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Two Birds, One Stone: Responses of Agriculture to Water Pollution Regulation☆ 
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Abstract: 

In many developing nations, addressing non-point source water pollution often involves 
reducing agricultural fertilizer usage, potentially jeopardizing national food security. However, 
leveraging a Chinese environmental regulation as a natural experiment, this study illustrates 
that environmental protections can be implemented without compromising food security. Our 
analysis reveals that the increase in agricultural productivity following the policy intervention 
is the primary factor maintaining agricultural output despite reduced fertilizer usage. This 
productivity growth may be attributed to improvements in water quality and reallocating land 
to more productive users. Additionally, our findings suggest that local governments in China 
may still perceive environmental protection and food security as conflicting goals, highlighting 
the need to rectify this misconception to achieve greater environmental benefits. 
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1. Introduction 

Over the past decades, industrial water pollution in major emerging economies has been 
steadily decreasing, primarily as a result of environmental regulations that specifically 
target this sector. In turn, agricultural pollution has become their leading source of  
water quality degradation (FAO, 2013; WWAP, 2015; EPA, 2016; FAO, 2017). The growing 
reliance on chemical fertilizers in intensified agricultural practices significantly 
contributes to the escalating problem of agricultural water pollution (Garnache et al., 
2016; McArthur & McCord, 2017). Although fertilizer application intensity has declined 
in the developed world, most developing countries still rely heavily on fertilizer to 
sustain agricultural output. For Instance, China, the largest grain producer in the world, 
feeds 18% of the global population while utilizing only 8% of the world’s cultivated 
land and 6% of its fresh water resource (Han & Chen, 2018),1 with its crop yield being 
20% above the global average. However, this significant achievement comes at the cost 
of consuming over one-third of the world's chemical fertilizers (Lin, 1992). As a result, 
agriculture, which accounts for only 7% of China’s GDP, is responsible for around half 
of the nation’s water pollution according to the first National Census of Pollution 
Sources in 2008.  

Therefore, reducing the chemical fertilizer application in agricultural production 
appears to be crucial at the current stage to further improve the water environment. 
Restricting fertilizer use, however, may hurt food security and place significant 
economic burdens, particularly on developing countries given the importance of 
agriculture in these economies and their heavy reliance on fertilizers for food 
production. Surprisingly, with a detailed county-level agricultural production dataset, 
we document in this paper with a difference-in-differences (DID) strategy that a water 
quality control program implemented in major Chinese water basins starting from 2009 
effectively reduced fertilizer application without sacrificing agricultural output. 
Reassuringly, this result is robust to a battery of model specification tests.  

This finding is particularly inspiring for two reasons: (1) opportunity exists to 
achieve the environment-food security balance, an important consideration for most 
developing countries; (2) economically, regulating agricultural water pollutants is much 
less costly than regulating industrial pollutants, at least in China. The literature has 
documented high cost associated with abating industrial water pollutions. For example, 
He et al. (2020) calculates that reducing major industrial water pollution emissions by 
one ton costs almost 400 thousand Chinese Yuan (~55 thousand US dollar). In contrast, 
our study indicates that abating water pollution through reducing fertilizer application 
is almost costless. Shifting policy focus from mainly regulating point-source industrial 
pollution to incorporating non-point-source agricultural pollution into the regulation 
scheme may significantly reduce the cost burden of environmental regulations. 

Motivated by this finding, we continue to study channels through which the policy 
might have affected agricultural production with a production function approach. It 
turns out that other agricultural inputs, including labor, machinery, and planted area, all 

                                                   
1 See the report in English by the Ministry of Water Resources, People’s Republic of China. 
http://www.mwr.gov.cn/english/mainsubjects/201604/P020160406508110938538.pdf 



decreased following the policy implementation. The increases in TFP alone stabilized 
agricultural output under the policy pressure. Given the large productivity gap between 
the farming and industrial sectors in developing countries like China (Lagakos & Waugh, 
2013; McCullough, 2017; Adamopoulos et al., 2022), the policy-induced increase in 
agricultural TFP might have created an economic developing dividend by reallocating 
more productive resources such as labor and capital from the farming sector to the 
industrial sector.  

Unlike industrial firms that are mainly pollution sources, the agriculture sector is 
both water pollution emitters and clean water beneficiary. Using a supplementary water 
quality monitor reading dataset, we show that the policy significantly reduced the 
concentration of key agricultural water pollutants in the affected water basins. The 
improved water quality thus enhanced agricultural productivity. We also document 
evidence that treated counties which historically rely more heavily on irrigation enjoy 
higher post-policy increase in agricultural TFP. This is consistent with the water-quality 
improvement story since the impact of water quality should be more pronounced for 
counties that irrigate more. 

Another possible reason for the improvement in agricultural productivity is that 
less productive farmers might have also responded to the pressure of fertilizer use 
limitation by renting out their land to more productive units or exiting farming. 
Consistent with this hypothesis, we show that there is a significant increase in the 
number of large efficient family farms in the affected counties. As is widely 
documented in the trade and environmental regulation literature, this positive 
reallocation effect effectively increases aggregate TFP (Melitz & Ottaviano, 2008; Eslava 
et al., 2013; Andersen, 2018; Impullitti & Licandro, 2018). Lastly, we also document weak 
evidence that government investment in agriculture infrastructure increased in affected 
counties following policy implementation. This increase in agriculture-related public 
expenditure, if deemed as a cost of stabilizing agricultural production under the policy, 
is at most moderate compared to the cost of regulating industrial pollutions. 

Although the results above indicate that environmental preservation and the 
sustenance of food security are not inherently contradictory objectives, the tendency to 
perceive these dual aims as conflicting priorities may still persist within the existing 
political framework of China. Specifically, different counties are assigned different 
priorities by the upper-level government, and the promotion prospects of local officials 
are largely contingent upon their fulfillment of these prioritized objectives. We find that 
national major grain-producing counties (MGCs) that prioritize on food production did 
not reduce fertilizer application, even though it manifests that agricultural output 
remained largely unchanged in non-MGCs where fertilizer application was 
significantly reduced.  

The finding above is consistent with a (likely wrong) belief that regulating fertilizer 
use may hurt agricultural production, making local officials in MGCs reluctant to take 
the risk to curb fertilizer use. Starting from 2014, the Chinese central government 
initiated a reform in the promotion criteria for local officials, with the objective of 
reallocating greater emphasis towards environmental protection or agricultural 
production. As of 2022, the reform has been implemented in approximately 25% of 



counties across the nation. However, only one-third of the reformed counties 
simultaneously emphasize these two goals. Our results above indicate that aligning 
these two goals for all reforming counties may help to attain greater environmental 
benefits without hampering food security.  
 Broadly speaking, our paper relates to three areas of literature. First, it 
complements a large literature that evaluates the impact of environmental regulation 
targeting industrial firms on firm/industry production (Berman & Bui, 2001; Greenstone, 
2002; List et al., 2003; Ryan, 2012; Shapiro & Walker, 2018; Keiser & Shapiro, 2019; Najjar & 
Cherniwchan, 2021) and in particular the context of China (Chen et al., 2018; Wang et al., 
2018; He et al., 2020; Cui et al., 2021). While the Porter Hypothesis states that polluting 
firms may benefit from environmental policies, most of the studies in the literature 
document a decline in firm- or industry-level output/productivity following policy 
implementation, with only a few exceptions (Mohr & Saha, 2008; Cohen & Tubb, 2018). 
This study, in contrast, estimates the impact of a policy that regulates the agriculture 
sector instead of the industrial sector, and we document robust findings that agriculture 
output is unaffected by the policy due to an increase in agriculture productivity. 

In a recent study, Viard et al. (2022) shows that although air quality regulations 
reduced firm competitiveness, the policy-induced air quality improvement enhanced 
industrial firms’ productivity. Our finding that the policy-induced water quality 
improvement may contribute to agricultural TFP increase echoes this finding in the 
context of water quality regulation.  

Second, related to the first literature, several recent studies quantify the indirect 
impacts of environmental policy targeting industrial firms on agriculture. For example, 
Sanders and Barreca (2022) and Li et al. (2024) quantifies how environmental policies 
targeting industrial firms’ SO2 emissions affect agricultural yield and revenue in US 
and China. In contrast, our study shows that agricultural production would not be hurt 
by environmental policies that directly targeting agricultural pollution. 

The remainder of the paper proceeds as follows. We briefly review the agriculture 
institution in China, the environmental consequences of agriculture production and the 
background of the water pollution control policy under investigation in Section 2. 
Section 3 presents the empirical strategy and the dataset we use to identify the policy 
effects. Section 4 discusses the main estimation results, Section 5 performs mechanism 
analyses and Section 6 performs heterogeneity analyses and discuss policy implications. 
Section 7 concludes the paper. 
 

2. Background 

2.1 The Water Quality Control Plan in Key Basins 

Water quality degradation has long been a major environmental problem in China. The 
first law on water quality regulation, i.e., Law on Prevention and Control of Water 
Pollution, was enacted in 1984, requiring local and national governments to explicitly 
consider water environment protection in regional development planning. 
Supplementing the law, the administration of China’s national environmental 
monitoring center established the national surface water quality monitoring network in 
1988 to gather water quality information. Unfortunately, water quality degradation 
persists likely because the Ministry of Environmental Protection (MEP) did not impose 
explicit water quality targets for these stations, and local officials were not held 



accountable for the environmental quality within their jurisdiction (He et al., 2021; 
Chen et al., 2018).  

Realizing these problems, enforcement efforts from the central government came 
into play since 2006, the first year of the eleventh five-year-plan (FYP), such that 
environmental performance became officially tied to local officials’ promotion 
evaluation. In 2009, the MEP implemented the Water Quality Control Plan in Key 
Basins (hereafter, the plan), which assigned water quality reading targets for water 
monitoring stations in ten key basins and emphasized that achieving these targets are 
essential for local officials’ promotions. To be concrete, the ten key water basins 
specified in the plan include the Songhua River basin, the Huai River basin, the Hai 
River basin, the Liao River basin, the middle and lower reaches of the Yangtze River 
basin, the upper and middle reaches basin of the Yellow River, the Taihu Lake basin, 
the Chaohu Lake basin and the Lake Dian basin. Starting from 2011, more stringent 
water quality reading targets were updated. Because of the strict policy enforcement, 
the fraction of water bodies in the key water basins with water quality reaching Grade 
III and above increased from 44% in 2010 to 63% in 2014. 

Unlike previous water pollution regulations in the country, the plan also sets 
emission control targets for agricultural pollution in addition to those for industrial 
pollution. Compared to non-point source agricultural pollution, point-source industrial 
pollution is much easier to be monitored. Before 2009, there were no official statistics 
on the size of agricultural pollution emissions, neither at the national nor the regional 
levels. Therefore, environmental policies prior to 2009 mainly targeted industrial 
polluters. 

The state council conducted the first national Census of Pollution Sources in 2008. 
In addition to industrial pollution, the census also tracked agricultural pollution 
emissions based on plot-level crop mixtures and land management practices such as 
agricultural chemical application and irrigation adoption. Census data collection was 
finished by the beginning of 2009, providing data support to agricultural pollution 
control under the 2009 water quality control plan. According to the statistics, around 
44%, 57% and 67.4% of national emissions of three important water pollutants, i.e., 
chemical oxygen demand, nitrate and phosphorus, come from agriculture. The census, 
therefore, substantially heightened the imperative of agricultural pollution control 
during the plan. In the census data release, officials of the Chinese Ministry of 
Environmental Protection stated that “to fundamentally address the water pollution 
issue in China, it is imperative to integrate agricultural pollution control into the core 
agenda of environmental protection.” 2  We therefore expect an adjustment in 
agriculture production following the 2009 water pollution control program.  

2.2 Identify Treated Counties under the Plan 

A basin is a water catchment area that can be divided into a set of inter-connected sub-
basins such that each sub-basin can be the upstream or downstream area of one or more 
other sub-basins. Given this upstream-downstream linkage, a water monitoring station 
is only able to capture water pollution emissions from the sub-basin where it is located 
                                                   
2 Source: the Chinanews, https://www.chinanews.com.cn/cj/cj-hbht/news/2010/02-09/2116321.shtml. 



or that sub-basin’s upstream areas; therefore, it is reasonable to expect that only 
counties located in these areas are affected by the 2009 plan. 
 To identify the affected counties, we overlay the county map of China with two 
other geo-coded map layers, namely, the locations of water quality monitoring stations 
and the basin division map.3 In the latter dataset, each sub-basin in the ten key river 
basins are marked as being the downstream or upstream of other sub-basins according 
to hydrological conditions, such as river flow direction, drainage density and basin 
altitude.4 To proceed, we first draw a 50KM-radius circle around each water quality 
monitoring stations located within the ten key water basins mentioned in the plan.5 We 
then find counties with centroid falling inside the circle. Among these counties, those 
that falling inside the same sub-basin with the station or inside the upstream sub-basin 
of the station are identified as counties treated by the 2009 water quality control plan. 
 We illustrate the procedures described above in Figure 1. The triangle represents a 
water quality monitoring station and the circles represents the centroids of ten counties 
that fall within the circle. Areas delineated by the solid frames are different sub-basins, 
two of which, marked by B and C, are the upstream sub-basins of sub-basin A where 
the monitoring station locates. Seven out of the ten counties above, numbered from 1 
to 7, also falls in sub-basin A, B, and C and therefore are categorized as treated counties. 

[Figure 1] 

 Figure 2 shows the differences in two average variables between the treated 
counties and the control counties: fertilizer application and agricultural output. Shown 
by the figure, average fertilizer use across the treated counties declined dramatically 
after 2009 compared to counties in the control group, while the difference in average 
output level remains largely unchanged. 

[Figure 2] 

 
3. Empirical Strategy and Data 

3.1 Empirical Strategy 

We employ the following Difference-in-Differences (DID) regression to identify the 
impact of the water quality program on agricultural outcomes: 

𝑦"# = 𝛽& + 𝛽(𝑊𝑃" × 𝑃𝑜𝑠𝑡# + 𝛾𝑿𝒄𝒕 + 𝜆" + 𝜃# + 𝜀"#,                        (1) 

where the dependent variable 𝑦"#  is the (logged) agriculture output, TFP and 

                                                   
3  The basin division map is provided by HydroBasins. For more information on the dataset, please refer to 
https://www.hydrosheds.org/products/hydrobasins. 
4 There are seven levels of sub-basins in the dataset. Level-one basin is the largest sub-basin, which is divided into 
a set of level-two sub-basins, and then level-three sub-basins, etc. We choose to overlay the county map with level-
six sub-basins when identifying treated counties since the average area of level-six sub-basins is similar to the area 
of an average county in China. 
5 The average radius of a county in eastern China is around 20KM. Water quality monitoring stations are typically 
located 100KM from each other; therefore, we set the radius of the circle drawn around each monitoring stations to 
50KM to reduce circle overlap. Later we will perform a robustness check that increase the circle radius to 100KM. 
All empirical results are robust to the selected circle radius. 



agriculture inputs of county c in year t. 𝑊𝑃"  is a dummy variable that equals to 1 if 
county c is affected by the water quality control program and 0 for counties in the 
control group. Procedures we follow to identify treated counties are described in detail 
in Section 3.2. 𝑃𝑜𝑠𝑡# is a dummy indicator that equals to 1 after 2009 and 0 otherwise. 
𝜆" and 𝜃# are county- and year-fixed effects, respectively, and 𝜀"# is an iid error term. 
Additionally, 𝑿𝒄𝒕  is a vector of county-level time-varying control variables that 
includes total population, total agricultural areas affected by natural disasters, and 
annual averages of weather variables, i.e., precipitation, temperature and sunshine. 
Again, all variables are measured in log-scale. Standard errors are clustered at county 
level since this is the level at which policy takes effect (Abadie et al., 2023). 

Lastly, one may worry that the locations of monitoring stations might be 
endogenously chosen, i.e., that monitoring stations are purposely placed in areas with 
high/low agriculture productivity. However, according to the Ministry of 
Environmental Protection (MEP), the locations of the monitoring stations were chosen 
based mainly on hydrological rather than economic considerations (He et al., 2020).  

Nonetheless, to further alleviate this selection concern, we follow the literature and 
include in 𝑿𝒄𝒕  the interactions between time dummies and 𝒁𝒄 , a series of pre-
regulation socio-economic variables that may affect the location choices of monitoring 
stations (Chen et al., 2018; Gollin et al., 2021). In particular, 𝒁𝒄 include two broad 
categories of variables. First, geographical and general economic conditions, including 
dummy variables indicating whether the county has experienced financial stress by 
2004, has been designated as a national poor county in 2004, is located at province 
boarder, is a city-level county, and is passed by a large river; Second, agriculture 
production conditions, including pre-policy agricultural GDP (measured in 2005) and 
a dummy variable indicating whether the county is a major food-producing county. 

3.2 Data Description 

Our study employs two major datasets, namely, the county-level agriculture input-
output dataset and the locations of water monitoring stations. The county-level 
agriculture unbalanced panel data covering a majority of Chinese counties from 2006 
to 2015 is maintained by the Ministry of Agriculture and Rural Affairs of China, which 
contains county-level fertilizer use and agricultural output on a yearly basis. Other 
agricultural inputs such as labor, machinery, and land are also reported in the dataset. 
The full input-output information additionally allows us to estimate county-level annual 
agriculture TFP following Chen and Gong (2021), and the Detailed estimation 
procedures and discussions are relegated to Appendix A. 

We choose this 2006-2015 as the study period for two reasons. First, Chinese 
national and local policies are often updated in governments’ five-year plans. The water 
quality regulation under investigation started at 2009 during the 11th Five-year Plan and 
ended at 2015, the last year of the 12th Five-year Plan. To make things other than water 
quality regulation stringency comparable as much as possible during the sampling 
period, we restrain the data to cover only these two consecutive five-year plans, i.e., 
from 2006 to 2015. Second, agricultural tax was abolished nationally in China at 2006. 
Focusing on the post-2006 period thus further ensures a stable agricultural production 



environment during the study period. 
To determine the set of counties affected by the water quality control program, 

conduct mechanism and heterogeneity analyses, we complement the two major datasets 
by several other datasets, namely, the water basin connection dataset and the China 
Agri-research Database. Detailed summary statistics can be found in Table 1 

[Table 1] 

4. Main Results 

4.1 Declining Fertilizer Application but Unaffected Agricultural Output 

We first assess whether the pollution control program achieved agriculture-related 
pollution reduction. Due to the non-point source nature of agricultural water pollution, 
it is impossible to track the exact contribution of each farm household or each county 
to the pollution reading of monitoring stations. Instead, we use fertilizer application to 
approximate agricultural pollution since, as discussed in section 2, fertilizer is an 
important production faction in Chinese agriculture and contributes significantly to 
rural water pollution. Although local officials are unable to directly control the non-
point source water pollution emissions from individual farmers, they can, however, 
control the supply of fertilizers through changing fertilizer subsidy rate. 

The first three columns of Table 2 report the estimated effects of the pollution 
control program on fertilizer application. The specifications alternate based on the 
control variables that we include. No control variables are reported in the first column. 
In the second column, we include in the regression interactions between year dummies 
and county-level pre-policy characteristics to control for the possible selection problem 
where these characteristics may affect the location choices of monitoring stations.6 
Finally, in the last column, we additionally include other control variables that may also 
affect the outcome variables. The detailed list of the pre-policy and control variables 
can be found in Section 3.1.  

[Table 2] 

The estimated coefficients are significantly negative in all three columns. Overall, 
the water pollution control program reduced the fertilizer applications for counties in 
the upstream of water monitoring stations by roughly 6%. This size of reduction in 
fertilizer, one of the most important agricultural production factors, is already 
meaningful to affect agricultural output. 

However, as shown by the last three columns of Table 2, agricultural output of the 
treated counties remains largely unchanged. The estimated effect is both small and 
statistically insignificant. The finding that the regulation reduced agricultural pollution 
while maintaining the ability of agriculture to feed the country is encouraging given the 
                                                   
6 An alternative to this specification is to use a matched sample for the estimation. Specifically, for each treated 
county, we identify five counties in the control group based on the estimated propensity score of being treated. The 
unmatched sample are not used in the estimation. The pre-regulation variables used to estimate the propensity score 
are the same as those in 𝒁𝒄. As Appendix Figure A1shows, counties in the treated group and the control group share 
much more similar characteristics after the match, making the matched control group a more nature counterfactual 
than the unmatched control group. It turns out that the estimation results in Appendix Table A2 are similar to the 
results presented in Table 2.  



well-documented negative effects of environmental regulations on the economic output 
of, in particular, industrial firms. We next conduct a battery of robustness checks before 
proceeding to the mechanism analysis in subsection 4.3. 

4.2 Robustness Checks 

There are several potential threats to the identification of the water quality control 
program’s treatment effects. First, a necessary condition for the validity of the DID 
strategy is that the pre-regulation time trends of the outcome variables are the same for 
the treated and control counties. To make sure that there are no pre-trends that might 
drive our results, we conduct an event study and examine how the policy’s impact 
evolved over time by including a series of interactions between the WP dummy and 
year dummies. Specifically, we estimate the following equation: 

𝑙𝑜𝑔(𝑦"#) = 𝛼 + ∑ 𝜌?@&(A
?B@&&C,?D@&&E 𝑊𝑃" × 𝑌𝑒𝑎𝑟#? + 𝛾𝑿𝒄𝒕 + 𝜆" + 𝜃# + 𝜀"#,         (2) 

where 𝑌𝑒𝑎𝑟#? = 1 if 𝑡 = 𝜏. We choose 𝜏 = 2008, one year before the policy took 
effect, as the base year for the event study, so that the post-treatment effects are relative 
to the period immediately prior to the start of the water quality control program. 
 The parallel trend analysis results for fertilizer application and agricultural output 
are plotted in the top panel of Figure 4. Reassuringly, the estimated 𝜌?s for τ ≤ 2007 
are close to zero and are all statistically insignificant; therefore, there is no difference 
in the pre-regulation trends of the two outcome variables between the treated and 
control groups, further indicating that water quality monitoring stations are not 
strategically sited, especially after conditioning on the pre-policy county characteristics. 

[Figure 3] 

 Second, as discussed in Section 2, the radius of the circle we draw to assign 
treatment status to counties around the water quality monitoring stations is 50KM. To 
test whether our results are sensitive to the radius of the circle, we make the radius 
100KM and re-estimate model (1) and the results are reported in the first two columns 
of Table 3. Our results are robust to this change. 

Third, as prefectures are responsible for agricultural production in China, the 
reduction in fertilizer or agricultural output of the treated counties may be partially 
offset by the increase in these variables in the control counties located in the same 
prefectures of the treated counties. If such spillover effects exist, the standard errors 
should cluster at the prefecture level since this is the level at which the policy takes 
effect, and the treatment effects would be also be overestimated by the DID strategy. 
To address this concern, we first change the level of clustering to prefecture level in the 
previous regression, and the standard errors reported in the last two columns of Table 3 
remain largely unchanged compared to the third and sixth columns of Table 2. We then 
drop control counties that are the in the same prefecture with treated counties from the 
sample, expecting that cross-prefecture spillover effects are expected to be much 
weaker than that within prefectures. Reassuringly, the estimation results reported in the 
first two columns of Table 4 are similar to the main estimation results reported in Table 
2.  



[Table 3] 

Following similar spirits, the right panel of Table 4 presents the results of a direct 
spillover effect test. Specifically, we examine whether the outcome variables changed 
after the policy implementation for counties in the same prefecture with treated counties, 
compared to counties outside prefectures with at least one treated county. Again, we do 
not document statistically meaningful changes. Therefore, there is little evidence on 
policy spillovers in this application. 

[Table 4] 

4.3 Decomposing Agricultural Output 

The finding that the policy reduced fertilizer application while maintaining agricultural 
output indicates that there must be an increase in agricultural productivity or other 
farming inputs. Therefore, we re-estimate model (1) by replacing the dependent 
variable by the log of labor, machinery, land and TFP. All these variables pass the 
parallel-trend analysis, as indicated by the middle and bottom panels of Figure 2. The 
estimation results are presented in Table 5.  

[Table 5] 

 It turns out that, following the policy implementation, all three major agricultural 
inputs mentioned above declined, possibly due to the complementarity of these inputs 
to fertilizer in agricultural production. In contrast, the policy significantly pushed up 
agricultural TFP in affected counties, shielding agricultural output from being 
negatively affected by the water quality control program. It is, therefore, interesting to 
delve into the reasons behind the increase in TFP.  

5. Mechanisms 

A natural explanation of the increase in agricultural productivity is that the regulation 
increases the quality of irrigation water. We test this hypothesis with a DID strategy 
similar to that specified in equation (1). Specifically, we estimate the following equation 
with monitoring station-level datasets. 

𝑅S# = 𝛽& + 𝛽(𝐾𝑒𝑦S × 𝑃𝑜𝑠𝑡# + 𝛾𝑿𝒊𝒕 + 𝜌S + 𝜏# + 𝜀S#,                        (2) 

where 𝑅S# is the concentration reading of relevant water pollutants recorded by station 
i in year t, and 𝐾𝑒𝑦S is a dummy variable indicating whether station locates in one of 
the key basins. 𝜌S  and 𝜏#  are station- and year- fixed effects, respectively. The 
estimation results are reported in Table 6. 

[Table 6] 

 As expected, the regulation significantly reduced the concentrations of 
Permanganate Value (PV), Biochemical Oxygen Demand (BOD), Ammonia Nitrogen 
(NH3-N) and Petroleum Pollutants (PP). The Dissolved Oxygen (DO) also increased. 
All of these changes indicate an increase in water quality. As a placebo test, we also 
show in the bottom panel of Table 6 that the policy has little impact on the concentration 



of mercury and lead, two non-agricultural water pollutants that are mainly emitted by 
industrial sources. Reassuring, we show that the increase in TFP is more pronounced 
for counties that rely more heavily on irrigation. 

Besides the change in water quality, actions taken by both farmers and the local 
governments may also affect the county-level TFP. The policy may push farmers to 
engage in modern agricultural management. For example, the decline in agricultural 
outputs of small farmers may drive them out from farming, triggering land transfer and 
thus fostering larger farms or agricultural enterprises. Local governments may also 
encourage the development of large family farms and/or local agricultural enterprises 
by providing more subsidies to these entities in the affected counties. This will also 
increase TFP at aggregate levels and stabilizing aggregate agricultural outputs. In 
addition, local officials, facing the dual responsibility of environmental protection and 
maintaining food security, may provide more financial support to agriculture. We test 
these hypotheses in columns (1) - (4) of Table 8. Although the water quality control 
program has no statistically significant effect on agriculture-related enterprises, the 
number of large family farmers in the treated counties increased significantly, which 
might have contributed to the increase in county-level TFP following the policy 
implementation. We also document weak evidence on the financial support channel. 

[Table 7] 

6. Heterogeneous Response to the Policy by Local Officials’ Differentiated Priority 

Although the results above indicate that environmental preservation and the sustenance 
of food security are not inherently contradictory objectives, the tendency to perceive 
these dual aims as conflicting priorities may still persist within the existing political 
framework of China. Specifically, different counties are assigned different priorities by 
the upper-level government, and the promotion prospects of local officials are largely 
contingent upon their fulfillment of these prioritized objectives. We find that national 
major grain-producing counties (MGCs) that prioritize on food production did not 
reduce fertilizer application, even though it manifests that agricultural output remained 
largely unchanged in non-MGCs where fertilizer application was significantly reduced.  

[Table 8] 

The finding above is consistent with a (likely wrong) belief that regulating fertilizer 
use may hurt agricultural production, making local officials in MGCs reluctant to take 
the risk to curb fertilizer use. Starting from 2014, the Chinese central government 
initiated a reform in the promotion criteria for local officials, with the objective of 
reallocating greater emphasis towards environmental protection or agricultural 
production. As of 2022, the reform has been implemented in approximately 25% of 
counties across the nation. However, only one-third of the reformed counties 
simultaneously emphasize these two goals. Our results above indicate that aligning 
these two goals for all reforming counties may help to attain greater environmental 
benefits without hampering food security   

 



7. Short Conclusions (Tentative) 

In this paper, we present a surprising result that an environmental regulation in China 
significantly reduced agricultural fertilizer application without hampering food 
production. This result is policy-relevant in that it shows that environmental protection 
can be compatible with maintaining food security, and that regulating non-point source 
water pollution in this stage might be far less costly than regulating point-source 
industrial water pollutions. Despite these positive findings, it seems that local 
government in China still perceive the two goals as conflicting objectives, which limits 
the potential of environmental benefits materialization, highlighting the need to rectify 
this misconception to achieve greater environmental benefits. 
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Figure 1. Treatment County Assignment Illustration 
Notes: In this figure, the delineated regions enclosed by solid outlines represent basins; the 
triangular marker pins down the location of a monitoring station; the dots represent county 
centroids. The monitoring station is within basin A. Basins B and C are the upstream basins of 
basin A. The radius of the circle drawn around the monitor is 50KM; therefore, those in the 
shaded basins and within the 50KM circle, i.e., those indexed by 1-7. 
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Figure 2. Differences in Average Fertilizer Application (in log) and Agricultural Output 
(in log) Between Counties Affected and Unaffected by the 2009 Plan 
Notes: In this figure, we plot the differences in county-level average fertilizer application and 
agricultural output between counties in the treatment and control groups under the 2009 Plan. 
As will be discussed in more detail in Section 2.2, treated counties satisfy two conditions: (i) 
they are within 50KM from a monitoring station located inside the ten key water basins, and 
(ii) they are in the same water sub-basin with the station or in the upstream sub-basin of the 
station. The solid vertical line is draw at year = 2009. 
 
 



 
Figure 3. Parallel Trend Test Results 
Notes: This figure plots the results of the event-study regressions for the six dependent variables in 
Table 2 and Table 3. Markers in the figure represent point estimates of 𝛽?, and the vertical solid 
lines represent the corresponding 95% confidence intervals. Standard errors used to calculate the 
confidence intervals are multiple clustered at the province-by-year and county levels. We choose 
τ = −1, one year before the law reform implementation, as the base year in the event studies.



Table 1 Summary Statistics 
Variables N Mean St.D P10 P90 
Log-scaled Variables      
Log (Fertilizer) 13,096 9.721 1.039 8.378 11.018 
Log (Output) 13,096 9.721 1.039 8.378 11.018 
Log (TFP) 13,096 -0.998 0.534 -1.620 -0.320 
Log (Labor) 13,096 11.507 0.818 10.451 12.478 
Log (Machinery) 13,096 12.507 0.960 11.295 13.762 
Log (Land) 13,096 10.984 0.775 10.018 11.959 
Log (Soil Mulch) 11,451 -5.343 1.122 -6.796 -3.939 
Log (Ag Infrastructure) 4,822 -5.289 1.569 -7.300 -3.322 
Log (Ag Support Fund) 8,731 -4.269 1.610 -6.406 -2.280 
Log (Precipitation) 13,096 6.718 0.510 6.149 7.316 
Log (Temperature) 13,096 2.549 0.480 1.900 2.958 
Log (Sunshine) 13,096 7.552 0.283 7.140 7.898 
Log (Population) 13,096 12.900 0.730 11.977 13.829 
Log (Disaster) 13,096 5.981 4.766 0.000 11.136 
Dummy Variables      
Impoverished 12,020 0.314 0.464   

Major Food-producing 12,020 0.389 0.487   

Boundary 13,096 0.397 0.489   
 
 



Table 2. Effects of the Water Quality Plan on Fertilizer Use and Agriculture Outcome 
Dependent 
Variables 

Log (Fertilizer)  Log(Output) 
(1) (2) (3)  (4) (5) (6) 

WP×Post2008 -0.058*** -0.060*** -0.062***  0.007 0.007 0.006 
 (0.018) (0.018) (0.019)  (0.012) (0.012) (0.013) 
        
County FEs Yes Yes Yes  Yes Yes Yes 
Year FEs Yes Yes Yes  Yes Yes Yes 
𝒁𝒊 ×Year FE No Yes Yes  No Yes Yes 
Other Controls No No Yes  No No Yes 
# Observations 15,360 15,243 13,096  15,360 15,243 13,096 
Adjusted 𝑅@ 0.940 0.940 0.938  0.982 0.982 0.982 

Notes: The dependent variables in this table are county-level logged total fertilizer use and logged 
real total agricultural output. The vector of county-level time-invariant and pre-determined variables 
𝒁𝒊  can be divided into the following three groups. First, geographical and general economic 
conditions, including dummy variables indicating whether the county has experienced financial 
stress by 2004, has been designated as a national poor county in 2004, is located at province boarder, 
is a city-level county, and is passed by a large river; Second, agriculture production conditions, 
including pre-policy agricultural GDP (measured in 2005) and a dummy variable indicating whether 
the county is a major food-producing county. It is possible that there are systematical differences 
between counties in the treated and control group in these aspects, which may also be correlated 
simultaneously with agricultural production and the selection of assessed water cross sections. 
Interacting these time-invariant and pre-determined variables with year dummies helps to tease out 
the possible post-treatment variations in the outcome variables created by these confounding 
variables. Other control variables include county-level population, total agricultural areas affected 
by natural disasters, and annual averages of weather variables, i.e., precipitation, temperature and 
sunshine. Standard errors clustered at county level are reported in the parentheses. *, **, and *** 
denote significant at 10%, 5%, and 1% levels, respectively. 
 
  



Table 3. Robustness Checks: Model Specification 
 Treatment Assignment 

Radius = 100KM 
 Cluster Standard Errors at 

Prefectures 
Dependent Variables Log 

(Fertilizer) 
(1) 

Log 
(Output) 

(2) 

 Log 
(Fertilizer) 

(3) 

Log 
(Output) 

(4) 
WP×Post2008 -0.057*** 0.003  -0.062*** 0.006 
 (0.019) (0.012)  (0.024) (0.017) 
      
County FEs Yes Yes  Yes Yes 
Year FEs Yes Yes  Yes Yes 
𝒁𝒊 ×Year FE Yes Yes  Yes Yes 
Other Controls Yes Yes  Yes Yes 
# Observations 13,096 13,096  13,096 13,096 
Adjusted 𝑅@ 0.938 0.982  0.938 0.982 

Notes: The dependent variables in this table are county-level logged total fertilizer use and logged 
real total agricultural output. The vector of county-level time-invariant and pre-determined variables 
𝒁𝒊 can be divided into the following three groups. First, geographical and economic conditions, 
including dummy variables indicating whether the county has experienced financial stress by 2004, 
has been designated as a national poor county in 2004, is located at province boarder, is a city-level 
county, and is passed by a large river; Second, agriculture production conditions, including pre-
policy agricultural GDP (measured in 2005) and a dummy variable indicating whether the county is 
a major food-producing county. It is possible that there are systematical differences between 
counties in the treated and control group in these aspects, which may also be correlated 
simultaneously with agricultural production and the selection of assessed water cross sections. 
Interacting these time-invariant and pre-determined variables with year dummies helps to tease out 
the possible post-treatment variations in the outcome variables created by these confounding 
variables. Other control variables include county-level population, total agricultural areas affected 
by natural disasters, and annual averages of weather variables, i.e., precipitation, temperature and 
sunshine. Standard errors, clustered at county level for the first two columns and at prefecture level 
for the last two columns, are reported in the parentheses. *, **, and *** denote significant at 10%, 
5%, and 1% levels, respectively. 
 



Table 4. Robustness Checks: Spillover Effects 
 Exclude Counties in the 

“Treated Prefectures” 
 Placebo  

Tests 
Dependent Variables Log  

(Fertilizer) 
(1) 

Log 
(Output) 

(2) 

 Log  
(Fertilizer) 

(3) 

Log 
(Output) 

(4) 
WP×Post2008 -0.053** 0.005  0.033 -0.000 
 (0.021) (0.014)  (0.026) (0.014) 
      
County FEs Yes Yes  Yes Yes 
Year FEs Yes Yes  Yes Yes 
𝒁𝒊 ×Year FE Yes Yes  Yes Yes 
Other Controls Yes Yes  Yes Yes 
# Observations 10,345 10,345  9,204 9,204 
Adjusted 𝑅@ 0.940 0.982  0.935 0.982 

Notes: “Treated Prefectures” means prefectures that have at least one treated (monitored) county; 
therefore, the control counties in the first set of regressions are those that located outside the treated 
prefectures, while the treated counties are the same as treated counties in the main regression. In the 
second set of regressions, we set treated counties as those that are not monitored but located at 
prefectures with at least one monitored county. In contrast, the control counties are those that located 
outside the treated prefectures. The dependent variables in this table are county-level logged total 
fertilizer use and logged real total agricultural output. The vector of county-level time-invariant and 
pre-determined variables 𝒁𝒊 can be divided into the following three groups. First, geographical and 
economic conditions, including dummy variables indicating whether the county has experienced 
financial stress by 2004, has been designated as a national poor county in 2004, is located at province 
boarder, is a city-level county, and is passed by a large river; Second, agriculture production 
conditions, including pre-policy agricultural GDP (measured in 2005) and a dummy variable 
indicating whether the county is a major food-producing county. It is possible that there are 
systematical differences between counties in the treated and control group in these aspects, which 
may also be correlated simultaneously with agricultural production and the selection of assessed 
water cross sections. Interacting these time-invariant and pre-determined variables with year 
dummies helps to tease out the possible post-treatment variations in the outcome variables created 
by these confounding variables. Other control variables include county-level population, total 
agricultural areas affected by natural disasters, and annual averages of weather variables, i.e., 
precipitation, temperature and sunshine. Standard errors clustered at county level are reported in the 
parentheses. *, **, and *** denote significant at 10%, 5%, and 1% levels, respectively. 
 
  



Table 5. Decomposing the Effects on Agriculture Outcome 
Dependent Variables Log 

(Labor) 
Log 

(Machinery) 
Log 

(Land) 
Log 

(TFP) 
 (1) (2) (3) (4) 
WP×Post2008 -0.043** -0.050*** -0.021** 0.045*** 
 (0.020) (0.018) (0.009) (0.015) 
     
County FEs Yes Yes Yes Yes 
Year FEs Yes Yes Yes Yes 
Time-varying Control Yes Yes Yes Yes 
𝒁𝒊 ×Year FE Yes Yes Yes Yes 
# Observations 13,096 13,096 13,096 13,096 
Adjusted 𝑅@ 0.907 0.947 0.974 0.913 

Notes: The vector of county-level time-invariant and pre-determined variables 𝒁𝒊 can be divided 
into the following three groups. First, geographical and economic conditions, including pre-policy 
industrial GDP in 2005 and dummy variables indicating whether the county has experienced 
financial stress by 2004, has been designated as a national poor county in 2004, is located at province 
boarder, is a city-level county, and is passed by a large river; Second, agriculture production 
conditions, including pre-policy agricultural GDP (measured in 2005) and a dummy variable 
indicating whether the county is a major food-producing county. Other control variables include 
county-level population, total agricultural areas affected by natural disasters, and annual averages 
of weather variables, i.e., precipitation, temperature and sunshine. Standard errors clustered at 
county level are reported in the parentheses. *, **, and *** denote significant at 10%, 5%, and 1% 
levels, respectively. 



Table 6. Behind the Increase in TFP: Changes in Water Quality 
Panel A: 
Agricultural 
Pollutants 

Log 
(PV) 

Log 
(BOD) 

Log 
(NH3-N) 

Log 
(PP) 

Log 
(DO) 

(1) (2) (3) (4) (5) 
WP×Post2008 -0.108** -0.208*** -0.212** -0.143* 0.106*** 
 (0.045) (0.068) (0.085) (0.082) (0.026) 
Station FEs Yes Yes Yes Yes Yes 
Year FEs Yes Yes Yes Yes Yes 
# Observations 2,386 2,383 2,389 2,324 2,386 
Adjusted 𝑅@ 0.922 0.895 0.917 0.825 0.775 
      
Panel B, Placebo: 
Non-Agricultural 
Pollutants 

Log 
(Mercury) 

Log 
(Lead)    

(1) (2)    
WP×Post2008 -0.037 0.052    
 (0.078) (0.141)    
Station FEs Yes Yes    
Year FEs Yes Yes    
# Observations 2,276 2,302    
Adjusted 𝑅@ 0.580 0.704    
      
Panel C: Log(TFP) 

Irrigation-Heavy 
Counties 

Log(TFP) 
Irrigation-Light 

Counties 

 
Treated County 

 
 (1) (2)  
WP×Post2008 0.098*** 0.036**  
 (0.030) (0.016)  
County FEs Yes Yes  
Year FEs Yes Yes  
Controls Yes Yes  
𝒁𝒊 ×Year FE Yes Yes  
# Observations 9,748 12,552  
Adjusted 𝑅@ 0.906 0.903  

Notes: The (log) depend agricultural pollutants in the five columns of Panel A are Permanganate 
Value (PV), Biochemical Oxygen Demand (BOD), Ammonia Nitrogen (NH3-N), Petroleum 
Pollutants (PP), and Dissolved Oxygen (DO), respectively. Greater values of the first four indices 
signify diminished water quality, whereas the opposite holds for the last index. The results of the 
analyses presented in Panel B act as placebo tests since the emissions of both Mercury and Lead 
from agricultural sources are minimal. The sample covers annual station-level readings of the five 
indices from 2006 to 2010. Post-2010 readings are not publicly available. Panel C separately reports 
the treatment effects for counties that rely more heavily and less heavily on irrigation. Standard 
errors clustered at sub-river level are reported in the parentheses. *, **, and *** denote significant 
at 10%, 5%, and 1% levels, respectively. 
 



Table 7. Behind the Increase in TFP: Responses from Farmers and Local Governments 
Dependent 
Variables 

Log 
(Large 
Family 
Farms) 

Log 
(Agriculture-

related 
Enterprises) 

Log 
(Agriculture 
Infrastructure 
Investment) 

Log 
(Agriculture 

Support Funds) 

 (1) (2) (3) (4) 
WP×Post2008 0.124*** -0.011 0.059* 0.040 
 (0.034) (0.019) (0.034) (0.030) 
     
County FEs Yes Yes Yes Yes 
Year FEs Yes Yes Yes Yes 
Time-varying 
Controls 

Yes Yes Yes Yes 

𝒁𝒊 ×Year FE Yes Yes Yes Yes 
# Observations 13,096 13,096 4,817 8,725 
Adjusted 𝑅@ 0.627 0.954 0.976 0.969 

Notes: The (log) depend variables in the five columns are: (1) number of large family farms, (2) 
number of agriculture-related enterprises, (3) agriculture infrastructure investment per agriculture 
labor, and (4) agriculture support funds per agriculture labor. All variables are measured at the 
county level. The vector of county-level time-invariant and pre-determined variables 𝒁𝒊 can be 
divided into the following three groups. First, geographical and economic conditions, including pre-
policy industrial GDP in 2005 and dummy variables indicating whether the county has experienced 
financial stress by 2004, has been designated as a national poor county in 2004, is located at province 
boarder, is a city-level county, and is passed by a large river; Second, agriculture production 
conditions, including pre-policy agricultural GDP (measured in 2005) and a dummy variable 
indicating whether the county is a major food-producing county. Other control variables include 
county-level population, total agricultural areas affected by natural disasters, and annual averages 
of weather variables, i.e., precipitation, temperature and sunshine. Standard errors clustered at 
county level are reported in the parentheses. *, **, and *** denote significant at 10%, 5%, and 1% 
levels, respectively. 
 



Table 8. Heterogeneity Analysis Results by County’s Assigned Priority 
Panel B Non-Major 

Grain-Producing County 
 Major 

Grain-Producing County 
Dependent 
Variables 

Log 
(Fertilizer) 

Log 
(Output) 

Log 
(TFP) 

 Log 
(Fertilizer) 

Log 
(Output) 

Log 
(TFP) 

 (1) (2) (3)  (5) (6) (7) 
WP×Post2008 -0.097*** 0.002 0.058**  -0.011 0.016 0.035* 
 (0.026) (0.019) (0.023)  (0.027) (0.016) (0.019) 
        
# Observations 8,015 8,015 8,015  4,671 4,671 4,671 
Adjusted 𝑅@ 0.915 0.975 0.905  0.889 0.965 0.896 
County FEs Yes Yes Yes  Yes Yes Yes 
Year FEs Yes Yes Yes  Yes Yes Yes 
𝒁𝒊 ×Year FE Yes Yes Yes  Yes Yes Yes 
Other Controls Yes Yes Yes  Yes Yes Yes 

Notes: This table shows the heterogeneous treatment effects by whether a county is a major grain-
producing county (MGC). Non-major grain-producing counties and counties with young city 
secretaries are expected to face tighter environmental regulation. The vector of county-level time-
invariant and pre-determined variables 𝒁𝒊 can be divided into the following three groups. First, 
geographical and economic conditions, including pre-policy industrial GDP in 2004 and dummy 
variables indicating whether the county has experienced financial stress by 2004, has been 
designated as a national poor county in 2004, is located at province boarder, is a city-level county, 
and is passed by a large river; Second, agriculture production conditions, including pre-policy 
agricultural GDP (measured in 2005) and a dummy variable indicating whether the county is a major 
food-producing county. Other control variables include county-level population, total agricultural 
areas affected by natural disasters, and annual averages of weather variables, i.e., precipitation, 
temperature and sunshine. For brevity, the estimated coefficients on the other interaction terms in 
equations (3) and (4) are not reported in this table. Standard errors clustered at county level are 
reported in the parentheses. *, **, and *** denote significant at 10%, 5%, and 1% levels, 
respectively. 



Appendices 

Appendix B. Miscellaneous Empirical Results 

1) Matched DID Estimation 

 

Figure B1. Standardized Percent Bias (Balance Tests) Across Covariates for the 
Unmatched and Matched Sample 
Notes: This figure illustrates the balance tests for the covariates of counties in the treated and control 
group in the unmatched and matched sample. The horizontal axis represents standardized percentage 
bias across covariates, and the vertical axis denotes covariates used for the matching, which include 
county-level log population, agriculture GDP, sunshine, precipitation, temperature, dummy 
variables indicating whether a county is a major food-producing county, is located on province 
boundaries, is along a large river, is located in a prefecture-level city, is a national impoverished 
county and experienced financial stress in the past. All matching covariates listed above are pre-
policy measures. 
 
Table B2. Results of the PSM-DID Estimation 
 PSM-DID 
Dependent Variables Log (Fertilizer) 

(1) 
Log (Output) 

(2) 
WP×Post2008 -0.063*** 0.007 
 (0.020) (0.013) 
   
County FEs Yes Yes 
Year FEs Yes Yes 
𝒁𝒊 ×Year FE Yes Yes 
Other Controls Yes Yes 
# Observations 10,132 10,132 
Adjusted 𝑅@ 0.933 0.981 

 



2) Falsified Treatment Group Test 

 
Figure B2. The Kernal Density Function of the Falsified Treatment Effects Estimated with 
500 Placebo Samples 
Notes: In each placebo sample, we randomly select 466 counties as falsified “treatment counties” 
to the 1,770 counties in our sample. The number of falsified treatment counties is consistent with 
the number of true treatment counties in our dataset. The mean of the estimated falsified treatment 
effect is 0.0015, which is very close to 0, and the standard deviation is 0.022. The vertical line is 
drawn at x=-0.062, the treatment effect reported in Column (3) of Table 2 estimated with the true 
treatment group, which is 2.83 standard deviations from the mean of the falsified treatment effects. 
 



3) Robustness to Sample Selection 
 
Table B3. Robustness Checks: Model Specification 
 Dropping Counties in 

Provinces with Special 
Agriculture Conditions 

 Estimation  
with 

Balanced Panel 
Dependent Variables Log 

(Fertilizer) 
(1) 

Log 
(Output) 

(2) 

 Log 
(Fertilizer) 

(3) 

Log 
(Output) 

(4) 
WP×Post2008 -0.052*** 0.003  -0.057*** 0.003 
 (0.019) (0.012)  (0.022) (0.013) 
      
County FEs Yes Yes  Yes Yes 
Year FEs Yes Yes  Yes Yes 
𝒁𝒊 ×Year FE Yes Yes  Yes Yes 
Other Controls Yes Yes  Yes Yes 
# Observations 12,437 12,437  10,356 10,356 
Adjusted 𝑅@ 0.938 0.982  0.942 0.985 

Notes: In the left panel, we drop counties from five province-level administration from the sample, 
namely, Xinjiang, Xizang, Shanghai, Beijing, and Tianjin. They are dropped because either their 
agriculture conditions are fairly different from other provinces in the sample, or because they have 
minimal agriculture. In the right panel, we estimate equation (1) with a balanced panel dataset. The 
dependent variables in this table are county-level logged total fertilizer use and logged real total 
agricultural output. The vector of county-level time-invariant and pre-determined variables 𝒁𝒊 can 
be divided into the following three groups. First, geographical and economic conditions, including 
dummy variables indicating whether the county has experienced financial stress by 2004, has been 
designated as a national poor county in 2004, is located at province boarder, is a city-level county, 
and is passed by a large river; Second, agriculture production conditions, including pre-policy 
agricultural GDP (measured in 2005) and a dummy variable indicating whether the county is a major 
food-producing county. It is possible that there are systematical differences between counties in the 
treated and control group in these aspects, which may also be correlated simultaneously with 
agricultural production and the selection of assessed water cross sections. Interacting these time-
invariant and pre-determined variables with year dummies helps to tease out the possible post-
treatment variations in the outcome variables created by these confounding variables. Other control 
variables include county-level population, total agricultural areas affected by natural disasters, and 
annual averages of weather variables, i.e., precipitation, temperature and sunshine. Standard errors, 
clustered at county level for the first two columns and at prefecture level for the last two columns, 
are reported in the parentheses. *, **, and *** denote significant at 10%, 5%, and 1% levels, 
respectively. 


