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Methodology

• Cellulosic feedstocks (e.g., corn stover and perennial crops) offer a promising source for scaling up 

sustainable aviation fuel (SAF) production with less conflict with food crops compared to using food 

crops for biofuels because they are high yielding and can be grown productively on low quality land.

• The breakeven price and carbon intensity of cellulosic feedstock-to-SAF pathways are likely to differ 

across feedstocks and across spatial locations due to differences in feedstock attributes, productivity, 

opportunity costs of land for feedstock production, soil carbon effects and feedstock composition.

• The choice of preferred feedstock at each location will depend on various features of these feedstocks 

and their interaction with incentives provided by policy.

• This study integrates feedstock to fuel supply chain economics and life-cycle carbon accounting 

using the same system boundary to identify the feedstocks that will be preferred for SAF production 

by location according to four criteria: 

➢ biofuel production per unit land; 

➢ GHG intensity per unit biofuel;

➢ breakeven price per unit biofuel; or 

➢ cost of abatement per ton of GHG abated relative to conventional jet fuel.

• We develop an assessment framework that integrates feedstock production economics and 

biogeochemical effects with techno-economic analysis (TEA) and life-cycle analysis (LCA) 

to estimate 

➢the spatially varying yields, GHG intensity, breakeven prices, and GHG abatement costs of 

Alcohol-to-Jet (ATJ) derived SAFs from four feedstocks (corn stover, miscanthus, 

switchgrass, and energy sorghum) at the 4 km resolution of the US. rainfed region.

• Spatial heterogeneity in feedstock production and soil carbon effects are simulated using a 

biogeochemical model DayCent (Daily CENTURY)1

• Biorefinery processes are simulated using a refinery scale model BioSTEAM (Biorefinery 

Simulation and Techno-Economic Analysis Modules)2
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• While miscanthus and energy sorghum-based SAF dominate much of the 

rainfed region in terms of highest biomass yields per unit land, corn stover 

leads to the lowest breakeven price of SAF per gallon and switchgrass-

based SAF is dominant for its lowest carbon intensity. 

• The cost of abating GHG emissions with SAF ranges from $181 Mg-1 CO2e 

to more than $444 Mg-1 CO2e and is lowest with miscanthus in the 

Midwest, switchgrass in the south, and energy sorghum in a relatively small 

region in the Great Plains.

• While corn stover-based SAF has the lowest breakeven price, it has the 

highest cost of abatement due to its relatively high GHG intensity.

Objective

Figure 2. Spatial distribution of feedstock-specific annualized GHG 

abatement cost of SAF

Figure 3. Optimal choice of feedstock for SAF production by location 

based on objective

Figure 1. The system boundary for feedstock-to-SAF pathways
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