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Abstract

Geography is a salient feature in agricultural adaptation to a warming climate. Facing heterogeneous
natural-resource and climatic endowments, farmers in different locations choose adaptive strategies
that are best suited to their environments, resulting in inhomogeneous adaptation across space. We
provide novel evidence of this explicitly spatial heterogeneity in heat sensitivity of U.S. crop yields and
their adaptation thereto. We generalize a popular long-differences approach by explicitly incorporating
geographic information of crop-producing counties in a semiparametric fashion, using local kernel av-
eraging. This lets us control for spatially clustered local heterogeneity that may be non-neutral in that it
mediates climate effects on agriculture. Obtained measurements of historical adaptation are also more
granular and account for local contexts, as do projected yield changes due to climate change. We find
that corn and soybean adaptation to overheat mainly occurred in the Northern Great Plains and Upper
Midwest; and for cotton, in the Mississippi Delta. There is a geographic bifurcation in expected climate
change effects by the mid-century, with some regions projected to experience large yield declines and
others to benefit from significant yield gains. Considering the net offset potential of this bifurcation, our
average yield impact projections are generally smaller compared to traditional approaches.

Keywords: Climate Change, Crop Yield, Heterogeneity, Panel Data, Spatially Varying Coefficient

1 Introduction

The changing climate has been posing an increasing threat to sustainable agricultural production as ex-

treme heat and drought episodes become increasingly frequent (Semenov and Shewry, 2011; Rahmstorf

and Coumou, 2011; Field et al., 2012; Gourdji et al., 2013; Trnka et al., 2014). Understanding adaptation to a

warming climate is critical to measuring the damages of climate change for agriculture. In the spirit of a typ-

ical analysis of average treatment effects on the treated, prior studies that examine whether—and to what

*Correspondence to: emir.malikov@unlv.edu (Malikov).
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extent—the adaptation to climate change occurs in agriculture almost exclusively focus on identification of

the average adaptation (e.g., Burke and Emerick, 2016; Blanc and Schlenker, 2017; Malikov et al., 2020; Chen

and Gong, 2021; Mérel and Gammans, 2021; Yu et al., 2021; Cui and Xie, 2022; Moscona and Sastry, 2022).

While interesting in its own right, by construction, such a global estimand sheds little light on local adap-

tation experiences of farmers which, in all likelihood, exhibit substantial geographical heterogeneity. Crop

producers in different locations deal with heterogeneous natural-resource and climatic endowments, likely

employing different farming practices. Such persistent geographic differences may also prompt farmers to

choose various adaptation strategies that are more optimally suited to the specific environment they face,

leading to inhomogeneous adaptation outcomes across space. Understanding this (naturally occurring)

spatial heterogeneity is first-order for producing more granular measurements of historical adaptation and,

by extension, more accurate projections of future agricultural yield losses associated with climate change,

particularly in large and climatically diverse countries.

In this paper, we provide novel evidence of explicitly spatial heterogeneity in heat sensitivity of U.S. agri-

culture and adaptation thereof to a warming climate. When modeling the long-run relationship between

agriculture and climate, we allow the time-variant responsiveness of mean crop yields to climate (particu-

larly, to excessively high temperatures) to vary across geographic locations, thus capturing local heterogene-

ity in farmers’ adaptation capabilities. To measure this cross-location variability, we employ a semiparamet-

ric varying-coefficient panel-data model in the vein of Hastie and Tibshirani (1993), Cai et al. (2000) and Li

et al. (2002), capable of accommodating spatially inhomogeneous county-specific relationships between

climate and agriculture that can systematically vary across geography and over time.

Concretely, we let temporally varying coefficients in the mean projection of crop yields on climate vari-

ables in a county be nonparametric functions of the county’s geographic location. This enables us to control

for local heterogeneity that needs not be additively separable (i.e., climate-neutral), as typically restricted

by means of intercept-shifting county fixed effects. Our treatment of the cross-county spatial heterogeneity

is more flexible in that we let it be nonneutral so that it can also mediate local climate effects on agricul-

tural yields by, in effect, also shifting slopes. As such, our analytical strategy is more general than go-to (fully

parametric) methodologies for modeling the climate-agriculture relationship—both the “fixed-effects” (e.g.,

Schlenker and Roberts, 2009; Chen et al., 2016; Miao et al., 2016; Cui, 2020) and “long differences” ap-

proaches (e.g., Burke and Emerick, 2016; Yu et al., 2021)—because not only do we allow the estimated rela-

tionship to vary between individual counties but, most of all, we do so in a manner that explicitly recognizes
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the contiguous geography of climate change.

For identification we only require that marginal effects of climate vary across space smoothly, beyond

which we continue to maintain the assumption of strict exogeneity of within-county climate variation cus-

tomarily made in panel-data studies. Because the geographic smoothing variables are time-invariant for

counties and thus unaffected by differencing or within transformation, our kernel estimation is not com-

plicated by the presence of additive unit fixed effects. This is notable because, otherwise, transforming

fixed effects out of semi/nonparametric panel-data regressions may add to bias, worsen convergence rates,

involve multi-step implementation and/or cumbersome techniques such as back-fitting or marginal inte-

gration (e.g., see Sun et al., 2009; Su and Ullah, 2011; Rodríguez-Póo and Soberón, 2015; Malikov et al., 2016).

Spatiotemporally varying coefficients in our model are set to parsimoniously capture the myriad unob-

served and observed factors pertaining to each county’s geographic location that may influence the sen-

sitivity of agricultural yields to climate variation, including agricultural practices, the quality of soil, local

institutions and regulations, as well as many persistent features of the local climatic system which shape

farming.1 Technological opportunities and management strategies vary across space as well. Farmers deal-

ing with particular land quality and other geotopographic endowments correspondingly adopt different

field management practices, e.g., the application of fertilizers, irrigation, use of improved seeds, employ-

ment of rotation and tillage types. Farmers’ perception of climate change across different locations also

need not be the same (see Burke and Emerick, 2016). For instance, a local extreme heat event in early

periods might signify a warming climate from local farmers’ point of view and prompt them to adopt adap-

tation and mitigation strategies more proactively than typically. Spatially heterogeneous institutional and

regulatory environments also prompt farmer’s differential choices of adaptation strategies across regions

(see World Bank, 2008; Bogdanski, 2012; Scherr et al., 2012).

In light of some concerns in the literature that, to identify the climate sensitivity of agriculture, stan-

dard fixed-effects estimators rely on the annual weather variation instead of the long-run climate change

(see Blanc and Schlenker, 2017; Chen and Gong, 2021), in our analysis we adopt Burke and Emerick’s (2016)

alternative “long differences” approach as a modeling paradigm to study climate change adaptation. The

idea is simple: estimating the climate-agriculture relationship using temporal differences in the longer-run

local averages, we can identify the effect of “climate” on agriculture. However, we generalize this approach

1While some of these factors—notably, regulations and farming practices—may be endogenous with respect to agricultural pro-
ductivity, the county’s geographic location which we effectively use as their proxy is however immune to these concerns given its
plausibly strict exogeneity.
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in a critical aspect. Namely, both the original Burke and Emerick’s (2016) long-differences methodology and

its recent time-varying extension by Yu et al. (2021) focus on measuring average (over cross-sectional units

and, by implication, space) causal effects of climate on agricultural productivity. To identify these effects,

they implicitly assume that confounding cross-sectional heterogeneity is strictly additive (shifts the inter-

cept only) and thus can be fully controlled for via additively separable fixed effects. Using both data-driven

methods and formal inference, we find that the latter is not corroborated empirically. Our analysis reveals

strong evidence that local heterogeneity—proxied by geographic location—also plays a significant role in

mediating the yield-climate relationship, influencing marginal effects of climate. Given the naturally occur-

ring correlation between the county location and local climate variation, ignoring such non-additive spatial

heterogeneity can result in omitted time-varying confounders, thus hindering identification of even the av-

erage climate effect via standard fixed-coefficient estimators. With the data rejecting spatial invariance of

slopes, we therefore build an approach that explicitly accommodates non-neutral spatiotemporal hetero-

geneity in the climate effects on agriculture by allowing regression parameters to change with location and

over time. As such, our paper contributes to the climate literature on a methodological front by providing a

framework which generalizes the popular long-differences approach in a practically important aspect.

Our analysis is based on county-level crop yields for corn, soybeans, and cotton and climate data in

the rain-fed region of the United States during the 1958–2019 period. With data-driven cross-validation

and formal specification tests rejecting a go-to spatially invariant specification across an array of popular

models for measuring marginal effects of climate, we find that sensitivity and adaptation of crop yields to

a warming climate vary significantly across space. This variation is not haphazard either. For corn yields,

54% of counties are estimated to have experienced statistically significant decreases in overheat sensitivity

(termed “adaptation”), 12% to have experienced statistically significant increases (termed “maladaptation”),

and 34% to have had no statistically significant changes (termed “no adaptation”). For soybeans, the three

corresponding numbers are 75%, 2%, and 23%; for cotton, they are 23%, 77%, and 0%. Geographically,

corn and soybean adaptation to overheat mainly occurred in the Northern Great Plains and Upper Mid-

west; for cotton, it occurred in the Mississippi Delta. On acreage-weighted average, our model estimates

that yield sensitivity of corn, soybeans, and cotton to overheat respectively declined by 73%, 49%, and 51%

over 1958–2019, although for cotton this decrease was statistically insignificant. Of note, spatially invariant

specifications tend to produce larger estimates of declines in overheat sensitivity. This underscores poten-

tial perils of abstracting away from naturally occurring non-neutral spatial heterogeneity when measuring
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marginal effects of climate on agriculture, which may result in overestimated evidence of (mal)adaptation.

Accounting for significant spatial heterogeneity when projecting expected damages of a warming cli-

mate between the end of our sample period (2015–2019) and the mid-century (2048–2052), we find a clear

geographic bifurcation in future climate change effects on yields. For corn production, some regions in the

lower Midwest (Nebraska, Kansas, southern Iowa, northern Missouri and parts of South Dakota) and South

(Tennessee, Georgia, South Carolina, northern Alabama) are projected to experience large declines in yield

by 2048–2052. Whereas, parts of the Corn Belt including some areas in Indiana, Ohio, Illinois, and part of

North Dakota are expected to benefit from significant yield gains due to a warming climate. Owing to its

spatial flexibility, which enables us to capture this bifurcation, our methodology generally produces smaller

yield loss/gain projections, compared to traditional spatially invariant alternatives. As such, our yield loss

projection are much smaller relative to earlier studies (e.g., Burke and Emerick, 2016; Yu et al., 2021). On

acreage-weighted average for the whole rain-fed U.S., depending on a climate change scenario, by 2048–

2052 our model predicts 7–13% yield losses for corn, 12–48% yield losses for soybeans, and 5–24% yield

gains for cotton relative to their 2015–2019 levels, although these average projections for corn and cotton

are statistically insignificant. This result is intuitive given the spatial bifurcation in future climate change

effects on crop productivity, with the offset potential in the net average effect. Across regions, however, the

effects are not net-zero.

To summarize, the contribution of our paper is as follows. We expand the frontier of climate economics

literature by studying explicitly spatial heterogeneity in heat sensitivity of the U.S. agriculture and its adap-

tation to a warming climate. Our analysis relaxes the empirically uncorroborated space-invariance assump-

tion which, if violated, may jeopardize identification of (average) marginal effects of climate. To this end,

we generalize a popular long-differences approach to accommodate non-neutral local heterogeneity. Our

modeling framework is more flexible in that it parsimoniously accounts for many (un)observed local factors

that may mediate climate effects on agricultural production. Our paper shows that, without considering

spatial variation in adaptation, standard approaches tend to overestimate yield damages of climate change.

Although understudied, our focus on spatial heterogeneity in the climate sensitivity of agricultural pro-

duction is not without precedent. In this regard, our paper complements the earlier work by Butler and

Huybers (2013) and Keane and Neal (2020) who investigate non-neutral cross-county heterogeneity in the

effects of weather/climate on mean crop yields.2 Unlike Butler and Huybers’ (2013) approach, ours mea-

2Some studies investigate time-varying sensitivity of crop yields to weather variation (e.g., see Schlenker and Roberts, 2009; Roberts
and Schlenker, 2011, 2012; Lobell et al., 2014), but spatial heterogeneity is not their focus.

5



sures the adaptation to a warming climate in a flexible way without needing to rely on ad-hoc time-invariant

parameterizations of heat sensitivity of yields: instead, we let the latter change over time arbitrarily. On the

other hand, to identify cross-county and cross-time heterogeneity in marginal effects of climate, in contrast

to Keane and Neal (2020), we do not assume additive time and unit fixed effects in slopes, meaning that

spatial heterogeneity in climate sensitivity of yields in our analysis need not be time-invariant. The critical

implication is that our methodology, unlike Keane and Neal’s (2020), facilitates the analysis of cross-location

differences in the adaptation to a warming climate over time.3 Also, for consistency our approach requires

large-n asymptotics, whereas the above alternatives can deliver consistent estimation only when T (Butler

and Huybers, 2013) or even both T and n (Keane and Neal, 2020) diverge. While theoretical, these nuances

can have important practical implications in finite samples, given that most yield-climate analyses utilize

large-n-small-T panels.

More importantly, although these prior studies also examine the variation in climate-agriculture rela-

tionship across counties and even interpret such heterogeneity as “spatial,” neither one explicitly incorpo-

rates spatial information into their modeling. As such, conceptually, a more appropriate characterization

of the heterogeneity that they document between counties is perhaps “cross-sectional.” In contrast, our

approach to measuring cross-county heterogeneity in climate change effects and adaptation thereto is im-

plemented by explicitly recognizing the geographic location of each county. This is a non-trivial distinction

because both climate and soil quality are inherently linked to the county’s location; both are spatially con-

tiguous and not assigned arbitrarily. By letting the climate effects on yields expressly depend on location

via smooth slope functions and estimating them nonparametrically by locally averaging over spatially prox-

imate counties, we directly leverage this contiguity and clustering across space in the data. To this end,

the cross-county heterogeneity in climate change adaptation that our model is able to identify is unam-

biguously spatial. Incidentally, Park et al. (2023) have also studied geographic variation in climate effects on

agricultural yields, whereby they build a Bayesian spatially varying functional model to forecast county-level

corn yield in five Midwest states. Our paper is distinct from theirs in its methodological approach (includ-

ing controlling for unobservable county-level confounders), significantly larger empirical scope and, most

importantly, our main focus on spatially inhomogeneous adaptation to climate change over time.

The rest of the paper is organized as follows. Section 2 introduces methodology and the corresponding

estimation strategy. Section 3 documents data, followed by the discussion of empirical results about spatial

3In Keane and Neal (2020), temporal changes in county-specific slopes do not vary across units by assumption, a priori imposing
that all counties adapt to climate change over time exactly the same. As already noted, we find that the data do not support this.
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heterogeneity of climate change effects on agriculture and the adaptation thereto by farmers in Section 4.

Section 5 reports projections of future yields based on our spatially flexible approach. Section 6 concludes.

2 Empirical Approach

We first introduce our econometric model of a spatiotemporally varying relationship between climate and

agriculture and then discuss how it nests more traditional approaches as special cases.

Let us begin with the conventional formulation of a reduced-form relationship between an agricultural

outcome yi t (e.g., the logarithm of crop yield in our paper) and strictly exogenous weather variables zi t in

county i in year t :

yi t =α+β′zi t +µi +εi t ∀ i = 1, . . . ,n; t = 1, . . . ,T, (1)

where α is the common intercept term, β is a vector of coefficients measuring sensitivity of the mean of

agricultural outcome to changes in z, µi captures unobservable county-level heterogeneity, and εi t is an

i.i.d. noise with E
[
εi t |zi 1, . . . ,zi T ,µi

]= 0.

Arguably, the popularity of the above panel-data specification in the empirical climate economics liter-

ature is mainly driven by its ability to control for unobserved correlated confounders via unit fixed effects,

thereby mitigating the omitted variable bias concerns when seeking to identify “average treatment effects

on the treated” via β. However, a key feature of model (1) and its typical variants is that they posit the mean

yield-climate relationship that is fixed across space (and over time, but let us abstract away from the lat-

ter for now). They also implicitly assume that cross-county heterogeneity in this relationship—say, due to

the differential soil quality and other geotopographic factors—is strictly neutral and thus can be fully con-

trolled for via additively separable fixed effects {µi }. However, given the inherent importance of geography

for both climate and agriculture, location may also influence marginal effects of zi t on crop yields. That is,

in practice, local heterogeneity is likely non-neutral, mediating the yield-climate relationship by shifting not

only the intercept but also slopes. In the latter case, ignoring spatial heterogeneity in slopes may jeopardize

identification of even the average causal effects of climate via β in space-invariant models such as (1).

To fix ideas, consider the mean yield-climate relationship with non-neutral local heterogeneity:

yi t =α+ [
β+bi

]′︸ ︷︷ ︸
βi

zi t +µi +εi t =α+β′zi t +µi +
(
b′

i zi t +εi t
)

, (2)

where bi is cross-unit spatial heterogeneity in slopes. From the second equality, it is evident that a model
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ignoring spatial variation in slopes would suffer from an omitted time-varying confounder b′
i zi t that no

standard fixed-effects transformation can remove. Given the naturally expected correlation between spatial

heterogeneity bi and local weather zi t (and very likely µi too), the strict exogeneity of zi t necessary to iden-

tifyβ in a panel-data setup would be violated, viz., E
[
b′

i zi t +εi t |zi 1, . . . ,zi T ,µi
]= E[

bi |zi 1, . . . ,zi T ,µi
]′ zi t 6= 0.

With that in mind, in this paper, we therefore aim to explicitly accommodate non-neutral cross-location

heterogeneity in climate effects on agriculture.

2.1 Spatiotemporally Varying Coefficient Model with Fixed Effects

Since fixed-effects estimation of panel-data models relies on a year-to-year within-county variation, even if

they were well-identified, the βi slopes in (2) would reflect sensitivity of crop yields to the annual weather

variation instead of the long-run climate change (see Burke and Emerick, 2016; Blanc and Schlenker, 2017;

Chen and Gong, 2021). Given that it is the latter which is the object of real interest, Burke and Emerick

(2016) have suggested the idea of modeling the yield-climate relationship using longer-run averages over

two separate subperiods, with the rationale being that the long-difference regression leveraging exogenous

cross-county variation in long-range temporal changes of local averages can identify marginal effects of cli-

mate change on yields. In what follows, we too adopt this modeling paradigm but generalize it to allow both

spatial and temporal—that is, spatiotemporal—heterogeneity in marginal effects, which we accomplish by

allowing regression parameters to vary across county locations and over time subperiods.

Splitting the sample period 1, . . . ,T into a finite set of mutually exclusive multi-year subperiods T =
{a,b,c, . . . } and letting si denote the time-invariant location of county i , we arrive at the following general-

ization of (1):

yi t =
∑
τ∈T

ατ(si )1(t ∈ τ)+ ∑
τ∈T

βτ(si )′1(t ∈ τ)zi t +µi +εi t ∀ i = 1, . . . ,n; t = 1, . . . ,T, (3)

where {1(t ∈ τ); τ ∈T} is a series of subperiod indicator variables, and all parameters are modeled as smooth

nonparametric subperiod-specific functions of the county’s geographic location. Thus, our model captures

a more flexible relationship between climate and agriculture that can vary both temporally (over subperiods

τ) and spatially (between county locations si ).4 By incorporating geographic information into the model,

we obtain parameters that differ between counties. This provides an indirect way to control for observed

and unobserved cross-county local heterogeneity (such as different soil quality, institutions, regulations,

4While fully nonparametric in the spatial dimension, our model is, in effect, piece-wise linear in the time dimension. We choose
such a specification in part because allowing parameters to also be nonparametric functions of time would necessitate the invo-
cation of large-T -large-n asymptotics for consistency which is impractical in studies like ours given that n À T .
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and farming practices) that mediates climate effects on agricultural productivity. As such, county-level het-

erogeneity in (3) is no longer restricted to be additively separable.

Of note, by virtue of modeling cross-county differences as an explicit smooth function of the county’s lo-

cation, we are able to parsimoniously accommodate the contiguity/clustering of local heterogeneity across

space that naturally arises due to the geography of climate and topography of land. Thus, the cross-county

heterogeneity in the yield-climate relationship that our formulation is able to identify is unambiguously

“spatial.” This is distinct from Butler and Huybers’s (2013) and Keane and Neal’s (2020) alternative ap-

proaches to modeling cross-county heterogeneity as purely “cross-sectional” with no spatial structure, which

is akin to just letting coefficients be βi as in (2) or βi t if one were to extend (2) to also incorporate time het-

erogeneity. In our case, spatiotemporally varying marginal effects are essentially regularized as βi t ≡βτ(si )

which smoothly—as opposed to arbitrarily—vary with space across counties.

Averaging (3) over all years in a subperiod τ, we obtain a long-run average relationship between mean

crop yields and climate (i.e., average weather over years):

y iτ =ατ(si )+βτ(si )′ziτ+µi +εiτ ∀ i = 1, . . . ,n; τ= a,b,c, . . . ,T, (4)

where xiτ = ∑
t∈τ xi t

/∑
t 1(t ∈ τ) for any x, and all parameters are period- and location-specific, in effect,

making them vary at the observation level. The intercept ατ(si ) captures a local climate-neutral but time-

varying contribution of the county’s location-specific factors on mean crop yield. Slope parameters βτ(si )

measure a local effect of climate on the mean crop yield in period τ mediated by non-additive spatial het-

erogeneity, and µi represents the remaining additive components of time-invariant county unobservables.

Altogether, a nontrivial distinction between (4) and its analogue derived from standard models akin

to (1) is that yield sensitivity to climate variation is no longer constant over time and across space. This

is a critical generalization because it accommodates the potential for (mal)adaptation to climate change

and, importantly, expressly allows it to be of a heterogeneous degree across different regions. Namely, dif-

ferencing (4) over two non-adjacent subperiods, say a and c, with a being the earlier period, we obtain a

“long-differenced” relationship between the mean yield and climate:

∆y i (c,a) =
[
αc (si )−αa(si )

]︸ ︷︷ ︸
α∗

(c,a)(si )

+βa(si )′∆zi (c,a) +
[
βc (si )−βa(si )︸ ︷︷ ︸

β∗
(c,a)(si )

]′zi c +∆εi (c,a) ∀ i = 1, . . . ,n, (5)

where∆xi (c,a) = xi c −xi a for any variable x, and the newly defined α∗
(c,a)(si ) ≡αc (si )−αa(si ) and β∗

(c,a)(si ) ≡
βc (si )−βa(si ) respectively measure local changes in the intercept and slope functions between periods a

and c. Therefore, by identifying the change in sensitivity of the i th county’s mean crop yields to climate vari-
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ation in the longer run, the slopesβ∗
(c,a)(si ) indirectly provide us with the information about (mal)adaptation

to climate change by local agriculture: a decrease (resp., increase) in sensitivity of yields to harmfully exces-

sive heat would indicate adaptation (resp., maladaptation). In our model (5), such an adaptation is explicitly

allowed to vary spatially, reflective of heterogeneous local conditions. Although we ought to emphasize that,

given our reduced-form formulation of the yield-climate relationship, one is to interpretβ∗
(c,a)(si ) as captur-

ing the net cumulative effect of all and any various adaptive methods used by farmers.

Nested Specifications. Our flexible model constitutes a semiparametric generalization of the popular

time-and-location-invariant “long differences” approach by Burke and Emerick (2016) and its recent time-

varying extension by Yu et al. (2021). In fact, our spatiotemporally varying model in (5) nests these two as

special cases. When ατ(si ) = α and βτ(si ) = β are restricted for all τ and si , it collapses to the Burke and

Emerick (2016) specification:

∆y i (c,a) =β′∆zi (c,a) +∆εi (c,a) ∀ i = 1, . . . ,n, (6)

in which slopes are both spatially and temporally invariant and thus constant.

If one were to “fix” the yield-climate relationship only in the spatial dimension by having ατ(si ) = ατ

and βτ(si ) = βτ for all si , our model would then reduce to a time-varying specification à la Yu et al. (2021),

in which slopes may change over time but are restricted to be common to all locations:

∆y i (c,a) =α∗
(c,a) +β′

a∆zi (c,a) +β∗
(c,a)

′zi c +∆εi (c,a) ∀ i = 1, . . . ,n, (7)

where α∗
(c,a) ≡αc −αa and β∗

(c,a) ≡βc −βa .

It may also be of interest to consider a third special case nested within our model, namely, a spatially

varying but time-invariant coefficient specification that (5) simplifies to when ατ(si ) = α(si ) and βτ(si ) =
β(si ) for all time periods τ. In such an instance, one arrives at a spatially varying extension of the Burke and

Emerick (2016) specification:

∆y i (c,a) =β(si )′∆zi (c,a) +∆εi (c,a) ∀ i = 1, . . . ,n, (8)

as can be easily seen by comparing (8) to (6).

On a final note, our spatially varying approach can also be applied to extend the more traditional fixed-

effects estimator à la Schlenker and Roberts (2009); see Appendix A for details.
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2.2 Estimation and Inference

Given our semiparametric functional-coefficient specification of the reduced-form relationship between

mean crop yields and climate, we estimate our model in long differences given in (5) via local least squares.

We employ local-constant kernel fitting. Owing to the time-invariance of smoothing location variable si , for

estimation purposes this long-difference-transformed specification is a cross-sectional varying-coefficient

model with a well-known asymptotic behavior (see Li et al., 2002; Li and Racine, 2007, 2010).

Parameters of interest are the unknown nonparametric si -location-specific coefficientsΘ(si ) = [α∗
(c,a)(si ),

βa(si )′,β∗
(c,a)(si )′]′ in (5). Assuming that these coefficient functions are smooth and twice continuously dif-

ferentiable in the neighborhood of s, we can approximate parameter functions Θ(si ) at points si in the

vicinity of location s using a local constant: Θ(si ) ≈ Θ(s). Therefore, for locations {si } close to s such that

|si −s| = o(1), a spatially-varying long-differenced mean yield-climate relationship in (5) is approximated via

∆y i (c,a) ≈α∗
(c,a)(s)+βa(s)′∆zi (c,a) +β∗

(c,a)(s)′zi c +∆εi (c,a), (9)

which, given the quasi-random strict exogeneity of climate variation, can be consistently estimated using

locally weighted least squares under the standard regularity conditions. The associated kernel estimator is

Θ̂(s) =
[∑

i
xi (c,a)x′i (c,a)Kh(si , s)

]−1 ∑
i

xi (c,a)∆y i (c,a)Kh(si , s), (10)

where xi (c,a) = [1,∆z′i (c,a),z′i c ]′ is a vector of regressors. A product kernel Kh(si , s) = K
( s1i−s1

h1

)× K
( s2i−s2

h2

)
weights each long-differenced county i on the basis of closeness of its geographic coordinates (i.e., longi-

tude and latitude) si = (s1i , s2i ) to those of the location s, with K (·) being a kernel weighting function, s1 and

s2 respectively denoting the longitude and latitude of location s, and h1 and h2 being the corresponding

bandwidths. These bandwidths control the degree of smoothing and weighting, and ||H || → 0, n|H | →∞
as n → ∞ where H = diag{h1,h2}. The kernel K (·) is uniformly bounded, non-negative, symmetric and∫

K (v)d v = 1; we employ a popular second-order Gaussian kernel.

The estimator in (10) illustrates well the way we explicitly model a contiguous nature of spatial hetero-

geneity in our framework. Namely, by letting marginal effects of climate depend on the county’s location via

smooth functions Θ(si ), the estimated slope heterogeneity is continuous over space as we estimate these

slopes for each county by locally averaging over geographically proximate counties.

Due to its semiparametric nature, computation of the asymptotic variance of estimator in (10) is not as

simple and its use in finite samples may also be not as easy to justify. We therefore employ Efron’s (1982)

bias-corrected bootstrap for statistical inference, which we also use to obtain confidence intervals for func-

11



tions ofΘ(si ), such as the (mal)adaptation index and yield change projections. Details are in Appendix B.

3 Data

Annual county-level yield data for corn, soybeans, and cotton over 1958–2019 are obtained from the U.S. De-

partment of Agriculture (USDA) National Agricultural Statistics Service (NASS). We focus only on the rainfed

counties east of the 100th Meridian because i ) rainfed counties respectively account for about 97%, 97%,

and 90% of corn, soybean, and cotton production in the U.S. over the sample period, and i i ) crop produc-

tion in the western counties is heavily influenced by subsidized irrigation systems. We exclude counties that

produce these crops for fewer than two years. Our final data sample includes 1,534 counties for corn, 1,042

counties for soybeans, and 235 counties for cotton. We obtain the longitude and latitude of county centroids

from the U.S. Census Bureau.

Historical weather data are from Schlenker and Roberts (2009), who have extended the dataset to 2019.5

It includes daily total precipitation as well as the maximum and minimum temperatures for 4-km grid

cells covering the entire U.S. over the period 1950–2019. Following the convention (e.g., see Schlenker and

Roberts, 2009; Burke and Emerick, 2016; Malikov et al., 2020; Yu et al., 2021), we use the growing degree days

(GDD) to model a nonlinear relationship between temperature and crop yields. Daily GDD measures the

time that crops are exposed to temperatures between the lower and upper thresholds during a specific day,

and the annual GDD over the entire growing season is defined as the accumulation of daily GDD over the

growing season. Following Burke and Emerick (2016), Yu et al. (2021), and the USDA Economic Research

Service (2022), we define the growing season as April 1st to September 30th for all three crops.6

Schlenker and Roberts (2009) find that temperatures over 29◦C, 30◦C, and 32◦C generate harmful effects

on corn, soybean, and cotton production, respectively. Therefore, we set upper boundaries of the GDD cal-

culation for each crop at their respective critical thresholds, with the lower threshold always set at 8◦C. We

denote this variable as GDD8−r0
◦C, where r0 equals 29, 30, and 32 for corn, soybeans, and cotton, respec-

tively, and use it to capture the effects of “normal” temperature on yields. To quantify the overheat effect of

high temperatures (and the potential adaptation by farmers to combat it in the face of a warming climate),

we use a measure of harmful GDD computed for each crop using temperatures in excess of their respective

5The dataset is available at http://www.columbia.edu/ ws2162/links.html.
6Economic Research Service (2022) documents that the planting season for cotton in the U.S. is typically from March to June and

the harvesting season is from August to December. We use April 1st–September 30th as a reasonable approximation for its growing
season.
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Figure 1. Spatial Distributions of Mean Yields, Mean Normal GDD, Mean Overheat GDD, and Land Quality
in 2015–2019
Notes: Crop yields are obtained from the USDA NASS and are measured in bushels per acre for corn and soybeans and in pounds per acre for

cotton. The historical weather data are obtained from Schlenker and Roberts (2009). Normal GDD measures the time that crops are exposed to

temperature between lower and upper thresholds over the entire growing season which is defined to run from April 1 to September 30. We set the

lower boundary of the GDD calculation at 8◦C and upper boundary for each crop at their respective critical thresholds: 29◦, 30◦, and 32◦C for corn,

soybeans, and cotton, respectively. Overheat GDD measures the time that crops are exposed to temperatures in excess of their respective upper

thresholds. The land quality is measured by the ratio of LCC 1–2 land (with little or no limitation on crop production) to the total non-developed

land in a county. The land capability class (LCC) classification data are obtained from the USDA Natural Resources Conservation Service.
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r0 thresholds. We label this overheat GDD variable as GDDr0
◦C+.

Figure 1 plots maps of the average yield for the three crops and the corresponding GDD and overheat

GDD in the last five years of our sample period, 2015–2019 (see the top three rows in the figure). Taking a

quick glance at these maps, we already can see the empirical imperative to account for the apparent spatial

heterogeneity (and clustering therein) in both yields and climate, when relating agricultural productivity to

climate. Spatial differences in crop yields are unarguably related to many local factors and, perhaps more

prominently, to the differential soil quality (see the bottom row of Figure 1 for soil quality maps associated

with each crop). However, we later show that controlling for these factors via additively separable location

(i.e., county) fixed effects is insufficient to fully capture spatial differences in the climate-yield relationship,

which motivates a more spatially flexible approach of ours.

Although not the focus of our analysis, we also control for precipitation, which we do along the lines of

Burke and Emerick (2016) and Yu et al. (2021). To accommodate potential nonlinearities in precipitation

effects on yields, we construct two precipitation-related variables: i ) total precipitation below a threshold,

measuring the severity of water deficiency, and i i ) total precipitation above the same threshold, measuring

the magnitude of water abundance. Appendix C details construction of these precipitation variables and

also provides summary statistics of historical yield and weather data (see Table C.1).

Predicted future climate data over 2048–2052 are obtained from the Multivariate Adaptive Constructed

Analogs (MACA).7 We select data from two widely used global climate models. One is the HadGEM2-ES365

model, which tends to predict large temperature increases, and the other is the NorESM1-M model, which

predicts small temperature increases. For each one of these climate prediction models, we obtain future

climate data predicted under two greenhouse gas representative concentration pathways (RCPs)—RCP4.5

and RCP8.5—that represent medium and the warmest scenarios, respectively. These weather predictions

are summarized in Table C.2 in Appendix C.

4 Estimates of Spatially Heterogeneous Adaptation to Climate Change

Using our spatiotemporally varying approach, in this section we explore spatial heterogeneity in agricultural

adaptation to climate change in the U.S. We first document non-trivial heterogeneity in county-specific es-

timates of climate sensitivity and adaptation of yields and then explore potential factors that can help ex-

7The weblink is https://climate.northwestknowledge.net/MACA/index.php.

14



Table 1. Estimated Models

Spatially Time Estimating
Model Description Varying? Varying? Equation

S1T1 Our main spatiotemporally varying coefficient model X X eq. (5)

S1T0 A spatially varying but time-invariant coefficient model X × eq. (8)

S0T1 A time-varying but spatially invariant coefficient model a là Yu et al. (2021) × X eq. (7)

S0T0 A both time-and-location-invariant model a là Burke and Emerick (2016) × × eq. (6)

Note: All models are estimated in long differences.

plain the observed variation in local adaptation. Since the first-order threats to agricultural production by a

warming climate are arguably posed by the rising temperatures associated with it, we focus on temperature-

related variables and, particularly, the overheat GDD.

The estimation is done in long differences for one crop at a time with a log-linear specification.8 We se-

lect two five-year periods that correspond to the beginning and the end of our data sample—the 1958–1962

and 2015–2019 periods—and estimate the long-run average yield-climate relationship using our flexible

spatiotemporally varying model in long differences given in (5) and the three restricted specifications in (6)

through (8) that it nests.9 All these models are listed, conveniently labeled, and described in Table 1. Of the

four, the first two (spatially varying) models are semiparametric. To estimate them, we need to select the

optimal bandwidths that control the degree of spatial smoothing across neighboring counties. Because the

county location does not change over time, we employ data-driven leave-one-location-out cross-validation

to select them (Sun et al., 2009). Our analysis treats geographic coordinates, measured in decimal degrees,

as continuous variables because both longitude s1i and latitude s2i are interval variables.

4.1 Spatial Heterogeneity in the Agriculture-Climate Relationship

Before proceeding to our main analysis of cross-location heterogeneity in agricultural adaptation (or mal-

adaptation) to a changing climate, we first explore if there is significant spatial heterogeneity in the yield-

climate relationship to begin with. To this end, we estimate a restricted version of our spatiotemporally

varying model by “fixing” it across time (model S1T0), and compare its results to those from the standard

time-and-location-invariant model S0T0 by Burke and Emerick (2016). By abstracting away from temporal

8All regressions are weighted by the harvested acreage of a corresponding crop in the county in 1960 to facilitate an acreage-based
interpretation.

9We choose 1958–1962 and 2015–2019 for our main analysis to obtain the longest possible gap between two periods within our data
sample. For sensitivity analysis (Appendix E) we further explore results under ten combinations of starting/ending periods for the
long-differences models.
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Table 2. Estimated Local Sensitivity of Crop Yields to Temperature

Spatially Varying but Time-Invariant Space- and Time-Invariant
Model S1T0 Model S0T0

Mean 1st Qu. Median 3rd Qu. Fixed Coefficient Estimate

Corn
GDD8−r0

◦C 0.8973 0.5469 0.7899 1.1573 0.9756
(0.8785, 0.911) (0.5247, 0.5573) (0.787, 0.7999) (1.1134, 1.1839) (0.8774, 1.0611)

GDDr0
◦C+ –3.8424 –5.6650 –3.1826 –1.5844 –4.2546

(–3.9699, –3.8006) (–5.9469, –5.4658) (–3.3438, –2.9957) (–1.8028, –1.4757) (–4.7949, –3.7079)

Soybeans
GDD8−r0

◦C 0.6067 0.4542 0.5758 0.7429 0.6245
(0.5662, 0.6358) (0.4182, 0.4953) (0.5167, 0.6045) (0.7038, 0.785) (0.5476, 0.6822)

GDDr0
◦C+ –4.2763 –6.1139 –3.9924 –2.2202 –3.9847

(–4.7814, –4.0539) (–6.7654, –5.8597) (–4.6785, –3.3023) (–2.5185, –1.7077) (–4.6936, –3.1745)

Cotton
GDD8−r0

◦C 0.6160 0.5463 0.6000 0.6722 0.5926
(0.5782, 0.6475) (0.5141, 0.5780) (0.5768, 0.6646) (0.6011, 0.7274) (0.5356, 0.6368)

GDDr0
◦C+ –2.2830 –3.1227 –2.4719 –1.6842 –1.5873

(–2.8088, –1.9695) (–3.8541, –2.876) (–2.7769, –1.884) (–2.4805, –1.1545) (–2.4287, –0.3338)

Notes: The left panel summarizes point estimates of the responsiveness of crop yields to temperature variationβ(si )×100 from the spatially varying but
time-invariant model S1T0. The right panel reports their counterparts β×100 from a spatially and temporally invariant model S0T0. All models control
for precipitation variables. The two-sided 95% bias-corrected confidence intervals clustered at the climate division level are in parentheses. For corn,
soybeans, and cotton, r0 equals 29, 30, and 32, respectively. The reported point estimates are semi-elasticities interpretable as percentage changes in
the mean crop yield per unit change in climate variables. The expanded version of this table that includes estimated sensitivity to precipitation variables
is presented in Table G.1 in Appendix G.

changes in climate change effects for the time being, we are able to focus solely on cross-county differences

in heat sensitivity of crop yields.

Because model S1T0 identifies county-specific heat sensitivity, we obtain a distribution of estimated

slope parameters β(si ) that measure local effects of climate on mean crop yields across all counties in our

sample. Table 2 summarizes their point estimates. In the far right column, the table also reports “globally

constant” coefficient estimates from the S1T0 model’s spatially invariant analogue, S0T0, as a benchmark.

The results from our semiparametric model are largely in line with prior studies (e.g., Burke and Emerick,

2016; Keane and Neal, 2020; Malikov et al., 2020; Yu et al., 2021). The exposure to normal temperatures has a

positive effect on yields. Cross-county estimates of sensitivity to normal GDD indicate that the exposure to

an additional degree-day of normal temperatures leads to a median increase in corn yields of 0.8%, soybean

yields of 0.6%, and cotton yields of 0.6%. On the other hand, the exposure to overheat temperatures has an

expectedly adverse effect on yields. Our estimates suggest that an additional unit of overheat GDD leads to

a median reduction in corn, soybean, and cotton yields by 3.2%, 4%, and 2.5%, respectively.

More importantly, consistent with non-neutral spatial heterogeneity, the estimated S1T0 model in Ta-
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ble 2 reveals a significant variation among county-specific climate-sensitivity parameters for all three crops.

For example, within an interquartile range of local point estimates, the magnitude of sensitivity to overheat

GDD changes by 72% (from –5.67 to –1.58) for corn, 64% (from –6.11 to –2.22) for soybeans, and 46% (from –

3.12 to –1.68) for cotton. The corresponding within-quartile changes for normal GDD are 112% (from 0.55 to

1.16), 64% (from 0.45 to 0.74), and 23% (from 0.55 to 0.67). We visualize this variability in the yield-climate

relationship mediated by spatial heterogeneity in Figure 2 (rows 1 and 3 from the top), which plots his-

tograms of estimated semiparametric county-specific coefficients along with their location-invariant coun-

terparts depicted using vertical lines. Varying estimates of crop responsiveness to GDD and overheat GDD

show fairly wide dispersion, which the popular spatially invariant S0T0 specification is unable to capture by

design because it a priori imposes a constant-slope restriction.

This significant cross-location heterogeneity in temperature sensitivity of yields can be seen even more

clearly from maps in Figure 2 that show geographical distributions of estimated slopes. What is also evident

from these maps is that sensitivity to climate is not merely inhomogeneous across counties but it tends to

cluster in space. For instance, the bottom-row maps in Figure 2 show that corn and soybean yields in the

upper Midwest and North Great Plains are more sensitive to overheat GDD than their counterparts in the

southern areas. In fact, Moran’s I test overwhelmingly rejects (p < 0.0001) the null of no spatial autocor-

relation in all parameters for each crop. This indirectly corroborates a non-neutral role of local geography

in mediating the yield-climate relationship. Imperatively, usual approaches such as a time-and-location-

invariant S0T0 model, which assume that local heterogeneity is climate-neutral and thus can be accounted

for via additively separable county fixed effects, are unable to fully capture spatial characteristics of the rela-

tionship between yields and climate. Figure G.1 in Appendix G, which plots spatial distributions of residuals

(net of county fixed effects) from the S0T0 model,10 provides a visualization of the inadequacy of additive

fixed effects to fully account for all cross-location heterogeneity. After netting out location effects, the resid-

uals continue to exhibit spatial dependence, which is also confirmed using formal Moran’s I tests. At the

very least, it implies that one ought to cluster standard errors when doing inference in spatially invariant

models. But it is critical to recognize that treating this residual spatial correlation as merely a variance issue

would be tantamount to an untested assumption that the residual spatial dependence is confined to ran-

dom shocks. In the context of discussing eq. (2), the estimation of constant slopes β would be consistent

only if slope heterogeneity is such that E
[
bi |zi 1, . . . ,zi T ,µi

]= 0 which would be as strong and implausible as

10Concretely, from the S0T0 specification, the plotted residuals are computed as ∆y i (c,a) − β̂
′
∆zi (c,a).

17



Corn Soybeans Cotton
N

o
rm

al
G

D
D

N
o

rm
al

G
D

D
O

ve
rh

ea
tG

D
D

O
ve

rh
ea

tG
D

D

Figure 2. Distributions of Estimated Local Sensitivity of Crop Yields to Temperature
Notes: Histograms summarize point estimates of the responsiveness of crop yields to temperature variation, β(si )×100, from the spatially varying

but time-invariant model S1T0. Maps plot their spatial distribution. The vertical red lines in the histograms show the counterpart estimates β×100

from a fixed-coefficient, spatially and temporally invariant model S0T0. All models control for precipitation variables. The plotted point estimates

are semi-elasticities interpretable as percentage changes in the mean crop yield per unit change in climate variables.
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the assumption that µi were not fixed but random effects.

Although results from the S1T0 model already provide ample evidence of non-negligible spatial hetero-

geneity in the relationship between crop yields and climate, we test for both its significance and empirical

relevance more formally. First, we rely on Hall et al.’s (2007) result in that local-constant kernel methods,

which we employ to estimate spatially varying models, can identify irrelevant regressors via cross-validation

procedure. When optimally selected, a large bandwidth parameter would effectively “smooth out” the lo-

cation variable si , rendering all parameters in the model globally constant. This provides an indirect data-

driven method to assess empirical relevance of the county’s geographic location in the estimation of climate

change effects on agricultural productivity. For the S1T0 model, cross-validated bandwidths for the longi-

tude and latitude are respectively 60.3 and 36.2 kilometers (km) for corn, 136.9 and 28.7 km for soybeans,

and 52.7 and 61 km for cotton.11 These bandwidths are small relative to the vast geographical area covered

in our study (more than 2,200 km from west to east and 2,000 km from south to north), which averts smooth-

ing out of the location, providing strong evidence that county location plays an important role in mediating

the yield-climate relationship. Thus, the data reject spatial invariance.

Our spatially varying approach is also supported by Ullah’s (1985) goodness-of-fit model specification

test which facilitates a joint-hypothesis inference about spatial invariance. The test is essentially a non-

parametric F-test that discriminates between a “restricted” time-and-location-invariant S0T0 specification

under the null and a more flexible “unrestricted” spatially-varying S1T0 specification under the alternative.

The test statistic is based on the distance between residual sums of squares from the two specifications:

Tn = (RSSr −RSSur )/RSSur , where RSSr and RSSur are restricted and unrestricted sums of squared resid-

uals, respectively. Intuitively, just like an F-test, the test statistic is expected to converge to 0 under the null

and is positive under the alternative; hence, the test is one-sided. We approximate the null distribution

of Tn via bootstrap by resampling residuals from the restricted specification; the algorithm is provided in

Appendix D. With a p-value ≤ 0.001, we confidently reject the null of a location-invariant model for both

corn and soybean yields. In the case of cotton, we however fail to reject spatial homogeneity of parameters

at the conventional significance levels but do reject it comfortably for our main model that also explicitly

incorporates temporal variation in coefficients (more on this later).

11To be precise, since geographic coordinates are measured in decimal degrees, the actual bandwidth values for longitude and
latitude are 0.543◦ and 0.326◦ for corn, 1.230◦ and 0.258◦ for soybean, and 0.474◦ and 0.550◦ for cotton. For convenience, here
we have converted them to km using the 1◦ = 111km approximation that is valid at the equator.
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4.2 Local Adaptation to Climate Change

Having established significant cross-location heterogeneity in climate effects on crop yields, we now inves-

tigate if there is also spatial heterogeneity in adaptation or maladaptation to climate change, which can be

inferred from changes in temperature sensitivity of yields over time. To this end, we estimate our proposed

spatiotemporally varying model S1T1 which permits coefficients to vary across both time and counties.

Table 3 summarizes our local estimates of the early-period-a temperature sensitivity (the βa(si ) coeffi-

cients) and of changes in this sensitivity between period a and the later period c (theβ∗
(c,a)(si ) coefficients).12

The earlier-period coefficients can be used as a reference to facilitate interpretation of positive values of

β∗
(c,a)(si ) as the evidence of adaptation, whereby positive effects on yield in the earlier period become “more

positive” and negative effects become “less negative” over time. Analogously, negative values ofβ∗
(c,a)(si ) can

be interpreted as capturing maladaptation because they indicate that positive effects on yield in the earlier

period become “less positive” and negative effects “more negative.”13 For comparison, the right panel of

Table 3 also reports estimates from a location-invariant S0T1 specification à la Yu et al. (2021).

As in the case of the S1T0 model, optimal cross-validated bandwidths for location variables in our spa-

tiotemporally varying model are fairly small for all three crops, which is consistent with the reported evi-

dence that geographic location is an empirically relevant variable for measuring agricultural adaptation to

climate change.14 This is further corroborated by a formal test. Using Ullah’s (1985) test, we consistently

reject the spatially invariant Yu et al. (2021) specification S0T1 in favor of our more flexible alternative S1T1

at the 5% significance level for all crops (p < 0.035).

Per our proposed model S1T1, estimates ofβ∗
(c,a)(si ) for normal GDD8−r0

◦C are generally negative whereas

estimates of β∗
(c,a)(si ) for overheat GDDr0

◦C+ are primarily positive. This also holds under the S0T1 model,

particularly for soybeans. However, our model suggests that, on average, β∗
(c,a)(si ) for GDD8−r0

◦C is statisti-

cally insignificant for corn and cotton yields, with some counties showing maladaptation and some show-

ing adaptation to normal GDD. This finding differs from that of Yu et al. (2021), who find that U.S. corn

displayed statistically significant maladaptation to normal GDD in the past few decades. Given the statisti-

cal insignificance of β∗
(c,a)(si ) for GDD8−r0

◦C in our main model S1T1 and the potential for large detrimental

12Estimates of a full set of parameters, including local sensitivity to precipitation, are reported in Table G.2 in Appendix G.
13In the context of global warming this differentiation of adaptation and maladaptation is reasonable because, as agriculture is

exposed to an increasing amount of normal GDD and overheat GDD, adaptation should mitigate negative effects and enlarge
positive effects of temperature. If it were global cooling, definitions of adaptation and maladaptation would be the opposite.

14For our main model S1T1, when converted to kilometers, optimal bandwidths for longitude and latitude are respectively equal to
315.1 and 227.7 km for corn, 294.5 and 308.5 km for soybean, and 366.2 and 477.8 km for cotton.
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Table 3. Estimated Time-Varying Local Sensitivity of Crop Yields to Temperature

Spatially and Temporally Varying Spatially Invariant
Model S1T1 Model S0T1

Mean 1st Qu. Median 3rd Qu. Fixed Point Estimate

Corn
βa (si ) for GDD8−r0

◦C –0.0024 –0.0577 –0.0240 0.0591 0.1105
(–0.0422, 0.0155) (–0.1045, –0.0259) (–0.0574, –0.0103) (0.0238, 0.0777) (0.0555, 0.1701)

βa (si ) for GDDr0
◦C+ –0.6076 –1.267 –0.4927 –0.0250 –1.5653

(–0.6606, –0.4473) (–1.4114, –0.8868) (–0.6357, –0.2094) (–0.1326, 0.2383) (–1.9274, –1.2595)
β∗(c,a)(si ) for GDD8−r0

◦C –0.0064 –0.0846 0.0050 0.0587 –0.0704

(–0.0147, 0.0128) (–0.1010, –0.0680) (–0.0098, 0.0360) (0.0451, 0.0870) (–0.0954, –0.0457)
β∗(c,a)(si ) for GDDr0

◦C+ 0.4820 0.0399 0.3311 0.8936 1.1666

(0.3762, 0.5080) (–0.1682, 0.1097) (0.1839, 0.3631) (0.7152, 0.9444) (0.975, 1.3637)

Soybeans
βa (si ) for GDD8−r0

◦C 0.0724 0.0214 0.0695 0.1219 0.0808
(0.0343, 0.1149) (–0.0164, 0.0771) (0.0270, 0.1204) (0.0468, 0.1696) (0.0228, 0.1354)

βa (si ) for GDDr0
◦C+ –1.1141 –1.5248 –0.9711 –0.7456 –1.3388

(–1.4228, –0.8325) (–2.1129, –1.1609) (–1.2043, –0.6677) (–1.0054, –0.4841) (–1.7646, –0.9705)
β∗(c,a)(si ) for GDD8−r0

◦C –0.0384 –0.0620 –0.0348 –0.0129 –0.0555

(–0.0493, –0.0288) (–0.0820, –0.0502) (–0.0414, –0.0216) (–0.0219, 0.0020) (–0.0741, –0.0355)
β∗(c,a)(si ) for GDDr0

◦C+ 0.6042 0.3171 0.5195 0.8801 0.8450

(0.4530, 0.7902) (0.1080, 0.4543) (0.3419, 0.6069) (0.7191, 1.2066) (0.5787, 1.0933)

Cotton
βa (si ) for GDD8−r0

◦C 0.1183 0.1416 0.1538 0.1565 0.0972
(0.0498, 0.1681) (0.0955, 0.2123) (0.1021, 0.2272) (0.0950, 0.2140) (–0.0046, 0.2061)

βa (si ) for GDDr0
◦C+ –0.3750 –0.6955 –0.3906 –0.2985 –0.1875

(–0.8832, 0.0435) (–1.3843, –0.2443) (–0.8659, 0.0915) (–0.8226, 0.1645) (–0.9508, 0.6718)
β∗(c,a)(si ) for GDD8−r0

◦C –0.0245 –0.0445 –0.0239 –0.0067 –0.0445

(–0.044, 0.0108) (–0.0683, –0.0047) (–0.0457, 0.0143) (–0.0402, 0.0285) (–0.0791, –0.0062)
β∗(c,a)(si ) for GDDr0

◦C+ 0.1707 –0.0135 0.1196 0.3655 0.4437

(–0.2053, 0.5282) (–0.5472, 0.5402) (–0.3164, 0.4093) (–0.0037, 0.6182) (0.0612, 0.8795)

Notes: The left panel summarizes point estimates of the responsiveness of crop yields to temperature variation in the early period βa (si )× 100 and its
change over time β∗(c,a)(si )×100 from the spatiotemporally varying model S1T1. The right panel reports their counterparts βa ×100 and β∗(c,a) ×100 from

a spatially-fixed but temporally varying model S0T1. All models control for precipitation variables. Two-sided 95% bias-corrected confidence intervals
clustered at the climate division level are in parentheses. For corn, soybeans, and cotton, r0 equals 29, 30, and 32, respectively. The reported point estimates
are semi-elasticities interpretable as percentage changes in the mean crop yield per unit change in climate variables. The expanded version of this table
that includes estimated sensitivity to precipitation variables is presented in Table G.2 in Appendix G.
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impacts of overheat on crops (see Wagner and Schlenker, 2022), in what follows we focus our discussion on

the (mal)adaptation to overheat GDD.

Our spatially varying estimates in Table 3 show that, as expected, the sensitivity of crop yields to overheat

GDD in the early period (i.e.,βa(si ) for GDDr0
◦C+) is negative, suggesting that in 1958–1962 mean crop yields

would fall in response to an increase in overheat temperatures. Moreover, we find that temporal changes in

overheat sensitivity are positive and statistically significant—albeit, not everywhere—and that magnitudes

of these changes vary non-negligibly across counties, indicating that adaptation to climate change is occur-

ring but it is not spatially homogeneous. Magnitudes of adaptation from a location-invariant specification

are much larger than the corresponding mean/median estimates from our spatiotemporally varying model,

suggesting that approaches incapable of accommodating spatial heterogeneity in slopes may overestimate

the degree of adaptation.

To further explore the geography of adaptation, we include histograms and maps of our local adaptation

estimates in Figure 3. Also included in the figure is a breakdown of counties based on the statistical signif-

icance (at the 5% level) of their historical adaptation to excessive heat. While the S0T1 specification finds

that overheat adaptation was statistically significant for all three crops including cotton, this is not quite the

case based on our more flexible approach. Not only do we find that heat adaptation by cotton farmers is

insignificant on average, it is actually not different from zero in 77% of producing counties.15 For corn and

soybeans, the evidence of local adaptation is much stronger, however. Although still not uniformly across all

locations, we find that 54% and 75% of counties, respectively, experienced a statistically significant decrease

in heat sensitivity, helping farmers adapt to a warming climate. Geographically, these adapting counties are

mainly located in the Northern Great Plains and Upper Midwest (see maps in Figure 3). Therefore, our find-

ings on agricultural adaptation differ from “average” estimates in both Yu et al. (2021), who find ubiquitous

adaptation, and Burke and Emerick (2016), who find no adaptation.

To get a better feel of the extent of adaptation by farmers, we use our estimates of local adaptation

β∗
(c,a)(si ) to compute two supplementary measures of adaptation which have a more concrete interpreta-

tion. First, we calculate a percentage change in sensitivity of crop yields to overheat temperatures between

the two periods via sign
{
β∗

(c,a)(si )
}×|β∗

(c,a)(si )/βa(si )|×100%, where the ratio of β∗
(c,a)(si ) to βa(si ) provides

the magnitude of a proportional change in heat sensitivity, and β∗
(c,a) signs it. Given the adverse effect of

overheat on yields, when positive this measure corresponds to a decrease in the magnitude of a negative

15This may be because high yield is not the only goal for cotton farmers. Other important factors that determine cotton quality and
thus price, such as fiber length, need to be considered as well in the cotton production.
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Figure 3. Estimated Temporal Changes in Local Sensitivity of Crop Yields to Overheat Temperatures
Notes: Histograms summarize point estimates of the change in responsiveness of crop yields to overheat GDD over time, β∗(c,a)(si )× 100, from

the spatiotemporally varying model S1T1. Maps plot their spatial distribution: regardless of their magnitude or sign, all statistically insignificant

estimates are shown using the same shade of gray. Barplot reports the breakdown of counties based on the statistical significance of point estimates

ofβ∗(c,a)(si ). “Negative” if statistically significant but has a negative sign; “zero” if statistically insignificant; and “positive” if the county-specific point

estimate is statistically significant at the 5% level and has a positive sign. The vertical red lines in the histograms show the counterpart estimates

β∗(c,a)×100 from a spatially-fixed but temporally varying model S0T1. All models control for precipitation variables. The plotted point estimates are

semi-elasticities interpretable as percentage changes in the mean crop yield per unit change in climate variables.
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Table 4. Evidence of Local (Mal)Adaptation to Overheat Temperatures

Spatially and Temporally Varying Spatially Invariant
Model S1T1 Model S0T1

Weighted Mean 1st Qu. Median 3rd Qu. Fixed Point Estimate

Percentage Changes in Local Overheat Sensitivity of Crop Yields

Corn 73.29 33.39 64.14 88.81 74.53
(49.25, 79.51) (–90.4, 48.36) (49.46, 82.09) (61.49, 106.05) (62.11, 89.87)

Soybeans 48.98 39.04 54.58 67.15 63.12
(35.29, 72.47) (16.12, 52.83) (42.12, 70.62) (54.89, 95.35) (46.04, 84.10)

Cotton 50.85 0.80 23.75 123.52 236.60
(–520.48, 362.27) (–508.14, 60.17) (–425.51, 67.83) (35.26, 596.26) (75.20, 31501.69)

Crop Yield Gains due to Local Adaptation (in %)

Corn 17.68 2.03 9.71 26.69 36.15
(14.55, 18.53) (–4.42, 4.60) (4.77, 10.90) (16.92, 31.46) (29.42, 43.43)

Soybeans 10.49 2.86 9.16 19.43 18.46
(6.65, 12.49) (1.15, 4.39) (5.68, 11.39) (13.96, 22.29) (12.3, 24.51)

Cotton 3.12 0.11 2.73 5.56 10.09
(–5.67, 10.68) (–11.15, 10.54) (–5.67, 10.20) (–1.03, 10.14) (1.33, 21.00)

Notes: The top left panel summarizes point estimates of the percentage change in responsiveness of crop yields to overheat GDD
computed based on the spatiotemporally varying model S1T1. We calculate it via sign

{
β∗(c,a)(si )

}×|β∗(c,a)(si )/βa (si )|×100%. The

bottom left panel summarizes point estimates of the percentage changes in crop yield due to adaptation to overheat GDD based
on the spatiotemporally varying model S1T1. We calculate it via

(
exp{β∗(c,a)(si )×GDDr ◦C+,i c }−1

)×100%. The two right panels

reports their counterparts from a spatially-fixed but temporally varying model S0T1. Weighted mean is calculated using crop
acreages in 1960. Two-sided 95% bias-corrected confidence intervals clustered at the climate division level are in parentheses.

responsiveness, indicating adaptation. Second, we scale our local adaptation estimates using each county’s

average overheat GDD in the later period, viz., β∗
(c,a)(si )×GDDr0

◦C+,i c , to obtain the measurement of adap-

tation in terms of crop yield gains. Unlike the “raw” adaptation estimate β∗
(c,a)(si ) that measures a nominal

change in the slope of overheat GDD, this one transforms the former into a change in log-yield attributable

to a change in heat sensitivity, fixing the climate at period c. We convert the change in log-yield to a per-

centage gain in yields via
(

exp{β∗
(c,a)(si )×GDDr0

◦C+,i c }−1
)×100%. Both these measures are summarized

in Table 4, where we also include their counterparts from a location-invariant S0T1 specification computed

analogously but using geographically constant parameter estimates.

On acreage-weighted average, by 2015–2019 overheat sensitivity of corn and soybean yields decreased

significantly—by 73% and 49%, respectively (see the column ‘Weighted Mean’ in Table 4)—indicating that

these crops have become, generally, more heat-resilient due to adaptation. For cotton, as already discussed

earlier, adaptation to high temperatures was not as widely prevalent but it did occur in about a quarter of

producing locations (see the bottom row in Figure 3). This is particularly notable because the location-

invariant model estimates the decline in heat sensitivity of cotton yields at a staggering 237%. In terms
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Figure 4. Spatial Distributions of Percentage Changes in Overheat Sensitivity and the Associated Crop Yield
Gains due to Local Adaptation or Maladaptation
Notes: Maps in the top row plot point estimates of the percentage change in the sensitivity of crop yields to overheat GDD between periods a

and c. The percentage change is calculated via sign
{
β∗(c,a)(si )

}× |β∗(c,a)(si )/βa (si )| × 100%. Maps in the bottom row plot point estimates of the

associated percentage changes in crop yield due to adaptation or maladaptation to overheat GDD. We calculate it via
(

exp{β∗(c,a)(si )GDDr ; ◦C+,i c }−
1
)×100%. For all maps, calculations are based on estimates from the spatiotemporally varying model S1T1. Regardless of their magnitude or sign, all

statistically insignificant (at the 5% level) estimates are shown using the same shade of gray. Green colors indicate statistically significant adaptation,

red colors indicate statistically significant maladaptation, and gray color indicates no significant adaptation or maladaptation.

of the yield change due to overheat adaptation, average gains for corn and soybeans were significant and

respectively estimated at 17.7% and 10.5%, relative to their 1958–1962 mean levels. Notably, these average

yield gains from our model are only about half of their counterparts obtained from a spatially invariant

model S0T1 used by Yu et al. (2021).

To explore geographic heterogeneity in the degree of adaptation, consider Figure 4 that plots county-

specific estimates of changes in overheat sensitivity (see maps in the top row) and crop yield gains due

to local adaptation to overheat (see maps in the bottom row), with statistically insignificant point esti-

mates—regardless of their sign or magnitude—colored using the same shade of gray. Expectedly, the pattern

of spatial clustering (as well as the positive/negative delineation) here is similar to that observed for “raw”

estimates of local adaptation in Figure 3. For corn, the figure shows that areas with the highest percentage

changes in sensitivity to overheat GDD may not necessarily have had the largest yield gains. More specifi-
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cally, the highest percentage changes tend to have occurred in northern areas whereas the largest yield gains

tended to occur in southern areas of the Corn Belt. At least in part, this is because the northern part of the

studied region experienced the largest changes in the magnitude of overheat sensitivity (see maps in Figure

3) whereas the southern part of the studied region had the highest values of overheat GDD (see maps in Fig-

ure 1). We observe that some areas in a few Midwestern states (e.g., Kansas, Missouri, Nebraska, and Iowa)

and Southern states (e.g., Geogia, South Carolina, and Alabama) show the largest yield gains in corn due

to adaptation, whereas producers in western Tennessee and northern Mississippi as well as the Northeast

region including Pennsylvania and Maryland suffer from a decrease in corn yields due to maladaptation.

In the case of soybeans, consistent with our earlier findings, maladaptation to overheat temperatures is

practically nonexistent. Significant adaptation occurred in the western part of the Midwest as well as in

Mississippi and Arkansas. Lastly, among cotton farmers, statistically significant adaption appears to have

been limited mainly to counties in Arkansas, Louisiana, and Mississippi.

Robustness Analysis. We examine whether our main findings continue to hold when we long-difference

over different periods with different gap widths in Appendix E. The results are qualitatively comparable.

4.3 Explaining Spatial Variation in Adaptation

We explore factors and mechanisms that may explain the cross-location variation in adaptation to overheat

temperatures. First, we examine the relationship between adaptation and local overheat temperatures. In

top-row plots in Figure 5, we study how the change in overheat sensitivity of crop yields, which substantially

varies across locations, relates to local intensity of overheating temperatures. For all three crops, we observe

that counties experiencing fewer days of excessively high temperatures in period c are the ones that have

adapted the most since the earlier period a (relative to locations with much higher mean overheat GDD).

Although this finding might at first seem quite counter-intuitive, it is not. Recall that plotted β∗
(c,a)(si ) slopes

measure a change in local overheat sensitivity over time since period a. Then, given a naturally diminishing

capacity to adapt to high temperatures and the presumed optimality of farmer adaptation behavior, the

decline in overheat sensitivity with the intensity of excessive temperatures is consistent with a narrative in

which farmers from locations that experienced more overheat in the earlier period a had already adapted

more. Consequently, given rising temperatures, locations that were spared from overheat before had the

most adaptation to do. As such, adaptive methods become less effective at mitigating marginal damages

when overheat GDD is high and increases. This is consistent with arguments in Butler and Huybers (2013)
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Figure 5. Variation of Local Overheat GDD Adaptation (top row) and Local Overheat GDD Sensitivity (bot-
tom row) across Overheat GDD
Notes: The top-row graphs plot point estimates of the change in responsiveness of crop yields to overheat GDD between periods a and c (the

β∗(c,a)(si )×100 parameter) from the spatiotemporally varying model S1T1 against the mean overheat GDD in each county in period c (i.e., 2015–

2019). The bottom-row graphs plot point estimates of the responsiveness of crop yields to overheat GDD in period a (the βa (si )×100 parameter)

from the spatiotemporally varying model S1T1 against the mean overheat GDD in each county in period a (i.e., 1958–1962). Fitted local-linear

smoothing mean regressions (solid line) with the corresponding 95% confidence intervals (dashed lines) are superimposed on the scatterplots. To

minimize influence of outliers, counties in the bottom or top 5% of the distribution of mean overheat GDD are omitted.

and Keane and Neal (2020) and is also corroborated by our data. Namely, three graphs in the bottom row of

Figure 5 plot local overheat sensitivity in period a and show that crop yields in locations with high overheat

GDD already had a significantly smaller sensitivity to begin with, presumably because farmers there had

already been taking adaptive measures, an argument that can be traced back to Mendelsohn et al. (1994).

Besides overheat temperatures, other factors may also help explain spatial variation in farmers’ adapta-

tion, such farming policies, technologies, practices, and natural endowments. In Appendix F, we consider

four major aspects that may substantially influence farming practices and outcomes in U.S. agriculture:

adoption of genetically engineered (GE) crops, cover crops, crop insurance, and land quality. We find that

GE crops, crop insurance, and even land quality, generally, are not predictive of agricultural adaptation,
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whereas a cross-county variation in cover crop adoption and overheat temperatures does help explain spa-

tial differences in agricultural adaptation. Exploring and attempting to causally identify structural links

between these processes should be a promising avenue for future research.

5 Projection of Future Crop Yield Changes

In this section, we project expected damages of climate change on U.S. crop yields between the end of

our sample period and the mid-21st century. For these projections, we use predicted future weather data

from two global climate models—HadGEM2-ES365 and NorESM1-M—under two global warming scenar-

ios: RCP4.5 (mild warming) and RCP8.5 (severe warming). We conduct this projection analysis based on

regression results from our flexible S1T1 model and compare these projections to those based on two ex-

isting alternatives: Yu et al.’s (2021) S0T1 and Burke and Emerick’s (2016) S0T0 specifications. Contrasting

projections across models, we can assess practical implications of explicitly allowing for spatiotemporally

inhomogeneous historical effects of climate on agricultural production, as opposed to focusing on “average

effects,” when measuring expected damages of a warming climate in the future.

We use 2015–2019 as the base period (the later period c used in the long-differences estimation for our

main results) and 2048–2052 as the future period (labeled d) for projections. To compute the future climate

change, we difference five-year averages of climate variables between these two periods to obtain ∆zi (d ,c) =
zi d −zi c . Then, to avoid excessive extrapolation and making additional assumptions about U.S. agriculture,

we consider a “business as usual” scenario whereby no technological adaptation (i.e.,β∗
(d ,c) = 0), no climate-

neutral technical change (i.e.,α∗
(d ,c) = 0), and no relocation of crop production are to occur between the end

of our sample period and 2048–2052. To do so, we fix coefficients in the yield-climate relationship at their

2015–2019 values. As such, a projected change in log-yield due to a warming climate in each location si

in the future is given by ∆ŷi (d ,c) = β̂c (si )′∆zi (d ,c), where β̂c (si ) measures climate sensitivity of crop yields

in observable (historical) period c.16 This predicted log-yield change is converted to the percentage yield

change from the present period c to the future period d using
(

exp{∆ŷi (d ,c)}−1
)×100%.

Since the increasing frequency and magnitude of overheat is a key feature of the expected climate change

and also a major factor affecting crop yields (Schlenker and Roberts, 2009; Burke and Emerick, 2016), we first

examine the impact of future overheat GDD changes on yields. The left panel of Table 5 reports projections

16We recover β̂c (si ) using functional parameters in (5) as β̂c (si ) = β̂a (si )+ β̂∗(c,a)(si ).
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Table 5. Projections of the Impact of Future Rising Overheat Temperature on Crop Yields

Spatiotemporally Varying Spatially Invariant
Model S1T1 Model S0T1

Weighted Mean 1st Qu. Median 3rd Qu. Weighted Mean

Corn

Had RCP 4.5
–8.65 –39.27 –22.22 1.94 –41.88

(–19.32, 15.75) (–48.95, –18.59) (–39.05, 0.29) (–19.89, 19.40) (–60.97, –17.03)

Had RCP 8.5
–11.39 –49.81 –27.79 2.32 –51.41

(–25.24, 22.41) (–61.13, –22.94) (–47.05, –2.19) (–24.97, 25.01) (–71.39, –21.98)

Nor RCP 4.5
–4.77 –16.58 –8.42 0.65 –17.45

(–8.54, 2.96) (–20.8, –7.43) (–15.98, 0.17) (–6.14, 5.88) (–28.28, –6.38)

Nor RCP 8.5
–11.07 –30.30 –15.79 1.30 –36.75

(–17.98, 6.15) (–38.67, –12.6) (–29.33, 0.28) (–12.89, 12.88) (–54.81, –14.58)

Soybeans

Had RCP 4.5
–47.13 –55.86 –49.41 –40.77 –41.84

(–63.72, –30.21) (–69.75, –37.08) (–64.39, –29.95) (–57.89, –20.30) (–59.44, –14.73)

Had RCP 8.5
–57.87 –68.68 –60.68 –51.08 –53.49

(–74.35, –38.21) (–82.82, –48.46) (–75.52, –38.23) (–68.4, –29.14) (–72.04, –20.15)

Nor RCP 4.5
–17.24 –20.83 –17.7 –14.9 –17.4

(–25.2, –8.03) (–28.24, –9.85) (–25.92, –8.41) (–23.17, –8.44) (–27.26, –5.46)

Nor RCP 8.5
–38.55 –46.39 –39.79 –31.89 –37.53

(–53.27, –20.27) (–58.7, –25.96) (–53.74, –21.45) (–48.41, –17.19) (–54.31, –12.91)

Cotton

Had RCP 4.5
–22.25 –55.17 –25.89 25.23 46.54

(–58.48, 6.96) (–69.14, –45.88) (–58.5, 8.49) (–50.02, 134.63) (–41.07, 270.9)

Had RCP 8.5
–27.02 –63.27 –38.18 41.54 67.65

(–70.72, 17.58) (–83.74, –50.39) (–75.95, 9.03) (–62.96, 272.68) (–51.09, 488.51)

Nor RCP 4.5
–10.87 –30.20 –9.39 6.74 15.94

(–28.99, –0.46) (–41.33, –23.22) (–25.8, 3.63) (–20.08, 29.05) (–18.51, 66.10)

Nor RCP 8.5
–12.33 –37.68 –16.79 16.60 27.09

(–44.61, 8.94) (–52.24, –29.88) (–41.83, 5.66) (–36.18, 80.32) (–28.23, 127.56)

Notes: The left panel summarizes point estimates of the projected change (in %) in crop yields due to changes in overheat GDD (i.e.,
GDDr0

◦C+) based on the spatiotemporally varying model S1T1, using the predicted future weather data from two global climate mod-
els, HadGEM2-ES365 and NorESM1-M, under two warming scenarios: RCP4.5 (mild warming) and RCP8.5 (severe warming). The right
panel reports the counterpart estimates based on the spatially invariant but time-varying model S0T1. Projections of the change in yields
from the present period c (2015–2019) to the future period d (2048–2052) are computed as

(
exp{∆ŷi (d ,c)|GDDr0

◦C+ }− 1
)× 100%, where

∆ŷi (d ,c)|GDDr0
◦C+ = (

β̂c (si )for GDDr0
◦C+

)×∆(GDDr0
◦C+)i (d ,c). Weighted mean is calculated using crop acreages in 2017. Two-sided

95% bias-corrected confidence intervals clustered at the climate division level are in parentheses.

based on the S1T1 model which flexibly accounts for spatial heterogeneity, while the right panel reports

counterpart projections based on its spatially invariant alternative S0T1. Aside from the obvious finding that

projected effect sizes are generally larger under a more severe warming scenario, we can make a few other

notable observations here. First, our projections of future yield changes due to global warming are not al-

ways statistically different from zero, even under severe scenarios. This is especially the case for production

of corn and cotton. Second, the most negative and significant impacts on yields in the future are predicted

for soybeans. In contrast, in many cotton-producing counties, we actually project yield gains, albeit not

all such county-level projections are statistically significant. Third, comparing the results across the two
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models, we see that the weighted mean projections from the S1T1 model are generally smaller in magnitude

than those produced by the S0T1 specification à la Yu et al. (2021). This suggests that conventional space-

invariant approaches, which confine local heterogeneity strictly to intercept-shifting fixed effects under the

assumption that any potential slope heterogeneity is orthogonal to climate (see the discussion in Section 2),

may be overestimating future damages of rising overheat temperatures.

We visualize the results in Table 5 in Figure 6 that maps local projections from our S1T1 model for each

crop, with statistically insignificant predictions—regardless of their sign or magnitude—colored using the

same shade of gray. Unsurprisingly, the figure reveals that the yield impact of future overheat changes is not

spatially homogeneous. In the case of corn production, regions in the lower Midwest (Nebraska, Kansas,

southern Iowa, northern Missouri and parts of South Dakota) and the South (Tennessee, Georgia, South

Carolina, northern Alabama) are projected to experience large declines in yields by 2050. Whereas, parts

of the Corn Belt including some areas in Indiana, Ohio, Illinois, as well as parts of North Dakota are, in

contrast, expected to benefit from significant gains in crop yields. Given this spatial bifurcation in future

climate change effects on corn productivity with the offset potential in the net, it is unsurprising that we find

statistically insignificant (effectively zero) projections on average (see the first column in Table 5). There is

evidence of similarly bifurcated effects on cotton yields too, with Georgia and North Carolina predicted to

experience yield losses, while the producers in more western regions (Arkansas, Oklahoma, and Texas) are to

see their cotton yields increase due to changes in overheat GDD. Consistent with Table 5, when statistically

different from zero, local county-level projections for soybean yields are mostly negative, which is why the

average projection for the U.S. is also significantly negative. The largest decline is to occur in the area of

Illinois, Indiana, Ohio as well as Kansas. Minnesota is essentially the only state for which we project a mild

yield increase in soybean production. The geographical pattern in the yield impact seen in Figure 6 is largely

consistent with that for historical overheat adaptation seen in first-row maps in Figure 4. That is, areas with

the largest projected future yield decreases strongly overlaps with areas that historically experienced small

or statistically insignificant adaptation to overheat.

Total projections of future yield changes inclusive of the effects of normal temperatures and precipita-

tion (in addition to overheat) are, expectedly, quite similar to projections using only overheat GDD change

(see Table G.3 and Figure G.2 in Appendix G), corroborating earlier studies such as Schlenker and Roberts

(2009) and Burke and Emerick (2016) documenting that overheat is the major factor influencing crop yields

30



Corn Soybeans Cotton

Figure 6. Spatial Distributions of Projections of the Future Rising Overheat Temperature Impact on Crop
Yields
Notes: Maps plot point estimates of the projected change (in %) in crop yields due to changes in overheat GDD (i.e., GDDr0

◦C+) based on the

spatiotemporally varying model S1T1, using the predicted future weather data from two global climate models, HadGEM2-ES365 and NorESM1-

M, under two warming scenarios: RCP4.5 (mild warming) and RCP8.5 (severe warming). Projections of the change in yields from the present

period c (2015–2019) to the future period d (2048–2052) are computed as
(

exp{∆ŷi (d ,c)|GDDr0
◦C+ } − 1

) × 100%, where ∆ŷi (d ,c)|GDDr0
◦C+ =(

β̂c (si )for GDDr0
◦C+

)×∆(GDDr0
◦C+)i (d ,c). Regardless of their magnitude or sign, all statistically insignificant projections (at the 5% level) are

shown using the same shade of gray.

31



Table 6. Total Projections of the Future Climate Change Impact on Crop Yields

Model Corn Soybeans Cotton

Had RCP 4.5

S1T1 (preferred model) –11.47 –38.13 19.06
(–24.09, 12.61) (–55.80, –19.85) (–23.59, 57.89)

S0T1 (à la Yu et al. (2021)) –32.08 –36.18 77.24
(–49.64, –8.46) (–55.26, –12.34) (–11.27, 269.71)

S0T0 (à la Burke and Emerick’s (2016)) –88.29 –88.67 –14.75
(–94.35, –74.52) (–95.06, –73.08) (–76.73, 434.1)

Had RCP 8.5

S1T1 (preferred model) –12.64 –47.85 16.45
(–27.50, 16.68) (–66.50, –25.68) (–42.45, 77.69)

S0T1 (à la Yu et al. (2021)) –40.98 –47.26 107.97
(–60.67, –11.88) (–68.43, –17.01) (–25.85, 483.21)

S0T0 (à la Burke and Emerick’s (2016)) –95.13 –96.17 –54.70
(–98.13, –85.99) (–98.82, –86.88) (–91.94, 613.94)

Nor RCP 4.5

S1T1 (preferred model) –7.29 –11.75 4.66
(–12.95, 1.47) (–19.63, –3.50) (–10.98, 13.96)

S0T1 (à la Yu et al. (2021)) –11.04 –13.57 25.29
(–19.78, –1.11) (–24.40, –3.45) (–3.30, 62.93)

S0T0 (à la Burke and Emerick’s (2016)) –28.29 –37.62 –4.44
(–44.97, –5.62) (–53.67, –17.51) (–39.24, 83.28)

Nor RCP 8.5

S1T1 (preferred model) –11.61 –28.58 23.88
(–20.50, 6.37) (–43.90, –11.35) (–5.75, 45.61)

S0T1 (à la Yu et al. (2021)) –26.09 –30.52 49.02
(–42.38, –4.93) (–49.81, –8.57) (–3.14, 129.45)

S0T0 (à la Burke and Emerick’s (2016)) –68.30 –76.33 21.54
(–83.12, –38.20) (–88.68, –50.07) (–46.56, 374.35)

Notes: The table reports weighted averages (in %) of the projected change in crop yields due to climate change based on models S1T1,
S0T1 and S0T0. We use predicted future weather data from two global climate models, HadGEM2-ES365 and NorESM1-M, under two
warming scenarios: RCP4.5 (mild warming) and RCP8.5 (severe warming). Projections of the change in yields from the present period c
(2015–2019) to the future period d (2048–2052) are computed as

(
exp{∆ŷi (d ,c)}−1

)×100%, where∆ŷi (d ,c) = β̂c (si )∆zi (d ,c). Weighted mean
is calculated using crop acreages in 2017. Two-sided 95% bias-corrected confidence intervals clustered at the climate division level are in
parentheses.

in a warming climate.17

To draw conclusions about a “representative” county that would correspond to the object of analysis

of conventional spatially invariant methodologies that argue to focus on average causal effects of climate,

in Table 6 we aggregate local county-specific projections, weighting them using crop acreage in 2017 (the

midpoint of the “present” 2015–2019 period). For comparison, we include total projections from our pre-

ferred model S1T1 as well as the S0T1 and S0T0 alternatives. Average yield loss projections for corn based

on our spatiotemporally varying methodology are smaller than those obtained using these two alternative

models.18 Our model projects total yield losses for corn ranging from –7% to –13% and, notably, these losses

are statistically insignificant even under severe global warming scenarios. As discussed above, this statisti-

17Note that Table G.3 in Appendix G shows that the future climate change by 2050 is predicted to result in a statistically significant
median decrease in corn yields, although the weighted average decrease is still insignificant.

18Overall, a time-invariant S0T0 model tends to predict much larger yield losses than time-varying S0T1 and S1T1 models. This
is because, as first documented by Yu et al. (2021) and corroborated by our findings, time-varying models allow for historical
adaptation which feeds into the computation of future projections through estimates of the “present” yield-climate relationship.
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cally insignificant result is largely due to bifurcated effects of a changing climate on corn yields, with some

regions experiencing yield losses and others gains (also see Figures 6 and G.2).

For soybean yields, our S1T1 model projects the smallest yield losses among three specifications under

both HadGEM2-ES365 scenarios. But under NorESM1-M scenarios, it projects slightly larger yield losses

than those by S0T1, although these projections are still less than half of what the time-invariant S0T0 alter-

native predicts (see the “Soybeans” column in Table 6). As projected by our model, the future soybean yield

reduction expected in a typical county ranges between statistically significant 12% and 48%. For cotton,

two time-varying models (S0T1 and S1T1) project yield gains while the time-invariant model (S0T0) gener-

ally project yield losses. When comparing projections from time-varying models, we find that a spatially-

invariant S0T1 model tends to overestimate future cotton yield changes, sometimes projecting unrealisti-

cally large (over 100%) yield gains. Although, regardless of whether non-neutral spatial heterogeneity is

accounted for or not, these weighted average projections are statistically insignificant.

Overall, total projections of future climate change impacts on corn yields from our spatiotemporally

varying model are much smaller than those reported in earlier studies. For instance, Yu et al. (2021), em-

ploying a S0T1-like approach, document that climate change would lead to a 39%–68% yield loss for corn

and a 86%–92% yield loss for soybeans by 2050 relative to yields in 2013–2017. Burke and Emerick (2016),

using a S0T0-like model, report 7% to 64% of corn yield reduction by 2050. Although our projections are not

perfectly comparable to these studies due to differences in data and future climate change scenarios used

in analyses, most of these differences are likely attributable to our reliance on more granular measurements

of local heat sensitivity of crop yields and their adaptation thereto when projecting future losses, instead

of using globally “average” coefficients. Because areas with high acreage and high yield tend to adapt more

as shown in our results, a weighted aggregate of local yield loss projections that accounts for this spatial

heterogeneity provides an expectedly smaller—an arguably, more accurate—average projection. This find-

ing of significantly smaller yield damages underscores the importance of considering non-neutral spatial

heterogeneity in studying the yield-climate relationship.

6 Concluding Remarks

Although many prior studies have examined whether, or to what extent, adaptation to climate change oc-

curs, most exclusively focus on identification of the average adaptation, pooling over farmers located across
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different geographic locations. Such a global estimand sheds little light on local adaptation experiences

of farmers that exhibit substantial heterogeneity. Understanding this (naturally occurring) spatial hetero-

geneity is important for producing more granular measurements of historical adaptation and, by extension,

more accurate projections of expected yield losses associated with a warming climate, particularly in large

and climatically diverse countries. This paper extends the literature by providing novel evidence of explicitly

spatial heterogeneity in heat sensitivity of U.S. agriculture and its adaptation to climate change. We accom-

plish this by generalizing a popular long-differences methodology to explicitly incorporate geographic in-

formation of crop-producing counties in a flexible semiparametric fashion, which we implement using local

kernel averaging. This lets us control for spatially clustered, local heterogeneity that may be non-neutral.

Based on data for the rain-fed region of the United States in 1958–2019, we show significant cross-

location heterogeneity in climate sensitivity of crop yields and their adaptation to climate change. For

corn, soybeans, and cotton, 54%, 75%, and only 23% of producing counties, respectively, are estimated

to have experienced a statistically significant decrease in overheat sensitivity of yields, thereby adapting to

a warming climate. The remaining counties experienced either statistically significant increases (i.e., mal-

adaptation) or no changes in overheat sensitivity (i.e., no adaptation). Geographically, corn and soybean

adaptation mainly occurred in the Northern Great Plains and Upper Midwest; for cotton, it mainly occurred

in Arkansas, Louisiana, and Mississippi. On acreage-weighted average, our model estimates that overheat

sensitivity of corn, soybeans, and cotton yields decreased by 73%, 49%, and 51%, respectively, although for

cotton the decrease is statistically insignificant.

Importantly, we find that measurements of (mal)adaptation produced by traditional spatially invariant

specifications tend to be larger, suggesting the potential to overestimate (mal)adaptation when abstracting

away from naturally occurring non-neutral spatial heterogeneity. Relatedly, in most cases, projections of

future climate change impacts on crop yields by 2050 based on our spatially flexible model are the smallest

compared to popular alternative specifications, and are statistically insignificant for corn and cotton. This

suggests that existing projections of yield loss due to climate change, and thereby the expected social cost of

carbon, are likely overestimated. For example, Rennert et al. (2022) estimate the social cost of carbon to be

$185 per ton of CO2, among which $84 (about 45%) is attributed to an agricultural impact of climate change.

Our findings could therefore have important implications for reassessing social costs of carbon.
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