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Abstract

Globally, agriculture is a critical sector for achieving greenhouse gas (GHG) reduction targets.
However, systematic cross-country comparisons for specific crops or livestock activities and
benchmark data on emission intensities for traded agricultural products remain scarce, but are
important to accurately understand direct and indirect carbon footprints from agriculture and food
systems. Using emissions intensity data compiled from eight different sources, this paper aims to
provide production-based GHG emissions metrics for country-commaodity pairs along with an
analysis of variance (ANOVVA) of emissions intensities embodied in trade and consumption in
support of trade-related strategies for reducing GHG emissions from the food system. We find
significant emissions intensity disparities across commodities, countries, and data sources and that
strategies to mitigate emissions through enhanced productivity, trade optimization, and dietary shifts,
can all be achieved through international trade. These findings have important implications when it
comes to designing effective policy recommendations to promote environmental sustainability in

agricultural production and trade.
Keywords: Agriculture, Sustainability, Greenhouse Gas (GHG) Emissions, CO2 equivalents
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1. INTRODUCTION

The Paris agreement, signed by 196 Parties at the UN Climate Change Conference (COP21), calls
for action to reduce global carbon dioxide (CO2) emissions by 45 percent by 2030 to hold “the
increase in the global average temperature to well below 2 Celsius degrees above pre-industrial
levels.” A key new outcome from last year’s COP28 summit in Dubai was to focus on climate
action for agriculture and food systems with funds and pledges aimed at transforming the global
food system to achieve the goals of “sustainable agriculture”. Indeed, the global agri-food industry
is a significant contributor to greenhouse gas (GHG) emissions (Lamb et al., 2021), being
responsible for up to one-third of total anthropogenic GHG emissions (Crippa et al., 2021).
Therefore, the food system plays a critical role in mitigating climate change and to achieve GHG
emissions reduction targets.

Reducing agricultural emissions from field crops and animal production is an important
component to achieving decarbonization. According to the US Environmental Protection Agency
(EPA, 2024), annual GHG emissions from crop and animal output in 2022 constituted 10 percent
of total US emissions. Key agricultural GHG emissions include carbon dioxide (CO2), nitrous
oxide (N20), and methane (CH4). To evaluate GHG emission footprints, nitrous oxide and
methane can be converted to "carbon dioxide equivalent” (CO2e) based on their global warming
potential (GWP) impacts on climate change. However, agricultural GHG emissions are more
difficult to measure than emissions based on burning fossil fuels. Methane emissions are primarily
from livestock digestion (i.e., enteric fermentation), the way in which livestock manure is managed,
and from food waste. Nitrous oxide emissions result from agricultural fertilizer application to soils,

which varies widely across countries and climate zones, and from manure management. Finally,



direct CO2 emissions come from increased decomposition crop residues in soils and from
converting natural vegetation to agricultural activity.!

Moreover, an accurate understanding of a country’s emissions footprint in the food system
should account for emissions embodied in agricultural trade (Foong et al., 2022). Trade affords
food deficit regions the ability to increase consumption levels through imports without putting
pressure on domestic resources and increasing GHG emission footprints locally. For food surplus
countries, however, increased exports can drive GHG emissions and cropland expansion that is
unrelated to domestic consumption levels. Very little benchmark data calculating the emission
intensities for traded agricultural products is available to compare emission intensities across
countries and decompose trade-adjusted GHG emission footprints from future scenarios where
new trade policy measures are being considered or erected to prevent CO2 and non-CO2 leakage.
Specifically, the lack of global climate policy coordination has raised questions about the
relationship between national climate measures to reduce greenhouse gas emissions on the
domestic market and international trade where domestic emission reductions could be offset by
increases in “imported” emissions from other countries through international trade (Felder and
Rutherford, 1993; Copeland and Taylor, 1994; Bohringer, Carbone and Rutherford, 2016).

In this context, identifying key drivers of farm-level agricultural emission footprints across
countries is important to improve production practices and enable more effective GHG mitigation
strategies and policies. Further, translating farm-level emissions to emission footprints embodied
in international trade of agricultural products provides a more complete picture of GHG emissions
in consumption vis a vis international trade, particularly for food deficit and emerging market

countries who are experiencing rapid dietary transitions. While many federal agencies, private

" CO2 emissions can also be partially offset by increased crop residues and plant matter stored in cropland soils.



thinktank and modeling organizations, and academic studies have evaluated GHG footprints of
crop and livestock production, comparisons across countries for a given crop or livestock activity
has not been systematically explored. Similarly, within the global modeling community policies
to curb future agricultural GHG emissions are based on differing baselines and reference years,
product aggregations, projection periods and time horizons, and assumptions by which market
forces and agricultural production, consumption and trade generate GHG emissions.

What does the current data tell us about the level of GHG emission footprints across
countries? How much do GHG emissions intensities vary across countries for a given crop or
livestock product? To what extent do differing modeling frameworks and baselines lead to
differing emissions intensities across countries? To this end, many initiatives exploiting different
methods and models based on various databases have led to different GHG emissions estimates
from the food system (e.g., Crippa et al., 2021; Tubiello et al., 2021), which can cause
fragmentation in reporting GHG emissions from sectors and activities, thereby generating
unnecessary costs for stakeholders (Deconinck et al., 2023). To fill this gap in the literature, this
paper pursues two main objectives. The first is to provide granular GHG emissions metrics for
country-commodity pairs while broadening perspectives on the current range of emissions
intensities across countries, products, and data and modeling sources. Hong et al., (2021) introduce
global land-use emissions and intensity metrics for products or countries over 57 years mainly
using the FAOSTAT database and bookkeeping models. Poore & Nemecek (2018) illustrate
environmental impact indicators including GHG emissions from the food system by an in-depth
meta-analysis of 570 studies, estimating global GHG emissions within and between products.
Second, we analyze three major strategies for reducing GHG emissions from agriculture and food

systems, presenting the current state of carbon footprints embodied in trade and consumption,



which provides evidence on the role of trade in reducing GHG emissions from agriculture and
food systems.

To do so, we build a database for the farm gate emissions intensities across agricultural
commodities, countries, and data sources with collected data from 8 different sources, exploiting
a life-cycle analysis (LCA) based (Agri-footprint), three formula-based (Food and Agriculture
Organization Statistics, FAOSTAT; Comprehensive Accounting of Land-Use Emissions, CALUE;
International Food Policy Research Institute, IFPRI), and four model-based (Aglink-Cosimo;
Global Change Analysis Model, GCAM; Global Biosphere Management Model, GLOBIOM;
Global Trade Analysis Project, GTAP) data sources.

Using the comprehensive database established, we (i) present the current state of emissions
intensities in a highly disaggregated way, by country, by product, by data source, and where
possible, by GHG emissions source, focusing on the main producing countries across major
agricultural products, (ii) examine the factors contributing to the variation in emissions intensities,
(iii) extrapolate the implications of the variability in emissions intensities, and (iv) estimate the
emissions intensity embodied in trade and consumption to link production-based emissions
intensities to trade-based and consumption-based emissions intensity to shape how GHG
emissions are embodied in trade and consumption, which takes a considerable share in total GHG
emissions.

The emissions intensities of major agricultural products vary significantly, with livestock
generally having higher emissions intensity than crops. Beef has the highest emissions intensity,
vastly exceeding that of crops like rice, maize, and soybean. Among livestock, chicken has the
lowest emissions intensity, even lower than rice, which has the highest emissions among crops.

The cross-country and cross-data source variation account for the variation of emissions intensities.



Country-specific factors such as yield, agricultural practices, and fertilizer application rates make
differences in emissions intensity. The analysis further reveals that different data sources account
for emissions intensities through the scope of farm gate emissions and estimation methods, adding
to the complexity of comparing intensities. Varying emissions intensities have economic
implications, especially when considering the social cost of carbon. The study suggests strategies
to reduce agricultural emissions through improved productivity and the sourcing of agricultural
products through trade, highlighting the role of international trade in shifting consumption patterns
towards lower carbon footprint products and countries.

The rest of the paper proceeds as follows. Section 2 reviews literature on GHG emissions
estimates in agriculture and the relationship between trade and the environment. Section 3
demonstrates the data collection process from multiple data sources to define the scope of the
database. Section 4 analyzes the farm gate emissions intensities based on production, consumption,

and trade. Section 5 concludes with policy implications.

2. LITERATURE REVIEW

The importance of the food system including agricultural production has been emphasized in
mitigating climate change and achieving the goals of the Paris Agreement (Borsellino et al., 2020;
Clark et al., 2020; Fanzo et al., 2021; Garnett, 2011; Rosenzweig et al., 2020; Vermeulen et al.,
2012; Zurek et al., 2022). The NDC reports submitted to the UNFCCC Secretariat every five years
document each party’s plans and targets across sectors including agriculture to meet the ends of
the Paris Agreement and economists strive to estimate the environmental impacts of particular
environmental policies, trade measures, and sectors (Arndt et al., 2022; Korpar et al., 2023;

Parlasca & Qaim, 2022). Plans and results depend on GHG emissions estimates. Previous studies



(see for e.g., Crippa et al., 2021; Tubiello et al., 2021) have shed considerable light on the emission
footprints of the agri-food system and Hong et al. (2022), especially, examined the land use
emissions embodied in international trade using emissions data from FAO and trade data from
GTAP. However, specific agricultural product (crop and livestock)-country combinations have not
been examined rigorously. The main results of the papers vary. For example, the total GHG
emissions from the food system are varying: 14.6 gigatons (Gt) of CO2 eq to 16 Gtto 18 Gt (Crippa
et al., 2021; Hong et al., 2021; Tubiello et al., 2021, respectively). Moreover, Friedlingstein et al.
(2023) reports the 2023 carbon flux from land use, land-use change, and forestry (LULUCF)
emissions ranging from 2.4 Gt to 6.6 Gt of CO2 per year from a total of 26 different models.?

Earlier research on trade and the environment provides important implications for our study
though studies are centered on manufacturing sector. Firstly, more productive plants present lower
emissions intensity (Shapiro and Walker, 2018). Related to the relationship between productivity
and emissions intensity, emissions intensities are varying across countries (Copeland et al., 2022).
Emissions embodied in trade take substantial part of total GHG emissions (Copeland et al., 2022;
Eaton et al.,, 2016). Trade have impacts on the environment through scale, technique, and
composition effects (Copeland and Taylor, 1994). Among those effects, the technique effect refers
to reducing emissions intensity through the adoption of environmentally friendly technologies.
The decomposition of changes in emissions reveal that the technique effect by environmental
regulations accounts for a larger share in the changes (Antweiler et al., 2001; Cherniwchan, 2017,
Levinson, 2015; Shapiro and Walker, 2018).

In agricultural production, countries demonstrate varying levels of GHG emissions per unit

of land area or per unit of food energy (Hong et al., 2021). Varying emissions intensities at the

2 The Global Carbon Budget (2023) includes 3 bookkeeping models, 3 peat emissions models, and 20 dynamic
global vegetation models.



farm gate present opportunities for reducing GHG emissions, particularly in countries with high
emissions. Two effective strategies are the adoption of technologies to produce less GHG
emissions per equivalent production and the achievement of productivity gains. The technique
effect aligns with the first strategy. Cleaner technologies and best management practices, such as
precision agriculture and crop rotation, have been shown to decrease emissions intensity by
minimizing the use of inputs like fertilizers, which are major sources of GHG emissions in crop
production. Trade openness can facilitate the transfer of such technologies and pratices across
borders, enabling countries to produce agricultural goods more sustainably (Copeland & Taylor,
2004). Moreover, reduction of GHG emissions at the farm gate can be achieved by the
improvement of productivity through a channel of intermediate input trade. Yield gains lead to
lower emissions intensity in agricultural production. Reductions in trade cost of agricultural inputs

are found to help close the productivity gap between countries (Farrokhi & Pellegrina, 2023).

3. DATA
We created an extensive database of mass-based farm-gate emissions intensities of four major
crops (maize, wheat, soybean, and rice) and four livestock (beef, chicken, pork, and milk) in top-
producing countries with eight data sources (Aglink-Cosimo, Agri-footprint, CALUE, FAOSTAT,
GCAM, GLOBIOM, GTAP, and IFPRI). Table 1 presents the overview of data sources in key
aspects. Depending on data sources, different sets of data (total GHG emissions, production
quantity, and/or emissions intensities) were extracted. We calculated the emissions intensity of a
product by the ratio of total GHG emissions and production quantity.

Where emissions intensities are available, we used the emissions intensity data without any

modification. In cases where no production quantity is available from a given data source, we used



the country-product specific production quantity from FAOSTAT. However, depending on data
availability, broader product categories including individual products (e.g., cereals including maize,
oil seeds including soybean) were used to represent the emissions intensity of an individual product.
Three GHG, CH4, CO2, and N20, were extracted to capture farm-gate emissions. Most data
sources provided GHG emissions data in CO2 equivalents, using various Global Warming
Potentials (GWPs) for conversion. When emissions were given as CH4 or N20O, we converted
them to CO2 equivalents using the specified GWP in the data source documentation.

We extracted top-producing countries — taking at least 80 percent of world production in
crops and 60 percent in livestock — in each agricultural product, considering comparability across
data sources, the importance of top-producing countries in the total GHG emissions, and the issues
of outliers.® Thus, a different number of countries are assigned to each product: maize (9 countries),
soybean (3), rice (8), wheat (15), beef (9), chicken (10), pork (4), and milk (12). The year 2017
was selected as the reference year for comparison in the database given its wide availability across
data sources. Due to a lack of availability, the year 2020 was selected for two data sources, GCAM
and GLOBIOM.

Land use change (LUC) emissions are excluded from the database. It is complex to estimate
LUC emissions due to their long-lasting characteristics and complicated observation. Emissions
by deforestation last more than a year and capturing how lands are being assigned to agricultural
products is not easily observable and trackable. Thus, we exclude the LUC emissions in our
database due to a lack of availability across data sources and difficulty in distributing aggregated

LUC emissions into individual products.

% The production quantity is based on the average value (2017-2020) from the FAOSTAT.
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Table 2 presents the descriptive statistics for the emissions intensities of eight products.
Overall, the median and mean emissions intensities of crops are, by and large, not as high as those
of livestock. The median emissions intensity of beef is almost 19 times that of rice, showing the
highest emissions intensity, 95 times that of maize and wheat, and 190 times that of soybean.
Chicken, showing the least median emissions intensity in livestock, however, presents lower mean
and median emissions intensities in comparison with rice, the greatest emissions intensity in crops.
Even in conversion to the calorie-based emissions intensity, chicken (1,220 kcal per kg) shows a
relatively smaller mean and median emissions intensity compared to rice (2,800 kcal per kg).
Among crops, rice shows the highest mean (1.40 kg of CO2 eq per 1 kg of rice) and median (1.21)

emissions intensity; soybean has the lowest mean (0.19) and median (0.10) values.

4. EMPIRICAL ANALYSIS

With the database established from eight different data sources based on specific criteria, we begin
by 1) presenting the range of emissions intensities for eight major agricultural products across
countries and data sources, ii) implementing a variance analysis to examine the contribution of
data sources and countries to the variation of emissions intensities, 1ii) examining the factors for
the cross-country and cross-data source variation, and iv) extending the range of emissions
intensities across data sources to SCC to capture the varying costs of negative externalities by

agricultural GHG emissions.

4.1. Cross-country variation of emissions intensities

The global maize production in 2021 was 1.2 gigatons. The top-producing country was the United

States (383 MMT), followed by China (273 MMT) and Brazil (88 MMT). A total of 196 MMT of
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production was traded. China was the largest importer with 33 MMT, followed by Mexico (18
MMT) and Japan (15 MMT). Yield and synthetic fertilizer use are the critical factors to varying
emissions intensities across countries. GHG emissions from the application of synthetic fertilizers
take up the largest part of total GHG emissions from maize production. First of all, according to
Fertilizer Use by Crop (FUBC, 2022), China has the highest synthetic fertilizer application rate
(189.6 kg/ha) among the top-producing countries; Argentina has the lowest rate (48.7 kg/ha).* In
maize production, top-producing countries show large productivity gaps. Per hectare, maize
production in the United States exceeded that of Brazil by 138 percent.® Among the top-producing
countries, the United States, Ukraine, Argentina, and China show higher yields while Brazil,
Mexico, and India present lower productivity. These differences in the application rate of fertilizers
and productivity yield the cross-country variation in the maize emissions intensity.

The global soybean production in 2021 was 373 MMT. The top-producing countries were
Brazil (135 MMT), the United States (122 MMT), and Argentina (46 MMT), consisting of more
than 80% of the global production. More than 80% of soybean was exported to another place from
where it was produced in 2021. China, the largest importer, imported around 96.5 MMT of soybean
in 2021 and the second largest importer, Argentina, imported a much smaller amount of 4.9 MMT
of soybean. Imported soybean in China is used for both food and feed; feed use is modestly larger
than food use. Over time, the soybean yields from three countries have increased at similar rates.
Different levels of GHG emissions from nitrogen fertilizer use account for the cross-country

variation in emissions intensities. According to Fertilizer Use by Crop (FUBC), soybean

4 China (1,896 kg/ha), USA (1,576), Mexico (1,234), Indonesia (1,171), Ukraine (1,068), India (1,042), South Africa
(1,000), Brazil (685), and Argentina (487). Data are based on FAOSTAT.

5 Per hectare, the United States produced 11,089.5 kg, followed by Ukraine (7,681.8), Argentina (7,429.6), China
(6,291.0), Indonesia (5,695.7), South Africa (5,426.1), Brazil (4,649.7), Mexico (3,852.2), and India (3,199.3) in
2021. Data are based on FAOSTAT.
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production, generally, requires less amount of N fertilizers compared to other crops such as maize
and wheat. Brazil applied 8.78 kg of N fertilizers per hectare while the United States and Argentina
used 5.34 and 3.49 kg/ha, respectively. Given similar productivity across top-producing countries,
the amount of N fertilizers applied to soils is a key factor in the cross-country variation of
emissions intensities in soybean.

Rice is the most important staple food in terms of food security as rice feeds more than half
of the global population. According to FAOSTAT, China produced 213 MMT in 2021, followed
by India (194 MMT), Bangladesh (56 MMT), Indonesia (54 MMT), Viet Nam (44 MMT), and
Thailand (33 MMT). CH4 emissions from organic matter in the flooded rice paddy fields take the
largest portion of the total GHG emissions in rice production. Owing to this additional emission
source, rice cultivation, the overall farm-gate emissions intensity of rice are higher than those of
maize, wheat, and soybean. In the top eight rice-producing countries, taking 80 percent of global
rice production, the mean emissions intensities are highly variable across countries, which is
illustrated in figure 1. The Philippines, the 6™ in global rice consumption, presents the highest
mean emissions intensity, followed by Thailand and Indonesia among the top rice-producing
countries.® The higher emissions intensities of the three countries stem from higher seasonally
integrated CH4 emission factors for rice cultivation - 27.5 gram per m? for the Philippines, 16 for
Thailand, 18 for Indonesia, and 15.7 for the average of Asian countries - in the flooded rice paddy
fields given universal scaling factor for the rainfed rice and upland rice and correction factor for
organic amendments. In addition to emission factors, the Philippines and Thailand also present

low rice yields compared to other Asian countries, which leads to high rice emissions intensities.

6 The rank is based on food use in rice products in 2021 from FAOSTAT.
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The rice emissions intensity varies regionally as the main source, rice cultivation, in the rice
emissions intensity depends on the agricultural practices (Qian et al., 2023).

Beef is one of the key products in reducing GHG emissions owing to its high emissions
intensity compared to other agricultural products. The United States is the largest beef producer in
the world with 12.7 MMT in 2021, followed by Brazil (9.8), China (7.0), Argentina (3.0), Mexico
(2.1), Australia (1.9), Russia (1.7), France (1.4), and Canada (1.3). A key feature of figure 2 is that
countries in Latin America show higher and wider beef emissions intensities across data sources
compared to other major beef-producing countries. Two explanations account for this pattern. CH4
emissions from enteric fermentation, a digestive process in ruminant and non-ruminant (to a much
lesser degree), are the largest emission source from beef production. The IPCC Guidelines on
emission factors for enteric fermentation vary across regions due to differences in typical animal
size, animal diet, and the level of activity animals do. For example, the emission factor for beef in
Latin America (56 kg of CH4 per head per year) is larger than that of countries in North America
(53 kg of CH4 per head per year).” The age at slaughter (“time to market”) contributes significantly
to the total emissions associated with each kg of product. The time to market can vary significantly
across countries (reference). Another important factor is the carcass weight at the time of slaughter.
Each country produces beef in different ways: production system (pasture-fed and grain-fed), cattle
type (temperate or tropical), herd size (small to large), and breeding (degree of breeding intensity).
There are yield gaps in beef production across countries; developed countries generally show

higher productivity.® Heavier carcass weight per head leads to a lower emissions intensity. There

7IPCC 2006, Volume 4, Chapter 10, Table 10.11. In 2019 Refinement to the 2006 IPCC Guidelines, the emission
factors for enteric fermentation presented updated values — 64 kg of CH4 per head per year in North America and 56
kg of CH4 per head per year in Latin America — which are different from the 2006 values. Many data sources in our
database are based on the IPCC 2006 Guidelines.

8 According to FAOSTAT, in 2021, per head, the US produced 370 kg, Canada 363 kg, France 320 kg, Australia 300
kg, Mexico 249 kg, Brazil 243 kg, Argentina 230 kg, Russia 214 kg, and China 148 kg.
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is a variation in the carcass weight across countries. Overall, the carcass weight of Argentina (230
kg per head in 2021) and Brazil (360 kg) is lower than that of Canada (420 kg) and the United
States (370 kg).® Breed, physiological characteristics (e.g., gestation length), feed type and intake,
and management practices (e.g., grazing management, housing, etc.) make these differences in the

carcass weight ratio. Productivity-related factors account for the cross-country variation.

4.2. Cross-data source variation of emissions intensities

Different sets of emission sources across data sources can account for the variation of emissions
intensities across data sources. For crops, crop residues, burning of crop residues, rice cultivation,
and application of synthetic fertilizers are the standard set of emission sources across data sources.
Some data sources, however, use additional emission sources. Agri-footprint includes GHG
emissions from the application of organic fertilizers (manure), lime use, and energy use. Similarly,
GTAP also contains the GHG emissions from energy use on farms. IFPRI additionally includes
the GHG emissions from pesticide use. To investigate the role of additional emission sources,
where available, we disaggregate the emissions intensity by emission source. Table 5 demonstrates
the emission intensity of agricultural products by emission source. Agri-footprint includes
additional emission sources, energy use, lime, and manure, which present a meaningful magnitude
in the total emissions intensity. The mean of maize emissions intensity in Agri-footprint is 0.26 kg
of CO2 equivalent per kg of maize, which is composed of crop residues (0.04), energy use (0.06),
lime (0.03), manure (0.01), and synthetic fertilizers (0.12). Along with crop residues and synthetic
fertilizers, other additional emission sources take 40 percent of the mean of maize emissions

intensity in Agri-footprint. IFPRI contains the GHG emissions from pesticide use. It takes a small

® The carcass weight ratio is calculated using stocks and production quantity from FAOSTAT.
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share (8%) but is still bigger than the share of crop residues burning (6%). When defining the farm-
gate emissions, the scope of emission sources accounts for the variation of emissions intensities
across data sources.

The Global Warming Potential (GWP) presents a framework for conversion rates for GHG
gases, especially CH4 and N20 gases, to the reference gas, CO2. Most data sources in our database
used the GWP values adopted in the [IPCC Assessment Reports (AR) while Agri-footprint is based
on the EF 3.0 made by the European Commission. For the same amount of CH4 and N20O gases,
different GWPs result in different estimates of CO2 equivalent gas. For example, the conversion
rates of 1 kg of CH4 gas range from 21 to 36.8 kg of CO2. 1 MMT of CH4 gas in IFPRI using the
AR2 GWP (21 kg of CO2 equivalent for 1 kg of CH4) is converted to 21 MMT of CO2 equivalent
gases while the same amount of CH4 in Agri-footprint (36.8) is translated into 36.8 MMT. Even
within the same AR report, there is variation in the GWPs. CALUE and FAO adopt the GWPs
from the IPCC Fifth Assessment Report in converting non-CO2 emissions into CO2 equivalent
emissions; however, CALUE uses the AR5 with the climate-carbon feedback and FAO does the
AR5 without the feedback. The AR5 with climate-carbon feedback provides higher conversion
rates for CH4 and N20O: 34 kg of CO2 equivalent with feedback and 28 without feedback for CH4
and 295 with feedback and 265 without feedback for N20O. 6 kg of difference for 1kg of CH4 gas
in conversion to CO2 equivalent emissions seems marginal but it can lead to a drastic gap in total

GHG emissions.

4.3. Analysis of Variance by country and data source
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We implement a two-way Analysis of Variance (ANOVA) to investigate the extent to which cross-
country and data-source variations contribute to the variation in emissions intensities.'? Table 3
presents the results from analysis for the variation of emissions intensities by country and data
source. A relatively greater value of sum of squares (SS) compared to another indicates more
attribution to the variation of emissions intensities for a given product. However, we need to use
caution when interpreting the SS values in explaining the variation of emissions intensities as it is
highly likely to have a higher SS value with more observations given the SS formula. To address
this issue, we use the mean squares (MS) to determine which source is more attributed to the
variation of emissions intensities. The column of MS and Share reveal that the cross-country
variation is more attributed to the variation of emissions intensities in rice, beef, chicken, and pork
while the cross-data source variation is more attributed to the variation in maize, wheat, and milk.
There is no noticeable difference between the variables in soybean. Overall, we find that depending
on commodities, the cross-country or cross-data source variation is more pronounced in accounting
for the variation of emissions intensities while no single commodity exhibits overwhelming

dominance over the others in accounting for this variation.

4.4. Variation of emissions intensity in total GHG emissions and social cost

In Table 6, we report the extremes (min and max) of emissions intensities for country-product pairs
and estimate differences in the GHG emissions and social cost of carbon for the pairs. Across
products, the Brazil-beef pair shows the largest gap in total GHG emissions. Depending on data

sources, Brazil can produce 238 MMT of CO2 equivalent gases to as much as 508 MMT of CO2

0 As we are mainly interested in the sum of squares for each variable instead of implementing post-hoc statistical
tests and selecting the best model, the interaction term between countries and data sources is excluded and the tests
for normality and homogeneous variance are not performed here.
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equivalent gases in beef production. Across data sources, China and the United States also present
substantial gaps in total GHG emissions from beef production. The ranges of total GHG emissions
for the two countries in beef production are 107 and 103 MMT of CO2 eq, respectively. Along
with beef, the top rice-producing countries, China and India, show huge differences in GHG
emissions in rice production depending on data sources. The gaps in the China-Rice and India-
Rice pairs are 120 MMT and 108 MMT of CO2 equivalent gases.

Climate change accelerated by GHG emissions induces negative externalities throughout
the economy. The social cost of carbon (SCC) measures the economic cost of an additional amount
of CO2 emissions, capturing the marginal effects of climate change. Beyond presenting the
variation of emissions intensities across data sources and estimating the range of related GHG
emissions, we link the variation of GHG emissions to the economic cost, using estimates from
Ricke et al. (2018).1! As documented in Table 6, China, India, and the United States indicate high
SCCs over 100 dollars per ton of CO2: 188.61, 173.61, and 111.71 dollars per ton of CO?2,
respectively. While the Brazil-beef pair presents the widest range of GHG emissions (269 MMT
of CO2 eq), the India-milk pair does the widest range of SCCs (29 billion dollars). It is noteworthy
that, even in a relatively low production quantity, the combination of a large gap in emissions
intensities across data sources and a high SCC can lead to larger SCC values in the end. For
example, China produces almost half of the US beef production; however, due to a wider gap in

emissions intensities (2.5 times the gap in the US) and high SCC (around 70% higher than the US),

" Depending on the selection of methodologies and assumptions, the CSCC can vary. We chose median CSCC
values simulated from a specification based on Burke, Hsian, and Miguel (2015) long-run model with 5 lags, central
damage parameters, central climate projection parameters, SSP1 (shared socioeconomic pathway) based on low
challenges to mitigation and adaptation, rcp60 (representative concentration pathway), fixed prtp (pure rate of time
preference), eta (elasticity of marginal utility), and the fixed discount rate of 3. Please see Ricket et al. (2018) for
details.
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the SCC gap (20.2 billion dollars) for the China-beef pair is almost twice as the SCC gap (11.5

billion dollars) of the US-beef pair.

4.5. The role of agricultural trade in reducing GHG Emissions

The previous sections analyzed production-based emissions intensities across countries and data
sources. In this section, we examine production-based emissions embodied in international trade
and the role of agricultural trade as a potential mitigation channel by which to reduce imported
carbon footprints. Specifically, we link emissions intensity data to international trade on country-
by-product basis and assess border-related strategies to reduce of GHG emissions from the food
system. Three main strategies have been suggested to achieve this reduction: (i) improving (i.e.,
lowering) production-based emissions intensity, (ii) shifting the sourcing of production vis a vis
imports to countries with lower carbon footprints, and (iii) shifting consumption to products with
lower carbon footprints.

The first strategy is to reduce GHG emissions at farm gate. By investigating the carbon
footprint associated with the production of major agricultural products in key countries, it becomes
evident that there are gaps in emissions intensity across countries. In other words, there is
significant potential to enhance production-based emissions intensity in countries with high carbon
footprints in agricultural production. One effective approach is to increase productivity. Figure 3
shows the relationship between emissions intensity and yield across major agricultural products.
2

We find that higher yields are associated with lower emissions intensities across commodities.*

As observed in the previous section, productivity gaps exist between countries. By addressing

2 Only soybean presents a different pattern, demonstrating a positive relationship between emissions intensity and
yield. When trend lines are drawn by continent (e.g., Asia, Africa, Europe, etc.), Europe and Africa show positive
slopes, while other continents exhibit negative slopes. Further research is needed to understand why these two
continents display different patterns.
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these disparities, countries can improve their production efficiency, that is, lower emissions
intensity, which, in turn, contribute to a more sustainable agricultural sector. Thus, technology
adoption can play an important role in achieving productivity gains. For example, Farrokhi and
Pellegrina (2023) find that reductions in trade costs on imported agricultural inputs help close the
productivity gap between countries. Moreover, trade openness can facilitate the transfer of cleaner
technologies and best management practices across borders, enabling countries to produce
agricultural goods more sustainably (Copeland and Taylor, 2004).

Moreover, efforts should not be confined to the supply side alone. As highlighted by Poore
and Nemecek (2018), interventions can be made on the consumption side as well. Given increasing
population, few countries can fully meet their demand for food through domestic production alone,
which has led to significant increases in agricultural trade over time. Along with the growth in
agricultural trade, there has been shifts in the trade composition. For example, in the early 2000s,
the United States was the dominant player in the global soybean market, holding the largest share
of both production and exports. However, in recent years, Brazil has emerged as a major competitor,
even surpassing the US due to increasing export to China. The increasing share of Brazil in the
global soybean market have important implications for GHG emissions embodied in soybean trade.
All else equal, had the composition of 2000 in soybean trade maintained in 2021 the total GHG
emissions from soybean would be reduced by 32 million tons (MMT).*

To present the current state of consumption regarding GHG emissions, we use the
emissions intensity embodied in total consumption encompassing domestic production and import.
The metric is a weighted average of emissions intensities of exporting countries and an importing

country. The export shares and domestic production share are weights. Figure 4 presents the

'3 Estimates are calculated from a scenario analysis, based on the share of individual countries in the crop trade
market in 2000 and the import volume and emissions intensities of individual countries in 2021.
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amount of GHG emissions embodied in 1 kg of beef consumption in major importing countries.
For the top three importing countries, we plot the emissions intensities of key exporting countries,
the emissions intensity of an importing country, and the emissions intensity embodied in
consumption. Across data sources, the emissions intensity of domestic production (green plus sign)
in Japan and the United States is lower than that of major exporting countries (navy circle, blue
rhombus, and yellow square). As a result, the emissions intensity embodied in consumption (gray
cross sign) exceeds that of domestic production. In this context, expanding domestic production
could mitigate GHG emissions by reducing beef imports from countries with higher carbon
footprints associated with beef production. However, this expansion may face challenges due to
various land and pasture constraints in the domestic market. Alternatively, shifting beef imports
from high to low GHG emitting countries could reduce the GHG emissions embodied in imports
and subsequently lower the emissions intensity embodied in consumption.

Lastly, it has been argued that shifting dietary preferences can reduce GHG emissions
(Aleksandrowicz et al., 2016; Godfray et al., 2018; Poore and Nemecek 2018). As emphasized in
the previous section, beef is the most carbon-intensive, largely due to methane emissions from
enteric fermentation. Pork production emits less GHG emissions compared to beef but more than
chicken, mainly from manure management. Meat is a rich source of protein, which is an essential
to appropriate body functioning. According to the Food Composition Tables (FAO), beef contains
more protein compared to chicken and pork per equivalent amount.'* However, beef is still
associated with the highest GHG emissions compared to chicken and pork in terms of equivalent

protein consumption. Figure 5 shows the emissions intensity of meat consumption per protein per

14 Beef contains 185 grams of protein per 1 kg of beef, 123 grams for chicken, and 110 grams for pork.
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capita for selected countries. In developed countries, the emissions intensity of protein

consumption ranges between 20-40 kg of CO2 equivalent per kilogram of protein per capita.

5. CONCLUSION AND POLICY IMPLICATIONS
Given the importance of agriculture and food systems in an effort to mitigate climate change,
numerous emissions estimates have been estimated with varying methods and techniques. The
fragmentation of fast-growing emission estimates from various formulas and methods adopted by
numerous institutions or organizations hinders coherent decision-making at the global level
(Deconinck et al., 2023; Zurek et al., 2022). Due to data limitations, accurate and granular product-
level carbon intensity metrics are inadequate (OECD, 2024). For accurate and complete
understanding of the current state of carbon footprints at a granular level in agricultural production,
our work provides country-by-commodity emissions intensities estimated from comprehensive
data sources. It demonstrates that the cross-country variation is more pronounced than the cross-
data source variation while both remain significant. Even minimal variations in emissions
intensities can lead to massive differences in total GHG emissions and the social cost of carbon.
Granular emissions intensity database for country-by-commodity pairs provide evidence to
support three strategies — improving production-based emissions intensity, shifting to countries
with lower carbon footprints, and shifting to commodities with lower carbon footprints — for
reducing GHG emissions from agriculture and food systems. And trade plays a crucial role in
implementing those strategies through a channel of the adoption of cleaner technologies, advanced
intermediate inputs, and import diversification.

In a broad view of mitigating climate change, top-producing countries are important as

they take a considerable share of the total production. All top-producing countries present stable
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estimates within a reasonable range in our database. However, we find wider gaps in the emissions
intensities of developing countries across data sources. In Table 7, we estimate the standard
deviation across products by economic status. Larger standard deviations in developing countries
suggest that achieving consensus on country-specific development pairs is challenging. There are
possibly numerous reasons why developing countries show a wider range of emissions compared
to developed countries. Lack of resources to generate data for developing countries, which is
needed for various models, varying model parameters given this lack of data for developing
countries, and limited responses to national surveys or censuses can affect the accuracy of official

estimates resulting in high variability of GHG emission estimates of developing countries.
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Table 1. The overview of data sources in key aspects

Aglink-Cosimo Agri-footprint CALUE FAO GCAM GLOBIOM GTAP IFPRI
Maize v v v v v Cereals Cereals
Wheat v v Cereals inclut_jing v v v v v
Crop wheat and rice
Rice v v v v v v v
Soybean v v Oil seeds - v v Oil seeds Oil seeds
Beef v v v v v v Ruminant Ruminant
Milk v v Dairy v - v v 4
Livestock
Chicken v v v v v v
Non-ruminant Non-ruminant
Pork 4 v v v v v
Data Emissions Emissions Intensity Emissions Emissions Emissions Emissions Intensity Emissions Emissions
Production Production Production Production
Country 35 52 192 195 14 160 139 198
Year 1990-2040 2017 1961-2017 1961-2021 2(.)10_206.0 2000_2960 2004 2016-2018
(quinquennial) (decennial)
GWP AR4 EF 3.0 AR5+ AR5 AR5 AR4 AR2 AR2
Methodology PEM LCA FM FM PEM PEM CGEM FM
Emission_ source v v v v B - - v
Data availability
Availability Confidential Subscription Public Public Public Public Confidential Confidential

Note: GWP refers to the Global Warming Potential. The AR2 is the GWP from the IPCC the second Assessment Report; the AR4 from the IPCC the fourth Assessment Report; the AR5 from the IPCC the fifth Assessment Report;
the AR5+ the GWP with the climate-carbon feedback from the IPCC the fifth Assessment Report; the EF 3.0 from the Environmental Footprint 3.0. LCA is a data source based on a life cycle analysis; FM indicates the formula-based
data source; CGEM and PEM indicate the computational general equilibrium or partial equilibrium model-based data source. Confidential data is provided upon an individual request.
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Table 2. Emissions intensities across data sources and countries, kg of CO2 eq. per kg of product

Product N Mean Median SD Min Max Max-Min

Maize 62 0.21 0.20 0.15 0.03 1.07 1.04

Crop Wheat 93 0.24 0.21 0.19 0.06 1.57 151
Soybean 24 0.19 0.10 0.18 0.06 0.82 0.76

Rice 45 1.40 1.21 0.68 0.65 3.75 3.09

Beef 60 21.85 19.04 10.35 8.35 53.16 44,81

Chicken 53 0.65 0.38 0.73 0.13 3.81 3.68

Livestock

Pork 19 2.47 2.48 1.04 1.04 5.29 4.25

Milk 64 1.00 0.85 0.61 0.10 3.89 3.79

Notes: The emissions intensities of cereals and oil seeds are used for those of maize and soybean in the GTAP and IFPRI. The
emissions intensity of ruminant animals represents the emissions intensity of beef in the GTAP and IFPRI.
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Table 3. ANOVA by data source and country

Product Variable DF SS MS Share
) Data source 6 0.34 0.06 0.60
Maize
Country 8 0.33 0.04 0.40
Data source 6 0.45 0.07 0.54
Wheat
Country 14 0.81 0.06 0.46
Data source 7 0.27 0.04 0.50
Soybean
Country 2 0.07 0.04 0.50
Data source 6 4.86 0.81 0.37
Rice
Country 7 9.50 1.36 0.63
Data source 6 1681.52 280.25 0.38
Beef
Country 8 3709.76 463.72 0.62
Data source 5 497 0.99 0.37
Chicken
Country 9 15.30 1.70 0.63
Data source 5 5.68 1.14 0.30
Pork
Country 3 7.94 2.65 0.70
Data source 5 9.59 1.92 0.76
Milk
Country 11 6.74 0.61 0.24

Note: DF is the degrees of freedom; SS the partial sum of squares; MS the mean squares;
Share is the ratio of the MS by each variable in the total SS by variables.
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Table 4. Emissions intensity by data source, kg of CO2 eq. per kg of product

Product Data source N Mean Median SD Min Max
Aglink-Cosimo 9 0.19 0.20 0.05 0.12 0.26
Agri-footprint 9 0.26 0.23 0.11 0.13 0.44

FAOSTAT 9 0.08 0.06 0.04 0.05 0.15

Maize GCAM 8 0.17 0.21 0.08 0.03 0.24
GLOBIOM 9 0.32 0.24 0.31 0.07 1.07

GTAP 9 0.26 0.27 0.08 0.17 0.39

IFPRI 9 0.20 0.17 0.07 0.12 0.34

Aglink-Cosimo 13 0.21 0.24 0.05 0.12 0.28
Agri-footprint 13 0.31 0.26 0.12 0.21 0.60

FAOSTAT 15 0.11 0.08 0.07 0.07 0.30

Wheat GCAM 7 0.33 0.25 0.27 0.07 0.90
GLOBIOM 15 0.32 0.19 0.39 0.06 1.57

GTAP 15 0.20 0.19 0.06 0.12 0.30

IFPRI 15 0.25 0.27 0.08 0.14 0.42

Aglink-Cosimo 3 0.08 0.08 0.02 0.07 0.11
Agri-footprint 3 0.23 0.24 0.03 0.21 0.25

CALUE 3 0.11 0.08 0.06 0.07 0.18

Soybean FAOSTAT 3 0.07 0.06 0.01 0.06 0.08
GCAM 3 0.35 0.18 0.41 0.07 0.82

GLOBIOM 3 0.24 0.15 0.23 0.07 0.50

GTAP 3 0.31 0.24 0.16 0.20 0.49

IFPRI 3 0.08 0.08 0.01 0.08 0.09

Aglink-Cosimo 6 2.22 2.04 0.94 1.31 3.75
Agri-footprint 5 1.13 1.01 0.32 0.85 1.67

FAOSTAT 8 1.21 1.10 0.57 0.67 2.42

Rice GCAM 3 1.10 0.95 0.34 0.87 1.49
GLOBIOM 8 1.38 1.20 0.66 0.91 2.97

GTAP 7 1.55 1.39 0.70 0.99 3.03

IFPRI 8 112 0.92 0.45 0.65 1.96

Aglink-Cosimo 8 25.36 22.94 10.99 14.26 43.97

CALUE 9 15.60 16.52 5.47 8.35 24.95

Beef FAOSTAT 9 25.16 23.63 10.30 13.98 41.50
GCAM 7 17.07 12.81 7.18 10.95 26.58

GLOBIOM 9 22.37 23.34 7.74 11.46 34.42
Aglink-Cosimo 10 0.74 0.44 0.70 0.17 2.23
Agri-footprint 4 1.34 1.35 0.21 1.13 1.52

Chicken CALUE 10 0.74 0.39 0.85 0.14 2.71
FAOSTAT 10 0.79 0.35 1.14 0.13 3.81

GCAM 9 0.29 0.33 0.12 0.15 0.43

GLOBIOM 10 0.40 0.27 0.28 0.23 1.12
Aglink-Cosimo 2 1.76 1.76 0.99 1.06 2.46
Agri-footprint 3 3.06 3.06 0.23 2.82 3.29

Pork CALUE 4 2.16 2.22 0.83 1.22 3.00
FAOSTAT 4 1.81 1.86 0.68 1.04 2.48

GCAM 2 3.33 3.33 0.04 3.30 3.35

GLOBIOM 4 2.92 2.36 1.68 1.66 5.29
Aglink-Cosimo 9 0.66 0.53 0.22 0.46 1.09
Agri-footprint 7 1.43 131 0.33 1.07 2.01

ik FAOSTAT 12 0.85 0.76 0.31 0.53 141
Mi GLOBIOM 12 1.17 1.19 0.52 0.63 247
GTAP 12 0.50 0.54 0.28 0.10 1.01

IFPRI 12 1.49 1.19 0.90 0.70 3.89
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Table 5. Emissions intensities for maize by emission source, kg of CO2 eq per kg of product

Product Data source Emission source N Mean Median SD Min Max
Burning 9 0.02 0.02 0.01 0.01 0.03

Aglink- Crop residues 9 0.05 0.05 0.01 0.04 0.06

Cosimo Synthetic fertilizers 9 0.13 0.13 0.05 0.06 0.19

Total 9 0.19 0.20 0.05 0.12 0.26

Crop residues 9 0.04 0.04 0.00 0.04 0.04

Energy use 9 0.06 0.06 0.04 0.01 0.12

Agri- Lime 9 0.03 0.03 0.01 0.01 0.06

footprint Manure 9 0.01 0.01 0.01 0.00 0.04

Synthetic fertilizers 9 0.12 0.12 0.06 0.04 0.22

Maize Total 9 0.26 0.23 0.11 0.13 0.44
Burning 9 0.02 0.02 0.01 0.01 0.04

FAOSTAT Crop residues 9 0.04 0.04 0.00 0.04 0.05

Synthetic fertilizers 2 0.07 0.07 0.04 0.04 0.09

Total 9 0.08 0.06 0.04 0.05 0.15

Burning 9 0.01 0.01 0.00 0.01 0.02

Crop residues 9 0.05 0.05 0.01 0.05 0.07

IFPRI Pesticide 9 0.02 0.02 0.01 0.00 0.03

Synthetic fertilizers 9 0.12 0.10 0.07 0.03 0.26

Total 9 0.20 0.17 0.07 0.12 0.34

Notes: Burning refers to burning of crop residues; lime the application of agricultural lime for soil pH balancing; manure the
application of organic fertilizers. Only 4 data sources are available at a disaggregated level.
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Table 6. Variation in emissions intensity, GHG emissions, and CSCC

Product Country Pr((,)\(/leI:/cl;%)n (USSIS/%AT) El (min) El (max) nEml lgln I\?IXT_) CSCCI\;T/?)X -min,
Brazil 97.91 26.85 0.06 0.30 23.40 628.35
Maize China 259.10 188.61 0.15 0.34 48.19 9089.46
United States 371.10 111.71 0.05 0.24 72.36 8083.91
Australia 31.82 8.57 0.08 0.29 6.75 57.78
Canada 30.38 9.94 0.08 0.27 5.77 57.35
China 134.20 188.61 0.07 0.46 52.61 9921.94
Wheat France 38.68 14.25 0.06 0.22 6.23 88.76
India 98.51 173.61 0.08 0.71 62.16 10791.84
Russia 86.00 19.21 0.08 0.30 19.01 365.17
United States 47.38 111.71 0.20 0.90 33.21 3710.28
Argentina 54.97 6.69 0.063 0.206 7.86 52.60
Soybean Brazil 114.70 26.85 0.075 0.496 48.29 1296.65
United States 120.10 111.71 0.063 0.818 90.68 10129.45
Bangladesh 54.15 14.71 0.654 1.125 25.50 375.08
China 212.70 188.61 0.746 1.311 120.18 22665.94
Indonesia 55.25 34.57 1.207 2.74 84.70 2927.70
Rice India 169.10 173.61 0.843 1.481 107.89 18730.49
Myanmar 26.55 2.09 0.965 2.969 53.20 111.29
Philippines 19.28 11.03 1.201 3.747 49.08 541.28
Thailand 32.90 10.61 1.35 2.428 35.47 376.14
Viet Nam 42.76 8.23 0.87 1.641 32.97 271.22
Argentina 2.84 6.69 21.02 37.314 46.35 310.12
Australia 2.07 8.57 16.519 42.952 54.68 468.33
Beef Brazil 9.55 26.85 24,952 53.161 269.40 7233.82
China 5.71 188.61 10.951 29.754 107.39 20255.42
United States 11.94 111.71 8.348 16.976 103.05 11511.64
Brazil 13.61 26.85 0.226 1.196 13.20 354.42
China 13.28 188.61 0.173 1.522 17.91 3378.59
Indonesia 3.18 34.57 0.346 3.814 11.01 380.69
Chicken India 3.77 173.61 0.375 0.503 0.48 83.71
Mexico 3.21 19.44 0.247 0.473 0.73 14.11
Russia 4.54 19.21 0.176 0.57 1.79 34.38
United States 19.14 111.71 0.176 1.127 18.20 2033.44
China 54.52 188.61 1.042 3.297 122.94 23186.97
Pork Germany 5.51 14.11 1.451 2.823 7.55 106.57
Spain 4.30 8.15 2.268 3.289 4.39 35.76
United States 11.61 111.71 2.457 5.289 32.88 3673.31
Brazil 34.31 26.85 0.542 3.888 114.81 3082.78
China 30.39 188.61 0.158 1.474 39.99 7542.06
Milk Germany 32.60 14.11 0.568 1.306 24.06 339.43
India 83.63 173.61 0.526 2.545 168.86 29315.80
United States 97.76 111.71 0.169 2.012 180.17 20127.47

Note: El, emissions intensity (kg of CO2 eq per kg of product), EMI, total GHG emissions (MMT), SCC, the social cost of carbon (dollar per ton of
CO02). The production quantity is based on the year 2017 sourced from the FAOSTAT.



Table 7. The standard deviation across products by economic status

Product Developed (SD) Developing (SD)
Maize 0.07 0.16
Wheat 0.12 0.26
Soybean 0.25 0.14
Rice - 0.68
Beef 6.94 9.99
Chicken 0.36 0.83
Pork 0.93 0.95
Milk 0.36 0.87

Note: The classification of economic status (developing or developed) follows the
UNSD.
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kg of CO2 eq per kg of product

Figure 1. Rice emissions intensities of top-producing countries across data sources
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Figure 2. Beef emissions intensities for top-producing countries across data sources
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intensity and yield across commodities
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Note: Yield data is extracted from FAOSTAT and based on 2017 to match the reference year of the database. Some possible outlier values are excluded.
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Figure 4. Emissions intensity embodied in beef consumption in major countries
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Source: VT-USDA-ICF El Database, FAOSTAT, and UN Comtrade.

Note: The green plus is the emissions intensity of an importing country, the gray cross is the emissions intensity embodied in consumption including domestic production and
import, the navy circle is the US, the blue rhombus is Argentina, and the yellow square is Brazil. Other black small dots are other exporting countries to EU, Japan, and the US.
The emission intensity embodied in beef consumption is the weighted average of the emission intensities of domestic production and exporting countries where the weights are the
share of domestic supply (production — export) and exporting countries in total consumption.
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Figure 5. Emissions intensity embodied in meat consumption per protein per capita
A B

usa- + ® USA-
kor- ‘+ ® KOR-
wn- + ® JPN-
wo- q— o IND -
rra- ’+ @ FRA-
chn- Il q— ® CHN-
can- q— [ ] CAN-

era- [l <& + o BRA-
arc- 3 + o ARG -
0 100 200 300 0.00 025 0.50 075 1.00
kg of CO2 eq per kg of protein per capita per refernce year Share
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Note: The emissions intensity of chicken (green), pork (blue), beef (coral), and the emissions intensity embodied in three types of meat (plus) per 1 kg of protein per capita are plotted
in (A). The consumption share of beef, chicken, and pork are presented in (B). The emissions intensity of beef, chicken, and pork is the average of emissions intensities for country-
product pairs across data sources. Total consumption is the sum of domestic supply (production — export) and import. The protein content is based on the Food Composition Tables
(FAO): 185 grams (beef), 123 grams (chicken), and 110 grams (pork). Production data is extracted from FAOSTAT using items (Maize (corn), Wheat, Rice, Soya beans, Meat of
cattle, Meat of chickens, and Meat of pig) and population data also from FAOSTAT. Data from FAOSTAT is based on 2017 to match the reference year of the database.
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