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Dynamic Decision Making of Agrivoltaics in California’s 

Central Valley 

 

Abstract 

California’s Central Valley (CV) is a crucial agricultural region facing severe water shortages and 

long-term sustainability challenges. In response to these challenges and the push for renewable 

energy, agrivoltaics (Ag-PV) – the integration of agriculture and solar energy production – 

emerges a potential solution. This study develops a regime-switching stochastic dynamic 

programming model to evaluate land use decisions among purely crop production, solar 

production and Agrivoltaics under uncertainty. Focusing on two representative crops, processing 

tomatoes and alfalfa, with various shade tolerance and irrigation need, we conduct simulations to 

explore the optimal land-use decisions under different scenarios. We also conduct sensitivity 

analysis that examines variations in shade tolerance, solar intensity, operational expenses, and 

transition costs etc. Results indicate that agrivoltaics is optimal under high solar lease rates and 

high irrigation water prices, whereas traditional crop production remains preferable under lower 

costs. Agrivoltaics is particularly beneficial for crops with lower agricultural margins, high water 

demand, and better shade tolerance. This study fills a critical gap in the literature by providing an 

innovative dynamic model that integrates the complexities of the Food- Energy-Water nexus. It 

offers valuable insights for the policymakers and stakeholders in the agricultural and renewable 

energy sectors, highlighting the potential of agrivoltaics to enhance sustainability and economic 

viability in the Central Valley.  

  



3 

 

1. Introduction 

1.1 Background 

California’s Central Valley (CV) is a vital agricultural region that covers less than 1% of the U.S. 

land but contributes significantly to the nation’s agricultural output, providing 8% of the 

agricultural produce (by value) and 40% of the fruits, nuts, and other table foods. However, the 

farmers face substantial irrigation challenges. Decades of drought and intensive agricultural 

pumping have led to chronic groundwater depletion, threatening the sustainability of water 

resources and increasing irrigation costs for farmers  (Liu et al., 2022). In response to these 

challenges and to ensure water availability for future droughts, California enacted the 

Sustainable Groundwater Management Act (SGMA). This legislation aims to curb groundwater 

over-extraction by imposing more stringent regulations on water use, thereby impacting farmers' 

irrigation practices and agricultural planning (California Department of Water Resources, 2022). 

From earlier studies, SGMA is estimated to cause 86,000 ha to 200,000 ha of irrigated cropland 

to retire(Bryant et al., 2020; Hanak et al., 2019). 

Additionally, California is ambitious in promoting clean energy through policies like the 

Renewable Portfolio Standards and SB 100, which aims to achieve 100% zero-carbon energy by 

2045. According to These policies have not only underscored California’s commitment to 

sustainable energy but also influenced land use dynamics across the state. Rich in solar 

resources, certain areas of California, including Central Valley, are ideal for solar energy 

production. This has led landowners to consider shifting from traditional farming to establishing 

utility-scale solar farms (Buckley Biggs et al., 2022). 
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While transitioning to solar farming could offer a stable income and reduce reliance on 

increasingly scarce water resources, it also poses potential risks. The conversion to solar power 

generation in the CV directly competes with the land available for food production. Given that 

CV is a major source of food for the U.S., reducing the arable land can affect not only local but 

national food security. Besides, many communities in the CV rely economically on agriculture. 

Shifting large areas to solar could disrupt these local economies, potentially leading to job losses 

in traditional farming sectors, which might not be fully offset by the solar industry. Additionally, 

the CV also serves as a habitat for a variety of plant and animal species, large-scale solar farms 

can potentially disrupt existing wildlife habitats. Therefore, planning for solar infrastructure must 

integrate detailed spatial analysis to minimize ecological and social impacts(Wu et al., 2019). 

Given the water stress and the considerable potential impact of a full conversion to solar in the 

Central Valley, innovative solutions are needed to balance renewable energy production with 

agricultural water sustainability. One such promising approach is agrivoltaics (Ag-PV, or 

agrisolar, or agriphotovitaics, APV), 1a joint production configuration that synergistically 

combines agricultural and solar energy generation on the same unit of land. This approach not 

only increases land use efficiency, but also enhances water use efficiency for some crops, which 

is why it has gained significant attention in the CV and other regions.  

1.2 Agrivoltaics 

The concept of agrivoltaics involves the strategic installation of solar panels above farmlands. 

There are two types of configurations: 1) for elevated systems, these panels can be elevated to 6 

feet and above to allow for routine farmwork underneath, and for sufficient sunlight to reach the 

 
1 There are four types of agrivoltaics applications, 1) crop and food production, 2) livestock grazing, 3) ecosystem 

services, and 4) solar greenhouses. In this paper, the scope of agrivoltaics is only combined with crop production.  
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crops, while providing shade that reduces evaporation from the soil. And 2) inter-row systems 

usually have wider spacing between the PV arrays to allow for large farming machinery. While it 

provides less shading, precipitation runoff, or the water used to clean solar panels can also be 

used to supplement irrigation need. These innovative designs have been tested in various settings 

to assess their impact on agricultural productivity and water usage.  

Pioneering field experiments conducted in Montpellier, France have provided evidence of the 

impact of agrivoltaics. Studies by Dupraz et al. (2011) and Dinesh & Pearce (2016) have studied 

the effects of solar panel shading on crops’ yield. Elamri et al. (2018) and Marrou et al. (2013)  

have investigated the microclimate change under the panels, finding that these alterations can 

lead to significant reductions in water usage. Notably, Elamri et al. (2018) implemented 

simulation methods showing that agrivoltaics can reduce irrigation needs by up to 20% while 

tolerating a 10% in crop yield, highlighting the potential of agrivoltaics to address both 

agricultural and environmental challenges.  

There have also been field experiments conducted in Germany (Trommsdorff et al., 2021), Aisa 

(Ali Abaker Omer et al., 2022; Irie et al., 2019) , and the U.S  exploring various configurations 

for the agrivoltaics systems. In the United States, the InSPIRE (Innovative Solar Practices 

Integrated with Rural Economies and Ecosystems) project has been particularly instrumental in 

advancing the application of agrivoltaics. The project has collaborated with universities, local 

governments and industry partners to develop strategies for low-impact solar development. For 

the agrivoltaics combined with crop production, they are leading the research on vegetables in 

Ohio (Quarshie, 2023), tomatoes in Oregon (Al-agele, 2020; Tahir & Butt, 2022), berries in 

Massachusetts (Mupambi et al., 2021), etc. Macknick et al., 2022 summarizes lessons learned 

from research across various field experience, and this manuscript provides critical analysis 
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stakeholders considering agrivoltaic systems to reduce environmental impacts while maximizing 

agricultural and energy production efficiency.  

In the Central Valley, landowners are already showing interest in agrivoltaics based on the 

benefits from shading, including physical protection from inclement weather, increasing water 

availability and reducing evapotranspiration (Buckley Biggs et al., 2022). Aside from these 

benefits, farmers can diversify their income streams by generating solar energy while continuing 

to cultivate crops, which provides a sustainable solution to adapt to climate change and mitigate 

the impact of droughts and restrictive policies.  

However, there remain concerns about the potential reduction of crop yields due to shading, 

which highlights the importance of an adaptive solar configuration. Furthermore, the conversion 

to agrivoltaic systems often presents an irreversible commitment for 20-30 years, depending on 

the duration of the project, which also limits operational flexibility for landowners. The 

irreversible nature of adopting agrivoltaic systems also raises concerns among landowners 

regarding future uncertainties, including farming income, the impact of climate change, and 

changes in agricultural and renewable energy policies. For a risk-averse landowner, these 

uncertainties may delay the adoption decision until there is more evidence of its impact on their 

crop production in their region (Macknick et al., 2022). 

1.3 Literature Review 

There is a growing literature focused on the potential design of agrivoltaic systems and its 

benefits and costs in the Food-Energy-Water nexus (Barron-Gafford et al., 2019; Mamun et al., 

2022). There are also qualitative studies about land-owner decisions on solar adoption. For 

example, Buckley Biggs et al. (2022) conducted interviews with farmers, ranchers, solar 
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developers and government organizations in California and identified the key factors affecting 

landowner decisions including profit maximization, water availability, visual and ecological 

landscape values, and an agricultural land preservation ethic. Besides, Ketzer et al. (2020) uses 

Causal Loop Diagrams (CLDs) to analyze the driving and restraining forces for the adoption of 

agrivoltaics based on data from citizen workshops, literature reviews, and expert discussions.  

More recent research has used quantitative modeling to explore optimal agrivoltaic system 

design and harvesting cycle. Sarr et al. (2024) develops a model that determines the 

configuration of agrivoltaic systems which optimizes energy production efficiency and crop 

yield. Yajima et al. (2023) establishes a model incorporating the amount of electricity generated 

by solar irradiation to estimate the correct start date to remediate the potential loss of late harvest 

due to shading.  

While qualitative analyses provide insights into the social and economic factors influencing 

landowner decisions, and recent quantitative models address specific design and operational 

efficiencies, there remains a significant gap in comprehensive dynamic modeling that accounts 

for the uncertainties inherent in long-term land use decisions at the intensive and extensive 

production margins. This gap is particularly critical in light of the complex interdependencies 

within the Food-Energy-Water nexus and the unpredictable nature of climate conditions, 

markets, policy developments. 

To address these key knowledge gaps, we adopt a real options framework, building on (Dixit & 

Pindyck, 1994; Insley, 2002) as well as more recent applications in agricultural economics such 

as Bangjun et al., (2022). Our contribution extends this literature by focusing on both intensive 

land management and extensive land management options. 
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We develop a regime-switching model to assess the land use decisions among purely crop 

production, solar production, and agrivoltaics under uncertainty. We also develop scenarios that 

account for potential external conditions that affect uncertainty of long-term economic returns to 

different land management options, including market volatility, climatic changes, and policy 

shifts, to identify the conditions under which the adoption of intensive solar and/or crop 

production would be strictly preferred to agrivoltaics. 

2. Theoretical Model 

As discussed in the last section, the adoption decision of agrivoltaics or purely utility scale solar 

is subject to a number of uncertain factors, including the profitability of crop production, weather 

conditions, water management policies, and renewable energy policies, etc., therefore, we adopt 

a dynamic programming framework that incorporates stochastic elements. By dynamically 

simulating the economic outcomes under uncertainty, the model offers insights into the optimal 

land use strategies under unknown environmental and market conditions over time. 

2.1 Regime Switching Framework 

We consider current agricultural landowners in the CV, and they will consider three land 

management regimes: purely agricultural production (AO), purely solar production (SO), and 

agrivoltaic production (AV). Each regime represents a different land use strategy with a different 

income stream and resource requirements. In the first regime AO, the land is used exclusively for 

agricultural production, which is the current state and the initial state in the model. Under this 

regime, the land manager maximizes returns to agricultural production and is typically preferred 

when the farming yields high economic returns relative to solar or agrivoltaics, or in cases where 

solar installation is not viable due to various constraints such as grid infrastructure, high site 
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preparation cost, policy constraints or community preferences. The SO regime focuses 

exclusively on generating income from solar energy production. Landowners lease their land for 

solar installations, prioritizing energy revenue over agricultural output. This regime is most 

beneficial in areas with higher solar compatibility and may be preferred due to low agricultural 

profitability, high irrigation cost, or high solar incentives. Finally, the AV regime integrates solar 

with crop production on the same land, which means that the solar and agricultural activities will 

have an impact on each other. The shade from solar panels helps reduce irrigation usage, protects 

the crop from heat stress, but at the same time may decrease crop yield. The crop underneath 

solar panels helps lower the temperature which benefits the solar productivity, while routine 

farmwork may cause dust accumulation on the solar panels which can affect the performance of 

solar panels.   

Due to the irreversibility nature of solar installations, switching is restricted to be one-way, see 

Figure 1. The starting regime is always AO, a representative agricultural landowner can choose 

to either switch to AV or SO or stay in only agricultural production. And starting from AV, the 

landowner may choose to stop agriculture production and switch to SO, or stay in AV, but they 

do not have the option to remove solar panels and switch back to AO. Finally, the SO regime is 

the absorbing regime, once achieved, the land will be committed to solar production. 
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Our approach is grounded in stochastic dynamic programming, a method well-suited for 

problems where decisions must be made sequentially and where outcomes are uncertain. In a 

deterministic framework, switching from regime X to Y would occur when the net present value 

(NPV) of Y is higher than the NPV of regime X plus the switching cost 𝐾𝑋→𝑌. However, by 

introducing uncertainty, our approach offers a more nuanced method for evaluating land 

management transitions. Additionally, since the transition is irreversible, the adoption decisions 

must account for the uncertainty of future states, ensuring that landowners can dynamically 

adjust their strategies in responses to fluctuations in market conditions, climate change impact, 

and policy environments.  

We employ a discrete-time setup that is aligned with the agricultural cycles and standard 

(annualized) solar lease rates. To minimize crop disruption, and to allow for specific site 

preparation adjustment, the installations are usually scheduled during the off-season, which 

depends on the crop. In California, the standard off-season is considered winter (Dec -Feb), so 

we assume the adoption decision will be made annually. The model’s time horizon is defined to 

be 30 years, corresponding to the typical lifespan of solar panels.  

Figure 1 Illustration of the Regime Switching Model 
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2.2 Reward Functions 

As mentioned earlier, the income stream in different regimes is different. In the SO regime, the 

landowner’s net income can take two forms depending on the ownership of the solar panels. 1) if 

the landowner installs the solar panels on their own, namely a sole-ownership, the net benefit of 

solar at each period can be written as: 𝑝𝑡
𝑒 𝐸𝑡 −𝑚𝑡 where 𝑝𝑡

𝑒 represents the electricity price at 

time 𝑡 and 𝐸𝑡 represents the electricity generated, and 𝑚𝑡 is the maintenance cost of solar. 2) The 

alternative is a third-party ownership, which means the solar panels are owned, installed and 

maintained by a third-party. The solar developer usually will reach out to the landowners who are 

willing to lease their land for solar development. The common contracts can be between 20 -30 

years with a lease rate 𝑅𝑡
𝑠𝑜𝑙𝑎𝑟 and a yearly increase rate 𝑟, and the net income can be written as:  

 Π𝑡
𝑆𝑂 = 𝑅𝑡

𝑠𝑜𝑙𝑎𝑟(1 + 𝑟)𝑡 (1) 

In the AO regime, the representative landowner’s net income is their crop revenue 𝑅𝑡
𝑎𝑔

 

subtracted by the cost, which includes irrigation cost 𝐶𝑡
𝑖𝑟𝑟, and other operational costs 𝐶𝑜𝑡ℎ like 

labor, machinery, fertilizers, pesticides, etc, which varies across crops. We write the reward from 

AO regime as follows:  

 Π𝑡
𝐴𝑂(𝑺𝑡) =  𝑅𝑡

𝑎𝑔
− 𝐶𝑡

𝑖𝑟𝑟 − 𝐶𝑜𝑡ℎ (2) 

The main uncertainties we consider in this model come from the crop income and weather, 

which affects water need for irrigation, thus we define the state space 𝑺𝑡 ≡ (𝑅𝑡
𝑎𝑔
, 𝐶𝑡
𝑖𝑟𝑟). The 

stochastic nature of these variables is captured through a first-order vector autoregression (VAR 

(1)) model. 𝑺𝒕 = 𝜇 + Φ 𝐒𝐭−𝟏 + 𝜖𝑡 where 𝜖𝑡~𝑁(0, Σ). This approach allows us to model the 



12 

 

temporal dependencies and fluctuations in agricultural income and irrigation costs, providing a 

realistic simulation of how these variables might evolve over time under different scenarios. 

Finally, in the AV regime, solar and crops are jointly produced, but at different levels of intensity 

than in the AO and SO regimes. The agricultural revenue in this regime is reduced by a factor 𝛼 

due to partial shading by the solar panels, or due to spacing for solar arrays, while irrigation cost 

is reduced by a factor 𝜌 due to decreased evapotranspiration. Note that the factors vary across 

crops due to the different crop shading tolerance and compatibility for different agrivoltaic 

designs. In this regime, the landowner also gains additional income from solar leasing, whereas 

the lease rate is usually a proportion (𝛾) of a purely solar farm rent. The reward function in the 

AV regime can then be written as:  

 Πt
AV(𝑺𝑡) = (1 − 𝛼)𝑅𝑡

𝑎𝑔
− (1 − 𝜌)𝐶𝑡

𝑖𝑟𝑟 − 𝐶𝑜𝑡ℎ + 𝛾𝑅𝑡
𝑠𝑜𝑙𝑎𝑟 (3) 

2.3 Bellman Equations 

We further utilize Bellman Equations to solve the optimal switching decision recursively. For the 

SO regime, if we consider the stochasticity in solar income, the value function is expressed as: 

𝑉𝑆𝑂(𝑅𝑡
𝑠𝑜𝑙𝑎𝑟) = Π𝑡

𝑆𝑂 + 𝛽𝔼[𝑉𝑆𝑂(𝑅𝑡+1
𝑠𝑜𝑙𝑎𝑟)| 𝑅𝑡

𝑠𝑜𝑙𝑎𝑟] (and if the stochasticity is not considered, it is 

simply the NPV of the solar rent in 30 years, 𝑉𝑆𝑂).  

Based on the reward functions of agrivoltaics, the value function for the AV regime is: 

 𝑉𝐴𝑉(𝑺𝑡) =  max {Πt
AV(𝑺𝑡) + 𝛿𝔼[𝑉

𝐴𝑉(𝑺𝑡+1)|𝑺𝑡]⏟                  
stay in AV

, 𝑉𝑆𝑂 − 𝐾𝐴𝑉→𝑆𝑂⏟        
switch to SO

} (4) 

This function captures the decision to either stay in the AV regime, earning the immediate reward 

from AV and the discounted expected net present value (ENPV) of staying in the AV regime in 



13 

 

the next period conditional on the current state 𝑺𝑡; or to switch to the SO regime, which the value 

equals to the value of SO regime subtracted by the switching cost 𝐾𝐴𝑉→𝑆𝑂.  

Finally, in the AO regime, the landowner faces three options: option to continue with purely 

agricultural operations, switch to solar production, or to joint agrivoltaic production. The value 

function is given by:  

 𝑉𝐴𝑂(𝑺𝑡) =  max {Π𝑡
𝐴𝑂(𝑺𝑡) + 𝛿𝔼[𝑉

𝐴𝑂(𝑺𝑡+1)|𝑺𝑡]⏟                  
stay in AO

, 𝑉𝑆𝑂 − 𝐾𝐴𝑂→𝑆𝑂⏟        
switch to SO

, 𝑉𝐴𝑉(𝑺𝑡) − 𝐾𝐴𝑂→𝐴𝑉⏟            
switch to AV

} (5) 

In each period, the landowner evaluates the value of the three options, and if the immediate 

reward from AO and the ENPV of AO is the highest, then it is optional to stay in AO. If the value 

of SO subtracted by the switching cost 𝐾𝐴𝑂→𝑆𝑂 is the highest, then the landowner’s optimal 

decision is to sink the cost and switch to SO. If it is optimal to switch to AV, the value function is 

determined by the value function from equation (4). 

3. Data and Empirical Analysis 

3.1 Data Source 

The agricultural data employed in this study, including crop yields and prices for California, are 

sourced from the USDA National Agricultural Statistics Service (NASS) yearly survey data. 

Operational cost data are derived from sample cost and return studies conducted by the 

University of California Agriculture and Natural Resources Cooperative Extension. This study 

categorizes the crops into four main types based on their value and irrigation needs: 

1) High value and high irrigation need crops, such as almonds and pistachios. 

2) High value and relatively low irrigation need crops, such as grapes and tomatoes. 
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3) Low value and high irrigation need crops, such as rice. 

4) Low value and relatively low irrigation need crops, such as cycle alfalfa. 

Weather-related data are collected from the California Irrigation Management Information 

System (CIMIS). This includes station-level monthly reference evapotranspiration (ETo) and 

precipitation data specific to the Central Valley. Crop coefficients (Kc) are adopted from the 

Food and Agriculture Organization (FAO) to compute crop-specific evapotranspiration (ETc) and 

effective rainfall annually, 2which are essential for estimating the irrigation requirements of each 

crop type. Additionally, irrigation water price data are obtained from the Central Valley Project 

(CVP) water report. 

We calculated crop revenues and irrigation costs for various types of crops grown in California’s 

Central Valley, reflecting the income and water related cost for the landowners. Utilizing this 

data, we will further estimate the coefficients for a first-order vector autoregression (VAR (1)) 

model to analyze the dynamics of these two stochastic variables. The descriptive statistics 

presented in Table 1 offer an overview of the revenue and irrigation costs associated with each 

crop type over time, illustrating temporal financial fluctuations and water use efficiencies. 

Notably, our analysis includes county-level data for tomatoes and rice, which provides a more 

detailed view of economic and irrigation trends. For other crops, the data is aggregated at the 

state level, offering broader insights but with less local specificity. More information about the 

source data distribution, including price, yield, and evapotranspiration can be found in the 

Appendix. 

 

 
2 Irrigation needy

c  = ΣmETom,y ∗ Kcm − Σmeffective_rainfallm,y ∗ I(Kcm > 0) 
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Tomatoes Rice Grapes Table Alfalfa Cycle Almond 

 Revenue Irr_cost Revenue Irr_cost Revenue Irr_cost Revenue Irr_cost Revenue Irr_cost 

mean 3862.64 612.76 1285.22 791.32 11328.61 849.82 981.77 298.93  4994.78 954.04 

std 763.44  48.12 679.70 56.81 2609.07 33.29 347.09 9.89 1460.28 46.61 

min 2061.23 498.19 317.13 628.38 7594.55 763.48 513.36 276.89 2674.00 860.07 

max 6089.46 726.68 3371.52 939.52 15453.00 892.72 1864.94 312.43 8040.00 1022.06 

count 143 143 125 125 16 16 23 23 17 17 

Table 1Descriptive Statistics of Crop Revenue and Irrigation Cost in California's Central Valley 

In this study, a key assumption for solar development is that the solar company will design 

agrivoltaic systems to optimally suit the specific condition of each representative landowner. 

This includes the consideration of spacing, height and tracking system that suit the crop type, 

installation method for the soil type, and geographic location, among other factors. To reflect the 

varying degrees of compatibility between different crops and solar installations, we have 

incorporated various switching costs into our model. We also conduct sensitivity analysis 

concerning these switching costs to understand their impact on land use decisions. It is worth 

noting that the optimization of system configurations, although crucial, is beyond the scope of 

this study. The site preparation cost and lease rate data are sourced from the InSPIRE projects.  

3.2 Scenarios 

In order to comprehensively assess the viability and impact of solar and agrivoltaic systems 

under varying conditions, we conduct simulations under several scenarios considering 

fluctuations in the environmental economic, and policy-related factors. Each scenario is carefully 

constructed with specific assumptions that influence the adoption of different land-use types in 

the CV.  

For economic variability, the analysis includes scenarios of stable market conditions (S0), as well 

as conditions of high market volatility (S1) to explore the effects of market uncertainties on 
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landowner’s adoption decision. Aside from a baseline of normal weather patterns with historical 

data, we also construct a scenario of increased climate variability (S2), thereby assessing the 

resilience of adoption decisions. Additionally, in response to the ongoing discussions around the 

SGMA, we consider scenarios where aggressive groundwater policy measures might increase 

irrigation water price (S3). We also include potential government incentives that could increase 

solar rents (S4), as well as a scenario that contemplates the implications of reduced solar rent 

(S5), potentially due to policy changes or market saturation.  

3.3 Sensitivity Analysis 

To evaluate the model’s robustness and to understand how various factors affect the adoption 

decisions, a series of sensitivity analysis are conducted on key parameters. The yield impact 

coefficient 𝛼 was varied from -0.2 to 0.9 in increments of 0.1 to assess various shade tolerances. 

For shade-tolerant crops that benefit from protection against heat and inclement weather, a 

negative 𝛼 value indicates an increase in yield under shade. Similarly, the shade 

evapotranspiration impact parameter (𝜌) is also allowed to vary from -0.2 to 0.9, in 0.1 

increments, to explore its effects on irrigation needs. Additionally, the solar intensity parameter 

in agrivoltaics, 𝛾, which reflects the proportion of solar income in agrivoltaics compared to 

purely solar, is also tested across a range from 0.1 to 1.0 in 0.1 increments.  

Further analyses extend to operational costs (𝐶𝑜𝑡ℎ),  which contributes to the overall cost 

effectiveness of agricultural production in AO and AV regimes; switching costs associated with 

moving one regime to another, including (𝐾𝐴𝑂→𝐴𝑉, 𝐾𝐴𝑂→𝑆𝑂 , 𝐾𝐴𝑉→𝑆𝑂)  that affects the flexibility of 

the irreversible switching decision; and base solar rents, to test a higher range of solar 

profitability scenarios. These parameters are tested from 50% to 150% of their baseline values in 
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increments of 10%. By adjusting these parameters, we were able to compare the optimal steady-

state regime (AO, AV, or SO) under each sensitivity scenario to assess how sensitive our model is 

to changes in both parameters and assumptions regarding future uncertainty. 

4.  Simulation Results 

In this section, we present the simulation results for two types of crop, processing tomatoes, and 

alfalfa, which are widely grown in the Central Valley. Tomatoes are chosen for this analysis 

because they represent a high-value crop with low shade-tolerance, and relatively low irrigation 

needs, which makes agrivoltaics adoption controversial and is of special interest to this studied 

area. And alfalfa is chosen because it represents low-value low irrigation crop that is widely 

suited for an inter-row configuration. Simulation results for other crops are included in the 

supplemental appendix.  

This narrower focus two crop types allows us to explore in detail the impacts of agrivoltaics on a 

crop that is widely cultivated in the region and is potentially very responsive to the dual use of 

land for both agriculture and solar power generation. 

4.1 Baseline Scenario Results (S0) – Processing tomatoes 

In the baseline scenario, we analyze the optimal regime-switching decisions under stable market 

conditions and weather patterns using historical data. For processing tomatoes, we assume that 

shade decreases crop yield by 25% and saves 20% of irrigation water. The solar rent in the 

baseline scenario is $1000 per acre per year. More information about the parameter values can be 

found in the supplemental appendix. The baseline scenario provides a reference for 

understanding the impact of economic, climatic, and policy variations on the adoption of 

different land-use types. 
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Figure 2: Optimal Conversion Surface for Processing Tomatoes (S0) 

We visualize the optimal conversion surfaces for switching between regimes in Figure 2. The left 

panel of Figure 2 illustrates the optimal conversion decision from agrivoltaics (AV) to solar-only 

(SO). The horizontal axis represents the logarithm of agricultural revenue, and the vertical axis 

represents the logarithm of irrigation costs. The plot indicates that, in the state space, if the land 

is already used for agrivoltaics purposes, it is optimal to stay in agrivoltaic production rather than 

switch to purely solar. 

The right panel of Figure 2 shows the optimal conversion decisions from traditional agriculture 

(AO) to either AV or SO. At low agricultural revenue levels, it is optimal to switch to 

agrivoltaics. However, if agricultural revenue is higher, it is optimal to stay in traditional 

agriculture, regardless of the irrigation costs. This suggests that revenue is the primary factor 

influencing the decision to integrate solar panels into crop production, especially for a crop like 

tomatoes that has relatively low irrigation needs. Additionally, in the state space, we do not find 

it optimal to switch to purely solar.  

We simulate the regime switching decisions over 30 years for 1000 simulations. The results in 

Figure 3 show the distribution of regimes over time. 
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Figure 3: Regime Distribution for Processing Tomatoes (S0) 

The plot presents the proportion of simulations(%) that results in each regime(AO, AV, SO) over 

a 30- year period. Initially, the majority of land remains in traditional agriculture (AO), as 

indicated by the purple area at the beginning of the timeline. However, within the first 5-10 

years, there is a significant transition to AV, shown by the rapid increase in the blue area. As time 

progress, the proportion of land in agrivoltaic stabilizes, accounting for the majority of the 

simulations. This trend suggests that, under stable market conditions and historical weather 

patterns, agrivoltaics becomes the dominant land-use type for processing tomatoes. The stable 

solar rent and irrigation water savings make AV a more attractive option compared to traditional 

agriculture. Consistent with our optimal conversion results, the transition to solar-only (SO) , 

represented by the yellow area do not appear in our simulation. This outcome indicates that, 

given the assumptions of the baseline scenario, switching entirely to solar is not a common or 

optimal decision for landowners focused on processing tomatoes. 

4.2 Scenario Analysis (S1-S5) – Processing tomatoes 

As mentioned earlier, in addition to the baseline scenario, we examine several alternative 

scenarios to assess the impact of economic variability, climate conditions, and policy measures 

on regime-switching decisions for processing tomatoes. These scenarios include high market 
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volatility (S1), increased climate variability (S2), aggressive groundwater policy measures (S3), 

increased solar rents (S4), and reduced solar rents (S5). 

High Market Volatility Scenario (S1) 

In the high market volatility scenario, we introduce increased economic uncertainty (Σ) to assess 

its impact on regime-switching decisions. The results indicate that it is still not optimal to switch 

from AV to SO. The result shows a higher propensity to remain in AO due to increased revenue 

uncertainty, resulting in a less frequent switch to AV. This suggests that under high revenue 

volatility, landowners prefer to wait and see, which delays the adoption decision. Compared to 

the baseline, there is a slower and less pronounced transition from AO to AV, with a higher 

proportion of land remaining in AO throughout the simulation period. The preference for AO 

persists longer, highlighting the impact of high market volatility on regime-switching decisions. 

The proportion of land transitioning to SO remains negligible. 

Increased Climate Variability Scenario (S2) 

This scenario examines the impact of greater fluctuations in weather patterns on regime-

switching decisions. The results show a similar pattern to the baseline, indicating that it is still 

not optimal to switch from AV to SO. The decisions from AO to AV are influenced by 

agricultural revenue and irrigation costs, but overall, the model is less sensitive to climate 

variability, with landowners making similar decisions as in the baseline scenario.  

Aggressive Groundwater Policy Measures Scenario (S3) 

This scenario simulates the effects of aggressive groundwater policy measures that increase 

irrigation water prices. The results still do not reflect it to be optimal to switch to SO. From AO, 
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there is a higher propensity to switch to AV at elevated irrigation costs, driven by the increased 

burden of water expenses.  

Increased Solar Rents Scenario (S4) and Decreased Solar Rents Scenario (S5) 

These two scenarios explore the impact of potential government incentive about boosting solar 

rents, or the reduction in support. In the high solar scenario S4, the results show an expanded 

region favoring agrivoltaics, and it is optimal to switch earlier. And in the low solar scenario S5, 

any solar adoption will be delayed. And there will be a much higher percentage of the 

landowners to remain in traditional agricultural production by the end of the 30 year period.  

4.3  Baseline Scenario Results (S0) – Alfalfa 

For alfalfa, we assume similar conditions for the water saving benefit of shade as for processing 

tomatoes. However, since alfalfa is more shade-tolerant, we assume that the shade impact on 

yield to be 10%. Figure 4 shows the regime distribution over time for alfalfa. Initially, most land 

remains in AO, and the transition starts to happen within the next 5 years. Compared to 

processing tomatoes, the switch happens slower and it is more likely for the landowner to stay in 

traditional agricultural production despite its shade-tolerance nature. The transition to SO does 

not appear in our simulations, indicating that switching entirely to solar is not a common or 

optimal decision under the baseline scenario. 
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Figure 4 Regime Distribution for Alfalfa (S0) 

4.4 Scenario Analysis (S1-S5) – Alfalfa 

Similar to tomatoes, we examine the impact of various scenarios on regime-switching decisions 

for alfalfa. The detailed figures are provided in the appendix, and the results are summarized 

below. 

High Market Volatility Scenario (S1) and Increased Climate Variability Scenario (S2) 

Change in S1 and S2 present similar results as tomatoes. However, alfalfa is more sensitive to 

climate variability. Under high irrigation cost and lower revenue states, it is preferable to switch 

to AV.  

Aggressive Groundwater Policy Measures Scenario (S3) 

Higher irrigation costs due to aggressive groundwater policies lead to a stronger inclination to 

switch from AO to AV. Compared with tomatoes, adoption decision for alfalfa land is more 

sensitive to irrigation cost change. While both crops have low irrigation costs, tomatoes are a 

high-value crop, making irrigation costs a smaller proportion of the overall revenue. In contrast, 

alfalfa is a low-value crop, so even relatively low irrigation costs represent a higher proportion of 

the revenue, significantly impacting the decision-making process. 
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Figure 5 Regime Distribution for Alfalfa (S3) 

Increased Solar Rents Scenario (S4) and Decreased Solar Rents Scenario (S5) 

The adoption decision for alfalfa landowners is more sensitive to changes in solar rents. Under 

high solar rents (S4), SO becomes the dominant regime. As shown in Figure 6, at low 

agricultural revenue levels, it is optimal for landowners to switch directly to SO rather than AV. 

In contrast, under low solar rents (S5), it is optimal to stay in traditional agricultural production 

(AO). We do not observe any significant transitions to other regimes, indicating that landowners 

prefer to remain in AO when solar rents are low. 
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Figure 6 Optimal Conversion for alfalfa (S4)  

5. Sensitivity Analysis 

5.1 Processing tomatoes  

To evaluate the model’s robustness and understand how various factors affect adoption decisions, 

we conducted a series of sensitivity analyses on key parameters. These parameters include the 

yield impact coefficient (𝛼), the shade evapotranspiration impact parameter (𝜌), the solar 

intensity parameter in agrivoltaics (γ), operational costs (𝐶𝑜𝑡ℎ), switching costs between regimes 

(𝐾𝐴𝑂→𝐴𝑉,  𝐾𝐴𝑂→𝑆𝑂 , 𝐾𝐴𝑉→𝑆𝑂), and base solar rents (𝑅𝑡
𝑠𝑜𝑙𝑎𝑟). Each parameter was varied within a 

specified range to observe its effect on the optimal steady-state regime (AO, AV, or SO). 

The results for processing tomatoes are summarized in Appendix B1. The table presents the 

steady-state regime (SS regime) under each sensitivity scenario. 

From the results, we observe that the decision to switch regimes is not sensitive to changes in 𝜌 

and 𝛾. Only when the solar intensity parameter (𝛾) is lower than 0.1 do landowners stay in 

traditional agricultural production AO. However, the decision is highly sensitive to the yield 

impact coefficient (𝛼). If the yield impact is higher than 40%, it is optimal to remain in 

traditional agriculture (AO). This indicates that significant yield losses due to shading make 
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agrivoltaics less attractive, highlighting the importance of compatibility when considering 

agrivoltaics integration.  

The model is not sensitive to switching costs, except when the cost of switching from AV to SO 

(𝐾𝐴𝑉→𝑆𝑂) exceeds $26,000, which results in a preference to stay in AO. Operational costs also 

play a crucial role; if other expenses are lower than $3,040, the profit margin increases, making it 

more preferable to stay in AO. The model shows minimal sensitivity to changes in solar rent 

within the tested range, indicating that solar rent variations do not significantly impact the 

regime-switching decisions for processing tomatoes. 

5.2 Alfalfa 

The sensitivity analysis results table for alfalfa can be found in Table 2. Similar to tomatoes, the 

sensitivity analysis for alfalfa shows that the adoption decision is highly sensitive to the yield 

impact coefficient (𝛼). When shading decreases yield by more than 40%, it is optimal to stay in 

traditional agriculture (AO). The decision is also sensitive to the solar intensity parameter (γ); if 

the solar intensity is 0.5 or lower, it is optimal for landowners to remain in AO. Additionally, if 

other operational costs are lower than $1500, it becomes more profitable to stay in AO. 

 

Table 2 Sensitivity analysis results for Alfalfa 

 

 

𝜶 
SS 

Regime 
𝜌 

SS 

Regime 
𝛾 

SS 

Regime 
𝐾𝐴𝑂→𝑆𝑂 

SS 

Regime 
𝐾𝐴𝑂→𝐴𝑉  

SS 

Regime 
𝐾𝐴𝑉→𝑆𝑂  

SS 

Regime 
𝐶𝑜𝑡ℎ  

SS 

Regime 
𝑅𝑡
𝑠𝑜𝑙𝑎𝑟  

SS 

Regime 

-0.2 AV -0.2 AV 0.9 AV 10000 AV 12500 AV 2500 AV 1250 AO 800 AO 

-0.1 AV -0.1 AV 0.8 AV 12000 AV 15000 AV 3000 AV 1500 AO 900 AO 

0 AV 0 AV 0.7 AV 14000 AV 17500 AV 3500 AV 1750 AV 1000 AV 

0.1 AV 0.1 AV 0.6 AV 16000 AV 20000 AV 4000 AV 2000 AV 1100 AV 

0.2 AV 0.2 AV 0.5 AO 18000 AV 22500 AV 4500 AV 2250 AV 1200 AV 

0.3 AV 0.3 AV 0.4 AO 20000 AV 25000 AV 5000 AV 2500 AV 1300 AV 

0.4 AO 0.4 AV 0.3 AO 22000 AV 27500 AV 5500 AV 2750 AV 1400 AV 

0.5 AO 0.5 AV 0.2 AO 24000 AV 30000 AV 6000 AV 3000 AV 1500 AV 

0.6 AO 0.6 AV 0.1 AO 26000 AO 32500 AV 6500 AV 3250 AV 1600 SO 

0.7 AO 0.7 AV   28000 AO 35000 AV 7000 AV 3500 AV 1700 SO 
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However, the model for alfalfa is not sensitive to switching costs or the shade evapotranspiration 

impact parameter (ρ), but it is sensitive to solar rent. When solar rent is below $1000 per acre per 

year, it is optimal to stay in AO. Conversely, if solar rent exceeds $1500 per acre per year, 

landowners are more likely to switch directly to the solar-only (SO) regime. This highlights the 

importance of solar rent in influencing land-use decisions for alfalfa, making it a critical factor in 

the adoption of solar energy systems. 

6. Conclusions  

This study introduces a novel stochastic dynamic programming model to assess the decision-

making processes involved in adopting agrivoltaic or solar systems on agricultural lands in 

California's Central Valley. Employing a regime-switching framework, akin to a real options 

approach, our model analyzes how uncertainties in agricultural income and irrigation costs, 

coupled with the irreversibility of investments, influence landowners' adoption decision between 

agrivoltaic and purely solar systems. Specifically, the study focuses on two types of crops—

processing tomatoes and alfalfa—to illustrate the trade-offs involved. These crops were selected 

due to their differing water needs and economic values, providing a comprehensive view of the 

potential impacts on yield reduction, water cost savings, and solar income generation. This 

approach allows for a nuanced exploration of the economic and environmental benefits and 

challenges associated with each system under various scenarios.  

The findings of this study reveal distinct differences in the economic outcomes for agrivoltaic 

and solar-only systems, particularly when applied to processing tomatoes and alfalfa. For 

processing tomatoes, the model suggests that despite the yield reduction due to shading, AV 

systems could significantly lower water costs and generate stable solar income, making them a 
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potentially more viable option than solar-only systems, especially under scenarios of high water 

price volatility. This is particularly relevant as the Sustainable Groundwater Management Act 

(SGMA) may drive up irrigation costs, thereby incentivizing the adoption of AV systems which 

offer reduced water usage. Conversely, for alfalfa, which is less sensitive to shading, the benefits 

of agrivoltaics are even more pronounced, providing substantial water savings with minimal 

impact on yields. The analysis indicates that the optimal adoption strategy for both crops 

involves a delayed transition to agrivoltaics, allowing landowners to capitalize on advancements 

in technology and potentially favorable policy changes. This strategic delay enables landowners 

to manage the risks associated with the irreversibility of investment and the uncertainties related 

to future market conditions and policy landscapes. 

While the model provides insights into the timing flexibility and the potential economic benefits 

of agrivoltaic systems, it also highlights a key sensitivity: the yield impact coefficient (alpha). 

This sensitivity underlines the importance of developing agrivoltaic technologies that minimize 

negative impacts on crop yields to make them economically viable for farmers.  

However, the study also acknowledges several limitations that must be addressed in future 

research. Due to data constraints, our model could not fully incorporate the dynamics of 

operational costs or the fluctuations in solar rent, which are significant factors that could affect 

the economic outcomes of agrivoltaics adoption. Moreover, our analysis is based on the scenario 

of a representative one-acre landowner with no cross-crop choices, and assumes an optimal 

agrivoltaics configuration without specifying the exact nature of these configurations. These 

simplifications may limit the generalizability of our results across different agricultural contexts 

and scales. Finally, we do not consider potential constraints or relative opportunity costs of solar 
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investments that vary spatially across the CV and how these factors might influence solar 

incentives and adoption decisions.  

Moving forward, it is essential to refine the economic models of agrivoltaics adoption to include 

more detailed and dynamic considerations of operational costs, solar rent variations, groundwater 

constraints, and specific agrivoltaic configurations. Additionally, expanding the scope to consider 

different crop types and larger agricultural operations will enhance our understanding of the 

broader economic impacts and scalability of agrivoltaics. 

As California continues to lead in innovative environmental management, the insights from this 

study contribute to a broader understanding of how integrated solutions like agrivoltaics can play 

a pivotal role in the sustainable transformation of agriculture, supporting resilience in food 

production while advancing towards a zero-carbon future.  
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Appendix A1: Scenario Analysis for Processing Tomatoes 

S1: Optimal Conversion Surface (left) Regime Distribution(right) for processing tomatoes 

 

S2: Optimal Conversion Surface (left) Regime Distribution(right) for processing tomatoes 

  

S3: Optimal Conversion Surface (left) Regime Distribution(right) for processing tomatoes 

  

S4: Optimal Conversion Surface (left) Regime Distribution(right) for processing tomatoes 

  



33 

 

S5: Optimal Conversion Surface (left) Regime Distribution(right) for processing tomatoes 
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Appendix B1 Sensitivity Analysis Result for Processing Tomatoes 

 

 

 

 

 

 

 

 

 

 

  

𝜶 
SS 

Regime 
𝜌 

SS 

Regime 
𝛾  SS 

Regime 

-0.2 AV -0.2 AV 0.9 AV 

-0.1 AV -0.1 AV 0.8 AV 

0 AV 0 AV 0.7 AV 

0.1 AV 0.1 AV 0.6 AV 
0.2 AV 0.2 AV 0.5 AV 

0.3 AV 0.3 AV 0.4 AV 

0.4 AO 0.4 AV 0.3 AV 

0.5 AO 0.5 AV 0.2 AV 

0.6 AO 0.6 AV 0.1 AO 
0.7 AO 0.7 AV   
0.8 AO 0.8 AV   

𝐾𝐴𝑂→𝑆𝑂  
SS 

Regime 
𝐾𝐴𝑂→𝐴𝑉 

SS 

Regime 
𝐾𝐴𝑉→𝑆𝑂 

SS 

Regime 
𝐶𝑜𝑡ℎ 

SS 

Regime 
𝑅𝑡
𝑠𝑜𝑙𝑎𝑟 

SS 

Regime 

10000 AV 12500 AV 2500 AV 1900 AO 500 AV 

12000 AV 15000 AV 3000 AV 2280 AO 600 AV 

14000 AV 17500 AV 3500 AV 2660 AO 700 AV 

16000 AV 20000 AV 4000 AV 3040 AO 800 AV 

18000 AV 22500 AV 4500 AV 3420 AV 900 AV 

20000 AV 25000 AV 5000 AV 3800 AV 1000 AV 

22000 AV 27500 AV 5500 AV 4180 AV 1100 AV 

24000 AV 30000 AV 6000 AV 4560 AV 1200 AV 

26000 AO 32500 AV 6500 AV 4940 AV 1300 AV 

28000 AO 35000 AV 7000 AV 5320 AV 1400 AV 
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Appendix B2 Sensitivity Analysis Result for Alfalfa 

 

 

 

 

 

 

 

 

 

𝜶 
SS 

Regime 
𝜌 

SS 

Regime 
𝛾  SS 

Regime 

-0.2 AV -0.2 AV 0.9 AV 

-0.1 AV -0.1 AV 0.8 AV 

0 AV 0 AV 0.7 AV 

0.1 AV 0.1 AV 0.6 AV 

0.2 AV 0.2 AV 0.5 AO 

0.3 AV 0.3 AV 0.4 AO 

0.4 AO 0.4 AV 0.3 AO 

0.5 AO 0.5 AV 0.2 AO 

0.6 AO 0.6 AV 0.1 AO 
0.7 AO 0.7 AV   
0.8 AO 0.8 AV   

𝜶 
SS 

Regime 
𝜌 

SS 

Regime 
𝛾 

SS 

Regime 
𝐾𝐴𝑂→𝑆𝑂 

SS 

Regime 
𝐾𝐴𝑂→𝐴𝑉 

SS 

Regime 
𝐾𝐴𝑉→𝑆𝑂 

SS 

Regime 
𝐶𝑜𝑡ℎ 

SS 

Regime 
𝑅𝑡
𝑠𝑜𝑙𝑎𝑟  

SS 

Regime 

-0.2 AV -0.2 AV 0.9 AV 10000 AV 12500 AV 2500 AV 1250 AO 800 AO 

-0.1 AV -0.1 AV 0.8 AV 12000 AV 15000 AV 3000 AV 1500 AO 900 AO 

0 AV 0 AV 0.7 AV 14000 AV 17500 AV 3500 AV 1750 AV 1000 AV 

0.1 AV 0.1 AV 0.6 AV 16000 AV 20000 AV 4000 AV 2000 AV 1100 AV 

0.2 AV 0.2 AV 0.5 AO 18000 AV 22500 AV 4500 AV 2250 AV 1200 AV 

0.3 AV 0.3 AV 0.4 AO 20000 AV 25000 AV 5000 AV 2500 AV 1300 AV 

0.4 AO 0.4 AV 0.3 AO 22000 AV 27500 AV 5500 AV 2750 AV 1400 AV 

0.5 AO 0.5 AV 0.2 AO 24000 AV 30000 AV 6000 AV 3000 AV 1500 AV 

0.6 AO 0.6 AV 0.1 AO 26000 AO 32500 AV 6500 AV 3250 AV 1600 SO 

0.7 AO 0.7 AV   28000 AO 35000 AV 7000 AV 3500 AV 1700 SO 


