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Abstract 

The negative economic impacts of climate change on the agricultural sector have more 

commonly been explored through hedonic analysis of extreme temperatures on farmland values. 

Changing patterns of precipitation have received relatively less attention despite being an 

extremely important factor for crop productivity. We explore this knowledge gap via a hedonic 

price analysis of actual farmland transactions that occurred on contiguous US between 2019-

2020. We use two constructs of “drought” and find that regions facing higher frequency of 

droughts are likely to also have farmlands with lower land values. 
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1. Introduction 

Climate change can have implications for the agricultural economy through diminished crop 

yields and livestock productivity due to rising temperatures, frequent and severe droughts, and 

other extreme weather events. The seminal literature in economics has tried to capture the effect 

of climate change on the agricultural economy using Ricardian analysis (Mendelsohn, Nordhaus, 

and Shaw (1994); Schlenker, Hanemann and Fisher (2006); Deschênes and Greenstone (2012) 

among others). This literature finds a negative impact of rising temperatures on agricultural 

productivity (Schlenker and Roberts (2009)) and subsequently on the capitalized value of this 

productivity represented by farmland prices. The focus of much of this literature has remained on 

exploring the impact of rising temperatures. However, climate change can manifest in several 

forms of anomalous weather events. Chief among these, that have potentially severe implications 

for agriculture, are droughts. Droughts are periods of extreme water scarcity that can be caused 

by a combination of below average precipitation and high temperatures and that lead to loss in 

crop and livestock production. 

Few studies have attempted to study the impact of drought on the agricultural economy for the 

contiguous US. Kuwayama et al. (2019) explore the effect of drought measured through the US 

drought monitor on crop yields and crop revenue and find their results aligned with previous 

studies that showed a negative impact on agriculture. Since the study explores the impact on crop 

yields and revenues, it provides evidence on the immediate impact of a drought within a growing 

season. It does not, however, capture the long-term effect of rising temperatures and lower 

precipitation (which is the goal of a Ricardian analysis). Secondly, the US drought monitor, 

suffers from certain drawbacks. First, it is measured at a county level which precludes exploring 

within-county heterogeneity. Secondly, the drought index is used by governing agencies to 

provide disaster assistance in times of drought and thus maybe correlated with unobservables that 

determine land prices, leading to biased estimates. 

Hornbeck and Keskin (2014) compare the yield sensitivity to drought between regions with and 

without access to irrigation through the Ogallala Aquifer in United States. The study utilizes the 

Palmer Drought Sensitivity Index (PDSI) as a measure of drought. The index incorporates both 

temperature and precipitation into a single index and measures drought from the perspective of a 

water budget (i.e. demand and supply of water). However, the PDSI is calculated at a fixed time-
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scale and is often best suited to measure long-term hydrological droughts (Guttman, 1998) as 

opposed to agricultural droughts. 

Outside of the United States, Fezzi and Bateman (2015) have explored the multiplicative effect of 

temperature and precipitation on a rich dataset of farmlands across the Great Britain. They find 

that the negative effects of rising temperatures are mitigated somewhat if they are accompanied 

with higher precipitation. The context of their study may limit the results to geographical areas 

that experience cold and humid weather (such as the Great Britain). The US provides a suitable 

opportunity to explore this relation across more heterogeneous climatic conditions. 

In this study we explore this knowledge gap via the following analysis. We study the impact of 

“droughts”, as measured below, on farmland values obtained from actual farmland transactions 

that occurred in the US between 2005-2019. The hedonic analysis allows us to measure the long-

term economic impact of drought on the agricultural sector through its capitalization into 

farmland values. We measure drought in two ways. One, using the Standard Precipitation and 

Evapotranspiration Index (SPEI), a more recently developed drought index, akin to the PDSI but 

with the additional benefit of being a multi-scalar index. The SPEI incorporates the water budget 

approach, utilizing both temperature and precipitation data and can be computed at various time-

scales depending upon the purpose of the study (Vicente-Serrano, Beguerı́a and López-Moreno 

(2010)). For example, most agricultural droughts are computed over the period of 3-6 months 

period (Wang et al. (2020)). Second, by computing the multiplicative effect of precipitation and 

temperatures on land values following Fezzi and Bateman (2015). We also incorporate 

information on winter season precipitation, which is considered important for plant growth in the 

West. 

To the best of our knowledge, this is the first study that attempts to explore the impact of drought 

on farmland values for the contiguous US. We also add to literature using data based on real 

transactions of farmlands as opposed to county level survey data. There are two main advantages 

of this data as compared to county level survey data. First, by using a revealed preference 

measure of value, we avoid hypothetical bias that may arise from using the land-owner’s measure 

of land value (Bigelow, Ifft and Kuethe (2020)). Secondly, by using more fine-scale data, we are 

able to exploit within-county heterogeneity in weather and soil conditions. 
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2. Data 

We conduct our analysis using data on a repeated cross section of 404,735 parcel-year 

observations of farmland transactions in the US between 2005-2019. These were obtained from 

Corelogic Inc. We match this data set with current weather and long-term climate variables such 

as average daily temperature, growing degree days (GDD), extreme degree days (EDD), and total 

growing season precipitation. Following Schlenker et al. (2006) and Schlenker and Roberts 

(2009), GDD is computed as the total number of heat units during the growing period (1st March 

to 30th August) between 10-29 degree Celsius. The GDD so defined is considered to affect the 

growth of field crops positively by contributing to the cumulative temperature received by them 

during the growing period. We expect this effect to translate to higher farmland values in our 

study. EDD is defined as the total number of heat units during the growing period that recorded 

temperatures beyond the 29-degree Celsius mark. Temperatures beyond this critical threshold are 

expected to affect the plant growth negatively. We expect this effect to translate to lower 

farmland values in our project. The long-term climate variables are computed by taking rolling 

averages of current weather variables (measured over 10 and 25-year periods to check for 

robustness). This data is obtained from gridMET which is available at the spatial resolution of 

4km by 4km. Information on the SPEI was extracted the from the gridded data derived from 

spatially interpolating data from the Global Historical Climatology Network (GHCN) and made 

available by the National Oceanic and Atmospheric Administration’s (NOAA) National Centers 

for Environmental Information (NCEI). The raw SPEI values were used to construct drought 

measures, which are explained in detail below. In the future we aim at controlling the following 

other variables: (i) Measure of irrigation (Xie, Gibbs and Lark (2021)) (ii) Measures of soil 

characteristics obtained from SSURGO and (iii) Distance from urban centers (US Census data). 

3. Method 

Measuring drought 

1. Drought measured using SPEI: We obtained information on measured drought 

designations as per the categorization of the SPEI laid down by the US Drought Monitor 

(USDM) (Monitor (n.d.)). While the USDM categorizes drought into four categories 

depending on the intensity of drought, for simplicity, we pool all four drought categories 



 7 

into one single indicator of drought. Droughts can also be classified into short term or 

long term droughts (Monitor (n.d.)). Short term droughts (those covering <6 months) are 

most likely to have an immediate effect on agricultural production. Long term droughts 

that last more than 6 months are likely to affect hydrological and ecological 

characteristics of the landscape. Depending upon the purpose of the study, the SPEI can 

be computed over different time scales (1 to 72 months). For the purpose of this study, we 

focus on short-term droughts that affect agricultural production and thus rely on the 6-

month SPEI in this study. We construct two drought indicators, one for the growing 

season and another for the winter season. 

Growing season drought =1 if parcel was drought designated as per the US Drought Monitor’s 

categorization during the growing period of interest (March-August of current year), 0 otherwise. 

Winter season drought =1 if parcel was drought designated as per the US Drought Monitor’s 

categorization during the off-season of interest (September of last year – Feb of current year), 0 

otherwise. 

The drought designations were then aggregated into 25 year rolling counts in order to facilitate 

the estimation of long-term effects of agricultural drought. For example, for the year 2005, we 

count the number of times during the last 25 years (1980-2004) the parcel was drought designated 

as per our definition. 

2. Drought as measured by the multiplicative effect of precipitation and temperature: 

Temperatures beyond a threshold that is critical for plant growth can be detrimental for 

agricultural production. The interaction of the long-term rolling averages of EDD and 

total precipitation helps us measure drought. We use post-estimation analysis to compute 

the average partial effect of precipitation at different intensities of EDD. 

Estimating equation 

This information is used to estimate the following equations: 

Equation 1: Using USDM drought designations: 

𝑙𝑛𝑌𝑖𝑡 = 𝛼 + 𝛽1𝐷𝑖𝑡
𝑔
+ 𝛽2𝐷𝑖𝑡

𝑤 + 𝑠𝑠𝑡 + 𝑐𝑗 + 𝑣𝑡 + 𝜖𝑖𝑡  
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Equation 2: Using the multiplicative effect of precipitation and temperature 

𝑙𝑛𝑌𝑖𝑡 = 𝛼 + 𝛽1𝐺𝐷𝐷𝑖𝑡 + 𝛽2𝑃𝑖𝑡 + 𝛽3𝐸𝐷𝐷𝑖𝑡 + 𝛾𝐺𝐷𝐷𝑖𝑡 × 𝑃𝑖𝑡 + 𝛿𝐸𝐷𝐷𝑖𝑡 × 𝑃𝑖𝑡 + 𝑠𝑠𝑡 + 𝑐𝑗 + 𝑣𝑡 + 𝜖𝑖𝑡 

𝑌𝑖𝑡 are real farmland values recorded between 2005 to 2019, 𝐺𝐷𝐷𝑖𝑡 and 𝐸𝐷𝐷𝑖𝑡  are the 25-year 

rolling averages of growing degree days and extreme degree days, respectively, for parcel i in 

year t. 𝑃𝑖𝑡 is the 25-year rolling averages of growing season and winter season precipitation, 

respectively, in parcel i and year t. We control for state trends 𝑠𝑠𝑡, county fixed effects 𝑐𝑗, and 

time fixed effects 𝑣𝑡. This allows us to isolate the effect of long-term climate variables on values 

from other confounding factors (such as the effect of state specific policies and trends, county 

level time-invariant characteristics, and annual shocks to the entire economy that may also impact 

land prices). The estimates 𝛽1, 𝛽2, 𝛽3, 𝛾 and 𝛿 are of primary interest to us. Post-estimation 

analysis of these estimates can reveal the marginal effects of precipitation at different levels of 

temperature on the land values. The equations are solved using a Pooled Ordinary Least Squares 

(POLS) approach. 

Post-estimation analysis 

Marginal effect of growing season precipitation at different levels of GDD = 

𝐸 [
∂𝑌

∂𝑃
|𝐺𝐷𝐷 = 𝑥] = 𝛽2 + 𝛾𝑥 

Marginal effect of growing season precipitation at different levels of EDD = 

𝐸 [
∂𝑌

∂𝑃
|𝐺𝐷𝐷 = 𝑥] = 𝛽2 + 𝛿𝑥 

4. Results 

The regression results are summarized in Table 1. Our results reveal that both long-term higher 

precipitation and GDD are associated with higher land values, which are in line with existing 

literature (Table 1, Models 1 and 2) since they are linked mostly with conditions conducive to 

crop growth. On the other hand, higher EDD values are associated with lower land values (Model 

2). Similarly, a one unit increase in count of drought during the growing season is weakly 

associated with a 0.8% decrease in land values (p<0.1) (Table 1, Model 3). A unit increase in 

winter season droughts is relatively strongly associated with 1.2% decrease in land values 
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(p<0.05) (Table 1, Model 3). This points towards the importance of winter precipitation in 

determining soil moisture and agricultural productivity. 

Table 1: Pooled OLS of log-land values on 25-yr rolling climate variables 

  Model 1 Model 2 Model 3 

Precipitation, mm 0.000962*** 0.000627**  

 (0.000231) (0.000283)  

GDD 5.15e-04*** 0.001376***  

 (9.25e-05) (0.000167)  

Precipitation * GDD -2.44e-07 -1.14e-07  

 (1.53e-07) (2.39e-07)  

EDD  -0.001485***  

  (0.000272)  

Precipitation * EDD  -2.63e-06***  

  (5.16e-07)  

Growing season 

drought 
  -0.00792* 

   (0.00455) 

Winter season drought   -0.01156** 

   (0.00417) 

Num.Obs. 404735 404735 404293 

State * Year FE X X X 

County FE X X X 

Year FE X X X 

* p < 0.1, ** p < 0.05, *** p < 0.001 

Standard errors clustered at county level in parentheses; GDD = Growing Degree Days, EDD = Extreme 

Degree Days; FE = Fixed Effects; Precipitation, GDD, and EDD are 25-year rolling averages of the 

corresponding weather variables for the growing season; Drought variables are 25-year rolling counts of 

drought designation. 
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Post estimation analysis of the interaction terms are summarized in Figures 1 and 2. The 

interaction of precipitation and GDD does not show any statistically significant impact on land 

values - the marginal effects were computed at different values of GDD (Figure 1). On the other 

hand, the precipitation is found to mitigate some of the negative impact of EDD, but only at very 

low EDD values. This mitigating effect becomes statistically insignificant at higher EDD values 

and ultimately fails to mitigate the negative impact at values of EDD higher than 300 (Figure 2). 
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We checked for robustness by including current weather variables and by replacing the 25 year 

aggregates with 10 year aggregates. Our results remain robust to these minor edits. We choose to 

exclude the current weather variables since they are not likely to influence land values within 

short time periods. Furthermore, the correlation between current weather and long-term weather 

variables is very high (~0.75 for precipitation & ~0.9 for temperature) which can lead to 

difficulty in attributing estimates to either the climatic (long-term) or the weather variables.  

Conclusions 

This study aims at evaluating the impact of drought on farmland values through a Ricardian 

analysis. We measure drought in two ways: (i) as the multiplicative effect of temperature and 

precipitation (a measure that is not as well explored in existing literature), (ii) by utilizing the 

Standard Precipitation and Evapotranspiration Index (SPEI), an established measure of drought in 

the agronomic and climatology literature. We find evidence that areas with higher prevalence of 

droughts, as measured via both constructs, are associated with lower farmland values. The study 

can add to the knowledge on the potential impact of climate change and the related aridification 

(such as that observed in South-West US) on the agricultural economy through rigorous empirical 

evidence using fine-scale data that has not yet been explored in the context of the US.  
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