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1 Introduction

At the beginning of 2021, food prices began to rise at historical paces, re-prioritizing food

price inflation as a concern to the US economy and policymakers. Given the significant

volatility of food price inflation and the fact that food is a necessary good for all consumers,

it is essential to have access to accurate information about food price inflation within an

economy. The Economic Research Service (ERS) of the United States Department of Agri-

culture (USDA) fills this need by providing the public with a monthly “Food Price Outlook,”

which forecasts annual inflation rates across 22 different food-related inflation indices. As

the primary source of information regarding US food price inflation, the Food Price Out-

look (FPO) is a valuable source of information relied upon by food industry professionals,

researchers, policymakers, and the media.

Despite their importance, FPO forecasts have not been extensively scrutinized. Joutz

et al. (2000) provided some insights into the various forecast methodologies implemented

by the USDA-ERS throughout the ’80s and ’90s, suggested alternative models, and offered

analysis across model accuracy and reliability. Similarly, Kuhns et al. (2015) and Buck et al.

(2023) offered a detailed explanation of the myriad of USDA-ERS forecast models revised

and implemented from 2000 until 2015 and 2022 respectively, suggesting updates to models

that reflect the current econometric methods. In response to the critiques of Nakamura

(2008) and the papers mentioned above, Maclachlan et al. (2022) suggested a new optimized

Seasonal ARIMA model for FPO forecasts, which was implemented in July of 2023. This

“new time series approach” provides a standardized approach for defining a set of models,

selecting a model based on information loss, and developing a prediction interval. This

improved the previous approaches by considering uncertainty more rigorously, allowing for

transparency and reproducibility within the FPO reports, and increasing model accuracy as

measured by root mean squared error (RMSE).

However, the implementation of the optimized SARIMA model is limited by two main

factors. First, the model uses only historical values of the CPI series to inform the model

and does not include any additional exogenous variables despite evidence of several variables’

ability to affect the prices of food items (Adjemian et al., 2023). Second, the choice of an

ARIMA model assumes a linear relationship between the time series and its past observations

and only allows for uni-variate time-series data. At the same time, the development and

application of new random forest (RF) machine learning techniques to forecasting has been

shown to provide performance increases in cases of high economic uncertainty. This is largely

attributable to the model’s ability to handle nonlinear relationships (Goulet Coulombe et al.,

2022), making RF an ideal candidate for improving FPO forecasts.
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The goal of this study is to implement the newly developed Auto-Regressive Random

Forest (ARRF) model Coulombe (2020) to FPO forecasting. Our objective is to improve

the forecast accuracy and performance of the FPO while maintaining the recent qualita-

tive improvements gained by the SARIMA model, such as cross-category standardization

and improved measures of uncertainty, but also allowing for additional exogenous variables.

This ARRF model, we argue, will allow for the continuation of the improvements made by

Maclachlan et al. (2022) while testing for and accommodating nonlinear forecasting dynamics

otherwise absent in the current approach to the FPO.

Another contribution of this study will be a comprehensive evaluation of the proposed

as well as the optimized SARIMA forecasts that have yet to be thoroughly evaluated since

their adoption. While keeping the forecast’s data, rolling window size, and 18 horizons

consistent with that currently used by the USDA-ERS, the MRF model will be implemented

such that forecast intervals for the years 2003 to 2022 will be available for comparison to

the historical data provided by the FPO. This will allow for a comparison of the models’

performance across 20 years for 22 categories of food items. Following Isengildina-Massa

et al. (2012), our forecast evaluation will incorporate measures for accuracy and bias, or the

model’s tendency to over- or under-estimate the actual annual inflation rates.

2 Data

Food price inflation and other measures of inflation are tracked monthly by The Bureau

of Labor Statistics (BLS). The percentage changes in retail food prices are reflected in the

Consumer Price Index(CPI). Percent changes in wholesale food prices are reported within

the Producer Price Index (PPI). BLS publishes these measures with a 1-month delay, i.e.,

estimates for September 2023 were released by BLS on October 12, 2023.

Because it is important for food industry participants to anticipate food price inflation,

not just observe it ex-post, USDA’s Economic Research Service provides monthly forecasts of

annual food price inflation in their Food Price Outlook (FPO) reports. Figure 1 illustrates the

forecasting cycle for FPO reports as the new forecast estimates are produced, and observed

index values are included when they become available. This figure demonstrates that the

first forecast of annual inflation is released in July of the previous year, or 18 steps (months)

before the end of the forecasted year. It is important to recognize that the cycles overlap

with the 18-month-long forecasting cycle, and a forecast for the next year is started before

the current year is finalized.

For each year, t, the annual inflation index is calculated as a sum of monthly price changes
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Figure 1: USDA FPO Forecast Cycles from Years 2021 to 2024

from the previous year (t-1) for each index j, as follows:
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Îj
t−1,m+

12∑
m=1

Ij
t−1,m

for s = 1...6

100 ·
12∑

m=1
Îj
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Where ∆Π̂j
t,m|s is the percent change in prices from year t− 1 to year t for a given inflation

index j ( All Food, Food Away From Home, poultry, etc), at step s of the forecast. Each

of the 18 steps within the forecasting cycle estimates the same target year, t, consisting of

steps 7-18, as shown in Figure 1. Observed monthly inflation index values Ij
t,m are released

by the BLS with a one-month lag around the 13th of every month. Since the FPO reports

are released around the 25th of the month, this information is included in the published

estimate. The difference between each forecast within the same cycle lies in the amount of

forecasted versus observed inflation data available at the step of the forecast. Therefore, as

the forecast begins in step 1 and moves to step 18 three cases exist for calculating ∆Π̂j
t,m|s

as shown in Equation 1.

For steps 1 through 6 of a forecast cycle (s = 1...6), case 1 of Equation 1 demonstrates

the appropriate equation to employ. As shown in Figure 1, these steps always occur from

July to December of year t− 1; thus, at each of these steps, there are unobserved values in

the calendar year t− 1 (Îj
t−1,m), and in the calendar year t (Îj

t,m).

As the forecast cycle moves into January(s=7 in Equation 1), all monthly inflation index

values for the year t−1 have been reported by the BLS. Therefore, all sum operators related
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to estimated index values(Îj
t−1,m) will be dropped from the numerator and denominator

of the general equation, resulting in a form such as case 2 in Equation 1. Case two is a

special case only applicable to step 7 since, at this point in time, there are no observed index

values for the year t ,and therefore, a single sum operator is needed for the year t index

estimates(Îj
t,m). This does not hold as the BLS begins to report index values for the year t

as will be shown next.

As the forecast cycle moves into step 8, a new sum operator is needed to handle newly

observed inflation index values(Ij
t−1,m). In February of year t (s=8), the BLS will report the

first observed values for the year t, and as the forecast cycle progresses from step 8 to 18,

additional observed values will be reported(see Figure 1. For these final 11 steps, case 3 of

Equation 1 is employed.

2.1 Example FPO Report: October 25, 2023

FPO reports released from July through December include forecast estimates for both the

current year and next year’s change in food price inflation. For example, an FPO report

released on October 25, 2023, included the estimate at the 16th step for the forecast targeting

year 2023 (∆Π̂j
2023,m|16), and the estimate at the 4th step for the forecast targeting year 2024

(∆Π̂j
2024,m|4), as shown in Figure 1. Based on the discussion above, the 4th estimate is a

pure forecast, and the 16th estimate is a combination of observed values for months 7-15

and forecasts for months 16-18, as follows:
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(3)

where forecast inflation index estimates are included in both the years 2023 and 2024.

As the forecast moves into a new step, the newly observed inflation index values for the

previous month reported by the BLS will replace the forecasted value used for that month

in the previous step. Using this new observed value, all forecasted values for months that

remain unobserved will be re-estimated using a method that is covered in the section 3.1.

This means that the value estimated for an unobserved inflation index value will change at

5



each step, or written in an equation:

Îj
t,m|s ̸= Îj

t,m|s+1 (4)

3 Methods

3.1 Seasonal ARIMA

By considering lags(auto-regression), changes between consecutive observations(differencing/integration),

and moving average terms of the observed values at point s of a single inflation index (Ijt ),

Maclachlan et al. proposed the current ARIMA model used by USDA-ERS for monthly

FPO updates. An ARIMA(p,d,q) is defined for a forecast variable yt, or in this case It, as

follows:

Ij
t,m|s = c+ ϕ1Ij

t−1,m + · · ·+ ϕpIj
t−p,m + θ1εt−1 + · · ·+ θqεt−q + εt (5)

Box et al. (2015). The coefficients on the left side of the equation ϕp and θq relate to the

auto-regressive and moving average independent variables, respectively.

In addition to this, the FPO forecast model also considers the presence of seasonality

within each of the series, resulting in an additional three terms: seasonal auto-regressive

terms (P), seasonal differencing (D), and seasonal moving averages (Q). The general equation

for a SARIMA(p,d,q)(P,D,Q) can be written as:

Φ (Lm)ϕ(L) (I• − µ) = Θ (Lm) θ(L)εt (6)

where
AR: ϕ(L) = 1− ϕ1L − . . .− ϕpLp

MA: θ(L) = 1 + θ1L+ . . .+ θqLq

Seasonal AR: Φ (Lm) = 1− Φ1Lm − . . .− ΦPLPm

Seasonal MA: Θ (Lm) = 1 + Θ1Lm + . . .+ΘQLQm

This includes the three ARIMA terms: p auto-regressive terms(with coefficients ϕ...ϕp)

q moving average terms(with coefficients from θ1...θP ), and d degrees of differencing along

with their seasonal terms: P seasonal auto-regressive terms (with the coefficients Φ1...ΦP ),

Q seasonal moving average terms(with coefficients Θ1...ΘQ), and D is the order of seasonal

differencing. The notation I• will be used to represent Ij
jt,m|s from this point forward for

notational ease.
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To standardize the forecast approach across steps and cycles, Maclachlan et al. im-

plemented the auto.arima() function from the popular forecast package in R that uses a

variation of the Hyndman-Khandar algorithm (Hyndman and Khandakar, 2008), which em-

ploys Canova Hansen-Hansen tests for seasonality(Canova and Hansen, 1995), successive

KPSS unit-root tests(Kwiatkowski et al., 1992) and maximum likelihood estimation(MLE)

to automate the process of determining the value of each of the 6 model parameters. The

ERS pre-specifies maximum values for each model parameter in the following Table 1 .

Table 1: SARIMA Paramter Values

Parameter Maximum Value

Autoregressive (p) p ≤ 12
Differencing (d) d ≤ 4
Moving Average(q) q ≤ 2
Seasonal Autoregressive(P) P ≤ 1
Seasonal Differencing(D) D ≤ 2
Seasonal Moving Average(Q) Q ≤ 1

Based on the maximum values in Table 1, there is a set of 2,340 possible models to choose

from for each forecast. To choose which model to use, the automated SARIMA model

compares models by Bayesian Information Criteria(BIC). This method uses a likelihood

function that helps balance the model fit and the model parsimony(Schwarz, 1978). It

follows the general function below:

BIC = k ln(n)− 2 ln(L̂) (7)

where k is the number of parameters the model estimates, n is the number of data points

observed, and L̂ is the maximum likelihood function that measures the model’s fit.

Once the best model specifications have been determined for the current forecast step, a

point forecast for the inflation index(Îjt ) is estimated for the current step, and each of the

remaining steps in the forecast cycle(for a total of (18− s+1) for a given s). Once all values

for Îj have been estimated, these and the observed values Ij are plugged into the appropriate

equation mentioned in Section 2 to determine the value reported by the FPO.

The FPO’s current forecasting methodology does consider past observations of a single

series of inflation indices but not for the inclusion of other relevant information. Maclachlan

et al. tested the potential of expanding the set of exogenous variables of the forecast model

to include futures prices of commodities relevant to the dependent variable, noting increases
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to the model’s in-sample fit. The increases in model fit proved true for only specific inflation

indices. This suggests that broadening the set of exogenous variables considered in the

current model will require a trade-off between including variables that increase the model’s

performance and maintaining a standardized approach across all series at all points in time,

one of the benefits mentioned by Maclachlan et al.. In addition to this, as the number of

variables is increased in the model, concerns around over-fitting and the computational costs

of optimizing need to be considered.

Linear regression is at the core of the SARIMA model, leading to limitations that must

be considered when applying it in specific contexts. The auto-regressive(AR) and moving

average(MA) terms allow for a nonlinear functional form, but the model is still linear in

its parameters. This is, of course, an issue when forecasting something like US food price

inflation that is affected by changes in the economic environment.

4 Tree-Based Methods

Among the many Machine Learning(ML) applications that have risen in popularity within

the econometrics community, forecasting has been an area rich with experimental studies

looking for increased prediction accuracy. Of the ML models that have come of interest,

tree-based methods, such as the random forest (RF) model we use as a framework in this

study, have become one of the favored methods for several reasons.

The strength of these models lies in their ability to manage data with many complicated

and nonlinear relationships. Tree-based models do this by repeatedly dividing a sample of

observations into smaller sub-samples, a method called recursive partitioning. Each time

the observations are divided and subdivided, the interactions within the resulting smaller

sub-samples become less complicated until a simple model can fit them. This approach’s

added benefits allow for many explanatory variables and complex relationships while cir-

cumnavigating the risk of over-fitting models.

4.1 Data Partitioning With Decision Trees

Tree-based methods are based on a decision tree framework that takes a sample of observa-

tions and divides it into several sub-samples based on some splitting criteria. Figure 2 depicts

the general form of a decision tree and some of the common terminology used to reference

it. Nodes refer to places on the decision tree diagram that represent samples of data and are

depicted as blue squares in Figure 2. The top node is where the tree begins, so it is fittingly

referred to as the ”root” node. The root node contains all available observations of I• , the
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Figure 2: General Anatomy of a Decision Tree

full sample of all available inflation index values. AT this first node, the available observation

of I• is divided into two sub-samples based on some criteria, often called a splitting rule. In

the example provided in Figure 2, the first splitting rule, t < 2008, divides the data into two

sub-samples, one with values for I• that occurred before 2008, and another with values that

were observed after 2008. Further discussion about methods to determine splitting rules will

come later in this section. Following the two lines in the decision tree down from the root

node in Figure 2 makes it easy to see that the two sub-samples are stored in two new nodes

due to the splitting rule. All observations with t < 2008, where t refers to years, are stored

to the left, and all other values are stored in the node to the right. In Figure 2 a second

splitting rule, t < 2020, is implemented on the sub-sample of I• that was stored in the right

node with values of with t ≥ 2008 following the first splitting rule. This resulted in two

additional sub-samples and marked the end of this particular decision tree. This method of

repeatedly dividing the data in to smaller sub-samples is called recursive partitioning.

As labeled in Figure 2 any node resulting from a splitting rule is considered to be a ”child”

node of the node that was split to create it. Any nodes left undivided by the decision tree

are called terminal nodes(or sometimes leaves. In the provided example, 3 terminal nodes

are left once the decision tree is complete. Each of the terminal nodes contains a sub-sample

of I•. If the number of observations in each of the terminal nodes was added together, they

should sum to equal the total number of I• in the original full sample found in the root

node. The final form of the decision tree can then be used to make predictions for values of

I• by using the sub-samples of data in the terminal nodes. This is accomplished by fitting

a model to each of the sub-samples found in the terminal nodes.
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4.2 Regression Trees

The term regression tree refers to using a decision tree framework to make predictions about

a dependent variable of interest. Splitting rules can be strategically chosen such that the

recursive partitioning of the data creates sub-samples of I• that have a common set of

explanatory variables. This allows for simpler models to be fit to each of the sub-samples of

I• instead of fitting a more complicated model to the full sample. In a traditional regression

tree, a simple model using the average of the observations in a terminal node estimates the

value of Î• with a given value of t.

Following the example in Figure 2, consider a situation that required the prediction of an

index value Î• with a given value of t = 2007. Following the decision tree in Figure 2 can be

estimated by asking a series of questions coinciding with the splitting criteria to determine

the terminal node that the observation belongs in. For this case, the first splitting decision

asks if the observation has a value of t < 2008. Since t = 2007 the answer is yes, which

leads to the sub-sample in the terminal node farthest to the left containing only observations

of I• < 2008. As this is a terminal node, the mean model fit to this node is then used to

estimate the value of the inflation index as Î• =
1
n

n∑
i=1

(I•Nj
), the sample mean of the terminal

node.

The within-sample performance of the regression tree can be found by comparing the

differences between estimates of Î• and actual values of I• . Equation 8 shows the residual

sum of squares (RSS ) formula used to measure the models in sample fit across all nodes

of the tree where I• is the observed value, and Î•Nj is the mean response for the training

observations within the jth node. The smaller an RSS value is, the better the within-sample

fit of the regression tree is.

RSS =
J∑

j=1

∑
i∈Nj

(I•i − Î•Nj
)2 (8)

4.2.1 How to Grow a Tree

The basic regression-tree growing algorithm is called recursive binary splitting. It relies on

the measure of model fit, RSS, mentioned in Equation 8 to automate the selection of splitting

rules. It starts with the full sample of observations at the root node, searches over all the

available independent variables X1...Xp, and considers each of the possible splitting values b

for each of these. The algorithm uses these values to survey all of the possible splitting rules

available and the resulting RSS for each option. Traditionally, only binary splits for a single

node are considered at a given point in time. When the optimal splitting rule has been found,

the node is split accordingly to create two new child nodes. As the algorithm continues, the
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two new child nodes undergo the same process to determine the optimal splitting rules for

each node. Of the two, the one resulting in the lowest RSS will be chosen for the next

split. The process will then repeat itself until some predefined stopping criterion is met.

This criterion is most commonly based on minimum decreases in the RSS, minimum sample

sizes for terminal nodes, or a maximum length from the root node to the terminal nodes.

Trade-offs between the model’s fit and the model’s predictive accuracy must be weighed when

imposing a stopping criterion. Larger trees tend to lead to better within-sample fit(lower

RSS), but are prone to being over-fit. Too short of a maximum length from the root node,

or too large of a minimum sample size will stop the algorithm too early resulting in poor

performance

The recursive binary splitting algorithm tends to result in overly complex trees that

perform poorly on out-of-sample predictions. In order to address this, a minimum reduction

in RSS may be required for proposed splitting rules. This will help limit the complexity of the

tree but it is known for being too short-sighted of an approach and has hence been labeled

a greedy algorithm. For example, a particular splitting rule may not lead to significant

decreases in RSS but can result in subsequent splits, potentially leading to sub-optimal

model performance.

4.2.2 Tree Pruning

An alternative method for growing decision trees looks to manage the negative tendencies

of an unbounded recursive binary splitting algorithm while avoiding the greedy nature of

imposed minimum reductions in RSS. Instead of limiting the tree size with a criterion, the

trees are allowed to grow very large with many terminal nodes, which is likely to over-fit and

perform poorly out-of-sample. This overgrown tree can be referred to as T0. For every T0,

there exists a set of trees T0...Tr where Tr corresponds to the single root node, and all trees

between it and T0 are possible subtrees.

Many methods exist for pruning back large trees, most of which try to minimize a test

error rate. Reduced error pruning(REP) is the simplest of these pruning techniques. With

REP T0 is pruned to smaller sub-trees by removing specific terminal nodes, starting with

the largest tree (T0) and working up to the root node (Tr). The predictive accuracy for each

sub tree is validated using a hold-out sample, and if it has not gotten worse, the pruned

node will be left out. Iterating over this process is intended to remove sections of the tree

that have little or no importance when predicting the dependent variable, subsequently

reducing the complexity of the tree and improving the predictive accuracy. This requires

cross-validation must be employed across all potential sub-trees, which is inefficient as it can

require validation across many sub-trees.

11



Cost complexity pruning is an alternative method used to limit the number of sub-trees

considered during the pruning process. During this process, a parameter (α ≥ 0) is chosen

and used to define the cost complexity measure in Equation 9:

T∑
m=1

∑
xi∈Nj

(I•i − Î•Nm
)2 + α|T| (9)

Where |T| is the number of terminal nodes on tree T, Nm is the sub-sample corresponding

with the mth terminal node, and ˆI•Nm is the predicted response associated with the mth

node. The complexity measure controls the trade-off between a tree’s fit and complexity by

changing the value of α. As α increases, a more significant penalty is placed on the tree’s

number of terminal nodes.

Using recursive binary splitting, a large regression tree T0 needs to be grown. Within T0,

a set of sub-trees exists that can be compared via the cost complexity measure in Equation

9, and for a given value of α there is a sub-tree T ∗ that will result in a minimum value. If

α = 0, then T will equal T0 since Equation 9 will just measure the within-sample error. As

α increases, a higher penalty will be placed on trees with more terminal nodes, so T ∗ will

tend to be a smaller sub-tree.

The value for α will affect the final tree chosen to make predictions of the dependent

variable, and thus, determining the value for these parameters is important. The most

common way of determining a value for α begins by dividing the data set into 10 smaller

data sets equal in size. One of these data sets will be held for cross-validation, while the other

nine will each be subject to recursive binary splitting, resulting in nine large trees (T0). For

each of the nine trees, an optimal tree (T ∗) will then be determined using a cost complexity

function with the same value of α. The mean squared prediction error of each of the nine

T ∗ on the data in the 10th data set that was withheld for validation is then evaluated. The

average of all nine mean squared predictions is then found. This process is repeated for

several α values, and the average value of the resulting mean squared prediction errors are

then compared. Whichever value of α has the lowest average mean squared prediction errors

is then used in the cost complexity function applied to the full data set.

4.3 Bagging

Decision trees are known to have a high variance issue. This means that if two decision

trees were grown using random samples of the same training data, their results could be

very different, negatively affecting test accuracy. One commonly used way of lowering the

variance of a decision tree procedure involves employing bootstrap aggregation, often called
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bagging in the context of decision trees. Bagging involves taking many training sets from

the population, growing a separate regression tree from each training set, and averaging the

resulting predictions, resulting in a final tree with lower relative variance.

Consider a set of n trees T1...Tn each one grown on one of n different random samples

taken from the same training set. The predictions of each of these trees can then be averaged

to obtain:

Tavg(Î•) =
1

n

n∑
i=1

Ti(Î•) (10)

This typical bagging method can be applied across hundreds or even thousands of trees to re-

duce the variance within regression tree methods. Furthermore, this method may be applied

across trees grown in several ways, such as cost complexity pruning, reduced error pruning,

etc. In fact, no pruning at all is most commonly used on the trees as the averaging across

the trees’ predicted values lowers the high variance associated with large trees mentioned

in Subsection 4.2.1 and allows employing several predictive models, such as mean, median,

regression, etc.

Combining all these individually simple models will result in the final, potentially more

effective, Tavg(I•). The idea of aggregating model predictions such as this is called an en-

semble method. While the ensemble model Tavg(I•) typically results in improved predictive

accuracy, it often increases the difficulties of interpreting the model. In many cases, practi-

tioners are concerned about the predictive accuracy of the models and which of the predictor

variables were the most significant to the model. Variable importance addresses this by sum-

ming the total amount that the RSS was decreased by splits made over a given predictor

variable and averaging these values across all n of the bagged trees. Larger values of variable

importance measure indicate the predictor variable is more important to the model.

Although the method of averaging across all of the Î• values predicted by each tree

helps lower the model’s variance, it is limited to the correlation of the trees across which it

averages. If the trees are highly correlated, then this method will not result in a substantial

decrease in variance, which in turn will affect the predictive accuracy of the model out of

the sample. Despite growing trees on random training data samples, the recursive binary

splitting method used to grow the bagged trees will often result in highly correlated trees.

This is particularly true when some of the predictor variables used during the splitting rules

are relatively more important than others which will lead to splits on these more important

variables to occur earlier on in the tree’s growth process, resulting in correlated trees. This

often results in non-substantial decreases in the models’ variance.

13



4.4 Random Forests

Random Forests are very similar to the bagging algorithm in that they take n random

samples of the training data, grow n regression trees on each sample, and average across the

predicted variable. The traditional bagging method may result in correlated trees when some

of the predictor variables are found to be more relatively important than others. Random

forests address this weakness of the traditional bagging method by adding an additional step

that helps to decorrelate the trees during the splitting process.

Before each splitting rule is determined, a random sample(without replacement) of m

candidate variables is taken from the full set of p predictor variables. This reoccurs at each

split, allowing for m =
√
p candidate variables each time. This means that for some trees,

the more important predictor variables will not be considered for earlier splitting points

which may result in less correlated trees, thereby making the Tavg(Î•) less variable.

4.5 Auto-Regressive Random Forest

In their 2021 paper Coulombe proposed the Auto-Regressive Random Forest as an important

adaptation of the basic RF model that is noted as being particularly well suited to predict

measures of inflation among many other macroeconomic indicators. Coulombe notes the key

difference between ARRF and Rf is the inclusion of a linear part within each tree leaf instead

of just an intercept. An example of a single regression tree is shown for reference in Figure

2 where time t∗ is the date where a structural shift occurred, and gt−1 is a lagged economic

indicator such as the unemployment rates.

This is only one of the many regression trees that can be used to explain the change

in inflation Πt. The structure, variables used for dividing the independent variables, and

the values of the splitting points must be determined. Iterative local updates are made to

the trees known as greedy algorithms Breiman et al. (2017) that help optimize these factors

while remaining computationally feasible. The results of this greedy algorithm can be highly

variable Hastie et al. (2009).

High variance among the decision tree results is frequently addressed with a bootstrap

aggregation technique often called bagging Breiman (1996). A Block Bayesian Bootstrap

(BBB) Hans Kunsch (1989) randomly selects many training sets from the population, builds

a separate prediction model using each training set, and averages the resulting predictions.

In Breiman’s 2001 paper an additional step to decorrelate the trees was suggested. As

trees are being built on the BBB-constructed training sets, a random sample of m predictor

variables is chosen to be candidates when splitting the data. This additional step is, in fact,

why the forest is said to be random. Without this precaution, the locally focused greedy
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algorithm will always follow the same series of splits. The m parameter is a tuneable metric

within the model that defaults to m = p/3 where p is the total number of predictor variables.

The ARRF model we use for this paper is based off of the Tiny ARRF model mentioned

in Coulombe (2020). A ten-year window of the historical values of I• are considered at each

of the eighteen steps of the forecast. Eight lags of the dependent variable I• are used as the

splitting variables used to fit 1000 different regression trees. At each of the 1000 regression

tree’s terminal nodes I• is regressed on the first and second lags of itself. These parameters

are then used to produce forecasts of the monthly Î• which are ultimately aggregated using

Equation 1 to produce an estimate of ∆Πj
t|s. At this time, no additional variables will

be considered as we look to motivate the use of the ARRF within this context. Future

iterations of this model hope to discuss the addition of appropriate explanatory models and

the additional benefits they may offer to the forecast’s performance.

5 Model Evaluation

Since the models are intended to be used to forecast annual percent changes in food price

inflation during the monthly FPO report, we evaluate each of the models based on its out-

of-sample performance. We chose to limit our current results to the All food series for the

current study and intend to explore cross categorical performances at a later date. We first

assess each model’s accuracy at each of the 18 steps that the FPO reports for targeted years.

This allows us to observe the performance dynamics at differing forecast horizons. Next,

we determine whether or not the difference in predictive accuracy and performance between

the models are significantly different from each other, or essentially the same. Finally, we

explore whether or not either of the model exhibits tendencies to over or under forecast the

realized values.

5.1 Forecast Accuracy

We evaluate the predictive accuracy of the models discussed in this study based on their

out-of-sample performance at each step for the target years 2003-2022. Forecast errors are

calculated by comparing the predicted year over year percent change in inflation index value

(∆Π̂j
t,m|s) to the actual year-over-year percent change in index value (∆Πj

t,m|s) at each step

s for a given target year t and index j using Equation 11:

ejs,t = ∆Πj
t,m|s −∆Π̂j

t,m|s t = 2003, ..., 2022 s = 1, ..., 18 (11)

With 18 observations for each target year our results contain a total of 360 error terms
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for the entire period and 20 per individual step . Since inflation index is measured in year

over year percent changes, there is no need to calculate percent errors to compare alternative

forecasts or categories.

We determine the forecast’s accuracy by assessing the size of the forecast errors in the

two most common ways: mean absolute error (MAE) and root mean squared error (RMSE),

defined as:

RMSEj =

√√√√ 1

n

n∑
s=1

ejs,t t = 2003, ..., 2022 s = 1, ..., 18 (12)

MAEj =
1

n

n∑
s=1

ejs,t t = 2003, ..., 2022 s = 1, ..., 18 (13)

5.2 Tests for Differences Between Forecasts

When suggesting an alternative model for adoption it is important to also consider the costs

incurred when switching. If an alternative model is essentially the same as the current model

the costs of switching would logically not be rewarded. Cases may occur when two models

have accuracy measures relatively close to each other, so it is helpful to determine whether

or not the models are producing estimates that are statistically different from each other.

To formally test whether or not two models perform significantly different from each other

we will implement a modified Mariano Diebold(DM) test following the methods proposed

by Harvey et al. as seen in Equation 14.

DM =
d̄√

1
n

(
δ0 + 2

∑t−1
q=1 δq

) ·

√
n+ 1− 2h+ h(h−1)

n

n

δ0 =
1

n

n∑
t=1

(
dt − d̄

)2
; δq =

1

n

n∑
t=q+1

(
dt − d̄

) (
dt−q − d̄

)
t = 2003, . . . , 2022

(14)

Where h is the forecast horizon, dt is the difference between the errors of the two com-

peting models at a given step, d̄ is the average value of dt across the entire test period, δ0

is the variance of dt, and δq is the q-th order auto-covariance term. The null hypothesis is

that the two methods have the same forecast accuracy (Hyndman and Khandakar, 2008).
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5.3 Forecast Bias

While the MAE and RMSE inform our evaluation criteria with respect to the magnitude of

the forecast errors, these measures do not allow us to observe whether there is a systematic

bias to consider. Forecast bias generally refers to the model’s tendency to over or under-

forecast its target. To assess the directional bias of the candidate models, we use the mean

errors (ME) defined as:

MEj =
1

n

n∑
s=1

ejs,t t = 2003, ..., 2022 s = 1, ..., 18 (15)

A negative ME value suggests that the forecast over predicts the annual percent change,

while a positive value indicates the opposite. A two-tailed t-test is performed on the sample

of observations for each forecast step to determine whether the ME significantly differs

from zero. Mean Errors found to be significantly different from zero indicate the presence of

forecast bias. We perform the two-tailed t-test for each step in order to observe the dynamics

of the forecast bias as their horizons slowly decrease from steps 1 to 18.

6 Results

To evaluate the out-of-sample performance of the current model used during FPO publi-

cations and the alternative model proposed here, we begin by estimating equations 11, 12,

13, and 15 using the point estimates at each of the 18 steps for the target years 2003 to

2022. The point estimates used during this process for the SARIMA model along with the

observed values needed for these calculations were taken from the FPO historical values

provided by the USDA ERS.1 Section 2 describes how these values were calculated. Using

the same target years, we estimated the ARRF model across 18 steps for each year using the

same methodology as the SARIMA model to enable a clear comparison between the two. A

description of the ARRF model is provided in section 4.5.

6.1 Forecast Accuracy

Performance evaluation results for both forecast models are presented in Table 2 where

the out-of-sample accuracy of the models can be compared across forecast steps. As both

forecast methods move from step 1 to step 18 the new information provided to the models

results in the general decrease across all measures of accuracy indicating that short term

1The historical FPO estimates and realized values used in this study encompass the years 2003 to 2022
and can be found at https://www.ers.usda.gov/data-products/food-price-outlook/
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forecast errors tend to be smaller than longer term forecast errors. ARRF generally out

performs the SARIMA model across all steps during the test period with a few exceptions

at step 18 for the MAE measure and step 12 for RMSE. The differences between the models

performance decreases with the forecast horizon indicated that the ARRF model outperforms

the SARIMA specifically when the horizons are larger.

Table 2: Accuracy Measures:Forecast for All Food CPI series(2003-2022)
MAE RMSE Diebold-Mariano

step SARIMA ARRF SARIMA ARRF t-stat p-val
1 1.38 0.56 2.13 0.74 -1.50 0.15
2 1.53 0.56 2.22 0.76 -1.62 0.12
3 1.51 0.48 2.21 0.58 -1.42 0.17
4 1.45 0.42 2.05 0.49 -1.74 0.10
5 1.28 0.35 1.78 0.45 -2.41 0.03
6 1.30 0.40 1.78 0.48 -1.91 0.07
7 1.09 0.40 1.42 0.54 -2.40 0.03
8 0.96 0.31 1.14 0.46 -2.93 0.01
9 0.67 0.26 0.87 0.33 -2.27 0.03
10 0.46 0.25 0.68 0.31 -1.72 0.10
11 0.47 0.26 0.68 0.47 -1.55 0.14
12 0.33 0.24 0.44 0.45 0.17 0.87
13 0.26 0.15 0.38 0.19 -0.75 0.46
14 0.14 0.12 0.21 0.16 -0.58 0.57
15 0.10 0.08 0.15 0.11 -0.52 0.61
16 0.07 0.06 0.11 0.08 -0.51 0.62
17 0.04 0.04 0.07 0.06 -0.29 0.78
18 0.01 0.04 0.04 0.04 0.17 0.87

Note: Mean Absolute Error (MAE) and Root Mean Squared Errors (RMSE) were calculated

using errors for each step across the target years 2003 to 2022 using the Equations 13 and 12

respectively.

The accuracy measures in Table 2 suggests that there are differences between the SARIMA

and ARRF model’s performances. We test that hypothesis with a Mariano-Diebold test at

each step following equation 14. The results of test can be found in the final columns of

Table 2 and show that during steps 4 to 10 the ARRF and SARIMA models are significantly

different from each other2. As the ARRF outperforms the SARIMA during these periods, by

both measures of predictive accuracy, we conclude that it outperformed the SARIMA model

at 7 of the 18 horizons reported for FPO target years and performed equally as well in the

remaining horizons.

2Statistical significance was determined using the 90 percent confidence interval
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6.2 Forecast Bias

Table 3 summarises the tests of forecast bias performed on each of the models for each

individual step of the forecast. The Mean Error (ME) measure calculated using Equation 15

at each step acts as an indicator as to whether or not the the model over or under predicted

the realized value at each step. Negative and positive values indicate and over and under

prediction respectively. We test whether or not the ME values are significantly different from

zero with two-tailed tests at each step that results in columns containing a test-statistic and

its corresponding p-value for both models.

The SARIMA model was found to have error terms significantly different from zero3 at

5 of the 18 horizons(steps: 1, 2, 3, 6, and 17). Similarly, ARRF model was found to have

error terms significantly different from zero at 5 of the 18 horizons(steps: 3, 4, 6, 7, and 17)

indicating the potential of forecast bias. The majority of the steps were during the first 6

months of the forecast at which point the known information is at its lowest point and the

horizon is at its largest. During these periods both models suffered from under prediction.

Both models had the opposite issue at step 17 where they were found to over predict the

target value by a similar margin of error.

7 Conclusion

This study sought to explore using the ARRF model for FPO forecasting. Our analysis of

the out-of-sample forecast performance from 2003 to 2022 demonstrates that the proposed

ARRF model outperforms the currently used SARIMA model regarding predictive accuracy.

After comparing the two forecasting models by the two most common accuracy measures,

RMSE and MAE, the ARRF resulted in lower values across almost all of the 18 separate

steps reported by the FPO.

Both methods performed better with shorter forecast horizons, as noted by a general

decrease in the accuracy measures as the forecast moved from step 1 to 18. The ARRF out-

performs the SARIMA model by the largest margins in the earlier steps of the forecast when

the forecast horizons are their longest. As the forecast horizon shortened, the differences

between the two forecasts decreased, and the estimates of both models began to converge

with the realized value for the target year.

Upon careful examination of the DM test results, we found that the ARRF model’s

performance was on par with the SARIMA model at 11 of the 18 horizons, and superior

at the remaining 7. Notably, the ARRF forecast excelled during steps 4 through 10 of the

3Statistical significance was determined using the 90 percent confidence interval
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Table 3: Tests for Bias: Forecast for All Food CPI series(2003-2022)
SARIMA ARRF

ME t-stat p-val ME t-stat p-val
1 0.87 1.95 0.07 0.23 1.45 0.16
2 1.01 2.24 0.04 0.24 1.43 0.17
3 0.92 1.98 0.06 0.23 1.90 0.07
4 0.74 1.69 0.11 0.21 2.02 0.06
5 0.36 0.90 0.38 0.08 0.77 0.45
6 0.78 2.10 0.05 0.23 2.36 0.03
7 0.46 1.51 0.15 0.28 2.69 0.01
8 -0.06 -0.23 0.82 -0.01 -0.10 0.92
9 -0.03 -0.15 0.88 -0.08 -1.05 0.31
10 0.09 0.55 0.59 0.06 0.88 0.39
11 -0.08 -0.52 0.61 -0.05 -0.47 0.64
12 -0.02 -0.15 0.88 -0.08 -0.78 0.45
13 0.00 0.06 0.96 -0.01 -0.17 0.86
14 0.01 0.31 0.76 -0.00 -0.09 0.93
15 0.02 0.43 0.67 -0.01 -0.21 0.83
16 -0.01 -0.40 0.69 -0.01 -0.56 0.58
17 -0.03 -2.33 0.03 -0.03 -1.91 0.07
18 0.00 0.57 0.58 0.00 0.38 0.71

Note: Mean Errors(ME) was calculated using errors for each step across the target years 2003 to

2022 using Equation 15.

forecast, where the horizon ranged from 15 to 9 months, further demonstrating its reliability

and accuracy.

Both methods were found to under and overestimate the realized values depending on the

forecast horizon. During earlier steps, both models were found to underestimate the annual

food price inflation. At step 17, both models had issues with overestimation. While both

models were found to have bias, the magnitude of forecast bias was larger for the SARIMA

forecast.

Our findings strongly suggest that the ARRF model has the potential to significantly

enhance the accuracy and reduce the bias of the annual food price inflation estimates reported

during monthly FPO publications. The ARRF model offers these improvements in predictive

accuracy over 7 of the 18 steps, without compromising the accuracy at the other steps

currently provided by the SARIMA model, thereby highlighting its value and potential

impact.

Much like the SARIMA model proposed by Maclachlan et al. (2022) , the ARRF model

offers a standardized approach that can be easily applied to all of the food-related series

covered by the FPO while offering the USDA-ERS the even greater flexibility to include
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exogenous variables into the model. Unlike the SARIMA, the ARRF method is capable

of managing many complex and non-linear relationships. For example, tree-based models

can easily include explanatory variables while avoiding the risk of over fitting that would

eventually befall a similar approach with a SARIMA model. In fact, Coulombe notes the

potential for even further increases to the predictive accuracy of tree-based methods with

the inclusion of relevant macroeconomic variables. We intend to explore this topic further

in the future.
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