Local Queens and Princesses: The Impact of Female Dynasts on Provision of Public Goods
Aqila Putri, Department of Agricultural and Resource Economics, University of Maryland, <u>aputri@umd.edu</u>
Selected Poster prepared for presentation at the 2024 Agricultural & Applied Economics Association Annual Meeting, New Orleans, LA: July 28-30, 2024
Copyright 2024 by [authors]. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

Local Queens and Princesses: The Impact of Female Dynasts on Provision of Public Goods

DEPARTMENT OF
AGRICULTURAL &
RESOURCE ECONOMICS

Aqila Putri - aputri@umd.edu

Background and Motivation

- Female representation in politics is still dismal despite the positive impacts due to higher cost for women to run
- Female politicians are more dynastic than male politicians (e.g., Folke et al (2021); Geys and Smith (2017)) → Dynasty as a way to decrease cost
- Dynasties tend to have negative economic and political impact (Asako et al. (2015); Bragança et al (2015); Dar (2019); George (2020))
- Two opposing forces:
 - Female politicians tend to have positive impacts on their constituents
 - Dynastic politicians tend to have negative impacts on their constituents
- What is the net impact of female dynasts on public goods?

Objectives

- Exploit Indonesia's recent changes in local government structure and election system to evaluate the impacts of female dynastson the provisions of public goods
- Use difference-in-difference and event studies design to empirically evaluate this at the district level

Data

- Dynasty data: District-level election data from 2015, 2017, 2018 with dynasty status variable (Kenawas, 2020)
- Public goods data: Indonesian Village Potential Survey (PODES) 2011, 2014, 2018, 2020, 2021
 - Education, health, household, electricity infrastructure
 - Also aggregated into index

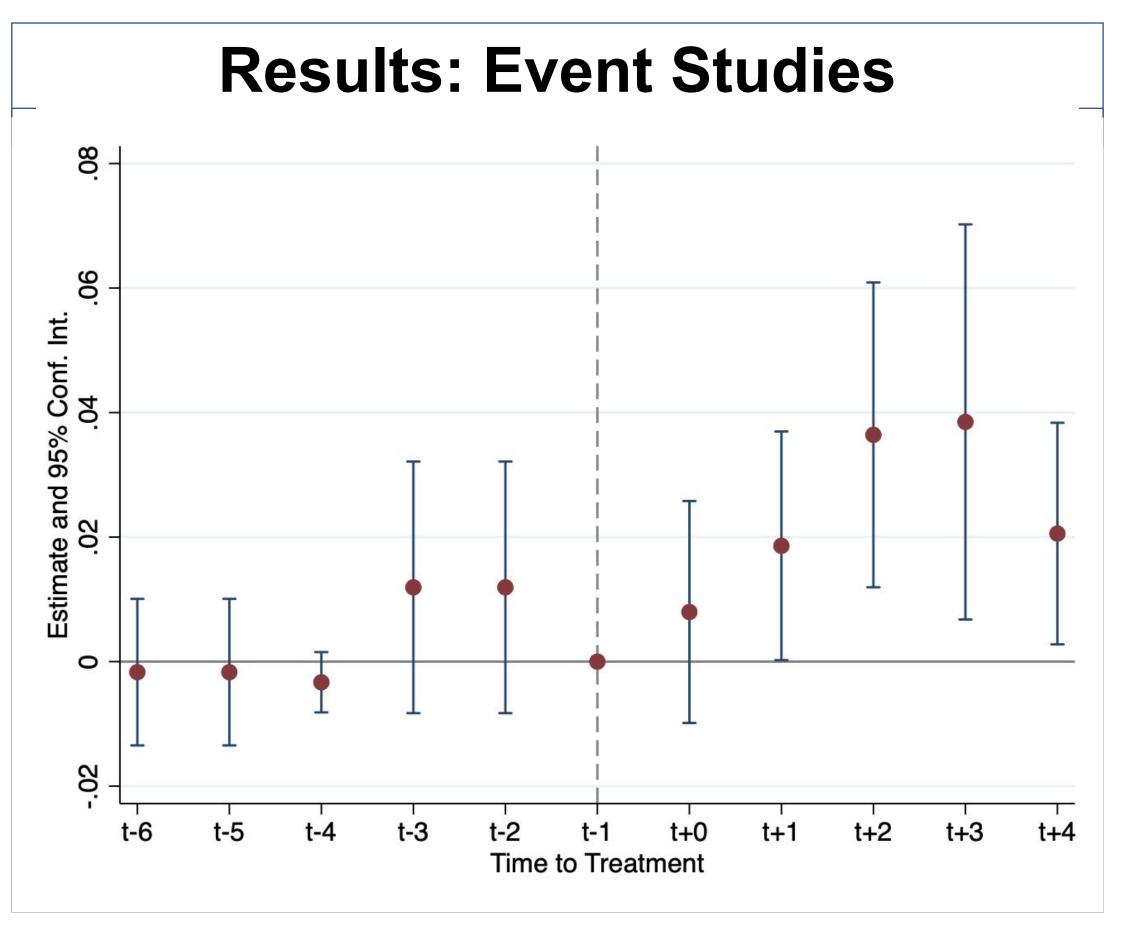
Empirical Strategy

TWFE specification:

$$y_{it} = \alpha_{it} + \Sigma_{s \neq 2014} 1[s=t] \times D_i \times \beta_s + X_i \delta + \varepsilon_{it}$$

Event studies specification:

$$y_{ict} = \alpha_i + \lambda_t + \sum_{k=7}^6 D_{k(ct)} \times \beta_k + X_i \delta + \varepsilon_{ict}$$


Results: Contemporaneous TWFE

	(1)	(2)	(3)	(4)	(5)			
VARIABLES	Education	Health	Infrastructure	Electricity	Agg. Index			
$Treat \times Post$	-0.00689	0.0106	0.0839*	0.0190	0.0433***			
	(0.0133)	(0.0184)	(0.0452)	(0.0144)	(0.0161)			
Log population	0.000752	0.00153	0.0231***	0.00191***	0.00492			
	(0.00175)	(0.00276)	(0.00828)	(0.000693)	(0.00369)			
Constant	-0.0319	-0.0289	-0.335***	-0.0463***	-0.0912*			
	(0.0218)	(0.0337)	(0.109)	(0.00732)	(0.0458)			
Survey year FE	Yes	Yes	Yes	Yes	Yes			
Observations	408,890	326,372	408,890	409,377	409,377			
R-squared	0.936	0.664	0.765	0.948	0.916			
Robust standard errors in parentheses. Significance:*** p $<$ 0.01, ** p $<$ 0.05, * p $<$ 0.1.								
Errors are clustered the district level.								

Results: Heterogeneous TWFE

	(1)	(2)	(3)	(4)	(5)			
VARIABLES	Education	Health	Household	Electricity	Agg. Index			
SY 2011	-0.0109	0.0231	-0.0270	0.0166	0.00637			
	(0.0129)	(0.0187)	(0.0270)	(0.0119)	(0.0126)			
SY 2018	-0.00847	0.0188	0.0581	0.0299*	0.0243*			
	(0.00892)	(0.0190)	(0.0376)	(0.0175)	(0.0128)			
SY 2020	-0.0143		0.0800*	0.0309*	0.0897***			
	(0.0148)		(0.0421)	(0.0170)	(0.0195)			
SY 2021	-0.0153	0.0237	0.0857*	0.0197	0.0267			
	(0.0157)	(0.0248)	(0.0471)	(0.0150)	(0.0164)			
Observations	408,890	326,372	408,890	409,377	409,377			
R-squared	0.936	0.664	0.765	0.948	0.917			
Robust standard e	Robust standard errors in parentheses. Significance:*** $p<0.01$, ** $p<0.05$, * $p<0.1$.							

Errors are clustered the district level

Conclusion

- Suggestive evidence that female dynasts are better in providing infrastructure prioritized by central government and those whose decision are within their jurisdiction
 - Female dynasts may be more efficient due to the strength of their network (clientelism)
- Potentially good short term, can be very bad in the long term