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A large literature has estimated the effects of climate change on agricultural yields. That work assumes, but

rarely tests, that changes in yields translate directly into changes in household wellbeing. Such assumptions

elide the rather large literature on resilience to climate and other shocks. This work uses satellite derived

yield data (GCVI) to analyze the relationship between agricultural productivity and household welfare, as

measured by overall and food expenditure in the West African Sahel. We use remotely-sensed vegetation in-

dices as a proxy for crop yields, as well as a granular household level dataset from 85% of Mali’s administra-

tive communes between 2011 and 2019. Calculating commune-level indices for each growing season, we are

then able to estimate their effects on household level expenditures for two growing seasons per household. As

expected, we find that changes in yields have a statistically significant effect on overall household expenditure

as well as other expenditure categories (food, leisure, etc.) for rural dwellers. This effect for rural dwellers

is, however, relatively muted to changes in the values of vegetation indices, with GCVI to expenditure elas-

ticities in the range of 0.10. Such low expenditure elasticities for changes in yields indicates a large degree of

resilience to climate-related variation in agricultural productivity by Malian rural households. We draw con-

clusions based on this work for policy makers and for researchers interested in using remote sensed data for

climate change and resilience research.
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1 Introduction

The literature has established that shifts in climate can result in changes in agricultural yields, and that such

variation is most likely to hit small-holder farmers in Sub-Saharan Africa particularly hard (Ortiz-Bobea et

al. 2021; Liu et al. 2016). At the same time throughout Sub-Saharan Africa there is a notable lack of reliable

agricultural yield data. There is also still much that we do not know about the welfare impacts of changes in

agricultural output on those that rely at least in part on farming to make a living (Gassner et al. 2019).

We contribute to the literature by answering two questions: 1. Can we use vegetation indices as yields

and if so, which ones? 2. Do increases in agricultural productivity increase household welfare for rural Malians,

and if so, by how much?

First, we demonstrate the efficacy of employing remotely sensed agricultural data as a proxy for yields

across much of Mali, a major agricultural producer in Sub-Saharan Africa and the 8th largest country by area

on the continent. We provide comparisons across multiple popular vegetation indices, focusing in particular

on the Green Chlorophyll Vegetation Index (GCVI) that has previously demonstrated potential to be effective

in the smallholder farming settings common to Sub-Saharan Africa.

We then show that our remotely sensed yield proxies can be utilized to estimate the relationship between

variation in agricultural output and variation in household welfare outcomes,in our case, expenditures. We

employ a repeated cross-section of Malian household data covering the period 2011-2019, comprising house-

holds from nearly 600 of Mali’s roughly 700 administrative communes. Our results show that while increases

in yields are associated with increases in per-capita expenditures for rural households, the elasticity of con-

sumption expenditure in our preferred vegetation index is noticeably less than one (roughly .1), suggesting a

striking amount of resilience to variation in agricultural production among rural Malians.

Our findings are relevant for the study of climate change and its impacts on human welfare. The method-

ology we employ has the potential to provide new insights about climate-induced changes in agricultural out-

put in Sub-Saharan Africa and other parts of the world where we often lack in-field measures of agricultural

production. Combined with household datasets, these methods can help researchers and policymakers better

understand how climate-induced changes to agriculture will impact the welfare of households in a variety of

contexts.
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1.1 Agricultural Output and Household Welfare

The relationship between agricultural output and household well-being has been discussed for some time in

the literature. Datt and Ravallion (1998) combined data from household surveys spanning 35 years in rural

India, and found that growth in farm yields and real wages reduced absolute poverty with about the same

elasticity. Janvry and Sadoulet (2010) analyzed the impact of increases in international food prices during

the years 2006-2008 on households in Guatemala, and found that even with only modest price transmission of

prices into the domestic Guatemalan market, farm households represented about two-thirds of all poor house-

holds losing from rising food prices. This was in-part due to the fact that many agricultural households were

in fact net buyers of food. Indeed, a key issue in evaluating the impact of of agricultural yields on households

is the fact that there is a large amount of heterogeneity in the needs, skills, and incentives of rural households

(Mekonnen and Kassa 2019).Gassner et al. (2019) critiqued what they saw as the conflation of the goals of

food security and poverty reduction in the debate over the use of agriculture for development. They argue

that the two issues have very distinct target groups based on the the role of farming in individual and house-

hold income. In a study of smallholder farmers in rural Ethiopia, Mekonnen and Kassa (2019) found that

their “Adaptive Capacity” was positively correlated with their total income from farm and non-farm activi-

ties.

Gassner et al. (2019) pointed out that while there are a wide array of possible interventions that can help

with food security, some of them do not have a strong impact on poverty levels. For example, in one of the

communities in Kenya that was part of the Millenium Villages, agricultural interventions almost doubled farm

income, but most of this increase went to valued home consumption (Wanjala and Muradian 2013). These in-

terventions therefore contributed significantly to food security, but not to cash income which could be used

for reinvesting. It is therefore possible that the changes in the yields that we proxy for in our study may pri-

marily impact auto-consumption of food rather than non-food consumption. That being said, work by Tes-

faye, Blalock, and Tirivayi (2020), found that conservation agriculture techniques that attempt to sustainably

increase agricultural intensity produced statistically significant decreases in household poverty in Ethiopia.

However they caution about drawing the conclusion that the techniques they analyzed would be useful in

other contexts. We will continue to build upon the foundation laid by previous work by studying how changes

in administrative unit (commune) level proxies for yields are related to changes in the value and composition

of household expenditures.
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1.2 Climate Change and Agricultural Yields

This paper builds on and contributes to the significant previous work into making sense of the relationship

between changes in climate, and changes in agricultural output. First, we base our Vegetation Index (VI)

proxies of agricultural yields on established work in the literature that use VIs to predict crop production. We

extend existing work by applying these techniques to a setting in which they have been underutilized. Mali,

and other countries in Sub-Saharan Africa are also perhaps some of the regions for which these predictive

techniques are most sorely needed, given concerns about the connection between climate change and agricul-

tural production. The intense push to understand this relationship is driven by the importance of agricultural

activities for both economic stability and food security. Global demand for food is expected to increase 60%

by the middle of the twentieth century and this slowdown is predicted to be worse for warmer regions (Liu

et al. 2016). Sub-Saharan Africa is still the most food-insecure region in the world, with around 230 million

people being undernourished (Gassner et al. 2019). Zhao et al. (2017) investigated the impact of temperature

yields on global production of wheat, maize, rice, and soybean using four independent estimates. They found

that each degree-Celsius increase in mean temperatures reduced global yields of wheat by 6.0%, rice by 3.2%,

maize by 7.4%, and soybean by 3.1%. This is particularly relevant to the Malian context, as wheat, rice, and

maize comprise a major portion of the expenditures of Malian households in our study. Grains(maize, wheat,

and sorghum) and rice together make-up roughly 53% of household per-capita half-year food expenditure for

rural Malians.

In using vegetation indices as proxies for yields, we contribute by making use of a technique that may

prove incredibly useful in predicting and analyzing the impacts of changes in climate on crop performance, in

a region where their use may be crucial to counteracting the potentially deleterious effects of climate change.

Studies such as those by Becker-Reshef et al. (2010) and Panek and Gozdowski (2021) have already demon-

strated the ability of some remotely sensed VI data to be used for predicting Winter Wheat yields in Kansas

and Ukraine, and cereals, wheat, and barley in Europe, respectively. Even as these techniques have become

extremely popular in the industrialized world, there still remains a lack of work using remote sensing to eval-

uate crop performance in many developing countries, including much of Sub-Saharan Africa (Burke and Lo-

bell 2017). In many industrialized countries, agricultural lands are characterized by large field sizes that can

easily be analyzed, along with reliable ground measures that can evaluate satellite derived data (Burke and

Lobell 2017; Farmaha et al. 2016; Lobell 2013). On the other hand, smallholder agricultural systems are more

difficult to analyze because of a lack of ground data, as well difficulty in accurately characterizing field sizes

(Burke and Lobell 2017). This is particularly problematic for Sub-Saharan Africa, where around 80% of the

farmers are smallholders (Ameyaw and Nyamu 2016). We now apply the remote-sensing approach but with
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a chlorophyll-based measure that has been shown to correlate well with features that are predictive of crop

yields in smallholder systems (Lambert et al. 2018; Lobell 2013).

1.3 Vegetation Indices as a Proxy For Agricultural Yields

This study will also contribute to the sizable literature on the predictive power of VIs for agricultural yields.

We make use of the Green Chlorophyll Vegetation Index(GCVI) as our preferred yield proxy, and by con-

ducting robustness checks with three other indexes: The Normalized Difference Vegetation Index (NDVI), the

Enhanced Vegetation Index (EVI), and the Green Normalized Difference Vegetation Index (GNDVI). GCVI,

developed by Gitelson, Gritz, and Merzlyak (2003) is a measure of leaf chlorophyll concentration, which is

strongly related to plant photosynthetic capacity, and therefore productivity Bausch, Halvorson, and Cipra

(2008). NDVI, which measures the greenness of a particular region, is the most popular vegetation index.

NDVI has also been shown for some time, to have a strong relationship with plant photosynthetic capacity

(Sellers 1985).

While NDVI has been the most commonly used vegetation index, the literature has shown that other in-

dices may be better suited for predicting yields depending on factors such as the crop type, climate, and the

characteristics being analyzed. With our study we will take inspiration from Burke and Lobell (2017) and use

GCVI as our preferred index for predicting yields. Burke and Lobell (2017) studied the effectiveness of vari-

ous VIs in predicting yields in western Kenya. They found that GCVI significantly outperformed NDVI and

EVI in predicting maize yields. One potential reason for this given by the authors, is that while GCVI relies

on reflectance in the Near-Infrared and Green Wavelengths, NDVI and EVI incorporate reflection from the

red wavelengths, and reflectance at green wavelengths is known to be more responsive than red wavelength

reflection to changes in leaf chlorophyll concentration. Lambert et al. (2018) made use of GCVI when catego-

rizing croplands in Mali, and found that the Leaf Area Index (LAI) was the strongest predictor of smallholder

yields in Mali’s cotton belt. According to Viña et al. (2011), chlorophyll based measures are the most strongly

correlated with LAI(a strong predictor of photosynthetic activity), and suggested that in some circumstances,

GCVI may be a better estimate of the photosynthetic component of LAI (the most relevant component for

agricultural productivity) than destructive methods. Wahab, Hall, and Jirström (2018) studied the predic-

tive power of drone calculated GNDVI to predict maize yields in Ghana, finding that GNDVI better predicted

yields (r = .393) than in-field measures (r = 0.259). GNDVI is a modified version of NDVI that is more sen-

sitive to chlorophyll concentration Bausch, Halvorson, and Cipra (2008), and may be better able to capture

nutrient deficiencies in plants (Burke and Lobell 2017).
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There have been a wide variety of studies using NDVI in yield prediction in diverse settings. The NDVI-

based model developed by Becker-Reshef et al. (2010) for forecasting winter wheat yields, makes use of a com-

bination of remote sensing and official data. The model relates the values of the yields, the seasonal peak

NDVI which they obtain from the Moderate Resolution Imaging Spectro-radiometer (MODIS) satellite sys-

tem, and the maximum winter wheat percentage per corresponding administrative units of a country. The

model was first tested in Kansas, and then applied to Ukraine. Panek and Gozdowski (2021) similarly used

MODIS derived NDVI in studying yields, but analyzed a wider range of crops (all cereals, wheat, and barley)

at the country level, for 20 European nations. In their analysis, they regressed yields on both raw NDVI val-

ues as well as cumulative NDVI (cNDVI). For some countries they found strong relationships between NDVI

in early Spring, and the grain yield of cereals 4 months later. They also found that cNDVI, or the averaged

NDVI directly proportional to it, were the most stable predictors of of grain yields. At the same time, they

found very weak relationships between NDVI and yields for France and Belgium. Other works, such as those

by He et al. (2018) and Mkhabela et al. (2011) have demonstrated the usefulness of NDVI for estimating crop

yields in settings such as Montana, the Canadian Prairie, respectively.

In this study we use VIs across much of Mali and during a period spanning almost a decade. Within the

literature, work using VIs to predict yields in smallholder systems has been hampered by a a lack of high

resolution imagery up until fairly recently. Burke and Lobell (2017) explained that because of the small size

of smallholder fields in Sub-Saharan Africa, as well as irregular boundaries, sensor systems such as Land-

sat, which operates at a relatively high resolution of 30m, have difficulty obtaining accurate crop informa-

tion. Familiy Farming Knowledge Platform: Smallholders Dataportrait (2017) found across a sample of 7

African countries that the average field size was roughly 2 hectares, however this masked significant hetero-

geneity.Carletto, Gourlay, and Winters (2015) found in a survey of 4 African countries (Malawi, Uganda, Tan-

zania, and Niger) that around 25% of fields were less than 0.5 acre in size, and more than 50% were less than

1 acre, and more than 80% less than 2 acre.

We benefit from the fact that on average, Malian fields tend to be larger than in many other countries

in Sub-Saharan Africa according to research by Giller et al. (2021). They have found that in general, farms

tend to be larger in drier agroecological zones, such as those in Mali. This trend is supported by findings

from Harris, Oduol, and Hughes (2021) who found in a sample of 6 African countries that median farm sizes

ranged from 0.63 hectares in Ethiopia to 7 hectares in Mali, with a mean of 9.15. Giller et al. (2021) found

that in the Cotton Basin of Mali, the median amount of cultivated land per household was 10 hectares. Lo-

bell (2013) also stated that the spatial resolution of (30m x 30m) used by the Landsat sensor is sufficient to

delineate individual fields that are roughly 1ha in size or greater. In recent years, studies such as those con-
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ducted by Azzari, Jain, and Lobell (2017), Lobell et al. (2015) and Lobell et al. (2019) have proposed meth-

ods for yield prediction based on the Sentinel-2 sensor that produce images at a resolution of (10m x 10m).

The Sentinel-2 system’s first available images are in 2017, and as our study period for collecting VIs begins

in 2010 and ends in 2019, we have opted to use the Landsat system for all years of our project, though the

Sentinel-2 system holds great potential for future work.

1.4 Climate Change and Household Welfare

With this work we also will speak into the literature that is attempting to examine the relationship between

ACC and changes in the welfare of households in developing country contexts. With ACC expected to most

negatively impact warmer climates, particularly Sub-Saharan Africa Liu et al. (2016), this is a very pressing

concern. In Sub-Saharan Africa, where cereal yields are already 47% of those of the rest of the world Gassner

et al. (2019), there is a pressing need to improve agricultural output and the level of human development.

Our work relates changes in yield proxies in communes across the country of Mali to household level ex-

penditures over the course of nearly a decade. The intensity of changes in the level, and composition of ex-

penditure give a picture of the extent to the resilience and adaptability of households to yearly changes in

both agricultural conditions. Another study conducted within this area was that by Tesfaye, Blalock, and

Tirivayi (2020), which investigated the impact of “Climate-Smart” innovations for farming on rural poverty

in Ethiopia. They found that conservation agriculture interventions with minimum tillage and cereal-legume

associations reduced poverty and improved climate-risk management.

However other work has shown that agricultural interventions that increase yields, may improve food se-

curity without providing significant cash-income to help households move out of poverty (Wanjala and Mu-

radian 2013). However, work by Lunduka et al. (2017), showed that adoption of drought resistant maize in

South Africa improved both yields and income for farmers that adopted the drought-resistant varieties. Our

study attempts to complement studies such as these by giving insights into how variation in yields across ge-

ography and time in Mali are related to changes in consumption patterns. Given ever-improving knowledge

about the impacts of ACC on climate change, our findings can contribute to understanding the degree of

adaptation and resilience that already exists in the Malian context, and in so doing, begin to determine the

amount that will be necessary given the progression of ACC.
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2 Background, Context, and Data

Mali is a landlocked nation in West Africa, with a population of roughly 22.5 million as of 2022 (World Bank

2022). It is the 8th largest country in Africa by area at roughly 1.2 million square miles (World Bank 2022)

with approximately 65% of that area being covered by desert. According to The World Bank, around 5.3% of

Mali’s land is arable USAID (2022). Mali has a low-income economy that is heavily dependent on agriculture,

which makes up approximately 38% of national GDP (World Bank 2022). The GDP per-capita as of 2022

is $833 (World Bank 2022) with around 80% of the population making a living based off of agriculture (In-

ternational Trade Administration 2022), the overwhelming majority of this being done via smallholder farms

(Giller et al. 2021). The fertile lands of Mali lie within an arid agro-ecological zone (Giller et al. 2021), with

agricultural activities are heavily based around the Niger River in the south of the country and the surround-

ing fertile land (USAID 2022). Mali’s main crops are cotton, corn, cereal,peanuts, tobacco, and rice (Interna-

tional Trade Administration 2022). The country is divided into 704 administrative communes, and it is at the

commune level that we will calculate vegetation indices.

Table 1: Descriptive Statistics- Rural Households(OECD Equivalence Scale-CFA Francs)

Statistic N Mean St. Dev.

Grain Consumption 44,612 29,582.990 27,082.630
Grain Auto-Consumption 44,612 13,580.710 15,303.620
Grain Gift Consumption 44,612 744.281 5,831.944
Purchased Grain Consumption 44,612 15,257.990 24,207.640
Rice Consumption 44,612 13,937.540 18,377.530
Meat Consumption 44,612 3,291.810 9,521.759
Clothing Consumption 44,612 2,790.031 3,301.570
Housing Consumption 44,612 348.210 1,072.010
Education 44,612 90.485 3,049.437

2.1 Data

In our study, the source of the household data that we use is the “L’Enquete Modulaire et Permanente Aupres

Des Menages” (EMOP) or “The Modular and Permanent Study of Households” dataset for the years 2011,

2013-16, and 2018-2019. This survey conducted by “L’Institut National de la Statistique” (INSTAT), the

Malian National Statistics Institute. Each year, the survey interviews roughly 6000 thousand households who

are visited once per-quarter. Households are asked for detailed breakdowns of their food and non-food expen-

diture, while also being asked questions on the demographic makeup of the household such as the age and

gender of household measures. This dataset gives us access to household expenditure and demographic infor-

mation throughout each year, across Mali. In our dataset we have households from 596 of Mali’s 704 com-

munes.
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For our proxies of agricultural yields, we make use of the Landsat and MODIS sensors. Our preferred

proxy for yields is GCVI, but we also run regressions with NDVI and 2 other vegetation indices. Calculation

of GCVI is based on reflection in in the Near Infrared(NIR), and green wavelength spectrums. NDVI is based

on the NIR and red wavelengths. The formula for GCVI is the following:

GCV I = (NIR/Green)− 1 (1)

Where NIR is the amount of light reflected in Near-Infrared spectrum, and Green is the amount of light re-

flected in the green spectrum. and the formula for NDVI is given by:

NDV I = (NIR−Red)/(NIR+Red) (2)

Where Red is the amount of light reflected in the red spectrum. NDVI ranges between -1 and 1, with neg-

ative values indicating clouds and water, values near 0 indicating bare soil, values from 0.1-0.5 indicating

sparse vegetation, and values of 0.6 and higher indicating dense vegetation. GCVI is not standardized and so

there is no consistent interpretation of obtained values, though our calculations range from slightly above 0 to

roughly 5.2. We can view the distribution of values for these two indices across communes of Mali in the im-

ages below. In Figure 2 we can also observe that there is sizable variation in GCVI across years in the fertile

southern regions of Mali.
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Figure 1: GCVI Across Mali for the 2019 Growing Season

While the sensors we use may differ in spatial resolution, we find considerable correlation between our

calculated indices, as can be viewed in Figure 3. As we expected, correlations are strongest between indices

that are based on reflection in the same wavelengths, with the green and NIR indices GCVI and GNDVI hav-

ing a correlation coefficient of 0.97 and the red and NIR based indices NDVI and EVI having a coefficient of

0.99.
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Across Years Standard Deviation of Averaged Maximum Commune-Level GCVI

Figure 2

In order to verify the validity of our use of vegetation indices as proxies for agricultural output, we make

use of yield data from World Bank Living Standard and Measurement Survey(LSMS) studies of yields across

Mali in 2014 and 2017 (Enquête Agricole de Conjoncture Intégrée aux Conditions de Vie des Ménages 2014

2016; Tiberti, Ponzini, and Djima 2019). This data also includes the maximal seasonal NDVI for each enu-

meration area, or “grappe”, for which there are over 900. For each household we aggregate the yields for mil-

let, sorghum, and maize, and then relate them to the NDVI value for the grappe in that particular year. We

estimate the relationship using the following specification:

log(Yigt) = αVgt + γ(Vgt)
2 + εigt. (3)

Where Yigt represents yields in kilograms-per-hectare (kg/ha) i in an enumeration area g in yeart, Mgt

maximum GCVI in enumeration area g during the growing season of year t, and εigt is an error term for the

enumeration area.

Our results in Table 2 demonstrate that there is a strong parabolic relationship between NDVI and yields

for the included crops. Therefore, we employ a 2nd degree polynomial in the baseline specification of our
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study. We make use of GCVI in the main specification for our study because it has been found to be more

accurate in small-holder farming systems, but our results show a strong correlation between the indices (.71)

across our study period.

Table 2: Log Yields(Kg/Ha) of Millet, Maize and Sorghum and Log Maximum Seasonal NDVI 2014 and 2017

Log Yields(Kg/Ha)

Log of Max NDVI 33.806∗∗∗

(2.047)

Square of Log Max NDVI −18.561∗∗∗

(2.047)

Observations 6,915
R2 0.049

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

For GCVI and GNDVI, we use the Landsat sensor, and for NDVI and EVI we use the MODIS sensors.

MODIS operates at a (250m x 250m) spatial resolution and a 16-day temporal resolution. The system pro-

vides built-in functions for calculating NDVI and EVI, but lacks the sensors to calculate GCVI and GNDVI.

For Landsat, we use the Landsat 7 between 2010 and 2012, and Landsat 8 between 2013 and 2018, as Landsat

8 did not come online until 2013. We calculate the indices using Google Earth Engine (GEE). We obtain an

administrative shapefile of Mali’s communes from the Global Administrative Areas (GADM) database.
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Correlation Between Vegetation Indices

Figure 3
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3 Empirical Approach

In calculating the commune-level value of GCVI for a particular growing season, we partially borrow from the

approach of Becker-Reshef et al. (2010) in which they calculated an averaged maximum NDVI for counties

in Kansas, and use peak-season averaged maximum GCVI but with adjustments. We set the growing season

as lasting from May 1st to October 1st of each year and then using GEE and the administrative shapefile of

Malian communes, we obtain images in between those dates in 16 day intervals for every commune in Mali

from the Landsat sensor. For each pixel in a particular commune, we take the maximum value of GCVI from

images taken during the growing season. Then, within each commune, we take the mean of the maximum

values of GCVI across all pixels to obtain a Mean of the Maximum GCVI for a particular commune for the

growing season.

Unlike Becker-Reshef et al. (2010), who predict yields of a specific crop, wheat, we do not weight pixels

according to a crop filter. We also do not adjust our maximum GCVI values by subtracting the average of the

minimum 5th percentile values of GCVI. We do apply cloud masks to our images in order to remove pixels

that have particularly heavy cloud cover, as the presence of clouds can result in erroneous calculations of a

VI. Once this procedure is finished we have a dataset of Averaged Maximum GCVI values for every commune

in Mali for almost every growing season from 2010-2019. For the year 2010 we were not able to obtain Aver-

aged Maximum GCVI values for 40 communes. This may have been a result of gaps in Landsat coverage, or a

particularly rainy season causing thick cloud cover, which then resulted in pixels being removed by our cloud

mask. We also had two communes without GCVI values for 2011. Given that we still have data for the vast

majority of communes in 2010, and the missing commune GCVI values are primarily limited to 2010, we are

confident that our results are not impacted in a significant way.

We can then relate commune level GCVI values with household outcomes. Given that the growing season

begins in May, and ends in October, it is reasonable to expect that household expenditure in the first half of

the year is impacted by the quality of the previous growing season’s harvest. We are able to observe house-

hold consumption in all 4 quarters of the year, and therefore are able to observe how expenditure may change

as the outcome of the current-year growing season is felt and influences income, home consumption, and ex-

penditure. This allows us to treat our data as a panel in which we have two observations for each household.

We average expenditure for the first two quarters of the year, and do the same for the last two quarters to

create two half-year average expenditure values per household. Average expenditure for the first half of the

year is then regressed on the commune-level average of maximum GCVI for the growing season.
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Our main empirical specification is given by the following:

IHS(Yijht) = αlog(Mjt) + γ(log(Mjt))
2 + λh + ϕt + µi + εijht (4)

.

Where Yijty is the Inverse Hyperbolic Sine (IHS) Transformation of per-capita average quarterly expen-

diture of a household i in a commune j in half-year h in yeart, Mjt is within-commune averaged maximum

GCVI in commune j during the growing season of year t , µi is a household fixed-effect, λh is a half-year

fixed-effect, ϕt is a year fixed effect, and εijht is a commune-level clustered standard error. For calculating

per-capita expenditure we use the OECD-Modified Scale (Hagenaars, Zaidi, and Vos 1994). We use the IHS

Transformation in order to address 0 values for expenditure that are quite common for non-food items in this

dataset.

Our identification strategy relies on variation geographically in the levels of GCVI across communes for a

particular growing season, as well as variation in GCVI for communes between different growing seasons. Our

key assumption is that conditional on household, year, and half-year fixed effects, commune-level averaged

maximum GCVI is not correlated with the error terms.

4 Results

We observe a striking level of resilience in the expenditures of Malian households in response to changes in

Averaged Maximum GCVI across years and communes. There is a significant amount of heterogeneity in our

results depending on the type of good being consumed, and whether the household is urban or rural. In ??

we show the regression results for our three general categories of “Total Consumption”, “Total Food Con-

sumption” and “Total Non-Food Consumption”, for our full sample of urban and rural households. There is a

small but statistically significant and positive relationship between the averaged maximum of commune-level

GCVI and the IHS transformation of total consumption. This effect seems to entirely come through non-food

consumption, for which the coefficient on the mean of maximum GCVI is positive and statistically significant.

The coefficient for total food consumption is positive but not statistically significant.
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Relationship Between GCVI And Per-Capita Expenditure for Urban And Rural Households

Figure 4

Table 3: Relationship Between GCVI and Averaged Half-Year General Expenditure for Urban and Rural
Households- OECD Equivalence Scale

(1) (2) (3)
IHS Total Expenditure IHS Total Food Expenditure IHS Total Non-Food Expenditure

Log of Averaged Maximum GCVI 0.084∗∗∗ 0.067∗∗∗ 0.295∗∗∗

(0.020) (0.019) (0.048)

Square of Log Averaged Max GCVI −0.046∗∗∗ −0.048∗∗∗ −0.062∗

(0.016) (0.016) (0.035)

Observations 75,472 75,472 75,472
R2 0.871 0.848 0.884
Household FE Yes Yes Yes
Year FE Yes Yes Yes
Half-Year FE Yes Yes Yes
Controls No No No
Mean of outcomes 11.719 11.568 9.447
Mean of GCVI mean 0.654 0.654 0.654
SD of GCVI mean 0.500 0.500 0.500

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

When we limit our regression to the same categories of consumption for only rural households, we find

a noticeably stronger relationship between changes in GCVI and changes in the big three categories of con-

sumption. In Table 3 we can see positive and statistically significant coefficients on the mean of maximum

GCVI for each type of expenditure. As with the previous full-sample regressions, we see that the increase in
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total expenditure is primarily driven by the change in non-food expenditure. The fact that we see far more

significant results for rural households as opposed to urban ones also lends support to our argument that our

measures of GCVI are proxying for changes in agricultural yields.

Relationship Between GCVI And Per-Capita Expenditure for Rural Households

Figure 5

Table 4: Relationship Between GCVI and Averaged Half-Year General Expenditure for Rural Households-
OECD Equivalence Scale

(1) (2) (3)
IHS Total Expenditure IHS Total Food Expenditure IHS Total Non-Food Expenditure

Log of Averaged Maximum GCVI 0.100∗∗∗ 0.089∗∗∗ 0.340∗∗∗

(0.022) (0.023) (0.048)

Square of Log Averaged Max GCVI −0.041∗∗∗ −0.043∗∗ −0.071∗∗

(0.016) (0.017) (0.032)

Observations 40,786 40,786 40,786
R2 0.858 0.848 0.821

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

When we break down rural food expenditure into some of its components, we see that increases in the

commune-level mean of maximum GCVI are associated with statistically significant increases in spending on

meats in Table 5, which can be interpreted as a shift towards luxury consumption. While there is no statis-

tically significant change in total grain or rice consumption, once again, when analyzing their components we

see that there is significant shifting of expenditures. In Table 9 we can see that the expenditure values of self-
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produced grains that rural households consume decrease markedly in averaged maximum GCVI. Conversely,

there are statistically significant increases in expenditures on purchased grains in column 2, and the expen-

diture values of grains received as gifts in column 3. We observe the same dynamics in expenditures on rice

in columns 4-6. The negative coefficient on averaged maximum GCVI for auto-consumption of rice is almost

twice that of the coefficient in column 1. The coefficient on GCVI for purchased rice expenditure in column 5

is roughly the same as the coefficient for column 2.

Table 5: Relationship Between GCVI and Averaged Half-Year Food Expenditure for Rural Households-
OECD Equivalence Scale

(1) (2) (3) (4) (5)
IHS Total Food IHS Grain IHS Rice IHS Meat IHS Peanut Oil

Log of Averaged Maximum GCVI 0.089∗∗∗ 0.132∗∗ −0.040 0.447∗∗ −1.074∗∗∗

(0.023) (0.053) (0.160) (0.194) (0.178)

Square of Log Averaged Max GCVI −0.043∗∗ −0.074∗ 0.073 −0.103 0.273∗∗

(0.017) (0.039) (0.108) (0.145) (0.124)

Observations 40,786 40,786 40,786 40,786 40,786
R2 0.848 0.739 0.738 0.744 0.791
Household FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Half-Year FE Yes Yes Yes Yes Yes
Controls No No No No No
Mean of outcomes 11.472 10.705 8.693 5.348 6.547
Mean of GCVI mean 0.792 0.792 0.792 0.792 0.792
SD of GCVI mean 0.500 0.500 0.500 0.500 0.500

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 6: Relationship Between GCVI and Averaged Half-Year Food Expenditure for Rural Households-
OECD Equivalence Scale

(1) (2) (3) (4) (5) (6)
IHS Grain (auto) IHS Grain (buy) IHS Grain (gift) IHS Rice (auto) IHS Rice (buy) IHS Rice (gift)

Log of Averaged Maximum GCVI −0.927∗∗∗ 0.962∗∗∗ 0.621∗∗∗ −1.039∗∗∗ 0.608∗∗ 0.345∗∗∗

(0.250) (0.230) (0.139) (0.311) (0.304) (0.103)

Square of Log Averaged Max GCVI 0.127 −0.391∗∗ −0.232∗∗∗ −0.245 −0.130 −0.146∗∗

(0.170) (0.156) (0.082) (0.213) (0.197) (0.062)

Observations 40,786 40,786 40,786 40,786 40,786 40,786
R2 0.784 0.722 0.670 0.765 0.744 0.604
Household FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Half-Year FE Yes Yes Yes Yes Yes Yes
Controls No No No No No No
Mean of outcomes 7.959 7.994 0.651 2.897 6.884 0.268
Mean of GCVI mean 0.792 0.792 0.792 0.792 0.792 0.792
SD of GCVI mean 0.500 0.500 0.500 0.500 0.500 0.500

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The dynamics for non-food consumption also present with interesting effects due to changes in GCVI. In

Table 7 there is evidence that while per-capita total non-food expenditure is increasing in the average maxi-

mum of GCVI, the signs and magnitudes of the coefficients vary considerably, with the coefficient going from
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−0.063 for per-capita spending on alcohol, to 1.139 for per-capita expenditure on clothing, with only the

clothing coefficient being significant out of those two.

Table 7: Relationship Between GCVI and Averaged Half-Year Food Expenditure for Rural Households-
OECD Equivalence Scale

(1) (2) (3) (4) (5)
IHS Total Non-Food IHS Alcohol IHS Health IHS Clothing IHS Housing

Log of Averaged Maximum GCVI 0.340∗∗∗ −0.063 −0.056 1.139∗∗∗ −0.094
(0.048) (0.156) (0.125) (0.108) (0.130)

Square of Log Averaged Max GCVI −0.071∗∗ −0.113 0.185∗∗ −0.372∗∗∗ −0.126
(0.032) (0.099) (0.085) (0.075) (0.095)

Observations 40,786 40,786 40,786 40,786 40,786
R2 0.821 0.801 0.728 0.699 0.880
Household FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Half-Year FE Yes Yes Yes Yes Yes
Controls No No No No No
Mean of outcomes 9.068 2.249 5.951 7.998 3.674
Mean of GCVI mean 0.792 0.792 0.792 0.792 0.792
SD of GCVI mean 0.500 0.500 0.500 0.500 0.500

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

We do find a statistically significant relationship between changes in the mean of maximum GCVI and

changes in per-capita expenditure on schooling for rural households, though the coefficient is negative as can

be seen in column 1 of Table 8. We see statistically significant increases in per-capita spending on communi-

cation services as well as other non-food goods.

Table 8: Relationship Between GCVI and Averaged Half-Year Non-Food Expenditure for Rural Households-
OECD Equivalence Scale

(1) (2) (3) (4) (5)
IHS Education IHS Communication IHS Transportation IHS Restaurants IHS Other Non-Food Expenditure

Log of Averaged Maximum GCVI −0.758∗∗∗ 0.332∗∗∗ −0.060 −0.207∗∗∗ 0.710∗∗∗

(0.120) (0.095) (0.137) (0.057) (0.116)

Square of Log Averaged Max GCVI 0.540∗∗∗ −0.148∗∗ 0.059 0.147∗∗ −0.127
(0.088) (0.062) (0.090) (0.058) (0.079)

Observations 40,786 40,786 40,786 40,786 40,786
R2 0.762 0.827 0.843 0.842 0.845
Household FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Half-Year FE Yes Yes Yes Yes Yes
Controls No No No No No
Mean of outcomes 1.312 5.588 4.836 0.526 4.423
Mean of GCVI mean 0.792 0.792 0.792 0.792 0.792
SD of GCVI mean 0.500 0.500 0.500 0.500 0.500

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Although throughout our regressions there is meaningful heterogeneity in coefficient magnitudes and

signs for different goods, they do not demonstrate massive swings in per-capita expenditure levels nor in the

components of per-capita expenditure for rural households. We do see evidence of shifts towards more per-
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capita expenditure on “luxury” food items such as meats, as well as decreases in the expenditure value of

auto consumption, when GCVI increases.

4.1 Urban Household Per-Capita Expenditure

We expected to find that urban household expenditure would be less elastic with respect to changes in aver-

aged maximum GCVI, as it is reasonable to believe that less households in urban regions rely on agricultural

activities for income or auto-consumption.

Relationship Between GCVI And Per-Capita Expenditure for Urban Households

Figure 6

Our results for the urban segment of our sample are in line with our expectations. For per-capita total

expenditure, and per-capita food expenditure, the coefficients on the mean of maximum GCVI are positive

but statistically insignificant. The coefficient for the regression of per-capita non-food expenditure on GCVI

is positive and statistically significant, with the magnitude slightly less than that of the rural sample Table 9.

The regressions for per-capita expenditure of grain and rice both yield statistically insignificant coefficients, a

sharp contrast with our findings for rural households. The coefficient is positive and statistically significant at

the 10% level for per-capita meat expenditure. This value had been statistically significant at the 5% level for

our rural sample. As in the case of rural households, there is a statistically significant and negative relation-

ship between averaged maximum GCVI and per-capita spending on Peanut Oil.
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Table 9: Relationship Between GCVI and Averaged Half-Year General Expenditure for Urban
Households-OECD Equivalence Scale

(1) (2) (3)
IHS Total Expenditure IHS Total Food Expenditure IHS Total Non-Food Expenditure

Log of Averaged Maximum GCVI 0.075∗∗ 0.052∗ 0.260∗∗∗

(0.034) (0.030) (0.083)

Square of Log Averaged Max GCVI −0.067∗∗ −0.073∗∗∗ −0.069
(0.028) (0.026) (0.066)

Observations 34,686 34,686 34,686
R2 0.866 0.835 0.896
Household FE Yes Yes Yes
Year FE Yes Yes Yes
Half-Year FE Yes Yes Yes
Controls No No No
Mean of outcomes 11.880 11.681 9.893
Mean of GCVI mean 0.493 0.493 0.493
SD of GCVI mean 0.450 0.450 0.450

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 10: Relationship Between GCVI and Averaged Half-Year Food Expenditure for Urban Households-
OECD Equivalence Scale

(1) (2) (3) (4) (5)
IHS Total Food IHS Grain IHS Rice IHS Meat IHS Peanut Oil

Log of Averaged Maximum GCVI 0.052∗ 0.172 0.086 0.437∗ −0.402∗∗

(0.030) (0.161) (0.185) (0.256) (0.163)

Square of Log Averaged Max GCVI −0.073∗∗∗ −0.188∗ −0.032 −0.278 0.072
(0.026) (0.103) (0.136) (0.212) (0.106)

Observations 34,686 34,686 34,686 34,686 34,686
R2 0.835 0.771 0.761 0.850 0.840
Household FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Half-Year FE Yes Yes Yes Yes Yes
Controls No No No No No
Mean of outcomes 11.681 10.463 9.787 6.603 8.175
Mean of GCVI mean 0.493 0.493 0.493 0.493 0.493
SD of GCVI mean 0.450 0.450 0.450 0.450 0.450

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Regarding non-food expenditure for urban households, we see some adjustments that are similar to those

of rural households, and also some that differ. Increases in average maximum GCVI are associated with sta-

tistically significant increases in per-capita expenditure on clothing and health similarly to rural households,

as well as a decrease in per-capita expenditure on housing.
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Table 11: Relationship Between GCVI and Averaged Half-Year Non-Food Expenditure for Urban Households-
OECD Equivalence Scale

(1) (2) (3) (4) (5)
IHS Total Non-Food IHS Alcohol IHS Health IHS Clothing IHS Housing

Log of Averaged Maximum GCVI 0.260∗∗∗ −0.145 0.303 1.414∗∗∗ −0.419∗∗∗

(0.083) (0.169) (0.195) (0.325) (0.157)

Square of Log Averaged Max GCVI −0.069 0.029 0.041 −0.582∗∗ 0.109
(0.066) (0.150) (0.145) (0.246) (0.117)

Observations 34,686 34,686 34,686 34,686 34,686
R2 0.896 0.819 0.718 0.754 0.908
Household FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Half-Year FE Yes Yes Yes Yes Yes
Controls No No No No No
Mean of outcomes 9.893 1.918 6.276 8.606 7.447
Mean of GCVI mean 0.493 0.493 0.493 0.493 0.493
SD of GCVI mean 0.450 0.450 0.450 0.450 0.450

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 12: Relationship Between GCVI and Averaged Half-Year Non-Food Expenditure for Urban Households-
OECD Equivalence Scale

(1) (2) (3) (4) (5)
IHS Education IHS Communication IHS Transportation IHS Restaurants IHS Other Non-Food Expenditure

Log of Averaged Maximum GCVI −0.971∗∗ −0.318 0.102 −0.121 0.387∗∗

(0.424) (0.196) (0.127) (0.076) (0.172)

Square of Log Averaged Max GCVI 0.358 0.239∗ 0.091 0.118 −0.079
(0.310) (0.133) (0.104) (0.104) (0.111)

Observations 34,686 34,686 34,686 34,686 34,686
R2 0.810 0.869 0.898 0.835 0.886
Household FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Half-Year FE Yes Yes Yes Yes Yes
Controls No No No No No
Mean of outcomes 2.395 6.993 5.865 0.586 5.541
Mean of GCVI mean 0.493 0.493 0.493 0.493 0.493
SD of GCVI mean 0.450 0.450 0.450 0.450 0.450

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

For urban households, we find a statistically significant decrease in per-capita expenditure on education

as GCVI increases, which appears counter-intuitive. The strongest effect of our proxy for yields on educa-

tion is seen in the segment of our sample that is least directly dependent on agricultural activities for in-

come, which may suggest a price or crowding out effect. It is also not immediately obvious why the effect of

improved yields on education expenditures would be negative. One possibility for why the effects of higher

yields reduces education expenditure may be that improved yields lead households to substitute away from in-

vesting in the education of their children, and towards having their children assist in agricultural activities. It

is also likely that agricultural activities are still taking place in communes classified as urban.
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4.2 Robustness Checks

One potential threat to the quality of our estimates is mismeasurement of yields due to our using GCVI. We

therefore conduct a series of robustness checks using the commune-level averaged maximum of NDVI. Because

the range of NDVI values is smaller than that of GCVI, we would expect the magnitudes of the coefficients to

be larger in the NDVI regressions than in those for GCVI if they capture similar changes in vegetation health

across Mali, and this is what we observe. For the big three categories of general expenditure, the coefficients

on the average of maximum of NDVI are positive and statistically significant. Viewing these results in Ta-

ble 3, we can see that the signs on the coefficients are the same as in Table 13, however in the case of NDVI,

the coefficients are significant for per-capita food expenditure which was not the case for GCVI. Similarly to

GCVI, the strongest effect by far is for per-capita non-food expenditure in column 3.

Table 13: Relationship Between NDVI and Half-Year Expenditure for All Households- OECD Equivalence
Scale

(1) (2) (3)
IHS Total Consumption IHS Total Food Consumption IHS Total Non-Food Consumption

Log Averaged Maximum NDVI 0.699∗∗∗ 0.683∗∗∗ 0.940∗∗∗

(0.132) (0.137) (0.302)

Square of Log Averaged Max NDVI 0.216∗∗∗ 0.226∗∗∗ 0.041
(0.059) (0.056) (0.168)

Observations 75,678 75,678 75,678
R2 0.871 0.848 0.882
Household FE Yes Yes Yes
Year FE Yes Yes Yes
Half-Year FE Yes Yes Yes
Controls No No No
Mean of outcomes 11.719 11.568 9.446
Mean of NDVI mean -0.744 -0.744 -0.744
SD of NDVI mean 0.416 0.416 0.416

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

When we focus on just rural households, for the big three expenditure categories, the coefficients on the

mean of max NDVI are all positive and statistically significant, like in our original regressions. There are

also interesting results when we look at the elements of food expenditure. We observe that the coefficient on

NDVI for per-capita grain and rice expenditure is positive and statistically significant, but do not observe this

for per-capita meat expenditure as in the GCVI regressions in Table 4.
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Table 14: Relationship Between NDVI and Half-Year Food Expenditure for Rural Households- OECD
Equivalence Scale

(1) (2) (3)
IHS Total expenditure IHS Total Food expenditure IHS Total Non-Food expenditure

Log Averaged Maximum NDVI 0.731∗∗∗ 0.731∗∗∗ 0.925∗∗∗

(0.154) (0.166) (0.266)

Square of Log Averaged Max NDVI 0.252∗∗∗ 0.268∗∗∗ 0.029
(0.075) (0.081) (0.148)

Observations 40,912 40,912 40,912
R2 0.857 0.847 0.819
Household FE Yes Yes Yes
Year FE Yes Yes Yes
Half-Year FE Yes Yes Yes
Controls No No No
Mean of outcomes 11.583 11.473 9.068
Mean of NDVI mean -0.622 -0.622 -0.622
SD of NDVI mean 0.378 0.378 0.378

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

We also see similar expenditure dynamics play out in Table 16 as with the breakdowns of spending on

grain and rice. The coefficients on NDVI for autoconsumption of grain and rice are both negative and sta-

tistically significant, while the coefficients in the regression on purchased grain and rice are both statistically

significant and positive.

Table 15: Relationship Between NDVI and Half-Year Food Expenditure for Rural Households- OECD
Equivalence Scale

(1) (2) (3) (4) (5)
IHS Total Food IHS Grain IHS Rice IHS Meat IHS Peanut Oil

Log Averaged Maximum NDVI 0.731∗∗∗ 1.050∗∗∗ 1.635∗ 0.339 −3.425∗∗∗

(0.166) (0.338) (0.893) (1.381) (0.960)

Square of Log Averaged Max NDVI 0.268∗∗∗ 0.359∗∗ 0.413 −0.230 −1.308∗∗∗

(0.081) (0.164) (0.371) (0.753) (0.445)

Observations 40,912 40,912 40,912 40,912 40,912
R2 0.847 0.737 0.737 0.744 0.789
Household FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Half-Year FE Yes Yes Yes Yes Yes
Controls No No No No No
Mean of outcomes 11.473 10.706 8.693 5.357 6.552
Mean of NDVI mean -0.622 -0.622 -0.622 -0.622 -0.622
SD of NDVI mean 0.378 0.378 0.378 0.378 0.378

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 16: Relationship Between NDVI and Half-Year Expenditure for Rural Households(Continued)- OECD
Equivalence Scale

(1) (2) (3) (4) (5) (6)
IHS Grain (auto) IHS Grain (buy) IHS Grain (gift) IHS Rice (auto) IHS Rice (buy) IHS Rice (gift)

Log Averaged Maximum NDVI −9.514∗∗∗ 2.830∗∗ −0.405 −9.693∗∗∗ 3.058∗∗ 0.248
(2.159) (1.175) (0.773) (2.006) (1.258) (0.531)

Square of Log Averaged Max NDVI −3.398∗∗∗ 0.142 −0.361 −3.562∗∗∗ 0.409 0.070
(1.218) (0.558) (0.510) (1.213) (0.691) (0.380)

Observations 40,912 40,912 40,912 40,912 40,912 40,912
R2 0.784 0.722 0.667 0.764 0.744 0.602
Household FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Half-Year FE Yes Yes Yes Yes Yes Yes
Controls No No No No No No
Mean of outcomes 7.953 7.999 0.650 2.891 6.889 0.267
Mean of NDVI mean -0.622 -0.622 -0.622 -0.622 -0.622 -0.622
SD of NDVI mean 0.378 0.378 0.378 0.378 0.378 0.378

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

We also see in columns 3 and 6 that unlike in our GCVI regressions, NDVI increases are not associated

with statistically significant increases in gifts of grain or rice, though the coefficients are positive. In Non-

Food Consumption we see similar trends with NDVI as to those with GCVI. The coefficients on regressions

of per-capita clothing and housing expenditures in columns 4 and 5 of Table 17, respectively, are both statis-

tically significant. The signs are positive for clothing and negative and for housing as with the GCVI regres-

sions. We do not observe a positive coefficient for averaged maximum GCVI for the per-capita health expen-

diture as in the GCVI regressions.

Table 17: Relationship Between NDVI and Half-Year Non-Food Expendituee for Rural
Households(Continued)- OECD Equivalence Scale

(1) (2) (3) (4) (5)
IHS Total Non-Food IHS Alcohol IHS Health IHS Clothing IHS Housing

Log Averaged Maximum NDVI 0.925∗∗∗ −1.410∗ 0.856 3.780∗∗∗ −2.948∗∗∗

(0.266) (0.851) (0.799) (0.653) (0.882)

Square of Log Averaged Max NDVI 0.029 −1.167∗∗∗ 0.703∗ 0.602 −0.918∗∗

(0.148) (0.396) (0.367) (0.387) (0.452)

Observations 40,912 40,912 40,912 40,912 40,912
R2 0.819 0.799 0.727 0.695 0.878
Household FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Half-Year FE Yes Yes Yes Yes Yes
Controls No No No No No
Mean of outcomes 9.068 2.252 5.953 7.998 3.678
Mean of NDVI mean -0.622 -0.622 -0.622 -0.622 -0.622
SD of NDVI mean 0.378 0.378 0.378 0.378 0.378

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In general, we find that in terms of statistical significance, and the signs of coefficients that regressions of

per-capita expenditure on average maximum NDVI are similar to those for our GCVI regressions.
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5 Conclusion

In this work we have made use of vegetation indices as a proxy for yields in order to analyze the relationship

between agricultural output and household expenditures in Mali. Our findings show a positive relationship

between our preferred index, GCVI, and overall per-capita expenditure. The effects we found are primarily

driven by changes in expenditures on non-food items, though there are noticeable changes in the composition

of food expenditure. We also see generally stronger effects for rural households as opposed to households from

urban regions.

In terms of food consumption for rural households, with increases in GCVI we see evidence of shifts to-

wards spending on “luxury” goods such as meat and rice. We also observe declines in the expenditure value

of consumption of self-produced grains and increases in expenditure on purchased grains and rice, as well as

the expenditure value of grain and rice gifts received by households. For urban households generally these ef-

fects are far more muted, with no statistically significant change in total grain, rice, or meat consumption.

Most of the increase in overall per-capita expenditure for rural and urban households associated with increases

in averaged maximum GCVI comes through non-food expenditure, with rural households increasing spending

on communication, health and clothing and urban households on health and transportation. Of particular

interest was the lack of a statistically significant effect of our yield proxy on education investments for rural

households, and the negative impact it had for urban households.

Generally our results demonstrate a high level of household resilience among rural Malian households in

the face of changes in agricultural output. This finding calls into question the often assumed one-to-one cor-

relation between ACC and household well-being. Specifically, this resilience of rural households suggest the

need for more in depth work on the types of resilience and whether they are productive or not. In this paper

we have also demonstrated the potential efficacy of remotely sensed vegetation indices as proxies for yields in

the absence of reliable in-field measures. Furthermore, we have also shown that these yield proxies can then

be utilized to quantify changes in household consumption expenditures resulting from variation in agricul-

tural output. The methodologies and techniques we used here have the potential to be of great use in work

to understand the impacts of Anthropogenic Climate Change on agricultural activities, and on the welfare of

households that rely on these activities.
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Enquête Agricole de Conjoncture Intégrée aux Conditions de Vie des Ménages 2014. 2016, May. Accessed De-

cember 22, 2023. https://microdata.worldbank.org/index.php/catalog/3409/data-dictionary.

Familiy Farming Knowledge Platform: Smallholders Dataportrait. 2017. FAO. Accessed August 7, 2023. https:

//www.fao.org/family-farming/data-sources/dataportrait/farm-size/en/.

27

https://doi.org/10.1016/j.rse.2017.04.014
https://doi.org/10.1016/j.biosystemseng.2008.09.011
https://doi.org/10.1016/j.biosystemseng.2008.09.011
https://doi.org/10.1016/j.rse.2010.01.010
https://www.sciencedirect.com/science/article/pii/S0034425710000325
https://doi.org/10.1073/pnas.1616919114
https://doi.org/10.1093/jae/ejv011
https://doi.org/10.1080/00220389808422529
https://doi.org/10.1080/00220389808422529
https://microdata.worldbank.org/index.php/catalog/3409/data-dictionary
https://www.fao.org/family-farming/data-sources/dataportrait/farm-size/en/
https://www.fao.org/family-farming/data-sources/dataportrait/farm-size/en/


Farmaha, Bhupinder S., David B. Lobell, Katherine E. Boone, Kenneth G. Cassman, Haishun S. Yang, and

Patricio Grassini. 2016. “Contribution of persistent factors to yield gaps in high-yield irrigated maize.”

Field Crops Research 186 (February): 124–132. Accessed March 25, 2022. https://doi.org/10.1016/j.fcr.

2015.10.020.

Gassner, A, D Harris, K Mausch, A Terheggen, C Lopes, RF Finlayson, and P Dobie. 2019. “Poverty eradica-

tion and food security through agriculture in Africa: Rethinking objectives and entry points.” Outlook on

Agriculture 48 (November): 309–315. https://doi.org/10.1177/0030727019888513.

Giller, Ken E., Thomas Delaune, João Vasco Silva, Mark van Wijk, James Hammond, Katrien Descheemaeker,

Gerrie van de Ven, et al. 2021. “Small farms and development in sub-Saharan Africa: Farming for food,

for income or for lack of better options?” Food Security (October). Accessed November 10, 2021. https:

//doi.org/10.1007/s12571-021-01209-0.

Gitelson, Anatoly A., Yuri Gritz, and Mark N. Merzlyak. 2003. “Relationships between leaf chlorophyll con-

tent and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant

leaves.” Journal of Plant Physiology 160 (January): 271–282. https://doi.org/10.1078/0176-1617-00887.

Hagenaars, Aldi JM, M Asghar Zaidi, and Klaas de Vos. 1994. Poverty statistics in the late 1980s: Research

Based on Microdata.

Harris, David, Judith Oduol, and Karl Hughes. 2021. “Poverty Alleviation Through Technology-Driven In-

creases in Crop Production by Smallholder Farmers in Dryland Areas of Sub-Saharan Africa: How Plau-

sible Is This Theory of Change?” Frontiers in Sustainable Food Systems 5 (December). Accessed Jan-

uary 7, 2022. https://doi.org/10.3389/fsufs.2021.723301.

He, Mingzhu, John Kimball, Marco Maneta, Bruce Maxwell, Alvaro Moreno, Santiago Begueŕıa, and Xiaocui
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