|

7/ “““\\\ A ECO" SEARCH

% // RESEARCH IN AGRICULTURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.


https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

Water Quality and the Conservation Reserve Program: Empirical

Evidence from the Mississippi River Basin*

R. Aaron Hrozencik! Nicole Karwowskit Andrew Rosenberg$

Marin Skidmore¥

May 13, 2024

Selected Paper prepared for presentation at the 2024 Agricultural & Applied Economics Association An-
nual Meeting, New Orleans, LA; July 28-30, 2024.

Keywords: Conservation Reserve Program, Water Quality, Agricultural Policy

JEL Codes: Q10, Q25, Q28

*The findings and conclusions in this manuscript are those of the authors and should not be construed to represent any
official USDA or U.S. government determination or policy.

TUSDA-Economic Research Service, Resource and Rural Economics Division, aaron.hrozencik@usda.gov

fMontana State University, Department of Agricultural Economics, nicole.karwowski@montana.edu

SUSDA-Economic Research Service, Resource and Rural Economics Division, andrew.rosenberg@usda.gov

9University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics, marins@illinois.edu



1 Introduction

Nearly 1.2 billion acres of the 2.3 billion acres in the United States are dedicated to agriculture (Bigelow

land Borchers||2017)). In 2023, cropland, pasture, rangeland, and grazed forestland contributed over $1.5

trillion to the nation’s gross domestic product (Kassel et al|[2024). The extensive agricultural activity

and its intensive impact on the land have made agricultural runoff the primary cause of water quality

impairment in our nation’s surface waters. [Ribaudo et al| (2008)) estimate that non-point contributes

over 90% of the nitrogen in two-thirds of impaired watersheds. The major agricultural stressors to water
quality are soil erosion, nutrient runoff, bacteria from livestock manure, and pesticides. Each year,

around 500,000 tons of pesticides, 12 million tons of nitrogen, and 4 million tons of fertilizer are used on

crops across the United States (Environmental Protection Agency (EPA)|[2023)). As a result, over half of

the country’s surface waters (more than 700,000 miles of waterways), fail to meet quality standards for
swimming, recreation, aquatic life, fish consumption, or as drinking water sources.

Excess nutrients lead to an overabundance of algae and low levels of oxygen in waterways. This
eutrophication process make the surface waters unsustainable for aquatic life and can lead to "dead

zones' with degraded marine populations and habitat loss (NOAA|[2024). This has costly economic

and social welfare implications for communities along the water (Rabotyagov et al|2014). Hypoxic

conditions have been tied to losses in productivity, particularly for fisheries (Dodds et al.[2009; Huang|

let al.|[2012} [Mistiaen, Strand and Lipton|[2003)), lost recreation opportunities (Lipton and Hicks [2003;

[Massey, Newbold and Gentner| |2006), lower housing prices (Wolf, Gopalakrishnan and Klaiber|[2022;

[Wolf, Klaiber and Gopalakrishnan|[2022; [Zhang, Phaneuf and Schaeffer||2022; Mamun et al|[2023), and

impaired human health outcomes from foodborne and respiratory illnesses (Grattan, Holobaugh and|

[Morris Jr{[2016} [Kouakou and Poder||2019)) and blue-baby syndrome (Knobeloch et al.|2000).

There has been significant abatement investment for point-source pollutants. Since the Clean Water
Act, surface water quality has generally experienced improvements: fecal coliforms, total suspended solids,

and the share of waters unsafe for fishing have experienced large declines in the past half-century

land Shapiro||2019alb)). However, not all forms of surface water pollution are decreasing. Agricultural

activities, which are mostly outside the scope of Clean Water Act regulations, release large amounts of

nutrients such as nitrogen and phosphorus into the environment. As a result, trends in nutrient pollution

remain relatively stable, and in some cases, certain pollutants are on the rise (Shapiro|2022; Rossi et al.|

2023)). Abatement efforts for non-point solutions have been limited and largely voluntary.
Perhaps the largest effort to tackle nonpoint source pollution in the U.S. is the Conservation Reserve
Program (CRP). With an annual budget of $1.8 billion, the CRP is one of the largest voluntary private-

lands conservation program in the world in terms of scale and spending. As of 2023, there were nearly 23



million acres enrolled in the conservation program ( 1% of land in the US). The CRP was started in 1985
to remove environmentally sensitive land from production and protect topsoil from erosion. Producers
receive an annual payment to retire their land from cropping and establish resource-conserving plant
species (e.g. cover crops) for a duration of 10-15 years. The CRP environmental benefits include wildlife
habitat provision, air quality benefits, carbon sequestration, soil health, and improved surface/ground
water quality. CRP improves water quality in two ways: 1) by decreasing nutrient runoff through
land retirement, and 2) by increasing vegetation (i.e. grasslands, wetlands, riparian buffers) to intercept
nutrients before they enter waterways. Despite the scope and budget of CRP, relatively little research has
investigated the environmental impacts of the program. Accurately characterizing how incentive programs
like CRP catalyze land use change and subsequently improve water quality is critical given policymakers’
continued reliance on such programs to mitigate agricultural non-point source water pollution.

Here we address this gap by assessing the water quality impacts of CRP in the Mississippi River Basin
(MRB). We estimate how CRP acreage impacts water quality outcomes in the MRB from 2000-2018 at the
subwatershed (HUC-12) level. We leverage CRP contract data and recently harmonized nutrient readings
(Krasovich et al.[[2022)) to better understand how land conservation impacts surface water quality. We
start by using a panel model with HUC-8, year, and month fixed effects to understand the relationship
between the share of land in CRP and water nutrient outcomes. In a subsample of counties that ever
receive a CRP contract, we find that increasing the share of agricultural land in CRP is associated with
decreased phosphorous and increased ammonia levels. These mixed results highlight the downsides of
our panel approach: CRP is more likely to occur in degraded watersheds with already low water quality
and the decision to enroll in CRP is endogenous to individual producers and likely correlated with other
agricultural practices that aim to improve water quality. Moreover, the recent additionality literature
suggests that many producers would be in relatively non-intensive land uses without program payments
(Rosenberg and Pratt|2024)).

To find a causal estimate we use an instrumental variables approach. We exploit variation in the
national CRP acreage cap as well as changes in local commodity prices to explore random shifts in CRP
enrollment. With this approach, we find that increases in CRP land share leads to significant decreases
in phosphorus, nitrogen, and ammonia at the subwatershed level. We estimate that a 1% increase in
CRP agricultural land share reduces phosphorous levels by -0.03 mg/L (15%), total nitrogen levels by
-0.28 mg/L (13%), and ammonia by -0.01 mg/L (5%). These results highlight the importance of CRP in
determining water quality outcomes while making significant contributions to the broader literature.

First, we contribute to the broader understanding of how the CRP impacts water quality. This strand

of the literature relies on process-based models that leverage physical mechanisms governing nutrient



transport to simulate how changes in land cover translate into changes in water quality (FAPRI||2007

[Schilling and Spooner|2006; [Schilling et al.[[2011; Melland, Fenton and Jordan|[2018).The USDA-FSA’s

reporting on the environmental benefits of CRP still relies on a process-based model developed by the
Food and Agricultural Policy Research Institute (FAPRI) [FAPRI| (2007). These models allow for high

levels of spatial specificity but are highly data intensive and rely crucially on assumptions made about

the land use impacts of CRP (Schwarz et al.[2006; Broussard and Turner|2009). We employ a reduced-

form, data-driven approach to estimate program impacts based on variation in CRP enrollment within a
given watershed over time, avoiding the need to make assumptions regarding land use in counterfactual
without-CRP scenarios. Furthermore, empirical approaches allow for the estimation of program impacts
based on the actual land use of CRP enrolled land (e.g., riparian buffers, shrubs, grasses) rather than
assuming all CRP enrolled land utilize only a few differing cover types.

Second, we explore the net costs and benefits of the CRP in relation to water quality. Some of the

earliest studies modeled the economic benefits of CRP at a regional level using a non-market valuation

approach (Ribaudo||1989alb; [Feather and Hellerstein| 1999; Fleming [2004)). In a similar vein,

estimate the soil erosion benefits of the CRP and estimate that resulting benefits total $1.32
billion per year, yet find that the program fails a cost benefit analysis. Building on this work,
(2019) uses upstream nutrient concentrations as an instrument for erosion as well as more recent water-
based recreation benefits to find that CRP benefits may outweigh the costs by 2 to 1. Although early
studies suggested that the CRP might not be cost-effective, access to higher quality data plus improved
methodology has allowed us to better identify the ecosystem services of land conservation, indicating that
CRP is an efficient policy instrument.

Third, we contribute to the literature on the relationship between agricultural practices and ambient

water quality. One segment of the literature measures the extent that crop and livestock production

impair water quality. (Paudel and Crago|[2021]) finds that increasing cropland fertilizer use by 10% leads

to a 1% increase in nitrogen and phosphorus levels for local watersheds. (Raff and Meyer|[2022)) estimate

that an additional CAFO operation at the HUCS has a similar sized effect on phosphorous and ammonia
levels (1.7% and 2.7% increases respectively). The other half of the literature examines the effectiveness
of different policy instruments to reverse elevated nutrient levels. There is evidence that farm-level

practices such as nutrient management plans, cover crop adoption, and wetland restoration are associated

with reductions in ammonia concentrations (Skidmore, Andarge and Foltz|2023; [Hsieh and Gramig||2023;

[Karwowski and Skidmore[2023). [Liu, Wang and Zhang] (2023)) find that voluntary conservation on working

agricultural lands have mixed effects on downstream nutrient concentrations: Environmenal Quality

Incentive Program (EQIP) payments are associated with reduced nitrogen concentrations but increased



phosphorous levels. Our assessment of the water quality impacts of CRP, constitutes an important
advancement in the conservation program and water quality literature.
The paper continues as follows: section [2] provides background, sections[3|and [4] describes our methods

and data, section [5] presents the results, and section [6] concludes.

2 Background

Established by the Food Security Act of 1985, the Conservation Reserve Program (CRP) is the USDA’s
primary program for retiring environmentally sensitive land from crop and pastureland production. Var-
ious land retirement programs had existed in the U.S. before CRP, going back to the 1930s, but were typ-
ically focused on short-run commodity production control, rather than environmental protection (Heller-
steinl|2015; |[Ferris and Siikamékil[2009). The early CRP was primarily designed to reduce soil erosion and
surplus commodity production, though water quality and wildlife habitat were secondary environmental
goals (Barbarika|2021). Through the years the emphasis has broadened, with more prominent focus on
wildlife protection, as well as water and air quality (Hellerstein|[2015)).

In its current form, the CRP is comprised of three main components. The General Signup subcompo-
nent is the oldest of the three and is characterized by a competitive auction mechanism. Specifically, the
General Signup is a reverse auction wherein offers are ranked according to the Environmental Benefits
Index (EBI), and those offers above a specific EBI threshold are accepted in a given Signup. Fields being
offered in General Signups must either have an erodibility above a certain threshold or must fall within
a designated Conservation Priority Area (CPA); and must have been cropped for a specified number of
years prior to enrolling or must have been enrolled in CRP during that same time span. EBI scores
associated with offers to General Signup depend on the inherent characteristics of the offered parcels, the
land cover to be implemented if accepted into the program, and a rental rate proposed by the landowner
making the offer. Rental rates are capped at a level depending on the average dryland cash rental rate
in the county of the offered parcel, as well as a field-specific adjustment for soil productivity (Rosenberg
and Pratt|2024]).

The Continuous Signup was introduced in 1996 (Barbarika,|2021) and is currently the largest part
of the CRP in budgetary terms (U.S. Department of Agriculture |2023)). In contrast to the General
Signup, which has limited enrollment periods, Continuous Signup is open for enrollment all year long.
Eligibility requirements for Continuous Signup tend to be stricter, but parcels are typically enrolled
automatically into the program if these are satisfied (Hellerstein|[2015). The Continuous Signup places

great emphasis on wildlife habitat and water quality. Several practices targeted to improving water quality



in particular, such as filter strips, riparian buffers, grass waterways and wetland restoration, are funded
primarily through Continuous Signup. Though these practices tend to be more expensive to implement,
per acre payments through Continuous Signup tend to be higher than through General Signup. This is

in part reflects additional payments not typically provided in General Signup, such as one-time incentive

payments received at signup and practice incentive payments (U.S. Department of Agriculture [2024)).

It also reflects the concentration of Continuous Signup in regions with higher valued cropland, though

recent research has shown that many rejected CRP offers subsequently enroll in Continuous Signup

(Rosenberg and Pratt||[2024). The Conservation Reserve Enhancement Program (CREP), which falls

within Continuous Signup, involves partnerships between USDA and States, in which individual States
help determine local priorities. Many past and ongoing CREP projects have emphasized enrollment of
water quality practices.

Enrollment in CRP has varied quite a bit since its inception (see Figure . Acres enrolled increased
rapidly in the first few years, with multiple General Signups starting in 1986, reaching 33 million acres
by 1990 . As soon as it was introduced, acres enrolled through Continuous Signup
grew steadily. In contrast to General and Continuous Signup, Grasslands CRP is not characterized

by land retirement, but by enrollment of existing grasslands in threat of conversion to other land uses

(U.S. Department of Agriculture|2024). Consequently, though Grasslands CRP is characterized by lower

payments per acre than either other Signup, enrollment in terms of acres has grown rapidly and is the

largest portion of the program by acres as of October 2023 (U.S. Department of Agriculture|[2023).

[Figure 1 about here.]

The CRP is likely to impact water quality through several mechanisms. Land cover change from
productive uses to conservation covers will likely reduce soil erosion, surface runoff, and leaching of
nutrients to groundwater. Compared to annual commodity crops, land covers commonly installed during
CRP contracts, such as perennial grasses, use minimal amounts of nitrogen and phosphorus, limiting the
amount available for loss in sedimentation, leaching and runoff . Vegetation from CRP can
also serve to absorb and utilize nutrients before they enter water bodies, and wetlands restored through
CRP can lead to nitrogen removal by increasing levels of denitrification . CRP impacts

that depend on land cover change depends crucially on the counterfactual land use that would have been

implemented in the absence of the program (Roberts and Lubowski |2007; Rosenberg and Pratt|2024).

Further, many CRP practices such as riparian buffers and filter strips are designed to help improve water

quality largely by absorbing nutrients (U.S. Department of Agriculture|[2023)). These practices are largely

funded by Continuous Signup CRP and Conservation Reserve Enhancement Program (CREP) projects

that put special emphasis on addressing water quality concerns (U.S. Department of Agriculture|[2023)).




Across regions, and even within a farm, different CRP projects may exhibit different levels of potential
to improve water quality. Through its several components and initiatives, the CRP uses multiple policy
levers to target projects likely to improve water quality. First is the EBI, which awards variable points

based on expected influence of particular fields on water quality and soil erosion when conserved (U.S.

[Department of Agriculture|2021). Together, estimated potential impacts on water quality and soil erosion

account for a major portion of the EBI formula. Across components, CRP uses CPAs to target funds

towards regions for higher emphasis. Further, some initiatives within Continuous Signup such as the

Clean Lakes, Estuaries and Rivers Initiative (U.S. Department of Agriculture/[2022), and specific state

CREP projects, have explicit water quality emphasis, incentivizing practices aimed specifically at reducing
agricultural impacts on water quality.

Despite the continued focus on water quality, there has been limited direct empirical investigation
of the impacts of CRP on water quality. To date, most water quality assessments of CRP have relied
primarily on process-based models (e.g., . Process-based models allow for precise estimates
of water quality impacts, with high levels of spatial specificity. However, these models are highly data

intensive, and rely crucially on assumptions made about the land use impacts of programs like CRP

(Schwarz et al|[2006). For example, FAPRI (2007) assume that, in their without-CRP scenario, land

uses would reflect the mix of crop rotations and tillage practices used within the State as a whole. In

general, model-based estimates of the impacts of land use change and best management practices do

not always correspond with empirical ones (Schilling et al|2011). As Lintern et al| (2020) explain in a

review of many studies on the impacts of best management practices on water quality, the majority of
studies have found significant improvements to water quality from BMPs. However, as the authors find,
studies relying on predictions from models are much more likely than those based on observations to find

detectable improvements in water quality.

[Schilling and Spooner| (2006) is a notable exception, using empirical modeling to show that an increase

in CRP land in an Iowa watershed led to a decrease in downstream nitrate levels, in contrast to an increase
in an adjacent watershed without an increase in preserved land. However, this study is relatively small
scale, comparing two local watersheds. More recently, due to availability of data from the Water Quality
Portal , many studies have allowed for more extensive empirical analysis of water quality
impacts of policy (e.g., Hsieh and Gramig)2023; [Raff and Meyer||2022; [Paudel and Crago|[2021} |Skidmore,|

|Andarge and Foltz[2023). Still, empirical measurement poses significant identification challenges. Though

the impacts of management practices and land cover change have been established at field and micro-

catchment scales, difficulties such as complex data requirements and measurement time lags may make

measured impacts less easily detected at large scales (Melland, Fenton and Jordan|2018). In larger




catchment zones, it can take years to detect significant impacts of practices on water quality (Melland,
Fenton and Jordan||2018; [Meals, Dressing and Davenport|[2010)). Keeping these challenges in mind, the

following study is an attempt to estimate similar impacts for the Conservation Reserve Program.

3 Empirical Model

We aim to estimate the effects of CRP enrollment on downstream surface water quality. We first estimate
equation , a two-way fixed effects specification. Here, Y; ., is the average measured concentration
of phosphorus, nitrogen, or ammonia for metering stations located in subwatershed (HUC-12) i, in the
subbasin (HUC-8) j, taken in month m and year t. The explanatory variable of interest is CRP; ¢, which
represents the percent of agricultural land enrolled in CRP in subwatershed ¢ and year ¢. Note that
since CRP;; is annual and Y;; ,, is sub-annual, there can be multiple observations corresponding with
a particular level of CRP enrollment. In general, the data are an unbalanced panel. We also include a
vector of variables affecting water quality outcomes (e.g., monthly precipitation and temperature), X; ; .
We also include a rich set of fixed effects, including HUC-8 fixed effects, a;, to account for unobserved
time-invariant factors at the subbasin level; and year and month of measurement fixed effects, d; and 6,,,

to reflect impacts of seasonality on water quality.

Yitm =B*CRP;; +7v* Xitm+aj+ 0 + 0+ €4.m- (1)

Here, a sufficient condition for f3 is strict exogeneity, which requires that E[CRP; s &i¢m] = 0,s,t =
1,2,...,T (Wooldridge(2010)). In other words, levels of CRP enrollment in any period cannot be correlated
with the idiosyncratic error, conditioned on controls and fixed effects in the specification above. For
example, this includes contemporaneous effects, so that an increase in CRP enrollment from one year
to the end cannot be correlated with other factors related to water quality. It also means that CRP
enrollment cannot be correlated with unobserved factors related to water quality in other years. For
example, it requires that higher ammonia levels in one year does not increase CRP enrollment in a later
year.

However, it is possible that the assumption of strict exogeneity may fail and that estimates will be
biased without a valid instrument. Endogeneity could come from multiple avenues. First, it could take
the form of higher a likelihood of CRP enrollment by farmers that are environmentally conscious and
take a number of actions to improve water quality apart from CRP adoption. In this case, a naive model
would overestimate the impact of CRP on water quality. Second, there may be reason to believe that

trends in practices or land use change are correlated with enrollment in CRP or exits from the CRP.



Thus, we also explore an alternative identification strategy, employing instrumental variables that
serve as exogenous sources of variation in CRP enrollment. A valid instrument Z;,, requires that
E(Z;seitm) = 0,8t = 1,2,...,T (Wooldridge 2010). Here, ;¢ is the error term from the second
stage, where the first stage involves regressing CRP;; on Z; s, as well as the same controls in (1). In-
tuitively, the identifying assumption requires that the instrument only affects the outcome through the
endogenous variable. In our case, it must be that the instruments only affect water quality through CRP
enrollment.

We then estimate two-stage models for each nutrient including two instrumental variables. First, we
use an instrument that interacts the federal CRP acreage cap in a particular year with subwatershed
agricultural acreage in 1985. The first instrument exploits supply side variation in eligibility for CRP.
The CRP acreage cap is a valuable source of variation, since it was set anywhere between zero and five
years ago. Multiplied by agricultural acreage, this represents variation in potential acres that could be
enrolled in CRP, unrelated to any specific time-varying factors. Second, we use a Laspeyres price index
that weights prices based on proportions of the 10 major commodities in a county (Li, Miao and Khanna
2019). The idea of this index is that relative changes in prices will impact landowner’s desire to enroll
in CRP, and provides a source of exogenous variation since commodities will move in different directions

based on global market factors, in ways that are not correlated with water quality fluctuations.

4 Data

To characterize the relationship between CRP and water quality outcomes, we link novel contract-level
CRP data to watersheds throughout the MRB to generate a temporally variable and spatially explicit
measure of land conservation enrollment over the 2000 to 2018 time period. The merging of these data
sources is a primary component of this study’s important contributions to the water quality and conser-
vation program literature, which has typically aggregated conservation program enrollment decisions at
spatial units (e.g., counties) which do not reflect how water moves across the landscape [Liu, Wang and
Zhang| (2023)).

CRP contract data, which are collected by the USDA-FSA in their administration of the program,
detail the length, conservation practices adopted, and county of all land enrolled in CRP. The MRB has
more than 3.8 million unique CRP contracts over the 2000 to 2018 time period. We aggregate CRP
contract data to the watershed level using hydrologic unit code (HUC). HUCs are watershed boundaries
defining ‘the areal extent of surface water drainage’ developed in the U.S. Geological Survey’s (USGS)

Watershed Boundary Dataset (U.S. Geological Survey(|2023|). The HUC dataset divides the country into



22 regions (2-digit HUC), 245 subregions (4-digit HUC), 405 basins (6-digit HUC), approximately 2,400
subbasins (8-digit HUC), approximately 19,000 watersheds (10-digit HUC), and approximately 105,000
subwatersheds (12-digit HUC). HUCs are hierarchical consisting of 2 additional digits for each level in
the hydrologic unit system. We opt to aggregate CRP land enrollment to the subwatershed (HUC-12)
level, which are the most spatially disaggregated watershed measurement available for the MRB. There
are approximately 32,000 subwatersheds within the MRB.

Unfortunately, only a small percentage of the 3.8 million CRP contracts within the MRB contain
a subwatershed (HUC-12) identifier. In some cases, the contract data contain a subbasin or watershed
identifier but no subwatershed identifier. In most cases, the subwatershed field within the contract data is
missing. Fortunately, the contract data include several identifiers which we leverage to estimate the precise
geography of each CRP contract within the MRB. Specifically, contract data include a farm identifier,
contract identifier, and in some cases a tract identifier which are all unique within a given county. Farm
and tract identifiers within the CRP contract data are also present in USDA-FSA’s common land unit
(CLU) geospatial data. CLUs are individual farming parcels which is the smallest unit of land which
has a permanent, contiguous boundary, common land cover/management, common owner, and common
producer association. USDA-FSA uses CLU data to administer farm programs and regularly updates the
data to reflect changes in land ownership, management, etc. We spatially join 2008 and 2022 CLU data
to USGS’s Watershed Boundary Dataset to associate farm and tract identifiers within a given county to
their respective subwatershed. We leverage CLU data from both 2008 and 2022 to account for potential
changes in CLU data due to evolving land ownership or management.

Aggregating CRP contract data at the subwatershed and year level yields a panel dataset tracking
CRP enrollment over time within a given subwatershed. We opt to focus our analysis on only those
subwatersheds that ever have any land enrolled in CRP i.e., ever-treated. Given the relatively significant
variation in the size of subwatersheds within the MRB, we transform our primary explanatory variable of
interest, land enrolled in CRP, to a percentage of total agricultural land within the subwatershed enrolled
in CRP. To do so, we use remotely sensed land use data which we aggregate at the subwatershed-
year level. We calculate the share of agricultural land enrolled in CRP using land use classifications
from the Land Change Monitoring, Assessment, and Projection 1.3 (U.S. Geological Survey|2022)). The
USGS provides 30-meter spatial resolution land use data for the conterminous United States from 1985-
2021. The agricultural land use category captures land used in the production of food, fiber, and fuels:
cultivated and uncultivated croplands, hay lands, orchards, vineyards and confined livestock operations.
We calculate shares based on agricultural land use from 1985, prior to the advent of the modern CRP,

to ensure that the denominator does not vary based on CRP enrollment as land enrolled in CRP may

10



no longer be classified as agricultural. Figure [2] demonstrates the spatial heterogeneity in CRP within
the Mississippi River Basin by plotted average percentage of agricultural land, as of 1985, enrolled in
CRP at the subbasin level (8-digit HUC). We map CRP enrollment at the subbasin level rather than the
subwatershed level for visual simplicity given that the Mississippi River Basin contains more than 30,000

subwatersheds.
[Figure 2 about here.]

Our primary outcome variables of interest are measures of water quality observed at monitoring
stations. Specifically, we use SNAPD (Krasovich et al.[[2022)) which harmonizes readings in the Water
Quality Data Portal across the 226 distinct water quality monitoring authorities. SNAPD pulls station-
level readings for over 100,00 sites and creates a comprehensive sample of measurements for nitrogen,
ammonia, and phosphorus that are comparable across time and space. SNAPD allows us to compare
water quality across multiple decades (2000-2018) for the Mississippi River Basin. Our main outcomes
are concentrations of total nitrogen, ammonia, and phosphorous. E| We use these nutrient concentrations
since they represent the most comprehensive water quality measurements in the data and to allow us to
make comparisons within the literature (Hanrahan et al.2021; [Liu, Wang and Zhang{{2023; [Skidmore,
Andarge and Foltz2023). Concentration values are standardized to units of milligrams per liter (mg/L).
We take the average of all water quality readings in the same subwatershed for a particular month-year
combination to allow us to estimate the broad-level effects of the CRP as well as to create a more balanced
panel.

Table [I] presents summary statistics for the data used to estimate the impact of CRP enrollment on
water quality outcomes. Table[l|also includes summary statistics for the variables used to instrument for
subwatershed CRP enrollment. Specifically, we instrument using the national CRP acreage cap interacted
with subwatershed agricultural acreage as of 1985 as well as a commodity price index. The national CRP
acreage cap is determined by Congress and has varied between 24 and 39.2 million acres between 2000
and 2018. The price index is a Laspeyres price index calculated following methods outlined in [Li, Miao
and Khanna| (2019) and is based upon deflated state-level received prices and production levels for 10
major crops using 2002 as the base year. The number of observations varies for our outcome variables
of interest, concentrations of phosphorous, ammonia, and nitrogen, as not all water quality monitoring

stations within the basin sample in every month and year over the 2000 to 2018 time period.

ISpecifically, we use the variables Ammonia (filtered), Total Nitrogen (filtered), and Total Phosphorus (filtered). “Total”
indicates that a sample contains several nutrient chemical forms, such as ammonia (NH3) and organic nitrogen (N), and
that these nutrient chemical forms are added to find the total concentration of the the nutrient’s elemental form (total
nitrogen). "Filtered" refers to the sample fraction of the observation. In a field or lab setting, filtration is the physical
process done used to separate the particulate and aqueous fractions of a water sample. Filtered results will include the
amount of nutrient associated with just the aqueous fraction, and not the particulate fraction. We focus on readings that
are within the same sample fraction to ensure comparability of observations.

11



[Table 1 about here.]

5 Results

In this section, we present results generated by estimating the equation outlined in equation |1f to under-
stand how CRP enrollment impacts concentrations of phosphorous, nitrogen, and ammonia within the
waterways of the Mississippi River Basin.

Table [2] presents regression results for the non-instrumental variable specification of equation [I] Re-
sults suggest that increasing enrollment of agricultural land in CRP decreases concentrations of phos-
phorous and nitrogen in surface water, although the coefficient estimate for nitrogen is not statistically
significant. Alternatively, model results counterintuitively indicate that increasing enrollment in CRP
increases surface water concentrations of ammonia. However, as discussed in section [3] potential endo-
geneity between water quality outcomes and CRP enrollment may impact these estimated coefficients
and bias them towards zero. Results indicate a negative relationship between monthly average temper-
atures and pollutant concentrations and a positive relationship between monthly total precipitation and

pollutant concentrations for all pollutants except ammonia.

[Table 2 about here.]

Table |3| presents results estimating equation 1| using an instrumental variable (IV) specification to
address potential endogeneity between water quality outcomes and CRP enrollment. Results from the
first stage of IV specification are presented in table [f] where the reported F-statistic indicates that our
instrumental variables reject the null hypothesis of weak instruments (Stock, Wright and Yogo|[2002)).

IV regression result parameters estimating the relationship between percentage of subwatershed agri-
cultural land enrolled in CRP and concentrations of phosphorous, nitrogen, and ammonia are all negative
and statistically significant. This result suggests that increasing enrollment in CRP decreases surface
water concentrations of phosphorous, nitrogen, and ammonia. A one percentage point increase in sub-
watershed CRP enrollment, which at the mean of subwatershed CRP enrollment is equal to 134 acres, is
associated with reductions of 0.0320, 0.2842, and 0.0139 mg/L for phosphorous, nitrogen, and ammonia,
respectively. Evaluating these coefficient estimates at the mean of pollutant concentration levels (see
table [1)) indicates that a one percentage point increase in subwatershed CRP enrollment decreases sub-
watershed pollutant concentration levels by 15%, 13%, and 5% for phosphorous, nitrogen, and ammonia,

respectively.
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[Table 3 about here.]

[Table 4 about here.]

Coefficients estimates for control variables suggest a negative relationship between monthly average
temperature and pollutant concentrations. Meanwhile, consistent with the literature we find a positive
relationship between precipitation and pollutant concentrations for all pollutants except ammonia.

Comparing results between tables[2] and [3] demonstrates the potential bias introduced by the potential
endogeneity between CRP enrollment and water quality outcomes. Specifically, the relatively smaller in
magnitude, or positive, coefficient estimates from the non-IV specification suggest that this endogeneity
may bias estimates towards zero indicating that the bias introduced by subwatersheds with lower quality
may attract more CRP enrollment may outweigh bias introduced by landowners already enrolled in CRP

implementing additional water quality enhancing production practices (e.g., cover cropping).

6 Conclusion

Agri-environmental policy-making aims to diminish the environmental costs of agricultural production.
This paper investigates the effects of one of the world’s largest and longest running agri-environmental
policies, the Conservation Reserve Program which pays farmers in the U.S. to take previously cultivated
agricultural land out of production. Specifically, we empirically estimate how land enrolled in CRP
impacts water quality outcomes. We leverage novel contract level data to summarize CRP enrollment
decisions at the subwatershed level and econometrically relate these enrollment decisions to observed
water quality outcomes using an instrumental variable model.

Our results indicate that increases in CRP enrollment at the subwatershed decrease the concentration
of several key pollutant associated with agricultural production. Moreover, we find relatively large effect
sizes indicating that even relatively small changes in CPR enrollment can have a large impact on water
quality outcomes. These results have significant policy relevance as they demonstrate the magnitude of
the potential environmental benefits associated with expanding agricultural land retirements programs
like CRP.

Finally, CRP is just one example of current agri-environmental policies in the use in the U.S. Many
other state and federal programs (e.g., the Environmental Quality Incentives Program) also aim to min-
imize the environmental costs of agricultural production. While this paper focuses solely on CRP, addi-
tional research is needed to understand how agri-environmental policy-making as a whole impacts water

quality outcomes and environmental outcomes more broadly.
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Figures

Figure 1: Acreage Enrolled in Differing CRP Subprograms, 1986-2022

Source: https://www.fsa.usda.gov/programs-and-services/conservation-programs/reports-and-statistics/conservation-reserve-
program-statistics/index
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Figure 2: CRP Enrollment within Mississippi River Basin
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Tables

Table 1: Summary Statistics

Statistic N Mean St. Dev. Min Max
CRP enrollment (Percent of subwatershed ag land) 322,169 3.246 5.455 0.000 74.623
Temperature (Celsius) 322,169  14.102 9.148 —18.608 33.921
Precipitation (mm) 322,169 89.756 60.606 0.000 625.425
Phosphorous (mg/L) 205,024 0.209 0.302 0.006 3.560
Nitrogen (mg/L) 66,139 2.139 2.525 0.051 25.330
Ammonia (mg/L) 119,731 0.283 0.415 0.002 6.820
Subwatershed ag land, 1985 (thousands of acres) 322,169  13.492 8.116 0.012 363.420
Laspeyres Commodity Price Index 269,524 1.256 0.415 0.000 2.397
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Table 2: Panel Regression Results

Dependent variable:

Phosphorous Nitrogen Ammonia
(1) (2) (3)
Percent of subwatershed ag land in CRP —0.0018* —0.0026 0.0016**
(0.0011) (0.0055) (0.0008)
Temperature —0.0010 —0.0214** —0.0044***
(0.0007) (0.0099) (0.0009)
Precipitation 0.0004*** 0.0015*** —0.0001***
(0.00003) (0.0003) (0.00003)
HUCS Fixed Effect Yes Yes Yes
Year Fixed Effect Yes Yes Yes
Sampling Month Fixed Effect Yes Yes Yes
Observations 205,024 66,139 119,731
R? 0.2089 0.4312 0.1061
Residual Std. Error 0.2688 1.9138 0.3931

Notes: * p<0.1; ** p<0.05; ¥** p<0.01. Standard errors clustered at the HUC-8 level.
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Table 3: Instrumental Variable Panel Regression Results

Dependent variable:

Phosphorous Nitrogen Ammonia
(1) (2) (3)
Percent of subwatershed ag land in CRP —0.0320*** —0.2842** —0.0139*
(0.0070) (0.1409) (0.0076)
Temperature —0.0009 —0.0295** —0.0057***
(0.0007) (0.0142) (0.0008)
Precipitation 0.0005*** 0.0018*** —0.0002***
(0.00003) (0.0003) (0.00003)
HUCS Fixed Effect Yes Yes Yes
Year Fixed Effect Yes Yes Yes
Sampling Month Fixed Effect Yes Yes Yes
Observations 174,385 55,127 99,744
R? 0.0290 0.1672 0.0698
Residual Std. Error 0.2859 2.2898 0.3677

Notes: * p<0.1; ** p<0.05; ¥** p<0.01. Standard errors clustered at the HUC-8 level.
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Table 4: Instrumental Variable Panel Regression Results, First Stage

Dependent variable:

Percent of Subwatershed in CRP

CRP Nat. Acreage Cap X Baseline Subwatershed Ag Acreage —2.4701%**
(0.3893)
Commodity Price Index 0.6171
(0.4139)
Temperature —0.0161**
(0.0073)
Precipitation —0.0002
(0.0002)
HUCS Fixed Effect Yes
Year Fixed Effect Yes
Sampling Month Fixed Effect Yes
Observations 269,524
R? 0.4209
Residual Std. Error 4.0060

F Statistic(full)
Note:
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295.201%%* (df = 662; 268861)
*p<0.1; ¥¥p<0.05; ***p<0.01
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