
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


Aging Labor Force, Climate Change and the Path to Green Total

Factor Productivity in Chinese Agriculture

Qi Wu, Dong Liu, Wei Si*, and Shenggen Fan*

College of Economics and Management, China Agricultural University, Beijing, China

qiwu.cem@cau.edu.cn

ld01@cau.edu.cn

siwei@cau.edu.cn

s.fan@cau.edu.cn

* These authors contributed equally to this work.

Selected Paper prepared for presentation at the 2024 Agricultural & Applied

Economics Association Annual Meeting, New Orleans, LA; July 28-30

Copyright 2024 by Qi Wu, Dong Liu, Wei Si and Shenggen Fan. All rights reserved. Readers may make

verbatim copies of this document for non-commercial purposes by any means, provided that this copyright

notice appears on all such copies.



Abstract

In the context of global climate change and demographic transitions, understanding the

determinants of agricultural productivity is essential for ensuring food security and pro-

moting sustainable development. This study examines the impacts of climatic factors

and population aging on agricultural green Total Factor Productivity in China from

2005 to 2020. Utilizing comprehensive data from the China Statistical Yearbook and

the China Meteorological Data Service Center, we employ a fixed-effects regression

model to analyze the influence of growing degree days, harmful degree days, cumu-

lative precipitation, and population aging on green TFP. Our findings indicate that

favorable temperature conditions significantly enhance green TFP, whereas extreme

heat adversely affects it. Additionally, provinces with a higher level of aging exhibit

increased green TFP, potentially due to their experience and ability to engage in labor-

intensive green practices. However, the interaction between aging and harmful degree

days suggests that extreme heat exacerbates the challenges faced by an aging work-

force. This study emphasizes the importance of integrating climatic and demographic

factors into policies aimed at improving agricultural productivity and sustainability,

highlighting the need for tailored strategies to address the unique challenges posed by

climate change and an aging population not only in China but also in other developing

countries facing similar challenges.
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1 INTRODUCTION 4

1 Introduction

Agriculture remains a cornerstone of global food security and economic stability. Particularly

in developing regions like China, the agricultural sector is undergoing significant transitions

driven by environmental and demographic shifts. These regions face confront significant

challenges in advancing green agriculture, made tougher by limited and unsustainable food

production resources, as well as the increasing threats of climate change and natural disasters

(Fan & Zhang, 2023). The imperative lies in fostering a robust, environmental-friendly, and

inclusive food system, aligning with the global drive for sustainable agricultural practices

(Gaupp et al., 2021).

Current literature primarily focuses on how agricultural production structure (D. Liu,

Zhu, & Wang, 2021), environmental regulations, such as energy conservation and emission

reduction (ECER) (Huang et al., 2022) and carbon trading pilot policy (Yu et al., 2022),

green subsidies (Ke & Huang, 2024), green trade barriers (Z. Liu et al., 2023), and factor

misallocation (Lei et al., 2023) impact green TFP in agriculture. However, there is a signifi-

cant lack of detailed and comprehensive understanding of how an aging workforce influences

the shift toward green agriculture. The demographic shift towards an aging population poses

substantial challenges to food security and agricultural sustainability in China (Ren et al.,

2023), posing a call for thorough investigation. Studies have indicated that aging workforce

leads to declined business dynamism, decreased labor fluidity and slower economic growth,

both in general (Engbom et al., 2019) and specifically in agriculture (Zou, Mishra, & Luo,

2018). The effect of an aging population on green TFP is predominantly negative (Jiang et

al., 2023), manifesting through a depressive effect on human capital (Mason, Lee, & Jiang,
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2016) including a gradual decline in cognitive ability, physical strength (J. Liu, Dong, Liu,

Rahman, & Sriboonchitta, 2020), and overall productive capacity, consequently dampening

economic growth and productivity (Choi & Shin, 2015). Conversely, some studies present

a more positive perspective on the impact of aging labor force on green TFP, suggesting

that an aging labor force poses potential challenges by potentially slowing down the rate

of technological adoption and innovation in agriculture, thereby moderating the efficiency

gains from renewable energy consumption and technological progress in the long term (Li et

al., 2022).

Furthermore, the critical review by Zhang et al. (2021) elaborates on the complexity

of factors influencing green TFP, identifying three main streams—technical, economic, and

governmental—that interlink and collectively impact the sustainable development of agri-

cultural systems (Zhang et al., 2021). This underscores the need for a multifaceted approach

in analyzing the factors that drive the greening of the agricultural sector. Despite these

insights, the influence of the aging population on agricultural green TFP remains under-

explored, indicating a critical area for future research.

Acknowledging the profound impact of climate change on green TFP is essential. As

a multifaceted environmental challenge, climate change directly influences the efficiency and

sustainability of agricultural systems by altering growing conditions and resource availability.

For instance, climate variables like temperature, precipitation, and humidity significantly

impact GTFP, particularly through changes in agricultural output, input usage, and the

structural dynamics of farming practices (Song et al., 2022). Additionally, the role of specific

climate factors such as rainfall in affecting agricultural inputs is crucial. For example, it

adversely impacts machinery power, labor, and fertilizer inputs, highlighting its negative
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influence on operational efficiency in agricultural systems (Chen et al., 2021). However,

findings from D. Liu et al. (2021) indicate that natural conditions have no significant effect

on agricultural green TFP. This discrepancy highlights two crucial reasons for incorporating

climate change into our analysis: firstly, the impact of climate change on green TFP is

subject to conflicting results, necessitating a nuanced understanding. Secondly, a thorough

and scientific investigation is needed to clarify the effects of climate change on green TFP

within the context of China’s unique climatic and agricultural landscape.

Furthermore, integrating climate change into our analytical framework is crucial, as

omitting this factor could lead to significant gaps in understanding its dual impact on both

green TFP and human capital. Climate change is a pervasive force that not only threatens

the immediate productivity of agricultural systems through extreme weather events but also

affects the health, labor capacity, and productivity of the agricultural workforce. It is widely

recognized that climate change has considerably influenced agricultural productivity, often

nullifying years of advancements in farming practices. While some regions may experience

temporary boosts in agricultural yields due to extended growing seasons, overall, the effects

tend to be negative, especially in warmer regions where productivity is already compromised

(Tao et al., 2014; Schlenker & Roberts, 2009; Ortiz-Bobea et al., 2021). Moreover, the

influence of climate change extends beyond direct impacts on agricultural output. Recent

research has highlighted its significant effects on cognitive functions, particularly among the

elderly, further contributing to the depreciation of human capital. Studies such as those

by Wanka et al. (2014) explore how climate change compromises cognitive functioning and

social participation, emphasizing its implications for successful aging. Similarly, the potential

connections between weather patterns and cognitive decline in older adults, indicating that
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variability in climatic factors like precipitation could have profound cognitive effects (Finlay

et al., 2020). Zuelsdorff and Limaye (2024) provide a framework to assess the heightened risk

and burden of dementia linked to climate change, highlighting the growing threat to cognitive

health among aging populations exposed to environmental stressors. Additionally, Guo et

al. (2022) analyze how perceptions of climate change and cognitive evaluations influence the

sustainable livelihood capacities of farmers, thereby connecting the broader socioeconomic

impacts of climate-related cognitive decline to agricultural productivity. Collectively, these

studies underscores the necessity of addressing both the direct impacts of climate change on

agricultural productivity and its indirect effects on human capital through cognitive decline.

In light of the literature reviewed, it is clear that evaluating the effect of aging on agri-

cultural green TFP in China necessitates considering climate change within the analytical

framework. Ignoring the impact of climate change could skew the insights into how envi-

ronmental factors interact with demographic trends such as an aging labor force. Therefore,

to ensure a comprehensive evaluation of the factors influencing green TFP, it is essential

to consider how climate change directly and indirectly shapes agricultural productivity and

labor dynamics. This integrated approach will mitigating endogeneity issues associated with

omitted variables in the empirical model and enable a more accurate assessment of the re-

silience and sustainability of agricultural practices in the face of evolving environmental and

demographic challenges.

Despite the well-documented individual impacts of climate change and demographic

shifts on agriculture, there remains a significant research gap in studies that integrate these

factors with green TFP outcomes. This study aims to address this gap by examining the

dual impact of climate change and an aging labor force on agricultural green productivity, a
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critical aspect of sustainable agricultural practices. By incorporating these elements into the

analysis, this research seeks to mitigate the biases associated with omitted variables, thus

enabling a more comprehensive exploration of the causal relationships between the aging

labor force and green TFP in agriculture. This approach not only enhances the robustness

of the model but also ensures that policy recommendations are grounded in a holistic under-

standing of the factors driving agricultural productivity under the pressures of population

aging and climatic changes.
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2 Empirical Analysis

We analyze the relationship between the annual green TFP, measured for each province in

China as a function of variability and cumulative exposure to beneficial/harmful tempera-

ture and rainfall during the crop growing season and the aging level of agricultural labor

force using a fixed-effect regression model that accounts for time-invariant differences across

counties in unobservable determinants of the agricultural green TFP.

2.1 Data and Variable Construction

There are two major distinct data sources for this study: the China Meteorological Data

Service Center (CMDC) and the China Statistical Yearbook. Additionally, the study utilizes

the China Population Statistical Yearbook and the China Rural Statistical Yearbook to

supplement certain variables. All the datasets are publicly available.

China Statistical Yearbook

The China Statistical Yearbook is an annual publication by the National Bureau of

Statistics of China, providing comprehensive data on China’s economic, social, and devel-

opmental activities at both national and provincial levels. This yearbook is essential for

analyzing trends and assessing policy impacts across various sectors. The China Popu-

lation Statistical Yearbook delivers detailed demographic data, including population size,

structure, and changes, along with rates of birth, death, and migration. It’s vital for demo-

graphic research and social planning. The China Rural Statistical Yearbook focuses on rural

development, documenting agricultural production, economic conditions, land use, and living
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standards in rural areas, supporting evaluations of rural policies and development programs.

These statistics collectively facilitate the construction of variables for this study, which

utilizes the data to calculate Green Total Factor Productivity (TFP) in agriculture at the

province-year level and to assess the aging level of the agricultural labor force. Specifically,

the aging level for each province is defined by the ratio of the population aged 65 and older to

the total population within that province for a given year, as a proxy for aging of agricultural

labor force, due to data limitation.

Green TFP at the provincial level in agriculture is calculated through a refined method-

ology that accounts for both desired and undesired outputs, utilizing the Slacks-Based Mea-

sure (SBM) index to effectively integrate these outputs into a comprehensive framework.

The calculation begins by gathering essential inputs such as the agricultural labor force,

total area of cultivated land including crops and aquaculture, the application of chemical

fertilizers quantified in pure weight, the total power of agricultural machinery, diesel fuel

consumption, usage of agricultural plastic film, pesticide application, and the volume of

water used for effective irrigation. The outputs are classified into two categories: desired

outputs, which include the total economic value generated from agriculture, and undesired

outputs, notably the carbon emissions and non-point source pollution produced by agricul-

tural activities. The SBM model, which underlies the efficiency calculations, incorporates

non-zero slack variables to allow for potential reductions in inputs and minimization of un-

desired outputs. This model is mathematically represented to maximize efficiency by finely

adjusting the relationship between inputs and outputs, thus providing a nuanced measure

of green productivity across various provinces.

Unlike radial efficiency models which only allow proportional changes in inputs and
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outputs, the SBM model incorporates slack variables that account for non-proportional in-

efficiencies in both inputs and outputs, offering a more accurate assessment of operational

efficiency. Tone (2001) introduced the standard SBM model to address the shortcomings of

radial models, specifically their tendency to overestimate efficiency when non-zero slacks are

present. However, this model could not compare multiple efficient Decision-Making Units

(DMUs) within the same period. To solve this, the super-efficiency SBM model was devel-

oped, merging the SBM approach with super-efficiency analysis to allow comparisons among

efficient DMUs.

The super-efficiency SBM model is expressed mathematically as:

θ∗ = min
λ,s−,s+

1 + 1
m

∑m
i=1

s−i
xt
i0

1− (
∑q

r=1 s
+
r +

∑h
k=1 s

−
k )

q+h

subject to:

xt
i0 ≥

T∑
t=1

N∑
j=1,j ̸=0

λt
jtx

t
ij − s−i , i = 1, 2, . . . ,m

ytr0 ≤
T∑
t=1

N∑
j=1,j ̸=0

λt
jty

t
rj + s+r , r = 1, 2, . . . , q

btk0 ≥
T∑
t=1

N∑
j=1,j ̸=0

λt
jtb

t
kj − s−k , k = 1, 2, . . . , h

λt
j ≥ 0 (∀j), s−i ≥ 0 (∀i), s+r ≥ 0 (∀r), s−k ≥ 0 (∀k) (1)

In this model, x represents the input variables; y represents the desired outputs; b

represents the undesired outputs; i represents the number of input variables. Among these,

s−j represents the slack variable for input excess, which is the excessive amount of input i

compared to the benchmark xi0; s
−
k represents the slack variable for reducing the undesired
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output k for the zeroth DMU; btk0 represents the k-th undesired output of the zeroth DMU

at time t.

Weather Data

For daily temperature data, we use the raw daily temperature data from the China Meteoro-

logical Data Service Center (CMDC) affiliated with the National Meteorological Information

Center of China.1 The CMDC records weather information for 820 weather stations in China

on a daily basis, including the minimum, maximum, and average temperatures, precipita-

tion, relative humidity, wind speed, as well as sunshine duration. This article matches the

weather data for those 30 provinces included in our agricultural dataset using the inverse-

distance weighting (IDW) method, which is widely used in existing studies to impute either

weather or pollution data (Currie & Neidell, 2005; Deschênes & Greenstone, 2007; Schlenker

& Walker, 2016). For each of the 2495 counties, this method calculates the weighted average

of all weather stations within a certain radius of the centroid of that county, where inverse

distance square is the weight. This article chooses 100 km (km) as the threshold radius and

the results are robust to different radius.

We transform daily temperature data into annual metrics utilizing the agronomic con-

cept of degree days while preserving the intra-annual variability in daily weather patterns.

The growing degree day represents a specific instance of time-separable growth, generally

calculated as the sum of truncated degrees between two thresholds. As proposed by Ritchie

and Nesmith (1991), these thresholds are 8°C and 32°C for beneficial heat. For instance, a

day with a temperature of 9°C contributes one degree day, while a day of 10°C contributes

1The daily weather dataset is available at http://data.cma.cn/.

http://data.cma.cn/
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two degree days, up to a temperature of 32°C, which contributes 24 degree days. Any

temperature above 32°C also contribute 24 degree days.

Denoting the bound as b, we follow Schlenker’s sine interpolation of daily temperatures

for reference to compute degree days (DD) bounded by temperature b as follow:

DDb(tmin, tmax) =



0 if tmax ≤ b

tavg − b if b ≤ tmin(
(tavg−b)×τ+ 1

2
(tmax−tmin)×sin τ

)
π

if tmin < b < tmax

(2)

where tmin and tmax are the daily minimum and maximum temperature values. tavg is

defined by the average value of the daily maximum and minimum temperature. In the

third case, τ = arccos 2b−tmax−tmin
tmax−tmin

. Thus, the daily degree days is calculated as follows:

DD(td) = DDb,d, denoting td as the daily temperature information, i.e., tmin,d and tmax,d in

day d.

There has been ongoing debate regarding the precise point at which temperatures

become harmful, particularly in scenarios where crops receive ample water. Researchers

have applied various thresholds for the upper bound of beneficial temperature ranges. For

instance, Schlenker and Roberts (2009) find that yields increase with temperature up to

29°C for corn, 30°C for soybeans, and 32°C for cotton but that temperatures above these

thresholds are sinificantly harmful. Roberts and Schlenker (2011) have implemented degree

days between 10°C to 29°C as the beneficial range, and degree days above 29°C as the harmful

range. Lobell et al. (2017) define extreme degree days as the cumulative degree days above

30°C. Schlenker, Hanemann, and Fisher (2006) use bounds of 8°C and 32°C for growing
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degree days, and above 34°C for harmful degree days.

To avoid such controversy, some researchers exclude the concept of harmful degree

days in their analysis (Schlenker, Hanemann, & Fisher, 2007), or use a single bound to

model the cumulative heat during the growing season, which reflects both the beneficial and

harmful part of heat. In this study, we also test robustness of our results using alternative

thresholds, including ranges of 8°C and 30°C, 8°C and 32°C, 10°C and 30°C, and 10°C and

32°C for growing degree days and above 30°C and 32°C for harmful degree days.

The daily degree days are then summed over the entire growing season, which is usually

defined based on the crop-growing months, such as during March to August (Schlenker &

Roberts, 2009) or from April to September (Schlenker et al., 2007). In this study, the growing

season is defined as from March through September.
∑D

d=1DD(td) denotes the cumulative

growing degree day from day one to day D, where d = 1 stands for March 1st. d = D

represents September 31st, the last day in the growing season in a year. Subsequently, the

cumulative daily degree days during the growing season are aggregated to the province-year

level. Similarly, the precipitation levels are initially available for each day during the growing

season (March to September). Then, they are aggregated for the whole growing season from

the first day of March through the last day of September. These data are then aggregated

at the province level.

The weather variables in this study, province-year level cumulative degree days at

various bounds and precipitation, are joined with the variable of interest, green TFP in

agriculture, at province-year level, to form panel data. The integration of the two datasets

and construction of the key variables enable us to identify the relationship between green

TFP in agriculture and weather conditions, as well as the aging agricultural workforce for
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each province during 2005 to 2020.

2.2 Descriptive Analysis

2.2.1 Summary Statistics of Key Variables

Table 1 provides summary statistics for the key variables of interest in the regression

analysis. Agricultural green TFP of in a province in a year vary between 0.765 and 2.362 in

the data. A green TFP value greater than 1 indicates that the province is efficiently convert-

ing inputs into outputs while also incorporating environmentally sustainable practices. This

means that the province is achieving more output per unit of input in an environmentally

friendly manner compared to the benchmark or base year. Conversely, a green TFP value

less than 1 suggests that the province is less efficient in its production processes, possibly

due to higher resource consumption, waste, or environmental degradation. In this scenario,

the province is producing less output per unit of input relative to the benchmark.

Average agricultural green TFP is 1.056, suggesting that, on average, provinces are

slightly above the benchmark in terms of green productivity, indicating a general trend

towards improved environmental efficiency in agricultural production.

2.2.2 Green TFP in Agriculture

Figure 1 shows the histogram and box plot of green TFP across provinces in China,

which reveals a right-skewed distribution, signifying a concentration of provinces with rel-

atively lower productivity levels, while a smaller number exhibit significantly higher green

TFP values. The modal peak of the distribution is positioned near the lower end of the
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Table 1: Summary statistics of key variables

Variable Mean Std. dev. Min Max
Green TFP 1.056 0.093 0.765 2.362
Technical efficiency of green TFP 1.009 0.119 0.549 2.607
Technical change of green TFP 1.056 0.121 0.535 2.362
Growing degree days 8°C to 30°C (GDD8−30) 3113.241 1173.972 631.029 6616.701
Growing degree days 8°C to 32°C (GDD8−32) 3074.664 1142.319 631.029 6363.474
Growing degree days 10°C to 30°C (GDD10−30) 2619.862 1069.520 343.679 5954.701
Growing degree days 10°C to 32°C (GDD10−32) 2570.402 1028.006 343.679 5633.474
Degree days above 30°C (HDD30) 5.345 10.903 0.000 97.813
Degree days above 32°C (HDD32) 0.389 1.984 0.000 28.903
Precipitation (in mm) 966.786 458.008 190.954 2238.741
Aging 0.112 0.036 0.050 0.261
Provincial agricultural expenditure 3934098 2977106 118418 13400000
(in ten thousand yuan)
Primary industry added value 1671.704 1276.207 65.340 5556.580
(in hundred million yuan)
Number of observations: 480

scale, suggesting that a majority of provinces operate at or below a GTFP score of 1.0.

Conversely, the tail extending towards higher values up to 2.5 indicates the presence of out-

lier provinces achieving substantially higher productivity, possibly due to advanced green

agricultural practices or more effective environmental policy implementations.
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Figure 1: Histogram and box plot of green TFP

This right skewness in the distribution highlights a disparity in green productivity
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across the provinces, with a substantial number of regions lagging behind a few high per-

formers. Such a pattern suggests the potential for considerable improvement in green TFP,

especially in the lower-performing provinces. The broad spread of the distribution further

underscores the heterogeneity in agricultural efficiency, influenced by factors such as local

policy environments, technological adoption, and resource management practices.

Given the variability observed in the histogram, it is clear that policy interventions

and resource allocations to enhance green TFP should be customized to provincial specifics.

Tailored approaches are essential to elevate the productivity of lower-performing provinces

and to harness the potential of higher-performing ones, thereby reducing regional disparities

in green agricultural productivity.

The box plot of green TFP in Chinese provinces from 2005 to 2020 shows a slight

upward trend in the median green TFP over the years, with some yearly variations. The

distance between the lower and upper quartiles becomes smaller over time, indicating that

the differences in green TFP across provinces are decreasing. This suggests that provinces

are becoming more consistent in their green agricultural practices and efficiencies.

The median green TFP particularly increases after 2011, which may reflect improve-

ments in sustainable agricultural technologies or the impact of new policies. There are also

outliers in several years, showing that some provinces have unusually high or low green TFP

compared to the rest, pointing to uneven adoption or success of green practices.

The time series plots for green TFP across various Chinese provinces from 2005 to

2020, presented in figure 2, reveal a generally upward trajectory in green productivity in

agriculture. Each line represents a province’s green TFP over time, illustrating diverse

growth patterns, some showing steady increases while others exhibit more volatile trends.
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This indicates that while overall progress is being made, the pace and consistency of growth

in green agricultural productivity vary widely among the provinces.
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Figure 2: Trend of green TFP in Agriculture by Province

Several provinces, particularly those with initially lower green TFP values, demon-

strate significant growth, potentially indicating successful implementation of green agricul-

tural practices and supportive policies over the period. In contrast, provinces that started

with higher green TFP values show varying degrees of growth, with some plateauing or

experiencing minimal increases. This suggests that these provinces may be approaching

the efficiency frontier of current green agricultural technologies and practices, where gains

become harder to achieve due to existing high levels of efficiency.
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Focusing on the top five agricultural provinces by expenses in 2020 — Sichuan, Henan,

Xinjiang, Guangdong, and Yunnan — we observe specific trends that reflect regional strate-

gies and investments in green agriculture. Sichuan and Henan, for example, show steady

and significant increases in green TFP, suggesting effective leveraging of green technologies

and policies. Xinjiang’s green TFP displays gradual growth with some fluctuations, likely

reflecting the challenges posed by its unique geography and climate. Guangdong’s trend is

relatively stable with a modest upward trajectory, indicating a mature agricultural sector

where green practices are incrementally enhancing productivity. Yunnan exhibits a notable

upward trend, possibly due to its focus on sustainable and organic farming practices.

These detailed observations highlight a broad improvement in agricultural sustainabil-

ity across China, although the rate of progress and the level of green TFP vary considerably

by province. The variability in growth rates highlights the differential regional impacts of

agricultural policies and the adoption rates of sustainable practices. This suggests that tar-

geted regional strategies might be necessary to further enhance green productivity uniformly

across the country. Implementing tailored approaches that consider the unique economic,

climatic, and geographical characteristics of each province could optimize the outcomes of

China’s green agricultural initiatives, ensuring that all regions can effectively contribute to

and benefit from the country’s sustainability goals.

2.3 Regression Methods

Given that the outcome of interest, agricultural green TFP, exhibits right-skewness,

indicating a few provinces with exceptionally high green productivity values, we apply a nat-
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ural logarithm transformation to address this skewness and improve the statistical properties

of our regression model. Log-transforming green TFP (log(GreenTFP)) also linearizes the

multiplicative relationships between green TFP and the explanatory variables, facilitating

a more accurate representation of these relationships in the regression model. This trans-

formation stabilizes the variance of residuals, thereby enhancing the reliability of coefficient

estimates and their standard errors. Furthermore, the coefficients in the log-transformed

model can be interpreted as semi-elasticities, providing insights into the percentage changes

in green TFP in response to unit changes in the explanatory variables.

We estimate a fixed effect linear panel regression as a starting point to identify the

impact of temperature and precipitation on annual agricultural green TFP, treating within-

state variation in degree days, cumulative precipitation, and aging as exogenous, controlling

for potential confunders such as provincial agricultural expenditure and primary industry

added value. To maintain consistency and interoperability, these control variables are also

log-transformed.

The regression specification is as follows:

log(GreenTFPit) = α + β1GDD8−30,it + β2HDD30,it + β3Precit

+ β4Agingit + β5(HDD30,it × Agingit)

+ β6 log(AgriExpenditureit) + β7 log(PrimaryIndustryValueit)

+ γi + δt + ϵit (3)

In the regression model, log(GreenTFPit) represents the natural logarithm of the green total

factor productivity for province i in year t. The variable GDD8−30,it indicates the growing
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degree days between 8°C and 30°C for province i in year t, cumulated over the growing season

from March 1st to September 30th. Similarly, HDD30,it denotes the harmful degree days

above 30°C for the same province and period. Precit refers to the cumulative precipitation

in millimeters over the growing season for province i in year t. The term Agingit captures

the proportion of the elderly population (aged 65 and above) in province i in year t. An

interaction term between harmful degree days and aging, (HDD30,it × Agingit), is included

to explore the effect of extreme heat on aging through the adverse impact on cognition on

elder people (Yi et al., 2023). The control variables include log(AgriExpenditureit), which is

the natural logarithm of the provincial agricultural expenditure (in ten thousand yuan), and

log(PrimaryIndustryValueit), which is the natural logarithm of the primary industry added

value (in hundred million yuan), both for province i in year t. γi represents the province fixed

effects that account for time-invariant characteristics of each province, while δt captures the

year fixed effects that control for common time trends across all provinces. Finally, ϵit is the

error term.
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3 Results

We start with the fixed effects model including aging and weather variables only, respectively

as the baseline regressions to set the stage for the following analysis. For robustness-check

purposes, we developed various specifications with linear and quadratic formats of precip-

itation and growing degree days, respectively, in the preliminary regression analysis. The

specification of linear precipitation and growing degree days is presented in the results.

3.1 Preliminary results

Table 2 presents the regression results of the baseline model estimating the determi-

nants of the natural logarithm of green TFP. The table encompasses six different specifica-

tions to assess the robustness of the results. Regression (1), (2), and (3) use standard errors,

whereas models (4), (5), and (6) employ clustered standard errors at the province level to

account for within-province correlation. Key variables in these regressions include growing

degree days between 8°C to 30°C ( GDD8−30), harmful degree days above 30°C ( HDD30

), precipitation, aging, an interaction term between aging and harmful degree days, log of

agricultural expenditure, and log of primary industry added value.

The coefficient for growing degree days (GDD8−30) is consistently positive and statis-

tically significant at the 1% level in models where it is included (regressions 1, 3, 4, and 6).

For example, in regression (1), the coefficient is 0.128 (p < 0.01), suggesting that an increase

in favorable temperature conditions correlates with higher green TFP. A one standard devia-

tion increase in GDD8−30 is associated with approximately a 12.31% (0.108×1.140) increase

in green TFP, holding all other variables constant. This finding implies that provinces expe-
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Table 2: Regression results of the baseline model

(1) (2) (3) (4) (5) (6)
GDD8−30 0.128∗∗∗ 0.108∗∗∗ 0.128∗∗ 0.108∗∗

(3.484e-02) (3.602e-02) (5.157e-02) (4.912e-02)

HDD30 -0.143∗∗∗ 0.084 -0.143∗∗ 0.084
(4.320e-02) (1.411e-01) (6.434e-02) (1.212e-01)

Precipitation 0.001 -0.001 0.001 -0.001
(2.438e-02) (2.462e-02) (1.876e-02) (2.087e-02)

Aging 0.333∗∗ 0.373∗∗ 0.333∗∗ 0.373∗

(1.644e-01) (1.847e-01) (1.573e-01) (1.960e-01)

Aging × HDD30 -1.401∗ -1.401∗∗

(8.283e-01) (5.137e-01)

ln(Ag expenditure) 0.001 -0.002 -0.001 0.001 -0.002 -0.001
(9.886e-03) (1.007e-02) (9.924e-03) (1.098e-02) (1.166e-02) (1.101e-02)

ln(Added value) 0.064∗∗∗ 0.057∗∗∗ 0.055∗∗ 0.064∗∗ 0.057∗ 0.055∗

(2.107e-02) (2.171e-02) (2.141e-02) (2.824e-02) (3.125e-02) (2.979e-02)

Constant -0.796∗∗∗ -0.359∗∗∗ -0.690∗∗∗ -0.796∗∗∗ -0.359∗∗∗ -0.690∗∗∗

(1.168e-01) (6.207e-02) (1.298e-01) (1.710e-01) (7.302e-02) (1.710e-01)
Observations 480 480 480 480 480 480
AIC -1263.08 -1250.76 -1264.39 -1265.08 -1252.76 -1266.39
BIC -1238.03 -1234.06 -1231.00 -1244.21 -1240.24 -1237.17
Cluster s.e. N N N Y Y Y

Standard errors and cluster standard errors at the province level in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

riencing more beneficial heat accumulation tend to exhibit greater agricultural productivity.

In contrast, the coefficient for harmful degree days (HDD30) is negative and significant

at the 1% level in regressions (1) and (4) (β2 = −0.143, p < 0.01), indicating that extreme

heat negatively impacts green TFP. However, it is worth noting that when the interaction

term between aging and harmful degree days is included in regressions (3) and (6), the

direct effect of harmful degree days becomes insignificant. This suggests that the detrimental

effect of extreme heat operates through the depreciation of human capital among the aging

population, primarily due to the adverse impact of extreme heat on cognitive function.



3.1 Preliminary results 24

Aging emerges as a significant factor in regressions (2), (3), (5), and (6), with coef-

ficients ranging from 0.333 to 0.373, significant at the 5% level. A one standard deviation

increase in the aging variable (0.0359) is associated with approximately a 1.195% increase

in green TFP, holding all other variables constant. This positive relationship suggests that

provinces with a higher proportion of elderly population tend to have increased green TFP,

potentially due to experienced labor forces or more conservative resource management prac-

tices.

The interaction term between aging and harmful degree days is notably negative and

marginally significant in regression (3) with β5 = −1.401 and p < 0.1, and reaches significance

at the 5% level in regression (6) (β5 = −1.401, p < 0.05). Again, this indicates that the

detrimental impact of extreme heat on green TFP is more pronounced in provinces with a

higher proportion of elderly population. Given that HDD30 represents extreme heat, which

has a negative impact on the cognition of older people, this interaction term suggests that

extreme heat further depreciates the human capital of an aging labor force, compounding

the negative effects on productivity.

Interestingly, the log of agricultural expenditure is not statistically significant in any

model, suggesting it does not directly affect green TFP. Conversely, the log of primary

industry added value consistently shows a positive and significant relationship, indicating

that higher economic output in the primary sector is associated with increased green TFP.

In summary, the findings emphasize the significant impact of growing degree days and

aging on green TFP, while also revealing complex interactions between aging population

and harmful degree days. The use of clustered standard errors in some models enhances

the robustness of the results by accounting for within-province correlation. Furthermore,
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alternative specifications, including quadratic terms for growing degree days and different

bounds for degree days (such as between 10°to 32°), confirm the robustness of the findings.

In some alternative specifications, the interaction term between growing degree days and

aging was also included, but it was consistently insignificant. Therefore, these interaction

results are not reported in this paper.

3.2 Robustness check

Table 3 presents the regression results of the baseline model using an alternative spec-

ification for growing degree days, specifically focusing on the range between 10°C to 30°C

(GDD10−30). This robustness check aims to verify whether the findings from the baseline

model are sensitive to changes in the definition of growing degree days. By adjusting the

temperature range for growing degree days, we assess the consistency of the key variable

coefficients and their significance levels.

In comparison to Table 2, which uses growing degree days between 8°C to 30°C, the

results in Table 3 demonstrate consistency in the key coefficients, confirming the robustness

of our findings. The coefficient for GDD10−30 remains positive and significant across relevant

models, similar to the results for GDD8−30. The coefficient for harmful degree days (HDD30)

also remains negative and significant in models (1) and (4), indicating that extreme heat

negatively impacts green TFP. The aging variable and its interaction with harmful degree

days continue to show significant relationships. Overall, the results in Table 3 support the

findings from the baseline model, reinforcing the robustness of the relationships between

growing degree days, harmful degree days, aging, and green TFP.
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Table 3: Regression results of the baseline model with growing degree days between 10°C to
30°C

(1) (2) (3) (4) (5) (6)
GDD10−30 0.120∗∗∗ 0.097∗∗ 0.120∗∗ 0.097∗

(3.765e-02) (3.882e-02) (5.702e-02) (5.428e-02)

HDD30 -0.139∗∗∗ 0.093 -0.139∗∗ 0.093
(4.347e-02) (1.419e-01) (6.569e-02) (1.234e-01)

Precipitation 0.001 -0.002 0.001 -0.002
(2.460e-02) (2.482e-02) (1.766e-02) (1.986e-02)

Aging 0.333∗∗ 0.402∗∗ 0.333∗∗ 0.402∗

(1.644e-01) (1.848e-01) (1.573e-01) (1.966e-01)

Aging × HDD30 -1.429∗ -1.429∗∗

(8.321e-01) (5.186e-01)

ln(Ag expenditure) 0.001 -0.002 -0.001 0.001 -0.002 -0.001
(9.921e-03) (1.007e-02) (9.954e-03) (1.107e-02) (1.166e-02) (1.112e-02)

ln(Added value) 0.064∗∗∗ 0.057∗∗∗ 0.055∗∗ 0.064∗∗ 0.057∗ 0.055∗

(2.114e-02) (2.171e-02) (2.148e-02) (2.847e-02) (3.125e-02) (3.005e-02)

Constant -0.718∗∗∗ -0.359∗∗∗ -0.608∗∗∗ -0.718∗∗∗ -0.359∗∗∗ -0.608∗∗∗

(1.093e-01) (6.207e-02) (1.214e-01) (1.595e-01) (7.302e-02) (1.588e-01)
Observations 480 480 480 480 480 480
AIC -1259.52 -1250.76 -1261.44 -1261.52 -1252.76 -1263.44
BIC -1234.48 -1234.06 -1228.05 -1240.65 -1240.24 -1234.22
Cluster s.e. N N N Y Y Y

Standard errors and cluster standard errors at the province level in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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4 Conclusion

This study examines the relationships between climatic factors, population aging, and agri-

cultural green Total Factor Productivity in China from 2005 to 2020. Using comprehensive

data from the China Statistical Yearbook and the China Meteorological Data Service Cen-

ter, we employ a fixed-effects regression model to analyze how growing degree days, harmful

degree days, cumulative precipitation, and the aging population impact green TFP.

Our findings highlight the significant influence of climate variables on agricultural pro-

ductivity. Favorable temperature conditions, measured by growing degree days, positively

affect green TFP, indicating that optimal temperature ranges are crucial for enhancing agri-

cultural productivity. Conversely, harmful degree days negatively impact green TFP, showing

the adverse effects of extreme heat on agricultural efficiency.

The study also reveals the effects of population aging on green TFP. Provinces with a

higher proportion of elderly agricultural workers tend to have increased green TFP, possibly

due to the experience and resource management practices of older farmers.

However, the interaction term between aging and harmful degree days indicates that

extreme heat exacerbates the challenges faced by an aging workforce, likely due to its adverse

impact on cognitive and physical abilities. Additionally, older farmers may have more time

to engage in labor-intensive green practices, such as applying smaller amounts of fertilizer

more frequently, which is more environmentally sustainable than applying a large amount

at once and then pursuing off-farm income opportunities. In contrast, younger farmers, who

often have more off-farm income opportunities, might have less time to invest in such labor-

intensive green technologies. The propensity of older farmers to remain in the village and
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devote more time to farming activities enables them to adopt these practices more readily.

However, the interaction between aging and harmful degree days indicates that extreme heat

exacerbates the challenges faced by an aging workforce, likely due to its adverse impact on

cognitive and physical abilities.

To ensure the robustness of our results, we conduct several robustness checks, including

using different definitions of growing degree days, such as the range between 10°C to 30°C.

The consistency of key coefficients across these specifications confirms the reliability of our

findings. The inclusion of a linear time trend further helps control for long-term temporal

variations, ensuring that the results are not driven by year-specific shocks or trends.

In conclusion, this study provides valuable insights into the critical interplay between

climate conditions, population aging, and agricultural green TFP in China. The findings

highlight the importance of considering both environmental and demographic influences in

shaping agricultural productivity and sustainability. Policymakers aiming to enhance the

sustainability and efficiency of the agricultural sector should adopt a multifaceted approach

that integrates climatic and demographic considerations. By addressing the unique chal-

lenges posed by climate change and an aging workforce, China can foster a resilient and

sustainable agricultural system capable of meeting future food security and environmental

goals.
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