

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

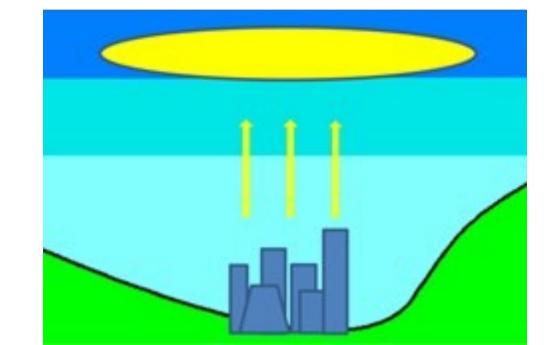
	Air Pollution, Energy Inequality and Health Effects: Evidence from China
	Ze Chen, Mingda Cheng, Shuai Chen China Academy for Rural development, Zhejiang University zechen@zju.edu.cn
	Selected Poster prepared for presentation at the 2024 Agricultural & Applied Economics Association Annual Meeting, New Orleans, LA: July 28-30, 2024
	pyright 2024 by [authors]. All rights reserved. Readers may make verbatim copies of this document
fo	pyright 2024 by [authors]. All rights reserved. Readers may make verbatim copies of this document r non-commercial purposes by any means, provided that this copyright notice appears on all such pies.

Air Pollution, Energy Inequality and Health Effects: Evidence from China

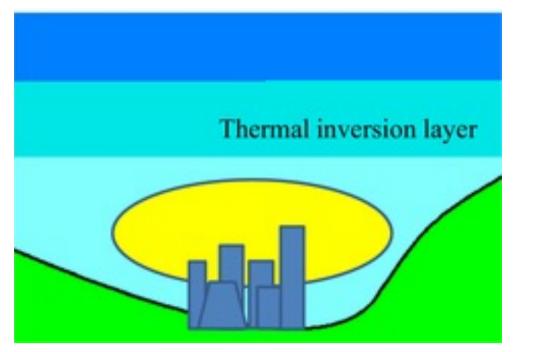
Ze Chen; Mingda Cheng; Shuai Chen China Academy for Rural development, Zhejiang University

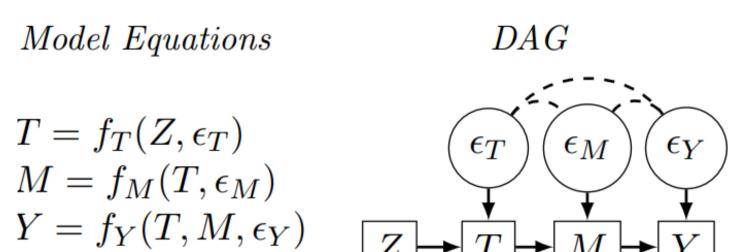
Email: zechen@zju.edu.cn

Motivation


- •Developing countries experience economic growth, while accompanied by air pollution.
- Both medical and economic studies confirm the negative impact of air pollution on health.
- •Although the causal relationship between air pollution and residents' health is now clear, the underlying mechanisms of its effect remain largely uncertain.
- Increasing energy consumption is a common adaptive behavior to combat air pollution.
- However, only a few studies have discussed the causal relationship between air pollution, household electricity consumption and health especially developing countries.
- There is a severe inequality in energy consumption.
- The poorest 40% of world's population accounts for only about 10% of total final energy consumption
- We study the role of energy consumption and its inequality in the impact of air pollution on health.

Method and Data


• Two-stage least-squares (2SLS) model


 $PM2.5_{c,t} = \alpha_0 + \alpha_1 Inversion_{c,t} + Controls + \partial_c + \gamma_d + \theta_{p,t} + \varepsilon_{c,t}$

 $Health_{i,t} = \delta_0 + \delta_1 \widehat{PM2.5}_{c,t} + Controls + \partial_c + \gamma_d + \theta_{p,t} + \varepsilon_{c,t}$

Main data

Effect of T on M: $\beta_M^T + \beta_M^J \cdot \beta_J^T$

 $Z \perp \!\!\! \perp (\epsilon_T, \epsilon_M, \epsilon_Y)$

Effect of M on Y: $\beta_Y^M + \beta_Y^K \cdot \beta_K^M$

The Mediation Model with IV

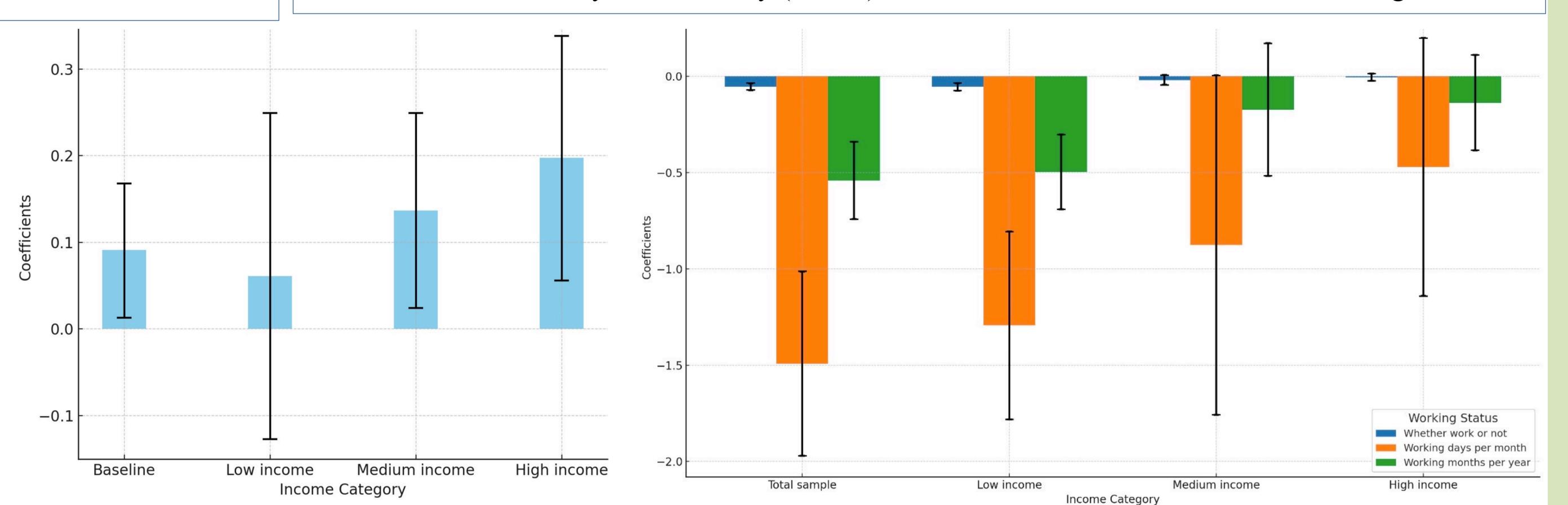
Direct Effect of T on Y: $\beta_Y^T + \beta_Y^J \cdot \beta_J^T + \beta_Y^K \cdot \beta_K^T$

Indirect Effect of T on Y: $(\beta_Y^M + \beta_Y^K \cdot \beta_K^M) \cdot (\beta_Y^T + \beta_Y^J \cdot \beta_J^T + \beta_Y^K \cdot \beta_K^T)$

• China Labor-force Dynamic Survey (CLDS); China National Environmental Monitoring

Results

● Table 1: Effect of Pm2.5 on energy usage


	(1)	(2)	(3)	(4)		
1st-stage estimation (Panel A)	10 A N Za	Dep. Var	p. Var.: Pm2.5			
Inversion	0.005***	0.002***	0.004***	0.004***		
	(0.000)	(0.000)	(0.000)	(0.000)		
Observations	38,374	38,374	38,374	38,374		
2 nd -stage estimation (Panel B)	Dep. Var.: Energy usage					
Pm2.5	0.010***	0.031***	0.039***	0.091**		
	(0.001)	(0.002)	(0.004)	(0.040)		
Observations	19,545	19,545	19,545	19,542		
KP F-statistics	353.7	1068	366	355.5		
Month-Day FE	No	Yes	Yes	Yes		
City FE	No	Yes	Yes	Yes		
Province by Year FE	No	Yes	Yes	Yes		
Weather Controls	No	No	Yes	Yes		
Individual Controls	No	No	No	Yes		

• Table 2: Effect of Pm2.5 on health condition

	(1)	(2)	(3)	(4)		
1 st -stage estimation (Panel A)		Dep. Var.: Pm2.5				
Inversion	0.005***	0.002***	0.004***	0.004***		
	(0.000)	(0.000)	(0.000)	(0.000)		
Observations	38,374	38,374	38,374	38,374		
2 nd -stage estimation (Panel B)	Dep. Var.: Health condition (1,5)					
Pm2.5	-0.008*** 0.044*		0.039**	0.034**		
	(0.001)	(0.024)	(0.018)	(0.017)		
Observations	38,947	38,947	38,947	38,374		
KP F-statistics	1403	1159	2117	2117		
Month-Day FE	No	Yes	Yes	Yes		
City FE	No	Yes	Yes	Yes		
Province by Year FE	No	Yes	Yes	Yes		
Weather Controls	No	No	Yes	Yes		
Individual Controls	No	No	No	Yes		

• Table 3: Heterogeneous effect by working types

	(1)	(2)	(3)	(4)
Panel A	Mental working	Physical working	Mental working	Physical working
Dep. Var.	Working day	ys per month	Working mo	onths per year
Pm2.5	-0.020	-1.489***	0.112	-0.397**
	(0.839)	(0.486)	(0.351)	(0.184)
Observations	4,934	15,554	4,931	15,498
KP F-statistics	66.73	182.7	66.36	182.6
Panel B	Indoor working	Outdoor working	Indoor working	Outdoor working
Dep. Var.	Working day	ys per month	Working mo	Outdoor working months per year
Pm2.5	-0.367	-1.734***	0.227	-0.521***
	(0.409)	(0.515)	(0.171)	(0.188)
Observations	11,320	13,270	11,288	13,230
KP F-statistics	527.6	166	530.1	165.1

• Figure 1: Heterogeneous by income of energy usage

• Figure 2: Heterogeneous by income of work status

● Table 4: Mediation effect of energy usage on health condition

Dan Van	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Dep. Var.	Energy usage	Health condition	Health condition	Energy usage	Health condition	Health condition	Energy usage	Health condition	Health condition
Energy usage			-2.606			1.044			-0.158
			(2.958)			(0.831)			(0.289)
Pm2.5	-0.016	0.091**	0.054	0.051*	0.068**	0.008	0.149***	-0.019	-0.002
	(0.033)	(0.036)	(0.051)	(0.029)	(0.032)	(0.013)	(0.040)	(0.037)	(0.011)
Income Ranking	Low	Low	Low	Medium	Medium	Medium	High	High	High
Observations	13,249	13,678	13,245	11,917	12,251	11,917	11,053	11,384	11,051
Mediation Effect			55.33%			43.91%			31.42%

Conclusions

- •While overall air pollution has significantly reduced individuals' health and increased their electricity consumption, subsample regression results reveal income level heterogeneity.
- High-income: increase electricity consumption without significant changes in health levels. Low-income: do not increase their electricity consumption and health levels decrease because of budget limitations
- •Inequality in energy consumption is a significant channel through which air pollution impacts health: the explanatory power of electricity consumption diminishes with rising income levels of individuals.