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Abstract

This study explores the dynamics of corn yield distribution and convergence at the county 
level in the United States. Stochastic transition kernels are estimated for relative county 
yields scaled by the national average across four sub-periods from 1955 to 2021. Uncondi-
tional transition kernels demonstrate the convergence of both relative yields and per-acre 
incomes, the latter of which include indemnity payments of crop insurance. When con-
ditional on weather variables, specifically t emperature and p recipitation, t he conditional 
transition kernels highlight the effects o f c limate c hange o n t he d ynamics o f c rop yield 
distribution. These effects i nclude a  m ore s ignificant re duction in  th e up per po rtion of 
the distribution compared to the lower part, leading to convergence towards the national 
average. The impact on crop income is evident in both the left tail and the level and 
probability of the mean.

Keywords: Climate change, contour plot, ergodic distribution, stochastic transition 
kernel, transition matrix, yield convergence.
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1 Introduction

The distribution of crop yields has consistently been shaped by a range of factors, such as

weather changes, technological advancements, and improvements in farm management. For

example, hybrid corn seeds introduced in the early 20th century and genetically modified corn

hybrids commercialized in the late 1990s have made significant contributions to increasing

yields. These innovations have had a notable impact on various aspects of corn yield distri-

bution, including the mean, variance, and skewness (Chavas and Shi, 2015; Griliches, 1957;

Lusk et al., 2019; Shi et al., 2013). Weather conditions such as temperature and precipitation,

along with farmers’ adaptations to climate, including crop diversity and management practices,

have been found to significantly affect crop yields and their spatial correlations (e.g., Falco and

Chavas, 2008; Goodwin, 2001; Schlenker and Roberts, 2009; Tack and Holt, 2016).

Crop yield distribution and its influencing factors have been quantified using, for example,

conditional quantile regression-type models (e.g., Barnwal and Kotani, 2013; Chavas et al., 2019;

Ramsey, 2023; Sanglestsawai et al., 2014). Across countries and crops, a consistent finding is

that the impact of weather or technology varies across quantiles of crop yield distribution and

is not symmetric, with a larger impact on the lower tail compared to the upper tail of the

yield distribution. Based on moment-based methods, studies in the literature document the

asymmetry of input effects on yield distribution (Antle, 1983, 2010), and beneficial factors to

crop production, such as fertilizer and precipitation, are found to make the yield distribution

more negatively skewed (Du et al., 2012, 2015). Other empirical methods being applied include,

for example, a normal mixed model (Tolhurst and Ker, 2015), parametric distribution function

like the beta distribution (Nelson and Preckel, 1989; Ramirez, 1997), and nonparametric and

semiparametric methods (Goodwin and Ker, 1998; Ker and Coble, 2003; Ker and Goodwin,

2000). One specific focus of these methods involves statistical properties of yield distribution

such as nonnormality, left skewness, and kurtosis.

Income convergence across US states and counties, especially during the early period up to

the 1990s, has been well documented in the growth-convergence literature (e.g., Barnwal and

Kotani, 2013; Higgins et al., 2006). The typical empirical evidence supporting income conver-

gence is the so-called unconditional β-convergence, where β refers to the coefficient of the initial

income when regressing the average growth rate on it. The empirical strategy for estimating
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distribution dynamics proposed in Quah (1993, 1996a,b, 1997) has been widely adopted to ex-

amine economic convergence and divergence. By imposing a first-order Markov structure, the

approach estimates the corresponding transition kernel and steady-state distribution implied

by that kernel to comprehensively understand the dynamics of the entire distribution. A recent

example is found in Park and Shin (2023), which utilizes the distribution dynamics method

to analyze the rising inequality in US county-level per capita income. This is the method we

adopt in this study to understand the dynamics of county-level crop yield distribution and the

convergence of relative yields over time.

Deviating from the existing crop yield literature, we normalize county-level corn yields by

the national average in each sample year over the period of 1955-2021. This process allows us to

shift our focus from trend yield to relative yields for exploring the unconditional and conditional

dynamics of yield distribution changes. Specifically, we estimate the nonparametric stochastic

transition kernel for each 20-year period to understand the distribution changes of corn yields.

The analysis illustrates a clear trend of convergence of relative yields over time. To understand

the reasons behind this phenomenon, we further estimate the transition kernels conditional on

weather variables including growing degree days (GDD), overheating degree days (ODD), and

precipitation over the same periods corresponding to unconditional kernels. The comparison

between unconditional and conditional transition kernels indicates that climate change pulls

down the relative yields at the upper part of the yield distribution at a much larger magnitude

than those at the lower tail, leading to the observed convergence.

As the most important risk management tool in the current period, crop insurance insures

crop revenue against yield and price drops. To examine the effect of crop insurance on per acre

income (crop sales plus indemnity payment), we estimate the transition kernel of county-level

per acre income distribution from 1997 to 2021, a period during which the adoption of crop

insurance increased significantly, as a result of large increases in premium subsidies. The result

indicates that indemnity payments, to some extent, dominate crop sales and completely remove

the lower tail of the income distribution, leading to income convergence toward the national

average.

The rest of the paper is organized as follows. In Section 2, we conduct preliminary analyses

to understand the dynamics of crop yield distribution using box plots and discrete analysis
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of distribution transition over time. Section 3 estimates the stochastic transition kernels for

relative yields over sub-periods spanning from 1955 to 2021. The transition kernel for per-acre

income distribution is then estimated and discussed for the period of 1997-2021. In Section

4, the impact of climate change on relative yield distribution is quantified, emphasizing its

contribution to yield convergence. Section 5 concludes.

2 Data and Preliminary Analysis

In this study, we focus on the following 13 major corn-producing states: Illinois, Indiana, Iowa,

Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, Oklahoma, South

Dakota, and Wisconsin. County-level yield records are collected from the database maintained

by the National Agricultural Statistical Service (NASS) of the U.S. Department of Agriculture.1

We focus on four periods, 1955-1959 (P1), 1975-1979 (P2), 1997-2001 (P3), and 2017-

2021 (P4), as marked by the vertical lines in Figure 1 to document the dynamic changes

of corn yield distribution. Figure 1 presents the historical annual corn yields from 1886 to

2023. The sample period, spanning from 1955 to 2021, illustrates a dramatic improvement in

yields, which increased almost linearly with only a few instances of sudden drops followed by

subsequent recovery. Examining changes in yield distribution over a 20-year period insulates

us from short-term weather and policy shocks, allowing us to focus on longer-term climate

and technical changes. The estimations in the subsequent analyses are conducted based on

the averages of five pairs between subperiods, such as 1955-1975, 1956-1976, 1957-1977, 1958-

1978, and 1959-1979 for periods P1 and P2. This approach further eliminates the influence

of temporary yearly variations. All selected subperiods exhibit stable yields without sudden

changes likely induced by extreme weather events. The year 1955 marked the beginning of

significant yield improvement driven by the widespread adoption of hybrid corn. The period of

P2 occurred before, while P3 and P4 took place after the development and extensive adoption

of genetically modified (GM) crops in the late 1990s. This development, especially the adoption

of Bt Corn, significantly increased corn yields.

Figure 2 displays box plots of relative county yields in 1955, 1975, 1997, and 2017. The

yields are calculated by dividing the individual county yields by the sample mean of each

1The data is available at: https://quickstats.nass.usda.gov/.
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respective year. In each plot, the box represents the interquartile range (IQR), extending from

the first quartile (25%) to the third quartile (75%) of the relative yields. The whiskers show

the minimum and maximum values within a range of 1.5× IQR. The individual dots outside

the whiskers indicate outliers or extreme values of relative yields.

The box plots in Figure 2 illustrate several noteworthy patterns, including the following:

(i) the interquartile range becomes smaller over time, indicating a tighter clustering and re-

duced variability of the middle 50% of relative yields. (ii) The median, represented by the

horizontal bar in the plot, consistently decreases from 1955 to 1997. This suggests a shift in

the middle value of yields closer to the national average, as reflected in the rising 25% quartiles

and dropping 75% quartiles over time. (iii) There is an increasing number of counties with

extremely poor yields relative to others. In summary, we observe a general trend of relative

yield convergence over the sample period, while certain counties lag behind with significantly

lower yields compared to others.

To understand the dynamics of crop yield distribution, we quantify transitions of specific

parts of the yield distribution over time. Specifically, we consider five ranges (1 to 5) of county-

level yield relative to the national average: [0,0.5], [0.5,0.75], [0.75,1],[1,1.25],[1.25,2].2 For

example, a value of 0.5 corresponds to being half of the national average, while a value of 1

means being equal to the national average. In each sub-period, we compute the transition

matrix among ranges for five pairs of years. For example, to document the changes between

P1 and P2, we calculate the transition matrices for the year pairs of 1955-1975, 1956-1976,

1957-1977, 1958-1978, using the first year (e.g., 1955) as the start year and the second year as

the end year (e.g., 1975), and then take the average. The diagonal elements of the transition

matrix indicate the tendency to stay in the same range over time. The results are shown in

Table 1.

The three transition matrices between P1 and P2, P2 and P3, and P3 and P4 exhibit

similar patterns. First, there are significant transitions from ranges below the national average,

such as [0,0.5], [0.5,0.75], and [0.75,1], to higher ranges. For example, during the period from

P1 to P2 (1955-1979), 30% of counties initially in range 1 (0-0.5) improved their yields, moving

to range 2 (0.5-0.75) by the end, while 30% that began in range 2 moved up to range 3 (0.75-1).

2The maximum relative yield in all sample years is 1.63, so the last range covers all values above 1.25.
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Additionally, 29% of counties in range 3 moved up to range 4 (1-1.25) over the period. This

trend accelerated from the mid 1970’s to the late 1990’s (P2-P3), with corresponding upward

movements of 43% (1 → 2), 51% (2 → 3), and 36% (3 → 4). Although the upward trend slowed

down in the more recent period of P3-P4 (1997-2021), it remains significant, with proportions

of 41% (1 → 2), 43% (2 → 3), and 39% (3 → 4), respectively.

Second, for the two highest ranges, [1,1.25] and [1.25,2], the most common transition

across all sub-periods is a shift to the immediately adjacent lower range. For example, during

the period of P1-P2, 28% of counties shifted from the range [1,1.25] to [0.75,1], while 40%

in the highest range moved down to the range of [1,1.25]. This type of transition becomes

more intensive in the later two sub-periods, especially for the highest range, with a transition

proportion of 64% in P2-P3 and 61% in P3-P4. In summary, we observe a convergence of

county-level relative yields of corn over time, as lower-yield counties catch up with others,

moving closer to the national average, while higher-yield counties also shift toward the national

average.

3 Unconditional Distribution Dynamics

In the preliminary analysis, we discretize the relative yield distribution into five ranges and

count the observed transitions to describe distribution dynamics, as reported in Table 1. For

continuous variables like crop yields, such discretization may distort distribution dynamics in

significant ways (Quah, 1996b). The solution is to use a stochastic kernel to fully describe the

distribution dynamics over time.

Building on existing literature (Park and Shin, 2023; Quah, 1996a, 1997), we employ a

stochastic kernel to describe the evolution of the county-level yield distribution from ft(x) in

year t to ft+p(y) in year t + p (p > 0). Here, ft(·) and ft+p(·) represent the yield density

functions. The stochastic kernel mp over the period p is formulated as follows:

ft+p(y) =

∫ ∞

0

mp(y|x)ft(x)dx,

where mp(y|x) is the conditional density of the yield y p periods ahead, given the value of x.

It provides detailed information on intradistribution dynamics, including, for example, where
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points in the distribution of ft end up in ft+p.

The stochastic kernel mp is estimated non-parametrically in the following steps:3 (i) Es-

timate the joint density of x and y, which represent the county yields in period t and t + p,

respectively, using the Gaussian kernel function. (ii) Determine the marginal density of x by

integrating the joined density obtained in step (i) with respect to y. (iii) Compute mp(y|x) by

dividing the joint density from step (i) by the marginal density calculated in step (ii).

With the estimated transition kernel mp(y|x), the steady-state or ergodic distribution,

denoted as f∞, can be generated by repeatedly applying the kernel as follows:

f (k+1)
∞ =

n∑
i=1

mp(y|xi)f
(k)
∞ (xi), for k = 0, 1, 2, . . . , I.

In our case, we set the number of iteration, I, to 500. The starting point of the process is f 0
∞,

which represents the predicted marginal density of y at the end year of the sample period.

Figure 3 presents the surface and contour plots of the estimated transition kernels over the

subperiods of P1-P2 (panels a and b), P2-P3 (c and d), and P3-P4 (e and f). In simple terms,

a stochastic kernel can be imagined as extending the number of ranges (or rows and columns

of the transition matrix as reported in Table 1) to infinity. Starting from any point on the axis

labeled “Relative yield at t0” and extending in parallel to the axis labeled “Relative yield at

t0+20,”4 the stochastic kernel represents a probability density function that describes transition

probabilities or how the county-level yield distribution evolves over the period (Quah, 1996b).

These transition probabilities are all positive and sum to 1.

If the surface mass is concentrated along the 45-degree diagonal, indicated by the black

dashed line on the x−y space, yields in the distribution remain unchanged from the initial level.

When the mass is rotated counterclockwise away from the 45-degree diagonal, yield convergence

occurs, meaning that high yield decreases, and low yields increases. The extend of convergence

is indicated by the red solid line on the x − y space, representing the predicted mean yield in

the end year for each level of initial yield in the start year (Park and Shin, 2023). We observe

yield convergence for all subperiods in the surface plots shown in Figure 3.

This is further illustrated in the corresponding contour plots shown in Figure 3. In each

3Please refer to Park and Shin (2023) for the details of the estimation.
4Please note that the length of a specific subperiod may vary and depends on the end year of the corresponding
sample period.
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contour plot, the vertical axis represents the relative yield at the beginning of the period (e.g.,

1955 for P1-P2, 1975 for P2-P3, and 1997 for P3-P4), while the horizontal axis represents that

for the end year (i.e., 1975 for P1-P2, 1997 for P2-P3, and 2017 for P3-P4). The 45-degree

diagonal line and predicted end-year yields are also depicted. The red line crosses the 45-degree

line from below at the level of national average, where relative yield is 1, indicating uncondi-

tional or absolute convergence (Park and Shin, 2023). For yields below the national average,

convergence occurs in all subperiods, especially during the period of P2-P3 when the increase is

most significant. For yields above the national average, convergence continues throughout the

entire sample period, with an increasing shift toward 1. The speed of convergence near the cross

point is determined by the slope of the red line. Notably, the convergence speed from above

(higher than the national average) is similar across periods and is fastest when converging from

below or catching up with lower yields over the period of 1975-1997 (P2-P3; panel d).

Figure 4 illustrates the ergodic distributions of subperiods (shown as black curves). The

ergodic distribution represents the steady-state outcome obtained by repeatedly applying the

estimated transition kernel to the predicted end-year marginal density in each subperiod, labeled

as the “Start year” in the figure. In the 20-year period of P1-P2 (1955-1975; panel a), the ergodic

density of relative yield is less evenly distributed, with thicker tails on the left and right sides

but a lower peak compared to the start year in 1959. In the P2-P3 period (panel b) and P3-P4

period (panel c), the ergodic densities are quite similar to each other and to that of the start

year, exhibiting a denser peak and a longer right tail compared to panel (a). This indicates

that, in general, more counties experienced increasing yields over these periods, while yields

converged toward the national average.

In the following, we conduct a similar exercise to understand the effect of crop insurance

on farm income. We incorporate the indemnity payment for corn into the crop revenue. Specif-

ically, county-level indemnity payments are aggregated across insurance plans and coverage

levels,5 and then converted to the per-acre indemnity payment by dividing the total acres of a

specific county.

To make corn revenue comparable to insurance payments, we multiply the crop yields by

5County-level indemnity payments are available in the Summary of Business reports maintained
by the Risk Management Agency (RMA) of the U.S. Department of Agriculture and can be
downloaded from https://www.rma.usda.gov/Information-Tools/Summary-of-Business/State-County-Crop-
Summary-of-Business.
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the corn price as the larger of the insurance base price and harvest prices. The base price is

the average February price, and the harvest price is the average October price of the December

futures contract traded on the Chicago Mercantile Exchange. We focus on the period between

P3 (1997-2001) and P4 (2017-2021) to document the distribution dynamics of county-level per-

acre corn income, which is defined as the sum of corn revenue and indemnity payment per acre.

This period is chosen primarily due to the higher participation in crop insurance compared to

previous years.

The resulting surface plot, contour plot, and ergodic distribution are presented in Figure

5. Both the surface and contour plots show that the majority of the transition are concentrated

around the value of 1 on the Period t0 + 20 axis, almost entirely parallel to the Period t0 axis.

This suggests a convergence of the cross-section income distribution towards equality, although

there are some deviations for the initial income in the range of (3,5). This convergence is further

confirmed in the distribution plots, where both the distribution in 2021, labeled as the “Start

year”, and the ergodic distribution demonstrate a complete reduction of the lower tail and an

extension of the right tail. This implies that crop insurance compensates counties with lower

yields and higher income losses, while simultaneously adding income to other counties with

relatively higher crop revenues.

4 Conditional Distribution Dynamics

To understand the impact of weather conditions or long-term climate change on the distribution

of crop yields, we estimate distribution dynamics while controlling for these factors. This pro-

cess involves two steps: (i) Estimating a linear regression model for crop yields by incorporating

weather variables as controls after pooling samples from each subperiod (P1 to P4). (ii) Uti-

lizing the regression residuals from step (i) to derive conditional distributions for each sample

year and estimating the transition kernel using these conditional distributions.6 To maintain

consistency with the unconditional distribution, we apply the same set of years—namely P1,

P2, P3, and P4—in the conditionals for estimation.

We begin our discussion by examining weather-related variables at the county level. Follow-

6We add the estimated intercept to the residuals since our goal is to remove only the weather related impact.
Following that, we exclude negative residuals, which constitute at most 5% of the observations.
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ing existing literature (e.g., Du et al., 2015; Gong et al., 2023), we construct three county-level

weather variables—growing degree day (GDD), overheating degree days (ODD), and precipi-

tation during the growing season (May to August)—for each sample year. GDD is measured

as the sum of degrees in the range of [8°C, 32°C], which is beneficial for crop growth. On

the other hand, ODD represents the cumulative degree days exceeding 32.22°C (Gong et al.,

2023; Schlenker and Roberts, 2009), which can stress and harm crop growth. Precipitation is

calculated by summing the total rainfall over the growing season. We utilize daily weather data

provided by the National Oceanic and Atmospheric Administration (NOAA) for constructing

the weather variables.7

The regression results of step (i) are reported in the upper panel of Table 2. Intercept

increases over time, indicating the continuously improving trend in yield. The effects of three

weather variables—GDD, ODD, and Precipitation—vary over time, capturing the impact of

natural endowment as well as farmers’ adaptation to climate changes. Interestingly, while the

effect of the beneficial temperature reflected in GDD is stable over the sample period, except

being much smaller in the late 1970s (P2), the effect of harmful temperature doubles in the more

recent period (P4; 2017-2021) after declining from a relatively higher level in the 1950s (P1)

to much lower levels in the 1970s and 1990s (P2 and P3). The positive effect of precipitation

on yield intensifies in the middle period, 1975-2001 (P2-P3), but drops to the level of 1950s

(P1) in the period of 2017-2021 (P4). The proportion of yield variation explained by weather

conditions drops from 40% in P1 to 11%-18% in later periods.

The resulting surface plots, contour plots, and ergodic distribution plots are presented

in Figures A1, A2, and A3, respectively. In Figures 6, we display the end-year yields pre-

dicted by the unconditional (in red) and conditional (in blue) transition kernels on top of the

unconditional contours. The comparison between the unconditional and conditional end-year

predictions illustrates the effect of changes in climate conditions over 20-year period on corn

yield distribution. In general, climate change depresses yields in counties both below and sig-

nificantly higher than the national average. Its effect on upper part of the distribution is more

pronounced, especially in the early period of 1955-1975 (P1; panel a), but decreases over time,

likely due to technological and management adaptations in more recent periods. Conversely,

7The data is available for download at: https://www.ncei.noaa.gov/pub/data/ghcn/daily.
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the climate change impact on the lower part of the yield distribution is negative and noticeable

in 1950s-1970s (panel a), but almost disappears in the 1970s-1990s (panel b) and flips to small

positive effect in the transition between the 1990s and late 2000s (panel c). All these lead

to increasing yield convergence to the national average across the country, especially for the

counties with above average yields initially.

Figure 7 presents both unconditional (dashed curves) and conditional (solid curves) distri-

butions of relative yields in the start year (lighter) and ergodic year (darker). Comparing the

unconditional and conditional distributions illustrates that: (i) The impact of climate change

on the start-year and ergodic yield distribution varies over individual sub-periods, with a rela-

tively larger impact in the earlier periods of P1-P2 and P2-P3 (panels a and b) than in P3-P4

(panel c). (ii) Climate changes result in higher peaks, indicating an increased probability of

counties achieving the national average yield, once again suggesting the convergence of county

yields. (iii) Comparing the unconditional (darker dashed curve) and conditional (darker solid

curve) ergodic distribution indicates that climate changes lead to a thinning of both the upper

and lower tails, especially in the period of 1950s-1970s (panel a).

Next, we examine how climate change affects the distribution dynamics of per-acre farm

income, comprising crop revenue and indemnity payments. We begin by conducting a regression

of farm income on the three weather variables—GDD, ODD, and precipitation. We then

estimate the transition kernel based on the regression residuals after adding back the estimated

intercept. As discussed earlier, our focus is on the period from 1997 to 2021 (P3-P4), and the

estimation results are reported in the lower panel of Table 2. While precipitation shows no

significant effect, the estimated coefficients on GDD and ODD have opposite signs compared

to those in the yield regression reported in the upper panel. This suggests that indemnity

payments dominate per-acre income at the county level.

The means of the end-year incomes predicted by the unconditional (in red) and conditional

(in blue) transition kernels are presented, along with the contour plot of the unconditional ker-

nel, in the panel (a) of Figure 8. A comparison between the two illustrates that the primary

effect of climate change is to reduce the incomes of counties at the upper part of the distribu-

tion, with more significant impacts on the higher portion. This leads to income convergence

toward the national average. Panel (b) of Figure 8 plots the unconditional (dashed curves) and
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conditional (solid curves) distributions of the start and ergodic years. The main differences be-

tween the two sets of distributions are evident in both the left tail and the mean. Unfavorable

weather changes trigger indemnity payments to counties with poorer production conditions,

increasing their total income and thus eliminating the lower-left tail of the income distribution,

contributing to income convergence. On the other hand, climate change shifts down the level

and probability of the mean income, spreading income more towards the right tail.

5 Conclusion

By scaling historical county-level corn yields with the national average, we investigate the

dynamics of their distribution and convergence over time. The analysis aims to understand

distribution changes and transitions across four subperiods with 20-year intervals, 1955-1959

(P1), 1975-1979 (p2), 1997-2001 (P3), and 2017-2021 (P4). Stochastic transition kernels il-

lustrate the convergence of yield toward the national average over time, confirming the trend

indicated by preliminary analyses of box plots and transition matrices. To identify the impact

of climate change on yield distribution, conditional transition kernels are estimated using re-

gression residuals of yields on growing degree days, overheating degree days, and precipitation.

A comparison between unconditional and conditional kernels reveal that climate change more

significantly reduces yields in the upper part of the distribution than in the lower part, leading

to yield convergence across the country. The distribution of per-acre crop income, including

crop revenue and indemnity payments, also exhibits convergence over time. However, climate

change affects income distribution in more complex ways compared to yield distribution.

We conclude by highlighting a few directions for future research. First, similar empirical

methods can be applied to farm-level yield records and other crops to understand their dis-

tribution dynamics and convergence of yields over time. Second, the method can be further

extend to quantify changes related to specific aspects of yield distribution, such as the left and

right tails. This extension would be valuable in understanding changes in systemic risks driven

by fundamental factors like weather. Finally, empirical methods commonly used in the growth-

convergence literature (e.g., Barnwal and Kotani, 2013; Higgins et al., 2006) can be explored

to validate the results in our study and gain additional insights.
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Figure 1: Sample Periods for Distribution Dynamics.

Note: The figure shows the national average yields from 1886 to 2023 obtained from the
NASS database. The subperiods marked by the vertical lines are as follows: P1 (1955-1959),
P2 (1975-1979), P3 (1997-2001), and P4 (2017-2021).
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Figure 2: Boxplots of Relative County Yields.

Note: The number on the horizontal bar represents the median value of relative yields for
each sample year.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Surface and Contour Plots of Sub-Periods (Unconditional).

Note: (a)/(b) P1-P2; (c)/(d) P2-P3; (e)/(f) P3-P4.

17



(a) (b)

(c)

Figure 4: Ergodic Distributions of Sub-Periods (Unconditional).

Note: (a) P1-P2; (b) P2-P3; (c) P3-P4.
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(a) (b)

(c)

Figure 5: Distribution Dynamics of Relative Crop Income over P3-P4.
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(a) (b)

(c)

Figure 6: Contour Plots of Sub-Periods (Unconditional and Conditional on weather variables).

Note: (a) P1-P2; (b) P2-P3; (c) P3-P4.
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(a) (b)

(c)

Figure 7: Ergodic Distributions of Subperiods (Unconditional and Conditional).

Note: (a) P1-P2; (b) P2-P3; (c) P3-P4.
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(a) (b)

Figure 8: Distribution Dynamics of Relative Crop Income Conditional on Weather over P3-P4.
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Table 1: Transition Matrix Between Sub-Periods.

[0,0.5] [0.5,0.75] [0.75,1] [1,1.25] [1.25,2]
P1 – P2
1 0.28 0.30 0.18 0.15 0.09
2 0.18 0.28 0.30 0.17 0.07
3 0.07 0.21 0.35 0.29 0.09
4 0.02 0.09 0.28 0.43 0.18
5 0.01 0.02 0.11 0.40 0.46
P2 – P3
1 0.13 0.43 0.33 0.10 0.01
2 0.04 0.25 0.51 0.18 0.02
3 0.02 0.15 0.44 0.36 0.04
4 0.003 0.06 0.26 0.56 0.12
5 0.001 0.01 0.11 0.64 0.24
P3 – P4
1 0.37 0.41 0.22 0 0
2 0.11 0.37 0.43 0.08 0.003
3 0.03 0.13 0.44 0.39 0.01
4 0.003 0.03 0.19 0.64 0.14
5 0 0.03 0.12 0.61 0.23

Note: The table reports the average transition probabilities among five ranges of relative
county corn yields compared to the national average during four sub-periods, P1 (1955-
1959), P2 (1975-1979), P3 (1997-2001), and P4 (2017-2021). The ranges are as follows:
1-[0,0.5], 2-[0.5,0.75], 3-[0.75,1], 4-[1,1.25], and 5-[1.25,2]. The averages are based on five
pairs of start and end years, for example, 1955 and 1975, 1956 and 1976, 1957 and 1977,
1958 and 1978, and 1959 and 1979 for the transitions between P1 and P2.
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Table 2: OLS Regression Results of Weather Variables

Variables P1 P2 P3 P4
Relative Yield
Intercept 9.10*** 55.24*** 87.44*** 129.63***

(1.44) (2.50) (2.76) (3.63)
GDD 0.03*** 0.007*** 0.02*** 0.03***

(0.001) (0.002) (0.002) (0.003)
ODD -0.32*** -0.13*** -0.17*** -0.73***

(0.007) (0.01) (0.01) (0.03)
Precipitation 0.01*** 0.06*** 0.05*** 0.01***

(0.002) (0.004) (0.004) (0.005)
R2 0.40 0.12 0.11 0.18
Relative Farm Income
Intercept 6538.62***

(1053.07)
GDD -3.16***

(0.86)
ODD 39.80***

(10.30)
Precipitation 1.39

(1.24)
R2 0.01

Note: Standard errors are enclosed in parentheses. Significance levels are denoted as ***,
**, and *, representing 1%, 5%, and 10% significance, respectively.
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Appendix

Appendix A Figures and Tables

(a) (b)

(c)

Figure A1: Surface Plots of Sub-Periods (Conditional on weather variables).

Note: (a) P1-P2; (b) P2-P3; (c) P3-P4.
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(a) (b)

(c)

Figure A2: Contour Plots of Sub-Periods (Conditional on weather variables).

Note: (a) P1-P2; (b) P2-P3; (c) P3-P4.
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(a) (b)

(c)

Figure A3: Ergodic Distribution of Sub-Periods (Conditional on weather variables).

Note: (a) P1-P2; (b) P2-P3; (c) P3-P4.
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