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Abstract

Agriculture has large impacts on environmental quality and climate change. A common policy to

reduce this impact is payment for ecosystem services (PES) programs, where farmers receive payments

if they implement particular conservation practices. Despite the importance of these programs, existing

evaluations of their additionality (i.e., whether treated farmers would have adopted the conservation

practice without the incentive payments) are surprisingly inadequate, as they rely on an assumption of

selection on observables (i.e., unconfoundedness). Since farmers can only receive payments if they adopt

a conservation practice, unconfoundedness is almost guaranteed not to hold. We develop a selection

model to re-evaluate the additionality of PES programs and document large biases in previous estimates.
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1 Introduction

Modern agricultural production has significant and wide-ranging impacts on environmental

quality. Land use change from extensive cultivation drives changes in rainfall and surface

temperatures (Maeda et al., 2021). Intensive tillage, burning crop residues, and livestock

production contribute to air pollution-related morbidity and mortality (Domingo et al.,

2021). Overuse of chemical fertilizers has resulted in nitrogen emissions in excess of so-

called “planetary boundaries,” threatening terrestrial and aquatic ecosystems and human

health (Schulte-Uebbing et al., 2022) and contributing significantly to global climate change

(Lawrence et al., 2021).

Payment for ecosystem services (PES) programs are one widely-used policy tool for

reducing the environmental impact of farming. These programs offer financial support

in the form of direct payments to subsidize farmers’ voluntary adoption of “conservation

practices” that reduce deforestation, water and air pollution, and greenhouse gas emissions,

among other goals. Receipt of PES is contingent on a farmer having committed to adopt

a particular practice. PES account for billions of dollars in government spending each

year worldwide (Le et al., 2024). A prominent example in the U.S. is the Environmental

Quality Incentives Program (EQIP), which allocates $1.76 billion in payments to US farmers

annually to subsidize conservation practice implementation on cultivated lands (Natural

Resource Conservation Service, 2020).

The “additionality” of PES captures the effectiveness of these programs in increasing

the adoption of conservation practices among farmers. Additionality is determined by the

fraction of participating farmers who would have adopted the practice without receiving

any payment. In traditional econometric terms, it is therefore an “average treatment effect

on the treated.” Measuring additionality is critical for efficient PES program design and

evaluation (e.g., Aspelund and Russo, 2024; Canales, Bergtold, and Williams, 2024; Miao

et al., 2023).

Despite the importance of PES programs and the central role that additionality plays
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in evaluating and designing these programs, the methods that have been used for esti-

mating additionality are surprisingly inappropriate for the task. Existing estimates of the

additionality of PES programs use treatment effects estimators that rely on “selection on

observables”, i.e., on an assumption of unconfoundedness (Velly and Dutilly, 2016), in-

cluding matching estimators (Alix-Garcia, Shapiro, and Sims, 2012; Arriagada et al., 2012;

Jones and Lewis, 2015; Mezzatesta, Newburn, and Woodward, 2013; Sawadgo and Plastina,

2021; Claassen, Duquette, and Smith, 2018), inverse propensity score weighting (Woodward,

Newburn, and Mezzatesta, 2016), and regression adjustment (Velly, Sauquet, and Cortina-

Villar, 2017). These estimators rely on comparing farmers who receive incentive payments

through a PES program with farmers who do not receive the payment but exhibit sim-

ilar observed characteristics, attributing the difference in average adoption rates for the

conservation practice between these farmers to the causal effect of the PES program. How-

ever, unconfoundedness is almost guaranteed not to hold given the contingent nature of

PES program participation since any factor that determines the adoption of the conserva-

tion practice—whether observed or unobserved to the econometrician—will also determine

participation. Previous work therefore does not properly identify the additionality of PES.1

We propose a new approach to identifying the additionality of PES that relies on a

selection model (see, e.g., Heckman and Vytlacil (2007a), Heckman and Vytlacil (2007b), or

Mogstad and Torgovitsky (2018) for reviews). We model farmers as adopting a conservation

practice if net benefits are positive. PES programs increase net benefits by tying adoption

to an incentive payment. Our approach first allows us to clearly outline the deficiencies

of other approaches that rely on an assumption of selection on observables. Second, it

allows us to provide more credible estimates of the additionality of PES programs. The

core of our identification strategy is the empirical observation that a significant share of
1In addition to policy evaluation, our work has important implications for corporate carbon offsets, as

many programs offer carbon credits based on the same additionality estimates that we argue to be inap-
propriate. One example is the Verified Carbon Standard, the most widely used greenhouse gas crediting
program, which relies on matching to calculate the additionality of PES programs (Verra (2024)). A similar
issue arises in the context of renewable electricity generation investments. There, Calel et al. (2021) have
documented issues with existing estimates of additionality by leveraging the availability of observed mea-
sures of profitability. These measures are generally not available in the context of agricultural conservation
practices, hence the need for the alternative approach proposed here.
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farmers adopts the conservation practices under consideration without receiving an incen-

tive payment. We model this finding as some farmers not knowing about the PES program

or not being interested in participating (henceforth, “consideration”) or not being eligible

for the program (“eligibility”).2 We then impose an assumption of unconfoundedness on

consideration/eligibility rather than on participation in the program itself. If considera-

tion/eligibility status were observed, we could use it as an instrumental variable (IV) and

we would be in a standard binary IV setting. Unfortunately, typical datasets, including

ours, do not provide access to such information. Instead, we show that under an exclusion

restriction — there is some observed covariate that correlates with adoption decisions but

not with consideration/eligibility — we can identify our selection model and recover the

same estimand, additionality, as if eligibility/consideration were observed.

Our approach provides a method for estimating additionality of PES programs that

(i) explicitly accounts for the contingent nature of participation in PES programs and

(ii) can be implemented on the typical datasets that are used for the evaluation of these

programs. Applying our method to EQIP, we find that previousstudies severely overestimate

the additionality of PES programs. This is intuitive since only controlling for observed

covariates will not lead to comparable treatment and control groups when selection into

treatment is determined by the outcome of interest itself. To our knowledge, the only other

work that tackles this issue is Aspelund and Russo (2024), who use auction bid data to

estimate the additionality of a different PES program, the Conservation Reserve Program.

Our analysis complements that of Aspelund and Russo (2024). Both establish that current

evaluation methods can be severely biased. While Aspelund and Russo (2024) have access

to auction bid data, which naturally provides quasi-experimental variation by comparing

farmers with winning bids with farmers who placed the next-best bid, the advantage of our

analysis is that it can be applied in settings where policy makers or economists only have

access to the kind of survey data that is typically used for evaluation and to evaluate PES

2If a farmer had already adopted the conservation practice under consideration and was eligible for and
considered participating in the program, they would be foregoing a costless payment by not opting into
EQIP.
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programs that do not rely on auctions for allocation (such as, e.g., EQIP).3

2 EQIP, Conservation Practices, and the ARMS Dataset

The goal of EQIP is to reduce the environmental impact from agricultural production by

reducing water and air pollution and soil erosion, promoting wildlife habitat and soil health,

and increasing producers’ resilience against climate change. EQIP accomplishes these goals

by supporting farmers’ adoption of conservation practices through free technical assistance

and subsidies, referred to as “cost share” payments. Farmers interested in applying for

EQIP funding must work with the NRCS to develop a conservation plan outlining resource

concerns for their farm and proposing relevant conservation practices to address these con-

cerns. Each state-level NRCS office ranks applications according to private criteria. Farmers

selected for funding receive cost share payments contingent on successfully implementing

their proposed conservation practices (US Department of Agriculture Natural Resources

Conservation Service, 2024b). Cost share payments are practice-specific, vary from state

to state, and cover 75% of the average cost of implementing each practice, as estimated at

the state level by each state’s NRCS office. Importantly, transactions costs of applying for

cost shares can be nontrivial (McCann and Claassen, 2016), and estimated cost share rates

do not account for these costs. Larger cost shares and advance payments are available for

historically underserved producers, including beginning, socially disadvantaged, and vet-

eran farmers. Application is open to landowners and renters of conventional and organic

farmland producing either specialty or commodity crops, forest products, or livestock.

EQIP supports dozens of distinct conservation practices. We focus on two of the most

common practices in the data we observe (described later): no-till (NT) and nutrient man-

agement (NM). As the name implies, NT involves foregoing tillage following harvest; crop

residues are instead left on the field surface. NT reduces soil erosion and eliminates the

need to make several tillage passes with heavy cultivating equipment, reducing farmers’

3Beyond estimating additionality, Aspelund and Russo (2024) also discuss market design in the context
of the Conservation Reserve Program, which is not addressed at all in this paper.

5



input and labor costs—particularly fuel (Claassen et al., 2018). Adopting NT may reduce

subsequent crop yields, although evidence for this is mixed (Chen, Gramig, and Yun, 2021).

NM involves developing a nutrient management plan to more optimally manage fertilizer

rates and application timing. NM is meant to reduce nutrient runoff to waterways as well as

farm-level nutrient use. Private costs of NM to adopting farmers include soil testing costs

and reduced crop yields (Marshall et al., 2018).

We collect farm-level data on conservation practice adoption from the USDA’s an-

nual Agricultural Resource Management Survey (ARMS). The survey contains data from a

nationally-representative sample of US farmers. Data collection occurs over three “phases.”

The first phase, conducted in early summer each year, screens farmers for eligibility. ARMS

targets farms growing specific commodities each year, and hence phase 1 mainly ensures re-

spondents are qualified as farmers raising the targeted commodities. In phase II, conducted

each fall, respondents answer questions related to production on one of their farm fields,4

including questions about conservation practice adoption and funding, nutrient application,

and field features. Phase III, in late winter, collects farm-level data on commodity mar-

keting and income, operating and capital expenditures, farm assets and debts, and farmer

characteristics. Due to its exhaustive nature and national scope, prior work has used ARMS

data to benchmark the additionality of federal conservation programs in the US (Claassen,

Duquette, and Smith, 2018; Claassen and Duquette, 2014).

We use data from three years: 2016, 2017, and 2018. Surveys these years targeted

producers growing corn, wheat, and soybeans, respectively. These crops represent 53%

of total crop acreage in the US and are therefore the targets of the majority of conser-

vation programs (US Department of Agriculture National Agricultural Statistics Service,

2017). From the phase II field-level survey, we collect information on conservation practice

adoption, particularly whether the farmer has adopted NT or NM, whether those practices

receive EQIP funding, and if adoption of the practice is a part of compliance requirements

4Large farms in the US commonly comprise multiple distinct fields, which may grow different crops
under different prodution practices. ARMS surveyors randomly choose one of a respondent farmer’s fields
and ask questions about practices only on that field.
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to receive other forms of federal aid.5 We also use data on whether the field is classified

as highly erodible and whether the farmer owns the field or not. Land ownership is an

important consideration for conservation practice adoption as landowners can internalize

the long-term benefits from resulting improvements in soil health and productivity, whereas

renters may not (Prokopy et al., 2008; Knowler and Bradshaw, 2007). From the phase III

farm-level survey, we obtain data on total acres in operation, farmers’ demographics, includ-

ing age and whether farming is the main source of income for the respondent’s household.

We merge this farm-level data from ARMS with external data, including a county-level

productivity index for corn, soybeans, and small grains from the Gridded Soil Survey Geo-

graphic database (US Department of Agriculture Natural Resources Conservation Service,

2024a), state-level EQIP cost-share rates and practice cost estimates (US Department of

Agriculture Natural Resources Conservation Service, 2024c), and state-level data on diesel

fuel and natural gas prices from the US Energy Information Administration. Diesel fuel and

natural gas prices may be important components of the private benefits of NT and NM to

farmers.6 Conversely, productivity index may be an important driver of the private costs of

adopting NT or NM if these conservation practices decrease yields and farmers with more

productive soils stand more to lose from adopting the practice. ARMS includes probability

weights calculated to ensure representativeness of the final sample. Tables 3 and 4 in the

Appendix show the weighted means of each variable used in our analysis.

We emphasize two salient features of our data and PES programs more generally. The

first is the contingent nature of the cost share payments: farmers are free to adopt a con-

servation practice in the absence of payment, but must adopt conditional on receiving a

cost share. Hence, unconfoundedness (conditional independence of adoption decisions and

participation in EQIP) cannot hold here and treatment effects estimates from approaches

that impose this assumption—including matching, inverse probability weighting, and re-
5Access to federal assistance such as subsidized crop insurance can be contingent on the adoption of

conservation practices when farming highly erodible soil or other sensitive lands. These contingencies are
distinct from the EQIP program and therefore our analysis will “control” for these external requirements to
adopt conservation practices.

6Nutrient management will allow farmers to use less fertilizer, and natural gas price is a key determinant
of fertilizer price because natural gas is a key input to nitrogen fertilizer production (Ibendahl, 2020).
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Figure 1: Adoption and EQIP participation among ARMS sample farmers by practice

gression adjustment—will yield biased estimates of additionality. (Although this assertion

is intuitive, we demonstrate it rigorously below and show that previous estimates are likely

to overstate additionality.) Second, a nontrivial proportion of farmers adopt NT or NM

without receiving a cost share (Figure 1). We interpret this as heterogeneity in farmers’

consideration of participating in EQIP (e.g., due to differences in transactions costs, aware-

ness, or farmer perception of the practices), or eligibility for the program.7 In the next

section, we show that this variation in consideration/eligibility can be used as a source of

exogenous variation in program participation. We show that this occurs even though con-

sideration/eligibility is not directly observed by the researcher, being instead only inferred

for farmers who participate in the program (so that they considered and were eligible for

EQIP) and for farmers who did not participate but adopted the practice (so that they did

not consider EQIP or were ineligible).

7EQIP has very few eligibility requirements, and hence we expect this variation to mostly originate from
consideration of EQIP. To participate in EQIP, producers must must be “(1) A person, legal entity, Indian
Tribe, Alaska Native corporation, or joint operation with signature authority or (2) engaged in agricultural
production or forestry management or have an interest in the agricultural or forestry operation associated
with the land offered for enrollment... and be within applicable EQIP payment limitations” (US Department
of Agriculture Natural Resources Conservation Service, 2023). What we dub eligibility could also capture
farmers unsuccessfully applying for the EQIP program, so that they were ex post ineligible for it.
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3 An Alternative Identification Strategy: Exogenous Latent Variation in Par-

ticipation

We start from a simple model for whether a farmer i adopts a conservation practice in the

absence of a cost share. Let Di = 1 if the farmer receives the cost share payment and zero

otherwise. Let Yi(d) denote the farmer’s decision to adopt the practice given Di = d, where

Yi(·) = 1 if the farmer adopts and zero otherwise. Then

Yi(0) = 1[bi − ci ≥ 0],

where bi and ci denote the benefit and cost of the practice, respectively, so that a farmer

adopts the practice if it yields positive net benefits. Given a cost share πi, the farmer

would adopt the conservation practice and accept the cost share payment if the resulting

net benefits are positive:

Yi(1) = 1[bi − ci + γ0πi ≥ 0],

where γ0 ≥ 0 is the marginal utility of money.8

If there were no frictions or restrictions on farmers’ participation into EQIP, we would

only observe two profiles of adoption Yi and participation Di: (i) adopt and participate,

(Yi, Di) = (1, 1), for farmers for whom bi − ci + γ0πi ≥ 0, and (ii) neither adopt nor

participate, (Yi, Di) = (0, 0), for farmers for whom bi − ci + γ0πi < 0.

Recall, however, that we observe a significant share of farmers adopting the conservation

practice without receiving EQIP payments. We model this variation by introducing a

latent variable that governs a farmer’s consideration of and eligibility for EQIP, E⋆
i . A

farmer i will only consider the program and be eligible if E⋆
i = 1. Identification will then

rely on (i) an unconfoundedness assumption on this latent variable (Yi(0), Yi(1) ⊥ E⋆
i |Xi,

where Xi collects observed covariates) rather than unconfoundedness of participation in the

8Our assumption on the sign of γ0 is logical both conceptually (the marginal utility of money should be
positive) and empirically (no farmer would be observed participating in the EQIP program if this condition
were violated).
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program (Di), which was the assumption imposed in previous evaluations of PES program

additionality, and (ii) the availability of at least one covariate xi that is related to net

benefits bi − ci without driving variation in eligibility E⋆
i .

For expositional simplicity, we will articulate the issues that arise with existing methods

and our proposed identification strategy in a simplified setting where a single covariate

xi drives variation in net benefits and there is no variation in incentive payment amounts

(πi = π).9 Our simplified model takes the form

bi − ci = α0 + β0xi − ϵi, E⋆
i = 1[νi ≤ 0], (1)

where ϵi and νi denote idiosyncratic shocks to the private net benefits of adoption and to

eligibility/consideration, respectively. We further assume

ϵi|xi ∼ N(0, 1), νi ⊥ {xi, ϵi}. (2)

The second assumption in (2) captures our assumption of unconfoundedness on eligibility

since it implies that (Yi(1), Yi(0)) ⊥ E⋆
i |xi. We use the normality assumption in (2) here and

in our empirical implementation below, but the online appendix provides conditions under

which our model of selection is identified without parametric restrictions on the distributions

of the shocks ϵi or νi. Our exclusion restriction is complete by further requiring β0 ̸= 0, so

that the covariate xi does have a non-zero relationship with the net benefits of adoption.

9In the next section, we will explicitly account for variation across farmers in payment rates πi and
additional covariates in both the adoption model and consideration model. This additional variation will help
with establishing identification since (i) variation in payment rates provides additional identifying variation,
as discussed in the online appendix, and (ii) the availability of control covariates allows for our assumption of
unconfoundedness on eligibility/consideration to be more plausible. For the discussion of identification in the
simplified setting used in this section, one can think of the model being already conditional on payment rates
and additional covariates so that we only exploit the variation in one excluded covariate xi for identification.
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We then obtain a model for the observed outcomes, (Yi, Di):

(Yi, Di) =



(1, 1) if α0 + β0xi + γ0π ≥ ϵi, νi ≤ 0,

(1, 0) if α0 + β0xi ≥ ϵi, νi > 0,

(0, 0) otherwise.

(3)

In this simplified setting, we will show that additionality is identified as long as the covariate

xi has at least three points of support, which, without loss of generality, we label as {0, 1, 2}.

First, we establish formally that existing methods that are predicated upon an assumption of

unconfoundedness on program participation Di itself will overstate the level of additionality

of contingent participation programs such as EQIP.

3.1 Failure of unconfoundedness

While we impose an assumption of unconfoundedness on the latent variable E⋆
i , which

indexes a farmer’s consideration of EQIP program, participation in EQIP itself (Di) is not

conditionally independent of adoption decisions Yi:

E(Yi(0)|Di = 1, xi) = Φ(α0 + β0xi)
Φ(α0 + β0xi + γ0π) ,

> E(Yi(0)|Di = 0, xi) = Φ(α0 + β0xi)(1 − Fν(0))
1 − Φ(α0 + β0xi + γ0π)Fν(0) ,

where Fνi(.) denotes the cumulative distribution of νi.

This establishes the inadequacy of the assumption of unconfoundedness for participation

in EQIP and corresponding evaluation methods and shows that these methods will exhibit

positive biases. Intuitively, this is because “treated” farmers (with Di = 1) and “untreated”

farmers (with Di = 0) exhibit differences not only in terms of the observed covariates that

drive net benefits of adoption (xi) but also in terms of the unobserved factors that drive

adoption. Specifically, treated farmers satisfy the condition ϵi ≤ α0 + β0xi + γ0π, whereas

among untreated farmers we will have a mixture between ϵi > α0 + β0xi + γ0π (for farmers
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who considered participation in the program but opted not to participate) and ϵi being

drawn from its unconditional distribution (for farmers who didn’t consider participation in

the program).

3.2 Identification in the simplified setting

We now discuss identification of our approach in the simplified setting constructed above.

First note that, if there was no variation in consideration, the effect of the incentive payments

would not be identified. If every farmer were eligible and considered EQIP (E⋆
i = 1 ∀ i),

we would only observe the probability of jointly adopting the conservation practice and

participating, Φ(α0 + β0xi + γ0π). With a single value of payment rates, π, it would be

impossible to separate the effect of the treatment on adoption, γ0π, from the intercept,

α0. Here, we show that variation in consideration or eligibility across farmers, together

with our assumption of conditional independence and the exclusion restriction on xi, yield

identification of the additionality of EQIP cost shares when using the correct contrasts in

the probability of adopting the conservation practice with and without cost shares.

To shorten notation, we write P ((j, j
′)|x) to denote P ((Y, D) = (j, j

′)|xi = x), for j, j
′ ∈

{0, 1}. Our model then implies the following mapping for these conditional probabilities:

P ((1, 1)|x) = Φ(α0 + β0x + γ0π)Fν(0),

P ((1, 0)|x) = Φ(α0 + β0x)(1 − Fν(0)).

Ratios in the conditional probabilities P ((1, 0)|x) at various values of x ∈ {0, 1, 2} identify

the intercept α0 and the slope coefficient β0 because the equations

P ((1, 0)|0)
P ((1, 0)|2) = Φ(α0)

Φ(α0 + 2 · β0) ,
P ((1, 0)|1)
P ((1, 0)|2) = Φ(α0 + β0)

Φ(α0 + 2 · β0) , (4)

uniquely identify β0 and α0.10 This implies that the probability of adopting without incen-

tive payments, P (Y (0) = 1|x) = Φ(α0 + β0x), is identified, and thus so is the probability of
10We provide the steps for this result in the online appendix.
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considering the program, Fν(0) = 1 − P ((1,0)|x)
Φ(α0+β0x) . Given identification of Fν(0), we can then

identify P (Y (1) = 1|x) = P ((1,1)|x)
Fν(0) = Φ(α0 +β0x+γ0π) for all values of x. We can therefore

identify the additionality of EQIP, i.e., its effect on treated farmers’ adoption decisions, by

comparing rescaled probabilities of adoption with and without incentive payments:

ATT (xi) = E (Yi(1) − Yi(0)|Di = 1, xi)

= 1 − Φ(α0 + β0x)
Φ(α0 + β0x + γ0π)

= 1 − P (1, 0|x)/P (E⋆ = 0)
P (1, 1|x)/P (E⋆ = 1) . (5)

3.3 Interpretation of the estimand

We can compare the estimand in (5) with the LATE estimand of Imbens and Angrist (1994)

that would be obtained if the researcher actually observed the latent variable E⋆
i that deter-

mines consideration of or eligibility for EQIP. Under the assumption of conditional indepen-

dence (E⋆
i ⊥ Yi(0)|xi), a natural approach to estimation would be to use an instrumental

variable approach, relying on the exogenous variation in consideration/eligibility to identify

the effect of EQIP on adoption,

∆Wald = E(Y |E⋆ = 1, x) − E(Y |E⋆ = 0, x)
E(D|E⋆ = 1, x) − E(D|E⋆ = 0, x) .

This expression identifies a particular local average treatment effect: the average effect of

the conservation program on “compliers.” In our setting, compliers are simply all farmers

who participate in the program. This is because compliers are farmers who would not have

participated in the program if not eligible or not considering the program (all farmers), and

who would participate in the program if eligible or considering the program (i.e., farmers

observed participating in the program since participation is not possible without being

eligible). Therefore, in our setting, ∆Wald identifies the average treatment effect of the
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conservation program on the treated, i.e., its additionality:

∆Wald = P (Y = 1|E⋆ = 1, x) − P (Y = 1|E⋆ = 0, x)
P (Y = 1|E⋆ = 1, x)

= 1 − P (Y = 1|E⋆ = 0, x)
P (Y = 1|E⋆ = 1, x) .

Under the assumptions of our selection model above, this expression is identical to (5).

Intuitively, we can think of the selection model outlined above as imposing enough

structure that one can identify the same estimand as with an (infeasible) instrumental vari-

able regression of adoption on program participation that would use (actually unobserved)

program eligibility / consideration as an instrumental variable.

4 Re-Estimating the Additionality of EQIP

We now outline the empirical implementation of the identification strategy described in

the previous section. Let Xy,i =
[
x1

y,i · · · xK
y,i

]
and Xd,i =

[
x1

d,i · · · xM
d,i

]
collect covariates

explaining adoption and consideration/eligibility, respectively. Then our model of selection

for farmer i in state s becomes

(Yi, Di) =



(1, 1) if Xy,iβ0 + γ0(πs − Cs) ≥ ϵi, Xd,iθ0 ≥ νi,

(1, 0) if Xy,iβ0 − γ0Cs ≥ ϵi, Xd,iθ0 < νi,

(0, 0) otherwise,

(νi, ϵi)|Xy,i, Xd,i, πs, Cs ∼ N(0, I2).

(6)

We explicitly account for a farmer’s state, s, because the variation in incentive payments

by EQIP, πs, occurs at the state-level. Our model also includes state-level estimates of

practice costs, Cs, as a driver of adoption. These estimates are provided by the U.S.

Department of Agriculture ((US Department of Agriculture Natural Resources Conservation

Service, 2024c)) and determine payment rates with a simple cost-share rule of 75%: πs =

0.75 × Cs.
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Including these cost estimates in our model allows us to account for state-level unob-

served variation in the cost of each conservation practice. To see this, assume each farmer’s

cost of adopting a given practice is

ci = fs + Xy,iδ0 + ui, E(ui|Xy,i) = 0,

where fs captures state-level variation in costs, δ0 captures the effect of the covariates in

Xy,i on cost, and ui captures idiosyncratic unobserved variation. We then take into account

that EQIP payment rates are based on state-level estimates of average cost:

Cs = E (ci|si = s) ,

= fs + E(Xy,i|si = s)δ0, (7)

where si is farmer i’s state.

We can then obtain:

ci = Cs + (Xy,i − E(Xy,i|si = s))δ0 + ui,

and we therefore account for unobserved state-level variation in cost (fs) by simply including

the EQIP cost estimates in our list of covariates, together with the state-level averages of

each of our farmer-specific covariates.11 For notational simplicity, we define the list of

covariates Xy,i in (6) to include these state-level averages.

The covariates included in Xy,i are (in addition to a constant and, where applicable,

state-level averages): diesel price (for NT) or natural gas price (for NM), whether the farmed

soil is classified as highly erodible, operation size (in acres), whether the field is owned by

the farmer, the state-level productivity index for the field’s crop selection, the farmer’s

age, an indicator for whether the conservation practice under consideration is necessary for

11Note that these state-level averages should be included as separate covariates rather than including
farmer-level covariates deviated from their state-level averages since the same covariates Xy,i may also have
a predictive effect on benefits bs,i in addition to being predictive of cost ci.
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the farmer to comply with a requirement for some other source of federal aid than EQIP

(e.g., subsidized crop insurance), and an indicator variable for crop type (corn, soy, or

wheat). The covariates included in Xd,i are (in addition to a constant): EQIP payment

rates, πs, operation size, whether the respondent’s occupation is mainly farming, and the

highly erodible classification of the soil.

Our main exclusion restrictions, which, as discussed above, are central to our ability to

identify the additionality of EQIP, are (i) diesel price for NT and natural gas price for NM,

and (ii) soil productivity index. As discussed above, diesel price for NT and natural gas

price for NM are potentially important drivers of the farmers’ private benefits from adopting

these practices. When adopting NT, farmers will avoid the need for multiple tilling passes

and save the corresponding fuel costs. When adopting NM, farmers will potentially be

able to reduce the amount of fertilizer they use, and natural gas prices are an important

driver of fertilizer price as natural gas is one of the main inputs for the production of

nitrogen fertilizer. Soil productivity can also be a determinant for the private net benefits

of adoption. For instance, if either conservation practice leads to larger losses in yields on

more productive soils, a farmer’s private cost to adoption of the practice would be greater

with more productive soil.

Our identifying exclusion restriction is that these variables affects farmers’ adoption

decisions but do not affect a farmer’s eligibility for EQIP or a farmer’s consideration of the

program. Note that we include EQIP payment rates, πs, in the consideration/eligibility

equation, so that we allow for possible “saliency” effects, whereby a farmer is more likely

to know about the program or consider applying for it if payment rates are high.

We can then estimate our model by maximum likelihood. Table 1 reports the maximum

likelihood estimates of the parameters of this model for the no-till and nutrient management

practices. We see that most variables have expected signs. In particular, diesel prices is

estimated to be a strong driver for adoption decisions of NT, with higher diesel prices leading

to more likely adoption of NT, which, as discussed above, is the expected direction of the

effect. Interestingly, natural gas price is not estimated to have a statistically significant
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effect on adoption decisions of NM. This could be because NM does not lead to large

enough decreases in the volume of fertilizer used (instead, affecting other variables like

the timing or mode of application). However, productivity index is estimated to have a

statistically significant effect on NM adoption, with farmers farming more productive soil

being less likely to adopt NM than farmers farming less productive soil. This would indicate

that farmers with more productive soil face greater losses in productivity (i.e., large private

costs of adoption) when adopting NM. For NT, soil productivity has the opposite sign but

is not estimated to be statistically significant. This could correspond to the ambiguous sign

of the effect of NT on yields discussed above.

We can then proceed to estimating the additionality of EQIP on the adoption of the

conservation practices NT and NM. Before reporting the results using our proposed method,

we discuss results using the status-quo methods that have been used for the evaluation of

PES programs. First, Table 2 reports a simple difference in means. We see that, since every

“treated” farmer (i.e., every farmer who receives EQIP payments) is required to adopt the

corresponding conservation practice (for an adoption rate of 100% among the treated),

and since these conservation practices are relatively infrequent in the general population

(approximately 40% for NT, and 10% for NM), a simple difference-in-means yields extremely

large estimates of additionality for EQIP (60% for NT, 90% for NM). Second, Table 2

reports results on additionality using methods predicated upon an assumption of selection

on observables, namely, using regression adjustment (RA) and inverse propensity score

weighting (IPW). This adjustment for differences in the observed covariates between farmers

who participate or do not participate in EQIP leads to significant differences in estimated

additionality. EQIP is now estimated to have additionality of 40%-50% (depending of which

method is used) for NT, and around 60% for NM.

As discussed above, these results are likely to overstate the additionality of EQIP for

these conservation practices since farmers’s decisions to participate in EQIP will not only be

affected by the same observed covariates that affect their adoption of conservation practices,

but also by the factors unobserved to the researcher that enter their adoption decisions.
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The strength of our proposed method to identifying the additionality of EQIP or similar

PES programs is to account for this selection on unobservables. In Table 2, we report

the additionality of EQIP estimated using our method. Our estimates of additionality

are significantly smaller than with RA or IPW, indicating that selection on unobservables

does seem to be at play in these results. We estimate EQIP to have approximately 30%

additionality for NT, but no significant additionality (7%) for NM. In Section C, we show

that this finding of no additionality for NM is robust by discussing testable implications of

our model jointly with the null hypothesis of no additionality of EQIP. We consistently fail

to reject these implications for NM but not for NT.

5 Conclusion

Standard treatments of methods for program evaluation (e.g., Imbens and Rubin (2015)

or Abadie and Cattaneo (2018)) often assist practitioners to find the correct framework

by dividing methods into a menu of well-established categories that depend on features of

the data/setting under consideration and beliefs of the researcher about their setting: (i)

Randomized assignment, (ii) Selection on observables (unconfoundedness), (iii) Difference-

in-differences, (iv) Instrumental variables, (v) Regression discontinuity design. Overall, this

provides enormous value to our ability to evaluate programs in a interpretable and replicable

way that mitigates the impact of personal priors or biases on final results. However, in some

cases, standard methods may clearly not be suitable for impact evaluation.

A solution to this issue can be to obtain more data than currently available, which is

done in Aspelund and Russo (2024) by obtaining auction data. Alternatively, researchers

can rely on improved models for policy evaluation based on existing datasets. Here we show

that a specific model of joint selection and adoption can yield convincing new results on

the additionality of EQIP with the widely used ARMS dataset. Our method can directly

be used to evaluate other payment for ecosystem services programs. Given the importance

of these programs globally, both in terms of potential environmental impact and cost, we

hope that the approach and evidence presented here guides future steps in the evaluation
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and design of these policies.

Table 1: Maximum likelihood estimates of the adoption and selection model.

No-till Nutrient management
Estimate SE Estimate SE

Adoption equation
Payment rates ($/ac), γ0

Diesel price ($/gal) - -
Natural gas price ($/000 ft3) - -
Farmer age (yrs)
Highly erodible
ln(operation acres)
Owned field
Compliance
Productivity index
(Constant and state averages included but not reported for concision)

Consideration equation
Payment rate ($/ac)
ln(operation acres)
Mostly farmer = 1
Highly erodible
(Constant included but not reported for concision)
Observations
Log-likelihood

Results currently being transferred from USDA’s computing server.

19



Table 2: Estimates of additionality.

No-till Nutrient management
Additionality SE Additionality SE

Selection model
Difference-in-means
RA
IPW

Results currently being transferred from USDA’s computing server.
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A Parametric Identification

In this section, we show that the equations in (4) uniquely identify the parameters α0 and

β0. First, note that the sign of β0 is identified from the comparison between Φ(α0)
Φ(α0+2·β0) =

P ((1,0)|0)
P ((1,0)|2) and 1, so that without loss of generality we can take β0 > 0 to be known (β0 = 0

is ruled out by our exclusion restriction, and if β0 < 0 we could use the same steps as below

to identify α
′
0 = α0 + 2 · β0 and β

′
0 = −β0).

It will be notationally convenient to define δ1 = P ((1,0)|0)
P ((1,0)|2) , δ2 = P ((1,0)|1)

P ((1,0)|2) , so that 0 <

δ1 < δ2 < 1 under β0 > 0, and to show identification of α0 and τ0 = α0 + 2 · β0.

With this notation, the first equation in (4) is rewritten as
Φ(α0)
Φ(τ0) = δ1,

and we have

α0 = Φ−1(δ1Φ(τ0)). (A.1)

Substituting this identity into the second equation in (4), we have

Φ( τ0+Φ−1(δ1Φ(τ0))
2 )

Φ(τ0) = δ2. (A.2)

However, the function f : y → Φ( y+Φ−1(δ1Φ(y))
2 )

Φ(y) is strictly increasing in y for any value

δ1 ∈ (0, 1), so that (A.2) uniquely identifies τ0, so that (A.1) identifies α0, which establishes

the desired result.

B Non-Parametric Identification

In this section we discuss the identification of our model of selection without parametric re-

strictions on the distribution of the unobserved shocks to adoption and eligibility/consideration

(ϵ and ν). For simplicity we will consider the special case where X is a scalar covariate as

all results extend to the multivariate case in a straightforward way (e.g., by reproducing the

argument below while explicitly conditioning on the rest of the covariates). In addition, we

will be leveraging variation in the payment rates Π to obtain identification in this setting,

while allowing for these payment rates to affect both adoption decisions when participating
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in the incentive payment program and eligibility/consideration. In this setting, our model

of adoption and selection is therefore given by:

(Y, D) =



(1, 1) if β0X + γ0Π − ϵ ≥ 0 and ζ0Π − ν ≥ 0,

(1, 0) if β0X − ϵ ≥ 0 and ζ0Π − ν < 0,

(0, 0) otherwise.

As in the main text, we maintain the assumptions of independence:

ϵ, ν ⊥ X, Π and ϵ ⊥ ν

and we let Fϵ and Fν denote the cumulative distribution functions of ϵ and ν.

Note that our exclusion restriction also implies β0 ̸= 0. Without loss of generality, we

will take β0 > 0, since if β0 < 0 we could redefine the covariate X = −X to obtain β0 > 0.1

In this section we will also assume that:

1. The distribution functions of ϵ and ν have well-defined and strictly positive probability

density functions, fϵ and fν , with respect to the Lebesgue measure.

2. (X, Π) are continuously distributed random variables with support given by [xmin, xmax]×

[πmin, πmax] and strictly positive probability density function. The conditional vari-

ances Var(X|Π), Var(Π|X) are both strictly positive over the entire support of Π and

X (i.e., these two covariates are not collinear). In addition, the support of (X, Π) in-

cludes two points (x, π) and (x+ γ0
β0

π, π) such that Fϵ(β0x+γ0π) > 0, Fν(ζ0π) ∈ (0, 1).

3. The data observed by the researcher is obtained by random sampling.

4. There are two points on the support of (X, Π), (x′
, π) and (x, π), such that fϵ(β0x+γ0π)

Fϵ(β0x+γ0π) ̸=
fϵ(β0x

′ +γ0π)
Fϵ(β0x′ +γ0π) (and both ratios are well-defined, i.e., Fϵ(β0x + γ0π), Fϵ(β0x

′ + γ0π) > 0).

Conditions 1-3 are standard and impose regularity conditions on the identification problem

studied in this section. Condition 4 is not a necessary condition but it provides a simple

condition to guarantee that identification of the (normalized) marginal utility parameter

1As in Section A, the sign of β0 is identified from P ((Y, D) = (1, 0)|X = x, Π = π) for two different
values of x, holding π constant.
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γ0
β0

by ruling out scenarios where the cumulative distribution of ϵ, Fϵ, and its derivative,

fϵ, have a linear relationship across the entire support of β0X + γ0Π. One could stipulate

conditions other than Condition 4 above to guarantee that γ0
β0

is identified, with the steps

below following identification of γ0
β0

remaining unchanged.2

To shorten notation, define P ((j, j
′)|x, π) = P ((Y, D) = (j, j

′)|X = x, Π = π). As

discussed above, we can take β0 > 0. We can therefore normalize β0 to β0 = 1 (by redefining

γ0 = γ0
β0

and ϵ = ϵ
β0

).

With this normalization, our model implies:

P (1, 1|x, π) = Fϵ(x + γ0π)Fν(ζ0π),

P (1, 0|x, π) = Fϵ(x)(1 − Fν(ζ0π)),

and

log(P (1, 1|x, π)) = log(Fϵ(x + γ0π)) + log(Fν(ζ0π)).

Under the assumptions above, these log-conditional probabilities are identified and so

are their derivatives

δ1(x, π) := ∂

∂x
log(P (1, 1|x, π)) = fϵ(x + γ0π)

Fϵ(x + γ0π) ,

δ2(x, π) := ∂

∂π
log(P (1, 1|x, π)) = γ0

fϵ(x + γ0π)
Fϵ(x + γ0π) + ζ0

fν(ζ0π)
Fν(ζ0π) .

For two points (x, π) and (x′
, π) on the support of (X, Π), we then have:

γ0 = δ2(x′
, π) − δ2(x, π)

δ1(x′ , π) − δ1(x, π) ,

where δ1(x′
, π) − δ1(x, π) ̸= 0 is guaranteed by Condition 4 above, which identifies γ0.

Given identification of γ0, for a value of π (guaranteed to exist by Condition 3) such that

(i) Fν(ζ0π) ∈ (0, 1) and (ii) there is a value x with (x, π) and (x + γ0π, π) both belonging

to the support of (X, Π), we have:
Fν(ζ0π)

1 − Fν(ζ0π) = P ((1, 1)|x, π)
P ((1, 0)|x + γ0π, π) ,

and Fν(ζ0π) is uniquely identified by Fν(ζ0π)
1−Fν(ζ0π) . Given identification of Fν(ζ0π) for one value

2For instance, ζ0 ≥ 0 could replace Condition 4 as a sufficient condition for identification if payment
rates are also positive, π ≥ 0 (which is the case in our application).
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π, we then identify Fϵ(x) for all values x on the support of X since

Fϵ(x) = P ((1, 0)|x, π)
1 − Fν(ζ0π) .

Given identification of Fϵ(x) for all values x on the support of X, we can identify

Fν(ζ0π) = 1 − P ((1, 0)|x, π)
Fϵ(x) , Fϵ(x + γ0π) = P ((1, 1)|x, π)

Fν(ζ0π) ,

for all values (x, π) on the support of (X, Π). Therefore, conditional average treatment

effects on the treated (i.e., additionality) are identified without parametric restrictions on

the distribution functions of ϵ and ν:3

CATT (x, π) = 1 − P (ϵ ≤ x | ϵ ≤ x + γ0π) = 1 − Fϵ(x)
Fϵ(x + γ0π) .

C Testable Implications of our Model in the Absence of Treatment Effects

In this section, we discuss testable implications of our model in the case where there are no

treatment effects from the conservation incentive program.

Recall our model above, but without treatment effects, so that adoption (Y ) and selec-

tion into the incentive program (D) are determined by:

(Y, D) =



(1, 1) if Xβ0 ≥ ϵ, X1η0 ≥ ν,

(1, 0) if Xβ0 ≥ ϵ, X1η0 < ν,

(0, 0) otherwise,

where, as before, {ϵ, ν} ⊥ X and ϵ ⊥ ν.

Let Fϵ(.) and Fν(.) denote the cumulative distribution functions of ϵ and ν. For all

values of x, we obtain:

P (1, 1|x) = Fϵ(xβ0)Fν(x1η0)

P (1, 0|x) = Fϵ(xβ0)(1 − Fν(x1η0)),

where, as before, P (j, j
′ |x) denotes P ((Y, D) = (j, j

′)|X = x), and x = (x1, x2), where

x1 denotes the covariates that enter the eligibility/consideration equation, while x2 are the

3Note that, as in the main text, we take γ0 ≥ 0 here, since having a positive marginal utility of money
is a natural restriction in our selection model.
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excluded covariates that only enter the adoption equation.

Under the null hypothesis of no treatment effects, we can obtain a simple non-parametric

estimator of the conditional probability of being eligible for the conservation incentive pro-

gram:

P (D = 1|Y = 1, X = (x1, x2)) = Fϵ(xβ0)Fν(x1η0)
Fϵ(xβ0) = Fν(x1η0).

Therefore we could estimate Fν(x1η0) by a non-parametric regression of participating in

the incentive program (D) on the eligibility.consideration covariates X1, for the sub-sample

of farmers who adopt the conservation practice. In practice, we will estimate this regression

with a Probit regression. In addition, a first testable implication of our model is an exclusion

restriction on X2 in this model.

In addition, we then obtain:
P (1, 1|x)
Fν(x1η0) = P (1, 0|x)

1 − Fν(x1η0) ,

so that a second testable implication of our model is the mean-independence restriction:

E(1[(Y, D) = (1, 1)]
Fν(x1η0) − 1[(Y, D) = (1, 0)]

1 − Fν(x1η0) |X2) = 0.

In practice, we test this restriction of mean-independence with a quadratic regression

(but obtain similar results with a linear or cubic regression).

Table ... shows the results of (i) testing the exclusion restriction on X2 (diesel price

for no-till, natural gas price for nutrient management, and productivity index for both

practices) in the probit regression of D on X1 for farmers with Y = 1, (ii) testing the

mean-independence between 1[(Y,D)=(1,1)]
Fν(x1η0) − 1[(Y,D)=(1,0)]

1−Fν(x1η0) and X2 with a quadratic regres-

sion, using the estimated probabilities from the probit regression to calculate the necessary

weights.4 We see that, while we reject these implications at low levels of significance for

no-till practices (for which we estimate a statistically significant treatment effect in the

main text), and we reject the mean-independence restriction when no weighting is em-

ployed (E(1[(Y, D) = (1, 1)] − 1[(Y, D) = (1, 0)]|X2) ̸= 0), we do fail to reject (at any of

4We use diesel price or natural gas price and productivity index as the excluded covariate here as these
are the most significant excluded covariates in our model of adoption and selection, see Table 1 and the
corresponding discussion in the main text.
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the commonly used significance levels) the exclusion restriction on X2 in the probit model

and the statistical significance of a quadratic regression of 1[(Y,D)=(1,1)]
Fν(x1η0) − 1[(Y,D)=(1,0)]

1−Fν(x1η0) on X2

for nutrient management, for which we do not estimate significant treatment effects in the

main text.

This shows that, when using this particular set of testable implications, we do not find

evidence against our model or against our finding of no significant treatment effects of EQIP

for nutrient management practices.

D Summary Statistics

Table 3: Summary Statistics for Nutrient Management Sample

Variable Obs Mean

Treatment and outcome variables
Adopt and receive subsidy 2,519 0.010
Adopt without cost-share 2,519 0.101
Do not adopt 2,519 0.889

Farmer characteristics
Farmer age (yrs) 2,519 58.505
Mostly farmer = 1 2,519 0.736

Farm characteristics
Highly erodible = 1 2,519 0.137
ln(operation acres) 2,519 6.023
Owned field = 1 2,519 0.607
Compliance 2,519 0.035
Productivity index 2,519 0.480

Practice costs
Natural gas price ($/ 000 ft3) 2,519 4.999
Nutrient management cost ($/ac) 2,519 39.139
Nutrient management EQIP payment ($/ac) 2,519 28.162
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Table 4: Summary Statistics for No-till Sample

Variable Obs Mean

Treatment and outcome variables
Adopt and receive subsidy 2,315 0.012
Adopt without cost-share 2,315 0.397
Do not adopt 2,315 0.591

Farmer characteristics
Farmer age (yrs) 2,315 58.930
Mostly farmer = 1 2,315 0.729

Farm characteristics
Highly erodible = 1 2,315 0.174
ln(operation acres) 2,315 5.920
Owned field = 1 2,315 0.623
Compliance 2,315 0.264
Productivity index 2,315 0.482

Prices and practice costs
Diesel price ($/gal) 2,315 2.652
No-till cost ($/ac) 2,315 21.889
No-till EQIP payment ($/ac) 2,315 16.078
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