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A Multi-Model, Ensemble Approach to Forecasting United States Food

Prices

Weifang Liang, Yong Liu, Simon Somogyi, and David Anderson

Abstract

It is important for stakeholders in agricultural economics to accurately predict food prices
to make better decisions. We propose an ensemble approach that combines multiple models to
predict food prices more accurately. We choose autoregressive integrated moving average (ARIMA),
exponential smoothing, local linear regression, and Gaussian Process as candidate models. The final
prediction is the weighted average of the predictions from the candidate models. We use ARIMA as
the baseline model. It outperforms most candidate models when fitting individually. By leveraging
strengths from diverse models, all ensemble models demonstrate superior forecast accuracy. They
achieve lower mean absolute percentage error and root mean square error than ARIMA when adding
all selected food categories together.
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Introduction

Food price is an essential component in food and agricultural economies. It is often influenced by

various factors and impacts a wide range of individuals. The inherent uncertainty in food prices

increases the risks for stakeholders involved in agricultural products. Accurately predicting food

prices enables informed decision-making and strategic planning for farmers, consumers, producers,

and policymakers. The prediction process provides invaluable insights into understanding the

factors driving food price fluctuations and makes significant impacts on the food supply chain. It

can also help consumers make food budgeting decisions that can influence their food choices and

subsequently their nutritional intakes. For primary producers, processors, wholesalers, and retailers,

it can influence their production and marketing strategies and help them anticipate market trends

and adjust their operations accordingly. With more accurate food price forecasts, policymakers

gain better insights into market dynamics and consumer behavior which can assist them in making

timely policies that ensure food security and market stability. In essence, forecasting food prices

is not just about predicting numbers but about understanding the complexity of the food supply

chain and its impact on various members of society. It can help guide decisions that impact all

processes from production to consumption.

Food prices can exhibit linear and nonlinear trends, with significant fluctuations and seasonality.

Previous research has shown the difficulty of capturing the linearity and non-linearity simultane-

ously in a single model and has demonstrated the superiority of hybrid models over the single

models in its components (Wang et al., 2020). To capture more relevant features in time series

and enhance the accuracy of food price predictions, we employ a robust ensemble approach. It

integrates multiple forecasting methods to build the food price predictor. By averaging various

models, the ensemble approach reduces the risk of over-fitting and the likelihood of encountering a

local minimum. When the true model is not one of the candidates, averaging multiple models can

increase the possibility of getting closer to the true model and provide a better match for the data

(Sagi and Rokach, 2018). Additionally, the candidate models need to vary significantly to achieve

the desired accuracy in predictions (Breiman, 1996). The ensemble approach has demonstrated

its efficacy in enhancing predictive capabilities in the agriculture field (Huang et al., 2017; Ribeiro

and dos Santos Coelho, 2020). As an extension of previous studies, our research incorporates a
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more diverse set of candidate models and uses four methods to determine optimal weights for each

model, aiming to improve the forecasting performance.

Ensemble learning encompasses a series of techniques, including bagging, boosting, and stacking

(Brown, 2010). Stacking treats a set of candidate models as the level-0 models, and a meta-model as

the level-1 generalizer. Outputs from the level-0 models are the inputs of the level-1 model, thereby

combining the strengths of all candidate models (Wolpert, 1992). We select four models as the level-

0 candidate models, including autoregressive integrated moving average (ARIMA), exponential

smoothing, local linear regression, and Gaussian Process (GP). Each candidate is chosen because

they specialize in one of the conditions when dealing with time series data. ARIMA and exponential

smoothing are effective when the data does not display complex patterns (Zhang, 2003). Non-

parametric approaches are more flexible and excel in capturing nonlinear trends (Vilar-Fernández

and Cao, 2007). GP is a probabilistic machine learning approach that can flexibly model complex

datasets with uncertainty captured (Williams and Rasmussen, 2006). Each model is independently

trained on historical data and then combined to leverage the strengths of these methods so that the

model can acquire the best collective performance. A non-negative least-squares linear regression is

employed as the level-1 model (Breiman, 1996). As a comparison, a linear regression model without

the non-negative constraint is fitted (Wu et al., 2017). We also conduct a weighted ensemble

approach that assigns weights proportional to the inverse of mean squared errors (Pawlikowski

and Chorowska, 2020). Models that demonstrate better predictive performance will receive higher

weights and the final model is the weighted average of the candidate models.

Methodology

Level-0 Models

High accuracy and the diversity of the candidate models are crucial in building the ensemble

model. However, there is a subtle trade-off between the two features (Li et al., 2021). By balancing

accuracy and diversity, we can improve the ensemble performance and lower the risk of over-fitting.

We select four candidate models specialized in different conditions to incorporate diversity while

ensuring their capability to capture the temporal relationships to mitigate the risk of low accuracy.

4



ARIMA

ARIMA is introduced to deal with the potential non-stationary and autocorrelation problems in

time series data (Box and Jenkins, 1976). The model contains three parts. The autoregressive

(AR) process examines how the current value is related to the past values by regressing it with the

lagged observations. The integrated (I) part solves the non-stationary problem by differencing the

data. The moving average (MA) process focuses on the relationship between the current value and

the past residual terms. The combination of the three processes makes it easy to implement and

interpret. An ARIMA(p, d, q) model is defined as:

(1− L)dyt = a0 +

p∑
i=1

aiyt−i +

q∑
i=1

βiϵt−i, (1)

where L is the lag operator. p and q define the number of lagged terms that explain the current value

in the AR and MA process respectively. d defines the times the differencing process is performed

to achieve stationarity in the time series.

Exponential Smoothing

In a time series, recent values are more indicative of predicting future behavior. Exponential

smoothing addresses this by predicting future values based on the weighted average of past obser-

vations with exponentially decreasing weights assigned to older values (Brown, 1956). The process

can be described as

ȳt = byt + (1− b)ȳt−1 (2)

= byt + b(1− b)yt−1 + (1− b)2ȳt−2 (3)

= b[yt + (1− b)yt−1 + (1− b)2yt−2 + ...+ (1− b)t−1y1] + (1− b)ty0, (4)

where ȳt is the expected value at time t while y are the observed values. By adjusting the smoothing

parameter b, we can control the balance between capturing short-term fluctuations and smooth-

ing out noise. With a large b, the impact from historical data fades away quickly. Exponential

smoothing can also handle time series with seasonality, additive, or multiplicative trends (Holt,
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1957; Winters, 1960). The Holt linear trend model includes a trend adjustment increment r:

ȳt = ayt + (1− a)(ȳt−1 + rt−1). (5)

The trend adjustment is estimated with a parameter c, which controls the rate of change in the

trend increment:

rt = c(ȳt − ȳt−1) + (1− c)rt−1. (6)

A T -step-ahead prediction is estimated as:

ȳt+T = ȳt + rtT. (7)

Local Linear Regression

Local linear regression is a non-parametric approach that does not impose a specific functional

form. Relaxing the parametric assumption lets the data reveal the appropriate model. Hence, it

is capable of capturing relationships not detected by specific functional forms. Instead of fitting

a single global model, local linear regression fits separate linear models to local neighborhoods

around the data (Cleveland, 1979). When modeling a time series, it can capture the time-varying

relationship of the data. Estimating g(t) is equivalent to estimating the intercept a of a local linear

regression in the neighborhood of time t (Racine et al., 2008):

g(t0) ≈ g(t) + (∂g(t)/∂t)(t0 − t) = a+ b(t0 − t). (8)

The marginal effect can be captured by slope b. a and b are estimated by minimizing

S =
n∑

i=1

(Yi − a− b(Ti − t))2K(
Ti − x

h
), (9)

where K is a kernel function that assigns weights to the neighborhood Ti based on their distance

to the target time t. Altering the kernel function does not significantly change the later estimate

(Racine et al., 2008). Hence we employ a Gaussian kernel, a proper choice for continuous data (Li

and Yuan, 2019).
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The bandwidth h decides the size of the local neighborhood, thereby also named the smoothing

parameter. Bandwidth selection is essential in the non-parametric approach since incorrectly spec-

ifying the bandwidth will cause either over-smoothness or over-roughness on the estimated trend

(Hansen, 2004). Instead of using a fixed bandwidth, we employ the generalized nearest neighbors

bandwidth and the adaptive nearest neighbors bandwidth that vary the bandwidth size across the

data (Dette and Gefeller, 1995; Shi, 2010). By adjusting the bandwidth locally, the model becomes

more flexible and robust.

Gaussian Process

Gaussian Process is a probabilistic machine learning model for flexible non-parametric regression.

Instead of using a parametric function, GP uses time index t as input and takes the following form:

f(t) ∼ GP (m(t),K(t, t′)). (10)

It can be intuitively understood as a multivariate Gaussian distribution with infinite variables.

A mean function and a covariance function can fully define it. The mean function reveals the

average behavior of the model, while the covariance function captures the relationship between

data points. Data points that are closer on the x-axis indicate a shorter time gap between them,

implying a stronger relationship. Hence, it is important to select a suitable covariance function,

as it determines how effectively the model can capture the relationships exhibited by the observed

data points. GP with a linear kernel can model a linear relationship between the input and the

output variables. The squared exponential (SE) kernel is effective for smooth non-linear trends,

while the Matérn class of kernels excels at capturing rougher trends (Williams and Rasmussen,

2006). Adjusting the hyperparameters for the kernels allows us to generate trends with different

degrees of smoothness and length scales. It enables us to determine the maximum fluctuation levels

or the range of slopes in the case of a linear trend. When dealing with trends exhibiting complex

relationships, combining multiple kernels can effectively capture more relevant features.

GP provides probabilistic estimation rather than point estimates. Each estimation is a Gaussian

distribution. Hence, the joint distribution of observed data and future values is needed to predict
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values at time t∗. Denote f∗ = f(t∗), the joint distribution is

y
f∗

 ∼ N

m(t),

K(t, t) + σ2
nI K(t, t∗)

K(t, t∗)′ K(t∗, t∗)


 . (11)

The covariance matrix K(t, t∗) captures the degree of correlation between observed data and future

values. By the Bayes’ theorem p(y1|y2) = p(y1,y2)/p(y2), the predictive distribution of f∗ given

the data is

f∗|t,y, t∗ ∼ N (̄f
∗
, cov(f∗)), (12)

with predictive mean and predictive covariance:

f̄
∗
= K(t∗, t)[K(t, t) + σ2

yI]
−1y; (13)

cov(f∗) = K(t∗, t∗)−K(t∗, t)[K(t, t) + σ2
yI]

−1K(t, t∗). (14)

The predictive mean at t∗ is linearly related to y. The predictive covariance is the prior

uncertainty minus the reduction in uncertainty after observing the data. By enlarging the dataset,

more information is incorporated and we can be more certain about our prediction compared to

the prior.

Level-1 Model

We compare multiple methods to search for a set of optimal weights assigned to the level-0 models.

First, we use a non-negative least-squares (NNLS) linear regression as the level-1 model. It almost

always outperforms the candidate models in the simulations (Breiman, 1996). The leave-one-out

cross-validation (LOOCV) is applied to the level-0 models to generate predictors that fit into the

level-1 model. Then, the optimal weight assigned to candidate model Mk in level-0 is:

ŵk = argmin
w

n∑
i=1

(
yi −

∑
k

wkf̂
−i(xi)

)
, (15)
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where ŵk ≥ 0,
∑K

k=1 = 1, K is the number of candidate models. The final prediction is the weighted

average of all candidate models:

ŷ =
K∑
k=1

ŵkfk(x). (16)

We implement the NNLS model through two approaches: a) directly deriving non-negative

weights that minimize the mean squared error (MSE) through disciplined convex optimization (Fu

et al., 2020), and b) using the Lawson-Hanson algorithm for NNLS (Lawson and Hanson, 1995).

As a comparison, we conduct a traditional linear regression without imposing non-negativity (Wu

et al., 2017). Considering that the non-negative constraint is necessary to improve the prediction

accuracy (Breiman, 1996; LeBlanc and Tibshirani, 1996), we apply a coefficient transformation

after the linear regression. We set negative values to zero and normalize the remaining coefficients

so that they sum up to one. Additionally, we conduct a weighted average ensemble (WAE) by

setting the weights as:

ŵk =
gk(S)∑K
k=1 gk(S)

, (17)

where S is the mean squared error (MSE) from model Mk, and gk(S) = 1/S (Pawlikowski and

Chorowska, 2020). The models with lower MSE exhibit higher forecast accuracy and are given

more weight. We denote these approaches as “Ensemble MSE”, “Ensemble NNLS”, “Ensemble

Linear”, and “Ensemble WAE” respectively.

Application

To analyze changes in food prices across various categories in the United States (U.S.), we collect

Consumer Price Index (CPI) data from the U.S. Bureau of Labor Statistics. Our dataset contains

seven food categories: food, food at home, food away from home, meats, pork, fish and seafood,

and fresh fruits. They are monthly data with seasonal adjustments. All categories have 588

observations, spanning from January 1975 to December 2023.

In January 2023, the U.S. Department of Agriculture (USDA), Economic Research Service’s

Food Price Outlook revised its forecasting approach. They adopted ARIMA to predict the food

prices for the next 18 months (MacLachlan et al., 2022). Hence, we set ARIMA as the benchmark.

Instead of 18 months, we plan to forecast the food price index for 12 months at the beginning of
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each year. We simulate this process for the recent 10 years (2014-2023) and evaluate the forecast

accuracy using the mean absolute percentage error (MAPE) and the root mean square error (RMSE)

between the predicted values and the actual values:

MAPE = 100
1

n

n∑
t=1

∣∣∣∣yt − ŷt
yt

∣∣∣∣ , (18)

RMSE =
√
MSE =

√√√√ 1

n

n∑
t=1

(yt − ŷt)2 (19)

where yt are the actual values, ŷt are the fitted values.

In the LOOCV process, each data point is left out once as a validation set, and the model is

trained on all other data points. Applying the LOOCV on time series may cause using recent data

to predict past data. To implement the method for time series data, we adopt a time series cross-

validation (TSCV), which adjusts the traditional cross-validation (CV) process to the temporal

structure. It splits data into training and testing sets while preserving the temporal order. An

exact LOOCV can be computationally expensive, and a smaller fold CV is more effective than

LOOCV in the simulation (Breiman, 1996). Therefore we expand the training set by 12 months for

each CV iteration, rather than incrementing it by 1 month. Each test dataset contains a 12-month

period that immediately follows the training period.

Figure 1: TSCV in Ensemble

We train the level-0 models individually using data preceding each year from 2007 to 2023 to

forecast the index for that respective year. Each candidate model is fitted separately with differ-

ent approaches to tune parameters. The order of the ARIMA model is selected by choosing the
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one with the lowest Akaike information criterion (AIC). Exponential Smoothing uses the latest

30% training data as the validation set to identify the optimal smoothing parameter. The non-

parametric estimation uses least-squares cross-validation to select appropriate bandwidth (Racine

and Li, 2004). GP estimates the hyperparameters through Maximum a Posteriori (MAP) using the

Limited-memory quasi-Newton (L-BFGS) optimization algorithm (Wright, 2006). To simultane-

ously capture the long-term upward trend and the short-term fluctuations of the food price index,

we combine the linear kernel, SE kernel, and Matérn 5/2 kernel as our covariance matrix to build

the GP.

Table 1: Level-0 Models 2007 - 2023

Baseline Gaussian Exponential Local Linear Regression
Item ARIMA Process Smoothing Generlized Additive

Average MAPE

Food 1.19 0.99 1.15 1.48 1.06
Food at home 1.66 1.34 1.69 2.24 1.62
Food away from home 0.47 0.52 0.70 0.59 0.50
Meats 2.79 2.99 3.12 3.84 4.07
Pork 3.33 3.22 3.51 4.76 3.31
Fish and seafood 1.60 1.75 2.17 2.15 2.28
Fresh fruits 2.32 2.44 2.54 2.37 6.81
Total 13.36 13.25 14.88 17.43 19.65

Average RMSE

Food 3.73 3.20 3.47 4.54 3.12
Food at home 4.79 4.04 4.78 6.44 4.54
Food away from home 1.58 1.80 2.42 2.06 1.58
Meats 8.26 8.93 9.27 11.18 11.90
Pork 8.26 8.26 8.61 11.61 8.29
Fish and seafood 5.52 5.79 7.53 7.41 7.63
Fresh fruits 9.11 9.79 10.11 9.79 27.88
Total 41.25 41.81 46.19 53.03 64.94

Note: The lowest score in each category is highlighted in bold.

Table 1 presents the average MAPE and RMSE for all candidate models in predicting food

CPI from 2007 to 2023. Most models in our results can not outperform the ARIMA model when

evaluating candidate models individually. Among the seven categories, ARIMA achieves the lowest

average MAPE in four categories, and the lowest average RMSE in five categories. ARIMA and

GP achieve the lowest total RMSE and MAPE respectively by adding all seven categories.
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In the next step, the outputs from the level-0 models are used as the inputs for the level-1

model. It creates a dataset from 2007 to 2023 with 5 variables, each representing the prediction

from a candidate model. The ensemble predictors are created for the last 10 years (2014-2023).

For each year, we use the forecasts from the level-0 models up to the end of the preceding year to

construct the level-1 models and make forecasts for the subsequent year. Table 2 demonstrates the

average MAPE and RMSE of ARIMA, GP, and the ensemble models over the last ten years.

Table 2: Ensemble Models 2014 - 2023

Baseline Gaussian Ensemble
Item ARIMA Process MSE NNLS Linear WAE

Average MAPE

Food 1.27 1.15 1.41 1.08 1.10 1.10
Food at home 1.69 1.50 1.41 1.45 1.51 1.55
Food away from home 0.45 0.53 0.55 0.47 0.51 0.43
Meats 2.62 2.48 2.85 2.74 2.70 2.51
Pork 2.83 3.03 2.49 2.79 2.53 2.48
Fish and seafood 1.69 1.50 1.62 1.66 1.56 1.67
Fresh fruits 2.22 2.31 1.93 1.94 1.94 1.92
Total 12.77 12.50 12.26 12.13 11.85 11.66

Average RMSE

Food 4.30 3.93 4.77 3.65 3.73 3.65
Food at home 5.23 4.80 4.38 4.56 4.71 4.76
Food away from home 1.70 2.03 2.20 1.78 1.95 1.66
Meats 8.71 8.58 9.33 9.11 8.91 8.33
Pork 7.68 8.46 6.98 7.66 6.99 6.77
Fish and seafood 6.10 5.36 5.81 5.97 5.62 6.04
Fresh fruits 9.07 9.57 7.83 8.04 8.00 8.06
Total 42.79 42.73 41.30 40.77 39.91 39.27

Note: The lowest score in each category is highlighted in bold.

By assigning more weights to the models that effectively capture time series features, ensemble

models exhibit a lower average of MAPE and RMSE in most categories than ARIMA. All ensemble

models exhibit lower total average MAPE and average RMSE than ARIMA and GP models. The

median of MAPE and RMSE from the ensemble models are also lower than ARIMA as demonstrated

in Figure 2. Ensemble WAE achieves the lowest total average MAPE and total average RMSE

among all the models.
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(a) MAPE (b) RMSE

Figure 2: MAPE and RMSE Boxplots

Conclusion

In this paper, we adopt an ensemble model for predicting U.S. food prices, which trains multiple

models and combines them in a way that maximizes their collective predictive performance. We

simulate a 12-month forecast at the beginning of each year over the past decade. The ARIMAmodel,

employed by the current USDA Food Price Outlook to forecast the food price index, is selected

as our baseline model. When fitting each model individually, the ARIMA model outperforms

most candidate models. After leveraging the strengths of diverse models, the ensemble models

outperform the ARIMA model with both lower MAPE and RMSE.

The ensemble model is promising in achieving more accurate food price prediction. Instead of

fitting existing data, it focuses on enhancing the forecast ability by assigning weights to models

with higher predictive accuracy in the validation set. It effectively handles the situation when the

true model might not be among the candidates. It also provides a general framework that can be

extended to forecast other categories and can be adapted to a larger data setup. Its adaptability

allows for the modification of candidate models, either by adding or removing them, to achieve

optimal predictions. Further study should consider incorporating a more diverse set of candidate

models, adding covariates to the candidate models, and exploring alternative methods for the weight

assignment.
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