from which utilities are derived (Liu et al., 2019). The
core assumption of the Random Utility Theory is that a person's utility consists of a deterministic
component and an unobservable random component (Liu et al., 2019). As a result, the choice
from a set of alternatives is primarily influenced by its perceived utility. In this context, the
option perceived as most beneficial is likely to be chosen, as it offers the highest level of utility

(McFadden, 1972). Therefore, following the random utility theory (McFadden, 2001), the farmer



k’s utility from choosing the risk prediction model alternative i from a choice set of ] alternatives

in a choice situation t can be specified as

Ukit = Viie + &kit [1]

where Vy;, is the deterministic component, and &, is the random component of the utility

function. The random utility model can be rewritten as

Urie = B Xkit + ke [2]

where Xj;, is the attributes of the risk prediction model, S, is a vector of unknown

preferences coefficients that weigh the exogenous attributes (Chen et al., 2023). &, is the

random component of the utility, capturing the unobservable confounders affecting the utility.

Based on the distribution of the random component of the utility function and the functional
form of the utility, various models can be hypothesized (Van Wezemeal et al., 2014; Bazzani et
al., 2017; Liu et al., 2019; Chen et al., 2023). For example, equation [2] can be estimated using
the conditional logit model (CL) and multinomial logit model (MNL), assuming homogeneity in
preferences among individuals and &;; is independently and identically distributed (i.i.d.) with a
Gumbel distribution (Meas et al., 2014; Liu et al., 2019; Chen et al., 2023). Previous research has
emphasized the importance of heterogeneity from both methodological and empirical standpoints
(Lusk, Roosen, and Fox 2003; Greene, Hensher, and Rose, 2006; Ortega et al., 2011; Greene and
Hensher, 2013; Wongprawmas and Canavari 2017). The incorporation of heterogeneity can lead

to biased estimates in conditional and multinomial logit models (MNL). To address this issue,



Revelt and Train (1998) proposed the mixed logit model (MIXL), which accounts for varying

preference coefficients across individuals (Chen et al., 2023).

Assuming respondents within the same group have similar preferences, the mixed logit
model presents a choice probability as an average of logit terms, each weighted by a value from
the density function. The logit terms are calculated with different values of the coefficient vector
B (Chen et al., 2023). In most applications, the mixed logit model’s coefficient vector weights on
smartphone pest management attributes are assumed to have a multivariate normal distribution
(Liu et al., 2019). However, previous studies have argued that the multivariate normal
distribution used in the mixed logit model may lead to serious misspecification of the model
(Louviere et al.,1999; 2002; 2008; Louviere and Eagle 2006; Louviere and Meyer 2007; Liu et
al., 2019; Chen et al., 2023). Subsequently, these studies have suggested that the majority of the
heterogeneity in attribute weights is caused by scale effects (Liu et al., 2019). This implies that
for some farmers the scaling of the error term is weightier than others, this is described as scale
heterogeneity (Liu et al., 2019; Chen et al., 2023). The introduction of scale allows researchers to
account for nearly lexicographic preferences among growers (respondents), a common drawback
in choice experiments (Fiebig et al., 2010; Liu et al., 2019). Therefore, the scaled multinomial
logit model (S-MNL) captures scale heterogeneity (Fiebig et al., 2010). In addition to the scaled
multinomial logit, Fiebig et al., 2010 developed a generalized mixed logit model that nests mixed
logit and scaled multinomial logit models. Fiebig et al. (2010) found that the generalized mixed
logit model demonstrated greater efficiency compared to the mixed logit model (Chen et al.
(2023). In addition, Greene and Hensher (2010), concluded the improvement of the generalized

mixed logit model over the standard mixed logit model (Chen et al., 2023). Modeling the



generalized mixed logit model after Fiebig et al., (2010), Greene and Hensher (2010), and

Greene (2012) consider the utility function as follows.

Urie = B Xkit + ke (4]

where &;, is independently and identically drawn (i.i.d.) with the Gumbel distribution, and S, .,

is specified as

B, =6+ y+ 6+ N]* Ly [5]

and u; follows a certain distribution, 0 > ¥ <1 and

6, = exp (—§+ T* Wi),Wl- ~N(0,1) [6]

From the generalized mixed logit model, nested mixed logit, and scaled multinomial logit
models, when 7 = 0 and L #0, the generalized mixed logit model converges to a mixed logit
model. When y= 0 and L = 0, the generalized mixed logit model results in a scaled multinomial

logit model.

Empirical Framework

This analysis considers three models, Model I is the mixed logit model, Model 2 is the scaled
multinomial logit model, and Model 3 is a generalized mixed logit model. The individual farmer
preferences for pest management information provided by the risk prediction model are as

follows:



Ukie = None + p,.Pricey + f,. Education or research Inst.,;+
B,. Private Ag. Companyy;, + f,. Historic_Pesty; + B.. EgithySy; + B,. NinetyZ;, +
kit [7]

Where k is the individual farmer participants in the choice experiment, i represents the
alternative risk prediction model in a choice scenario t. None is an alternative specific constant,
representing the “none” option. Pricey;; is a metric variable representing a linear relation with
utility represented by four designed price levels. Education or research Inst.;; and

Private agricultural company ,;; are categorical variables that represent the source from
which information provided by the risk prediction model is obtained. Government,;, is used as
a base category for the source of information. Historic_ Pesty,;; represents the inclusion of
quantifying historical pest presence on the farm to make future predictions, with no inclusion as
the base category. Egithy5y;; and Ninety2,;; are the predictive accuracy of the risk prediction
model with Seventy7,;; being the base category. The non-price attribute coefficients are
commonly assumed to follow a normal distribution (Bazzani et al., 2017) with price and “none”
option coefficients assumed fixed (Liu et al., 2019). g,;; is independently and identically drawn

(i.1.d.) error term.
To calculate the willingness to pay (WTP), this study utilized dummy coding for the non-
price attributes. The willingness to pay (WTP) is calculated by — ﬁ—’? , where [ is the coefficient
14

of non-price attribute 9, and 3, is the estimated price coefficient. All three models were
estimated using R studio using 1000 Halton draws for the simulations considering the panel

structure of the data.



Results
Summary of Survey Response

A total of 250 growers were surveyed across the entire country. Respondents' production and
demographic characteristics are presented in Table 2. The average percentage of vegetables and
pluses growers represents almost 40% of our sample, almost 4% more than the national
percentage reported by the 2017 census of agriculture (USDA-NASS, 2019). Regarding the size
of farm production, the proportion of fewer than 1000 acres is 97.2%, larger than, 93.8%
presented by the Census of Agriculture for specialty crops grown in the U.S. (see Table 2).
Furthermore, our sample has a relatively larger proportion of male and white race farmers,
compared to the Census of Agriculture report by 19.2% and 3.4%, respectively. Lastly, by race,
our sample presents 2.8% and 3.2% of Black or African American and mixed-race growers,
respectively which is higher than the 1.4% and 1.1% represented in the 2017 Census of

Agriculture.

Table 2. Summary Statistics of Farmer and Farm Characteristics. (N=250)

Percentage 2017 census of
Variable (Mean) agriculture®
Vegetables and Pulses 39.6% 34.8%
Acres
0-9 acres 18.4% -

10-49 acres 13.6% -
50-179 acres 27.2% -
180-499 acres 22% -
500-999 acres 16% 93.8%°

1000-1999 acres 2.4% -

4 USDA Census of Agriculture 2017 Specialty Crop
® Total percent of farm size below 1000 acres



Table 2. Continued

Percentage 2017 census of
Variable (Mean) agriculture®
2000 acres or more 0.4% -
Sex
Female 18.4% 37.6%
Male 81.6% 62.4%
Race

White 90.8% 92%
American Indian or Alaska Native 0.8% 1.4%
Black/African American 2.8% 1.4%
Mixed race 3.2% 1.1%

Our sampled growers reported their main pest concern, insect pests (52.2%), diseases or
pathogens (24.9%), weeds (21.3%), and others (1.6%) (see Table 4). Growers also reported
previous adoption of smartphone pest management technology (68.4%) with 22.8% non-usage
and 8.8% with no knowledge of a smartphone pest management technology. Scouting frequency
was also reported with 50.4% and 47.5% of growers scouting always and sometimes,
respectively. The rest of the growers (2.1%) rarely scout. In addition to the above, we show
charts of acre proportions and systems of production untaken by our sampled growers (see
Figure 2). Furthermore, in Figure 3, we explore previous app adoption and experience in
farming, where growers with 8-10 years of experience have the highest adoption rate, followed

by more than 20 years, and 5-7 years of experience.

6 USDA Census of Agriculture 2017 Specialty Crop



Table 4. Main Pest concern, rate of adoption, and scouting frequency.

Percentage
Variable Obs. (Mean)
Main Pest concern
Other 249 1.6%
Insects 249 52.2%
Disease/Pathogens 249 24.9%
Weeds 249 21.3%
Previous App Usage
I do not know 250 8.8%
Yes 250 68.4%
No 250 22.8%
Scouting
Sometimes 242 47.5%
Rarely 242 2.1%
Always 242 50.4%

percent of acres

Figure 2. The share of acres by production methods.




40

W
o
1

N
o
1

percent of appusage

-
o
1

N
>
] K
&

Figure 3. Rate of adoption by farming experience.

Regression results from empirical models

Table 5 reports utility/preference estimates for Model 1 (Mixed logit model), Model 2
(Scaled Multinomial logit), and Model 3 (Generalized Multinomial logit). The results from the
mixed logit and generalized mixed logit models indicate that growers regard all attributes of the
pest management technology as highly relevant. Consequently, the estimates were different from
zero at, at least a 10% significant level. Moreover, the significance of tau, which captures the
scale heterogeneity of preferences, indicates that growers weigh each attribute differently (Liu et
al., 2019). Finally, the statistical and sign directions between the models (Models 1 and 3) are
mostly consistent. Therefore, we discuss Model 3, the generalized mixed logit model. Model 3
presents, a better fit to the data with the highest Log Likelihood value (-889.42) and lowest
Akaike Information Criterion (AIC) statistic (1808.831). Additionally, we conducted a log-

likelihood ratio test that confirmed Model 3, as the best fit for the data at a 1% significance level.

The price estimate is negative and significant at the 1% level. This means that an increase
in the price of a smartphone agricultural app reduces growers' utility/preference provided by the

choice. Likewise, the alternative specific constant or status quo is negatively significant at 1%.



This indicates a disutility from not choosing any available smartphone app options. In contrast,
the source of information used by the pest management technology, growers have a positive
preference for educational/research institutions and private agricultural companies that provide
data for pest presence predictions. However, growers prefer educational/research institutions
(0.762) more to private agricultural companies (0.610), with government agencies as the
reference attribute. Past pest presence on farms has a positive and significant coefficient,
implying a higher utility/preference by growers when the historic pest feature is included in a
choice. Regarding the predictive accuracy of smartphone pest management technology, growers
prefer a higher predictive technology option to a lower-tier option. This is evident in the
coefficient of the Ninety-two percent accuracy (1.244) which is higher than Eighty-eight percent

(0.466), with seventy-seven percent as the reference point.

Table 5. Results: Preferences Estimates for Smartphone Pest Management Applications.

Variables (D) 2) 3)
Mixed Logit Scaled Multinomial GN Mixed
Logit Logit
Price -0.034%** -0.933 -0.0794%**
(0.005) (2.521) (0.021)
Educational/Research 0.333%#** 3.955 0.762%**
Institution (0.113) (8.950) (0.275)
Private Agricultural Company 0.265%* 1.932 0.610**
(0.119) (3.933) (0.266)
Historical Pest 0.819%** 19.458 1.828%#*
(0.101) (49.474) (0.444)
Accuracy: Ninety-Two 0.670%*** 7.821 1.244%**
(0.128) (20.921) (0.377)
Accuracy: Eighty-Eight 0.256%** 6.182 0.466*
(0.110) (17.932) (0.238)
None/Status Quo -6.118%** -4381.827 -14.885%**
(1.003) (20876.664) (4.148)
Tau 4.549%* -1.146%**
(1.998) (0.180)




Table 5. Continued.

Variables (D) 2) 3)
Mixed Logit Scaled Multinomial GN Mixed
Logit Logit
Gamma -0.224**
(0.094)
Log-Likelihood -896.3 -970.34 -889.42
AIC 1818.607 1956.687 1808.831
BIC 1885.309 1997.734 1885.795
Observations 1250 1250 1250

Note: Standard errors in parentheses *** 1%, ** 5%, and * 10% significance level.

Since the generalized mixed logit model (Model 3) is preferred, the individual
willingness to pay mean estimates are derived from Model 3, in Table 5. We used the delta
method’ approach in our estimation. Table 6 presents the individual willingness to pay estimates,
illustrating that growers are willing to pay the most for past pest presence consideration
($23.025/month) in the smartphone pest management technology. Next, regarding the source of
information used by the smartphone pest management technology, growers are willing to pay
more for educational/research institutions ($9.605/month) compared to private agricultural
companies ($7.677/month). Furthermore, regarding the predictive accuracy of the smartphone
pest management technology, growers are willing to pay a premium of $9.809/month to use the
highest pest-predictive accurate technology option. The outcome on the accuracy, suggests that
growers place a higher value on advancement technologies that have low pest prediction
uncertainties. Lastly, we report the willingness to accept/compensation due to growers when
these smartphone pest management technologies are made unavailable. If the pest management

technology becomes unavailable, growers have expressed their willingness to receive a monthly

" The delta method estimates non-linear function variances with random variables by taking the first-order Taylor
series expansion around the mean of the variables and calculating the variance of the expression (Greene, 2003;
Hole, 2007).



payment of $187.435. This reflects the importance placed on pest management technology by

growers.

Additionally, we estimate the standard deviation of all significant attributes (see
Appendix A2). The standard deviation illustrates the heterogeneity in the preferences and
willingness to pay for smartphone pest management technology. Figure 4 shows the
heterogeneity in the willingness to pay for past pest presence, private agricultural companies, and

eighty-eight predictive accuracies.

Table 6. Results: Mean WTP Estimates Smartphone Pest Management Technology

Variables (1) (2) 3)
Mixed Logit Scaled GN Mixed
Multinomial Logit
Logit
Educational/Research Institution 9.809%*** 4.237 9.605%**
(3.597) (4.705) (2.847)
Private Agricultural Company 7.798** 2.069 7.67T7***
(3.662) (2.402) (2.875)
Historical Pest 24.103%** 20.846%** 23.025%**
(3.995) (3.776) (3.102)
Accuracy: Ninety-Two 19.728*** 8.378H* 15.671%**
(4.463) (2.607) (3.345)
Accuracy: Eighty-Eight 7.540%* 6.623%* 5.862%*
(3.338) (2.602) (2.666)
None/Status Quo -180.040%** -4694.310 -187.435%**
(36.650) (9997.462) (32.033)
Observations 250 250 250

Note: Standard errors in parentheses *** 1%, ** 5%, and * 10% significance level.
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Figure 4. WTP($) for Historic Pests, Accuracy, and Source of Information.

Factors Influencing Individual WTP for Smartphone Pest Management Technology

To estimate the factors influencing individual WTP, we derived the individual-specific
posterior distribution from the sequence of observed choices in the experiments (Train 2009;
Chen et al., 2022). We use seemingly unrelated regressions with dependent variables, alternative
specific constant (ACS), accuracy, past pest presence, and source of information used by the
smartphone pest management technology. Independent variables used in the analyses include
socio-demographic characteristics, main pest concern, experience with similar app usage,
scouting, insurance, and production methods. Seemingly unrelated regression allows for

comparison of mean individual-specific willingness to pay amongst different types of



respondents while accounting for multiple correlated hypotheses since the individual-level
willingness to pay is generated from the same model estimates (Chen et al., 2022). The results

from the seemingly unrelated regression are presented in Table 7.

For the willingness to pay for the status quo (none) option, we find that education and
primarily organic production systems prevent the nonuse of pest management technology.
Likewise, the predictive accuracy of the technology, education, and organic production systems
positively affects the individual willingness to pay. The main pest concerns, insects, diseases,
and weeds significantly lowered the WTP for past pest presence features of the pest management
tool. Similarly, growers who scout their farms have an inverse effect on the willingness to pay
for past pest presence features. In contrast, all conventional, primarily organic production
systems, and insured growers prefer past pest features in the smartphone pest management tool
compared to all other production systems. However, male, and white race growers have an

inverse effect on the individual willingness to pay for past pest features.

Regarding the source of information used by the smartphone pest management tool, the
main pest concern for insects and weeds significantly lowers the willingness to pay for
information from an educational/research institution while having no significant effect on the
information provided by private agricultural companies. For production systems, primarily
organic farming significantly affects the willingness to pay for information from education/
research institutions. On the other hand, conventional producers have a significantly reduced
willingness to pay for private agricultural companies’ information. Growers below the age of 64

are less willing to pay for information from education/research institutions. Again, male and



white race growers also showed a low willingness to pay for information from

education/research institutions.

Table 7. Results: from Seemingly Unrelated Regression on Individual WTP Estimates.

(1) @) 3) (4) 5) (©)
Variable Status Quo  Accuracy: Accuracy: Historical ~ Educ/Res Private
Ninety- Eighty- Pest Institute Ag
Two Eight company
Experience -0.012 0.125 0.032 8.126 0.9207 -2.031
with App (0.086) (1.357) (0.507) (6.270) (0.9547) (1.251)
Insects 0.366 -5.509 -2.023 -19.414%* -5.615%* -1.211
(0.270) (4.204) (1.587) (9.232) (2.745) (2.694)
Diseases 0.214 -3.201 -1.114 -14.973%* -3.758 -0.672
(0.273) (4.235) (1.617) (8.775) (2.788) (2.631)
Weeds 0.298 -4.458 -1.60 -22.699%* -5.057* -1.174
(0.280) (4.361) (1.650) (10.053) (2.822) (2.796)
Always 0.197 -3.032 -1.134 -21.895%* -2.029 -0.616
scouting (0.139) (2.189) (0.820) (10.355) (1.410) (1.691)
Sometimes 0.159 -2.475 -0.924 -23.771%* -1.563 0.274
scouting (0.136) (2.144) (0.805) (10.514) (1.383) (1.689)
Insurance 0.048 -0.821 -0.313 11.341%* 1.172 -1.562
(0.011) (1.692) (0.641) (6.833) (1.101) (1.761)
All -0.065 1.000 0.272 24 887*** 0.811 -1.486
Conventional ~ (0.125) (1.953) (0.734) (8.988) (1.325) (1.420)
All Organic -0.015 0.272 0.094 8.477 -0.259 0.493
(0.087) (1.380) (0.533) (5.554) (0.903) (1.474)
Primarily 0.149 -2.337 -0.981 4.702 -1.168 -2.529*
Conventional ~ (0.110) (1.726) (0.648) (6.634) (1.121) (1.416)
Primarily -0.152%* 2.407* 0.829%* 26.247%%* 1.511* 0.509
Organic (0.083) (1.309) (0.491) (5.932) (0.880) (1.088)
Education -0.019* 0.304* 0.126* 2,991 *** 0.177 -0.022
(0.909) (0.170) (0.064) (0.808) (0.113) (0.126)
Agel8 - 44 0.262 -3.986 -1.487 -7.119 -4.897*** 0.660
(0.171) (2.712) (1.01) (10.345) (1.774) (2.211)
Ageds - 64 0.240 -3.603 -1.348 -1.516 -4.424%%* 1.813
(0.169) (2.675) (1.01) (9.254) (1.706) (2.488)
Male 0.124 -1.797 -0.808 -17.310%**  -2.140** 0.616
(0.085) (1.349) (0.513) (5.866) (0.837) (1.444)




Table 7. Continued

(1) @) 3) () 5) (©)
Variable Status Quo  Accuracy: Accuracy: Historical  Educ/Res Private
Ninety- Eighty- Pest Institute Ag
Two Eight company
White 0.301 -4.432 -2.162 -22.636%**  -4793% -0.202
(0.234) (3.580) (1.615) (8.551) (2.461) (2.974)
All other 0.415 -6.344 -2.841 -20.579* -3.980 -3.319
race (0.256) (3.931) (1.738) (10.660) (2.659) (3.228)

Constant  -1.786%**  27.413%%* 10.674%%% 20705  22.199%*%*  ]].235%*
(0.375) (5.896) (2.260)  (19.981) (3.773) (4.996)

Chi2 p-value 0.0073 0.0087 0.0090 0.000 0.0003 0.2457
R-squared 0.106 0.102 0.109 0.215 0.138 0.066
Obs. 250 250 250 250 250 250

Note: Standard errors in parentheses *** 1%, ** 5%, and * 10% significance level.

Discussion and Conclusion

The 2017 Census of Agriculture reported a total of 435,610 specialty crop growers
(USDA-NASS, 2019). The willingness to pay estimates from our representative sample reveals
that growers place a high value on past pest presence, the source of information used by the app,
and the accuracy of the pest prediction component of the app. The total individual willingness to
pay for past pest presence is $10.03 million/month® and 120.4 million per year. This
contextualizes the valuation and concern for information on past pest presence in analyzing

future pests.

Likewise, regarding the source of information used by the app, the total willingness to
pay for information from an educational/research institution is approximately $4.2 million/month

($50.2 million/year). The total individual willingness to pay for information from private

8 This value is obtained by multiplying the willingness to pay estimates by the number of specialty crop producers
reported by the 2017 Census of Agriculture.



agricultural companies is approximately $3.3 million/month and $40.1 million/year. The
differences in the premium paid between these two attributes emphasize the degrees of trust
growers place in information and the source from which it is obtained. The presence of extension
workers from educational institutions such as land grant universities can explain the value placed
on information from these institutions. However, the literature presents a mixed record of
success for agricultural extension programs (Pan et al., 2018). A significant achievement of
extension programs has been the outcome of field school research on pesticide knowledge and
adoption (Godtland et al., 2004; Tripp, Wijeratne, and Piyadasa 2005; Van den Berg and Jiggins
2007; Pan et al., 2018). Despite the mixed success, decentralized models have argued that
information flows from researchers to extension agents, and from extension agents to contact
farmers (Kondylis et al., 2017). The decentralized information flow indicates contacts with
farmers by researchers through extension agents, hence a level of trust between these groups,
evident by almost a $1 million/month difference between educational/research institutions and

private agricultural companies' total willingness to pay.

Regarding the predictive accuracy for pests, the total individual willingness to pay is
approximately $6.8 million/month and $2.5 million/month for ninety-two and eighty-eight
percent, respectively. The difference in the total willingness to pay and the lack of heterogeneity
towards ninety-two percent predictive accuracy proves agricultural producers' homogenous

preference for a high-quality technology in pest management.

The USDA has since 2009 funded projects under the Plant Protection Act’s Section 7721
as part of a national program to strengthen infrastructure for pest detection, surveillance, and

mitigation (USDA-APHIS, 2023). Over a 15-year period (2009-2023), $809 million has been



invested, averaging $53.93 million annually (USDA-APHIS, 2023). The yearly funding includes
plant and animal health pest detection (USDA-APHIS, 2023). Despite the annual investment, it
is less than what specialty crop farmers are willing to pay annually for past pest presence
information on their farms ($120.4 million). Our results reveal producers support accurate,

reliable, and trustworthy information for pest management.

The effect of education on technology adoption has been studied extensively across the
literature (Harper et al., 1990; Khanna, 2001; Walton et al., 2010; Watcharaanantapong et al.,
2013; Lambert et al., 2015; Schimmelpfennig and Schimmelpfennig, 2016). Likewise, we
measure the effect of education on technology adoption using the alternative specific constant
(status/none). Education an integral part of the human capital increases adoption of the
smartphone pest technology; educated growers value the benefits these smartphone pest
management brings to their farms. This conclusion is in line with Khanna 2001 and reduces the
timing of adoption as concluded by Watcharaanantapong et al., 2013. In addition, education
increases the willingness to pay for other attributes of the technology, improving the significance

of education in adopting pest management technologies.

Similarly, organic growers, regard smartphone pest management technology as highly
beneficial on their farms. Again, organic growers increase the willingness to pay for most of the
smartphone pest management technology attributes. The reason for this can be explained by the
definition of organic farming by Lampkin (1994), “to create integrated, humane, environmentally
and economically sustainable production systems, which maximize reliance on farm-derived
renewable resources and the management of ecological and biological processes and interactions,

to provide acceptable levels of the crop, livestock, and human nutrition, protection from pests



and disease, and an appropriate return to the human and other resources”. The highlight of
protection from pests and diseases increases the importance of smartphone pest management
technology by organic growers to maximize farm-derived renewable resources for crop output.
Finally, the socio-demographic characteristics of growers play a significant role in the
willingness to pay for some smartphone pest management technology options. Age (-), male (-),
white (-), and all other races (-). These demographic outcomes indicate a negative effect of

demographics on willingness to pay levels.

Conclusion

We study the willingness to pay for pest management information using a smartphone pest
management technology. The results suggest that growers prefer to have a technology that helps
and provides information regarding pests (insects, diseases (pathogens), and weeds) on their
farms. Therefore, past pest presence options in their toolkit and reliance on information produced
by educational and research institutions with high predictive accuracy. Organic specialty crop
farming increases the preferences and willingness to pay for specific pest management features
compared to all other production systems. Similarly, education increases growers' adoption and
willingness to pay for pest management technology. Although most of our sampled growers have
had experience with a similar tool described for pest management, we realized that experience
with technology did not significantly affect the adoption and willingness to pay for technology

features.

Additionally, scouting for pests decreased growers' concern for past pest presence on
their farms. This is explained by the frequency of data received from scouting on their farms

compared to growers who do not regularly scout. Demographic effects on information sources



and past pest presence on farms are worth highlighting to understand how preference for

technology varies across growers.

In summary, we highlight the significance of pest management tools for specialty crop
production, an expanding and increasingly significant sector within the U.S. economy. The
growers' estimated valuations are more than government-provided support towards pests. The
total willingness to pay highlights the importance of addressing the issue of pests in farm
production, influencing productivity and farm profit of growers. Despite the conclusions raised
by the study, future research can investigate crop-specific grower preferences and willingness to
pay. The crop-specific analyses can be scaled nationally to understand growers’ preferences
using the farm resource region designated by the USDA-ERS. Again, to capture the crop-specific
grower preferences and willingness to pay. The regional approach invites the use of weather and

climate variables' effects on smartphone pest management technology adoption and attributes.



Appendices

Al: Survey Cheap Talk.

N8

In this survey pests refer to insects, pathogens (diseases), and weeds.
For the subscription services/mobile applications the characteristics are described as follows:

Source of information: This is where information provided by the risk prediction model is obtained. These sources could
be government agencies, education/research institutes, and private agriculture companies.

Historical pest: The risk prediction model uses past pests presence on your farm to predict current pest presence on your farm. This
feature maybe included or not included.

Accuracy (Quantify current pest): This feature represents the accuracy (percentage) of the risk prediction model to predict current
pest (insect, pathogens (diseases), and weeds) presence on your farm. There are three different types of accuracy, 92 percent, 85
percent, and 77 percent.

Price: This is the value of the subscription service/maobile application you want to purchase. The price is range between $16 per
month, $25 per month, $34 per month, and $42 per month.

When you make choices, please assume all other characteristics of the mobile applications are the same other than the

and respond as you would in reality.

A2

Table A2. Mean WTP Standard Deviation for Smartphone Pest Management Technology

Variables Models
Mixed Logit GN Mixed

Logit

Sd. Educational/Research Institution 0.011 6.067
(166.448) (6.571)

Sd. Private Agricultural Company 15.631%** 9.915%*
(9.697) (6.003)

Sd. Historical Pest 39.326%** 33.393%**

(6.410) (4.466)

Sd. Accuracy: Ninety-Two 1.046 0.961
(98.298) (17.551)

Sd. Accuracy: Eighty-Eight 9.373 0.919
(13.247) (10.422)

Sd. None/Status Quo 171.373%** -205.986%**

(37.268) (38.080)

Note: Standard errors in parentheses *** 1%, ** 5%, and * 10% significance level.
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