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Abstract  

Nitrogen (N) loss due to fertilizer intensive crops such as corn pose a threat to human and 

environmental health and is creating an imperative for strategies to reduce nutrient loss from 

agricultural fields. Cover crop adoption with annual row crops and diversification of crops to 

include perennial energy crops have been shown to be promising approaches to lower N leaching. 

These approaches differ in farmers costs, the trade-offs they offer in terms of short-term costs, 

long-term benefits, and the impact on food crop production. In the absence of policy incentives 

and markets for bioenergy, the adoption of these strategies is low. The design of policy incentives 

is complicated due to spatially varying nature of nutrient loss and uncertainties due to weather 

conditions. We apply a stochastic model with fine-scale data to examine the cost-effective mix of 

cover crop and perennial crop adoption to achieve N loss reduction targets for the Raccoon River 

Basin, Iowa, its implications for land use, food crop production, and farm profitability given 

varying bioenergy prices. We also examine the unintended effects of a biomass market for 

harvesting corn residues for bioenergy and its implications for N loss reduction. We find that a 

high biomass price can increase stover production from corn land which offsets the benefit of 

increased miscanthus production on N leaching reduction. In scenarios where policymakers 

prioritize reducing uncertainty in N loss, a decrease in corn production is expected to occur, 

inducing diminished N leaching but greater losses in farm profitability.  

 

JEL Codes: Q18, Q24, Q25, Q56 
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1. Introduction 

Nitrogen (N) loss from excessive application of N fertilizer in the U.S. Corn Belt is one of the 

primary causes of water quality degradation within the Mississippi River Basin and the Gulf of 

Mexico (David et al., 2010; Jones, Nielsen, et al., 2018; Soriano et al., 2021) and presents a threat 

to public health and local economies due to contaminated drinking water sources and its impacts 

on fisheries, recreation, and tourism (EPA, 2016). In particular, nonpoint sources from agriculture 

play a substantial role in nutrient pollution in many watersheds. In 2015, U.S. congress amended 

the Safe Drinking Water Act and directed EPA to develop a strategic plan and implement 

watershed-based projects to reduce impacts to public health from nitrates in sources of drinking 

water.  

Various strategies have been proposed to mitigate N leaching. One potential approach is 

adopting cover crops on the existing continuous corn or corn-soybean rotation lands, which does 

not conflict with food crop production and in the long run may improve crop productivity by 

improving soil health (Vendig et al., 2023). Studies have found that cover crop adoption can 

provide benefits for erosion, soil carbon, and greenhouse gas emissions (Deines et al., 2023; Ye et 

al., 2023) and help reduce N leaching (Kladivko et al., 2014; Waring et al., 2020). Specifically, the 

rye winter cover crop has been found to be able to significantly reduce drainage water nitrate 

concentrations by 42.5% to 61% over the first four years of the adoption (Kaspar et al., 2007, 2012; 

Malone et al., 2014). However, there are upfront cover crop adoption costs and short-term yield 

penalties from adopting cover crop practices, so the private cost of the cover crop adoption 

outweighs the short-term private benefit, leading to a low cover crop adoption rate. Therefore, 

although the cover crop adoption has several benefits (i.e., nutrient sequestering, soil health 

improvements, carbon dioxide removal, and biodiversity increases) (Schnitkey et al., 2023), there 
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is no adequate incentives for farmers to adopt the cover crop practice, especially when they don’t 

have prior experience with planting cover crops (Schnitkey et al., 2023). Thus, it is crucial to 

design policy incentives to enhance the cover crop adoption rate. 

Another possible strategy to reduce N leaching is changing land use by replacing fertilizer-

intensive row crops with perennial crops. Studies have shown that adopting perennial crops not 

only can reduce N leaching but also provide key ecosystem service while meeting the growing 

biomass demand due to the bioenergy mandate (Housh, Khanna, et al., 2015; Housh, Yaeger, et al., 

2015; VanLoocke et al., 2017). Nevertheless, planting perennial crops on croplands can potentially 

conflict with food production (e.g., corn, soybeans). To minimize this conflict, perennial crops can 

be planted on idle (marginal) land if available, which are less suitable for food crop production. 

However, arable marginal land is limited, and planting perennial crops on marginal land may not 

necessarily be the most socially efficient approach to resolve the water quality issue because it 

does not displace continuous corn or corn-soybean production, which is the primary N source 

(Valcu-Lisman et al., 2016). Moreover, planting perennial crops involves high upfront costs, long 

time commitments, and reliance on demand for biomass and a high biomass price in order to be 

profitable. However, a high biomass price could incentivize more corn stover production and 

increase corn land, which can offset N loss benefit from perennial crops. Hence, the choice of 

appropriate crop mix to curtail N leaching given different biomass prices is a complex decision. 

Due to several relative costs and benefits of cover crop and perennial crop adoption along with 

different implications to land use, N leaching, and farm profitability, it is crucial to investigate 

which crop mix is chosen on which landscape and what underlying mechanism is driving changes 

in land profitability and, in turn, land use. Since every policy and production practice has pros and 

cons, it is important to explore the effect of various strategies on N loss, land use, and farm 
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profitability. Several factors can affect the profitability of land and land use decisions, such as 

slope gradient, erosion class, land capability, soil tolerance, climate, and hydrology (Valcu-Lisman 

et al., 2016), suggesting, instead of using coarse-resolution data (e.g., state, county, etc.), it is 

necessary to use fine-resolution data to consider land heterogeneity and identify the most optimal 

land allocation and crop selection (Brandes et al., 2016; Zhong et al., 2018).  

The effectiveness of adopting cover crop and perennial crops on N loss reduction can be 

uncertain and depends on several factors, such as internal nutrient recycling rate (Amougou et al., 

2012; Smith et al., 2013), hydrological processes (Castellano et al., 2010), residue decomposition 

(Palmer et al., 2014), and climate (Cowan et al., 2015; Kelliher et al., 2017). Moreover, the choice 

of crops and the type of land converted for bioenergy production can also have complex and 

uncertain effects on N losses (Whitaker et al., 2018). Therefore, considering the impact of N 

leaching and its uncertainties is crucial while designing cost-effective and sustainable strategies to 

reduce adverse consequences for the environment. 

The Raccoon River Basin (RRB)1 in west-central Iowa is a major contributor to high N loads 

in the primary drinking water source for Des Moines and hypoxia in the Gulf of Mexico (Goolsby 

et al., 2000; Hatfield et al., 2009a; Jones et al., 2016; Schilling & Zhang, 2004). The RRB 

watershed, dominated by corn-belt agriculture (Jha et al., 2010), has experienced increasing N 

leaching since 1970 (Hatfield et al., 2009b; Jones et al., 2018). With over 75% of the total land 

(934,400 ha) in the RRB used for row crop planting, corn alone accounts for more than 20% of the 

total land in the RRB (USDA-NASS, 2021). Thus, this study uses the RRB watershed (Figure 1) 

 
1 Due to the high levels of nitrates in the drinking water supply, the City of Des Moines invested 

$4 million in installing a water treatment plant in 1993, with a recent plan for building a new multi-

million water treatment plant (EPA, 2016). Iowa Nutrient Reduction Strategy (2017) also aims to 

implement a nutrient removal process at the estimated annual cost of $114 million and sets 41% 

of the statewide total nitrogen reductions as the target load for nonpoint sources. 
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as a case study to investigate the effect of cover crop/perennial crop adoption and N reduction 

target policy on improving nitrate impairment while considering the uncertainty of N leaching.  

Previous studies related to the impacts of corn production on water quality have often used 

deterministic approaches at the county (Housh, Khanna, et al., 2015; Housh, Yaeger, et al., 2015), 

sub-basin (Valcu-Lisman et al., 2016), or CRD levels (Chen et al., 2021; Chen, Debnath, et al., 

2021; Ferin et al., 2021). To account for the uncertainty in N loss, this study applies a stochastic 

method to specify the probability of attaining the desired N leaching target load and investigate 

changes in the expected N leaching amount, land use, and agricultural profitability under different 

policy and biomass price scenarios. Due to land use changes affected by profitability and N 

leaching rate, which are often spatially heterogenous, this study also uses crop yield and N leaching 

data at a 10 km scale to capture the spatial heterogeneity in order to get more precise insight about 

distribution of land use, N loss management, and farm profitability. 

The objective of this study is to employ a stochastic modeling approach with fine-scale data to 

investigate the effects of adopting a cover crop and perennial crops on land use, N leaching, and 

farm profits in the RRB, Iowa and to identify the associated cost of reducing N leaching and 

socially desirable land allocation while considering uncertainty in N reduction. Specifically, this 

study aims to explore the following research questions: first, this study investigates how adopting 

a cover crop and perennial crops improves N leaching while considering uncertainty in N reduction 

given different biomass prices. Second, the integrated assessment approach is applied to analyze 

to what extent perennial crops adoption, cover crop practice, and N regulation can reduce N 

leaching and what the corresponding costs and resulting land use implications are. Third, both 

grid- and county-scale data are used to examine differences in the estimated effects of N leaching 
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reduction policies on land use changes and N leaching between using fine-scale and coarse-scale 

data.  

This study contributes to the literature by exploring potential cost-effective policies to reduce 

N leaching in an agriculture-dominant watershed, applying a probabilistic approach to assess the 

policy effect on N leaching while accounting for N leaching uncertainties, and using different 

scales of data to derive modeling results and to identify potential benefits/drawbacks of adopting 

fine-scale data. 

 

Figure 1. Study area: Raccoon River Basin Watershed, Iowa 

 

2. Methods and Materials 

2.1 Integrated modeling approach framework 

The conceptual framework of this study is based on investigating the effect of adopting a 

cover crop and perennial crops along with an N reduction policy on land use change, N leaching, 

and farm profitability. The choice of crops depends on the profitability of each crop and the N 

leaching rate if an N regulation takes place. Adopting perennial crops relies on high biomass prices 

and usually takes years to get returns. Nevertheless, high biomass prices can also incentivize corn 
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stover production and increase corn land demand, so finding a temporal land use and spatial crop 

mix decision to reduce N leaching while maximizing farms’ profitability is a complicated decision-

making problem. Furthermore, since N leaching, crop yield, and profitability are spatially varying, 

capturing the spatial heterogeneity in crop yield and N leaching data at a finer scale is important. 

Then, the decision-making problem expands to consider which crop mix to choose and where to 

plant the chosen crop mix to optimize N leaching and farm profitability. Moreover, due to the 

uncertainty in N loss, the effect of the chosen crop mixes on N leaching and farm profitability can 

be inaccurate. Therefore, we apply an integrated modeling approach to link a dynamic stochastic 

economic model (Section 2.2) with an Agricultural version of the Integrated Biosphere Simulator 

(Agro-IBIS) model and Terrestrial Hydrologic Model with Biogeochemistry (THMB) (Ferin et al., 

2021, 2023) to construct the above conceptual framework and investigate the optimal crop mixes 

and land use to optimize N leaching and farm profitability. 

2.2 Dynamic stochastic economic model  

A multi-period recursive stochastic mathematical programming model is developed to 

determine the optimal land allocation to produce four major annual crops (i.e., corn, soybeans, 

alfalfa, oats), two perennial crops (miscanthus and switchgrass), cover crop (rye with winter kill 

termination practice), derived secondary products (i.e., corn stover, corn oil, soybean oil, corn 

ethanol, distiller's dried grains with solubles), and animal products (i.e., beef, dairy, pork, broiler, 

eggs) across 166 grids at a resolution of 10 km (or 13 counties) within in the RRB, Iowa. The 

present model determines the maximum discounted value of the net economic benefits in the 

agricultural sector over the 2016–2045 period under different agricultural practices (i.e., adoption 

of perennial crops and cover crop) and N policy scenarios.  



9 

 

To investigate the uncertainty in N reduction, the model applies a chance-constraint method 

to the N leaching constraint given distinct probabilistic levels the N leaching constraint would be 

achieved. The resulting outcomes can be interpreted at different probabilistic levels and provide 

implications regarding the uncertainty in N reduction. The model formulation is detailed in 

Supporting Information (SI) 1. 

We parameterized the model using data from several sources. Crop prices from 2016 to 2021 

were retrieved from USDA-NASS. The agricultural production cost data was obtained from Iowa 

State University Extension and Outreach (2016). Land use and land type data were collected from 

Cropland Data Layer (CDL)(Boryan et al., 2011), and the marginal land classification was 

modified from Jiang et al. (2021) (details refer to SI 2). Crop yield and nitrate leaching data were 

from an Agricultural version of the Integrated Biosphere Simulator (Agro-IBIS) model and 

Terrestrial Hydrologic Model with Biogeochemistry (THMB) (Ferin et al., 2021, 2023). Because 

crop yields, yield-dependent production costs, N loads, and land availability vary across 166 grids 

at the 10 km scale in the RRB Watershed over 2016–2045, the results generated from the 

mathematical programming model are temporally and spatially heterogeneous. 

2.3 Modeling scenarios 

Various modeling scenarios are used to investigate the economically optimal crop choice, land 

use changes, and biomass production across 166 grids at a resolution of 10 km and 13 counties 

within the Raccoon River Watershed from 2016 to 2045. The modeling scenarios include adoption 

of cover crop and perennial crops given three biomass price scenarios (i.e., $0, $70, and $100 per 

Mg of biomass) and three N reduction target scenarios (i.e., no policy, deterministic N reduction 

target, and 95% stochastic N reduction target). The choice of biomass prices reflects the range of 

the historical cornstalk price in Iowa (USDA, 2024). The N reduction policy is assumed to linearly 
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reduce N-leaching over 25 years by 20% relative to the 30-year average N-leaching amount. Three 

N reduction policy scenarios are considered to investigate the effect of the N reduction target on 

land use change, cover crop and perennial crops adoption, and N leaching with uncertainty. In 

addition to no N policy scenarios, the deterministic N reduction target doesn’t require a probability 

to meet the N reduction policy, reflecting the outcome without considering the uncertainty. On the 

other hand, the stochastic N reduction target specifies a probability to achieve the N reduction 

target, reflecting the outcome with considering the uncertainty. The combination of the considered 

three biomass price scenarios and three N policy scenarios results in a total of nine sub-scenarios. 

All the sub-scenarios are run at the 10 km and county scales. Therefore, 18 model runs are 

conducted.  

The baseline scenario, which serves as a reference benchmark to compare with other scenarios, 

is where the resulting 2016 cover crop adoption rate is close to the observed level in 2016 (CTIC, 

2024; Zhou et al., 2022), and there is no adoption of perennial crops and nitrogen reduction target. 

The cover crop adoption rate is calculated by the amount of land adopting the cover crop practice 

divided by the total amount of corn and soybean land. The lower bound 2.5% adoption rate is used 

as an initial adoption rate based on the observed cover crop coverage in 2016 (CTIC, 2024) and 

calibration result (SI 3). 
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3. Results 

3.1 Effect of cover crop and perennial crop adoption on N leaching, total profits, and land use 

The estimated land use results from the dynamic stochastic economic model are validated by 

CDL data from 2016 to 2021. The validation results in the entire RRB watershed domain show 

that the difference between estimated corn acreage and observed acreage varies from -9.7% to -

10.7% for the 10 km-scale model and from -7.1% to -9.35% for the county-scale model, and the 

difference in soybean acreage is -7.0% to -7.8% for the 10 km-scale model and -4.6% to -5.5% for 

the county-scale model. The cover crop adoption acreage in 2016 is calibrated with the satellite 

data (Zhou et al., 2022), and the calibration results show a difference between estimated and 

observed cover crop adoption acreage is 5.1% for the 10 km-scale model and 7.8% for the county-

scale model. All the dynamic stochastic economic model validation and calibration results are 

documented in SI 3. 

The baseline scenario in this study is when there is no biomass market (i.e., biomass price is 

$0 Mg-1), and the cover crop adoption rate is 2.5% in the base year which is aligned with the 

satellite observed data. The baseline scenario results in 2045 show that the estimated total farm 

profit is $6.8 billion with a cover crop subsidy of $0.5 billion, and the N leaching is 4.8 million 

kg-N (Figure 2). The corresponding land use allocation presents 0.37 million ha of corn land 

without the cover crop adoption acreage, 0.02 million ha corn land with the cover crop adoption, 

and 0.29 million ha of land plated for soybeans (Figure 3a). There is no perennial crop production 

under the baseline scenario because of $0 Mg-1 biomass price. The most common rotation type is 

corn-soybean rotation with 30% corn stover removal which accounts for 0.48 million ha (Figure 

3b).  
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With the introduction of the biomass market and the adoption of perennial crops, the total farm 

profit is expected to be 1.3% and 30.1% higher relative to the baseline scenario when the biomass 

price is $70 Mg-1 and $100 Mg-1, respectively (Figure 2). The corresponding corn acreage increases 

0.5% and 2% (Figure 3), and N leaching is 3.7% and 11.2% higher. These outcomes indicate that 

the higher biomass price occurs, the more corn stover production is anticipated, leading to more 

demand for corn land and, in turn, worsen water quality. For instance, when the biomass price is 

$100 Mg-1, producing corn with stover becomes more profitable, so N leaching is higher than in 

other biomass price scenarios due to the greater presence of corn land (Figure 3a). In addition, the 

results also show that a higher biomass price incentivizes more idle land to be converted into 

biomass production (Figure 3a). Cover crop adoption is expected to see more in corn-soybean 

rotation with a 30% stover removal rate and continuous corn rotation with a 0% stover removal 

rate (Figure 3b).  

 

a. Total profit and subsidy 

 
b. N leaching 

 
Figure 2. Effect of perennial and cover crop adoption on nutrient loss and total profit in 2045 
Note: ‘(CC)’ denotes a rotation with the cover crop practice.   
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a. Land use change by crop types 

 
b. Land use change by rotation types 

 

Figure 3. Effect of perennial and cover crop adoption on land use changes in 2045  
Note: ‘coco’ denotes continuous corn rotation; ‘cosb’ denotes corn-soybean rotation; ‘rm’ denotes the corn stover removal rate. 
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3.2 Effect of N reduction policy on N leaching, total profits, and land use 

In this section, we examine how the implementation of the N reduction target can affect the 

adoption of cover crop and perennial crops, land use, N leaching, and total profits. To account for 

the uncertainty in N loss, in addition to applying the conventional deterministic constraint, we also 

employ a stochastic constraint to specify the probability of meeting the N reduction target. We use 

a 95% stochastic constraint, which requires the modeling solution to satisfy the N reduction target 

at a 95% confidence level so that the resulting model solution has a higher assurance level to 

mitigate N leaching while minimizing the impact of uncertainty in N loss.  

a. Total profit and subsidy 

 
b. N leaching 

 
Figure 4. Effect of N reduction policy on nutrient loss and total profit in 2045 
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Figure 5. Effect of N reduction policy on land use changes in 2045 

 

The stochastic results tend to have lower total profits (Figure 4a), lower N leaching from row 

crops without the cover crop adoption, and higher N leaching from row crops with the cover crop 

adoption (Figure 4b) compared to the deterministic results due to less corn land in production 

under the 95% stochastic scenarios (Figure 5). The results also show that implementing the N 

reduction target facilitates more cover crop adoption than the scenarios without the N reduction 

target (refer to Figure 5 and Figure 3a). Under the 95% stochastic scenarios, there is less corn land 

without the cover crop adoption than the deterministic scenarios, indicating that less corn 

production without the cover crop adoption is expected to occur when the model aims to consider 
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the uncertainty in N loss and requires a higher assurance level to meet the N reduction target. On 

the other hand, more corn land with the cover crop adoption is expected to occur under the 95% 

stochastic scenarios relative to the deterministic scenarios (Figure 5), due to the benefit of the 

cover crop adoption to nutrient losses.  

Various biomass prices and the implementation of the N reduction target can affect distinct 

crop mixes, cover crop/perennial crop adoption, and N-leaching spatial patterns. Figure 6 shows 

that under the baseline scenario (i.e., biomass price is $0 Mg-1 and no N policy), more corn land 

without the cover crop adoption is estimated over the entire RRB watershed in 2045. The central 

and southern RRB watershed will have relatively high N loses (Figure 6a), which is aligned with 

the spatial distribution of N leaching rate in each 10-km grid (Figure S11). There is no miscanthus 

production because the biomass price is $0 Mg-1. When the biomass price is $70 Mg-1, part of corn 

land without the cover crop adoption is expected to be replaced with miscanthus (Figure 6b). When 

the biomass price increases to $100 Mg-1, more miscanthus is expected to be planted over the RRB 

watershed. Nevertheless, more miscanthus production doesn’t necessarily lead to lower N leaching. 

In the absence of the N reduction policy under the $100 Mg-1 biomass price scenario, the southern 

RRB watershed has a higher N loss relative to $0 Mg-1, indicating that a higher biomass price 

incentivizes not only miscanthus production but also corn stover production so that more corn land 

demand is expected. In the presence of the N reduction policy given various biomass prices, more 

cover crop corn land occurs mainly in the center and south of the RRB watershed and replaces the 

corn land without the cover crop adoption, and a more significant reduction in the corresponding 

N loss is expected in the east and southeast of the RRB watershed. The above results suggest that 

biomass prices and the N reduction target can induce distinct crop mixes and spatially varying 

patterns of cover crop and perennial crop adoption.   
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a. N leaching spatial distribution under different biomass prices and N policy scenarios 

 
b. Corn, cover crop adoption, and miscanthus land allocation under different biomass prices and N policy scenarios 

 
Figure 6. Spatial distribution of N leaching and corresponding crop mix of interest in 2045 
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Part a of Table 2 shows changes in cover crop adoption rate under various biomass price and 

N reduction constraint scenarios at the end of the modeling year (2045). The results show that 

when no N reduction policy exists, the cover crop adoption rate stays at the observed cover crop 

adoption rate in the RRB in 2016 (2.5%). The cover crop adoption rate in 2045 increases to 22.1% 

to 40.7%, depending on the biomass price, under the deterministic N reduction constraint scenarios, 

indicating that the N reduction target policy can promote the cover crop adoption rate. Considering 

uncertainty in N loss, the stochastic constraint requiring a higher assurance level of reducing N 

leaching leads to an even higher cover crop adoption rate (24.3% to 43.2%) relative to the 

deterministic scenarios.  

Table 2. Estimated cover crop adoption rates and N abatement cost in 2045  

N policy constraint $0 Mg-1 $70 Mg-1 $100 Mg-1 

a. Estimated cover crop adoption rates (% of the total corn and soybean land) 

No N constraint 2.50 2.50 2.50 

Deterministic 22.05 32.45 40.67 

Stochastic (95%) 24.27 35.82 43.21 

b. N abatement cost ($/kg- N) 

Deterministic 1.58 1.99 2.69 

Stochastic (95%) 1.57 1.98 2.45 

Unit: % of the total corn and soybean land 

Note that although Part a of Table 2 shows that a higher biomass price leads to a higher cover 

crop adoption rate, a higher biomass price, in fact, results in lower cover crop adoption in actual 

hectares (Figure 2a). There are two factors that can increase the cover crop adoption rate by 

definition: one is increasing the amount of land adopting the cover crop practice; the second is 

decreasing the amount of total land in corn and soybean production. The higher biomass price 

induces more land initially used for row crop production to be converted into perennial crop 
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production. Therefore, when the land with the cover crop practice doesn’t change much with 

decreasing total corn and soybean production land, the cover crop adoption rate can seem higher. 

The N abatement costs under various scenarios are estimated from the dynamic and stochastic 

mathematical programming model (Part b of Table 2). The results show that when there is no 

biomass market (i.e., biomass price is $0/Mg), the N abatement cost is estimated to be lower under 

the stochastic scenarios than the deterministic scenarios because the stochastic scenarios require a 

higher assurance to reduce N leaching, resulting lower N leaching. Moreover, the higher the 

biomass price incurs, the higher the N abatement cost would be anticipated, reflecting the 

opportunity cost of replacing corn land, which has higher profits when the biomass price is high 

due to the stover production. 

3.3 Difference in results between 10 km- and county-scale models 

Table 3 summarizes the difference in key results estimated from 10 km- and county-scale 

models, and the county-scale model results are documented in SI 4. The difference rate is 

calculated relative to the country-level results. The difference in the estimated total farm profits in 

the RRB watershed in 2045 shows that the estimated total farm profits from the 10 km-scale model 

tend to be lower relative to the county-scale model, while the 10 km-scale model has higher 

estimated N leaching in 2045 compared to county-scale model results. 

The reasons for those differences between models at two different scales is that each county in 

the RRB watershed includes multiple 10 km scale grids, and crop yields and N leaching values 

vary across the covered grids. To construct the county-scale model, each county only has one single 

crop yield value (i.e., a simple average of crop yield values from the covered grids), which cannot 

fully reflect the crop yield heterogeneity and spatial distribution across all grids. Specifically, the 

distribution of crop yield from 10 km grids in each county is left-skewed, implying that there are 
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only a few observations with lower crop yield values and most of the observations with higher 

crop yield values. The left-skewed distribution leads to a simple average of crop yields from the 

covered grids closer to the upper bound of yield distribution (refer to SI 5). Therefore, the county-

scale model has a higher representative crop yield value relative to the 10 km-scale model, 

resulting in higher total farm profits.  

Similarly, the N leaching has the same issue but with a right-skewed distribution, meaning 

most of the observations have relatively low N leaching values, and only a handful of observations 

have high N leaching values. Thus, the county-scale model tends to have lower representative N 

leaching values (i.e., simple average of N leaching values from the covered 10 km grids within 

each county) than the 10 km scale model, inducing the estimated N leaching results from the 

county-scale model are lower than the 10 km-scale model. 

Table 3. Percentage differences in 10 km-scale results relative to county-scale results in 2045 

Variable 
N policy 

constraint 
$0 Mg-1 $70 Mg-1 $100 Mg-1 

Total profits No N policy -2.24 -1.96 -13.67 

 Deterministic -2.21 -1.96 -4.05 

 Stochastic (95%) -7.07 -9.18 18.28 

Cover crop subsidy No N policy 0.21 0.41 0.42 

 Deterministic 0 0.99 1.01 

 Stochastic (95%) -1.95 -0.78 -0.2 

N leaching No N policy 2.77 2.72 6.65 

 Deterministic 0 0 0 

 Stochastic (95%) 5.52 5.41 5.21 

Unit: % change relative to modeling result at a county-level.   
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4. Discussion 

Uncertainty in N loss can affect the effectiveness of N leaching reduction strategies. To account 

for the uncertainty in N loss, this study applies the chance-constraint optimization model to specify 

the probability of achieving the desired level of N target load. Other study employed a similar 

approach but with a multi-objective optimization model and found that securing nutrient loads 

with higher levels of resilience is more costly (Rabotyagov et al. 2016). This finding is aligned 

with our findings in total profit losses. Figure 4 shows that total profit losses estimated from the 

deterministic model given different biomass prices are 5% to 16% higher than the stochastic model, 

indicating that the higher assurance of reducing N leaching requires more stringent N reduction 

target load and is expected to induce greater losses in total profits. The implication of this finding 

from the present study and Rabotyagov et al. (2016) is that the total profit loss due to the 

implementation of N reduction practices or policies is likely underestimated if the uncertainty in 

N loss is not considered. Moreover, the higher assurance of reducing N leaching can reduce N loss, 

while the farm profitability is expected to decline due to requiring a more stringent N reduction 

target load. Similarly, Burkart & Jha (2007) investigated the effect of implementing a nonpoint 

source trading scheme and showed that the total farm watershed loss is anticipated to be larger 

under a less-permit scenario (i.e., more stringent scenario) than under a more-permit scenario (i.e., 

less stringent scenario), implying a tradeoff between N leaching and farm profitability.  

The biomass price plays a vital role in determining crop mix, biomass production, and N 

leaching. A higher biomass price can induce more perennial crop production and corn stover 

production. However, these two biomass sources have distinct implications to N leaching. Biomass 

supply from corn residues can worsen nutrient loss, and biomass from perennial crop production 

can curtail N loss (Egbendewe-Mondzozo et al., 2011). Nevertheless, if perennial crop production 
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takes place on idle land, then the benefit of reducing N loss via the perennial crop adoption 

becomes limited because the main sources of N leaching from corn land remain in production 

(Valcu-Lisman et al., 2016). This result is also found in this study showing that a higher biomass 

price without any N reduction policy leads to higher N leaching (Figure 2b). Therefore, the 

implementation of N loss reduction target is suggested as an effective approach to induce 

displacement of N-intensive row crop with other energy crops (Ferin et al., 2021). The findings of 

the present study also support this point of view and show that the implementation of the N 

reduction target facilitates the displacement from corn land to perennial crop adoption. Without 

the N reduction target, the displacement of N-intensive row crop is less significant and largely 

determined by the biomass price. Note that although the displacement of corn land is mainly 

replaced by miscanthus in this study, our model does consider switchgrass as a perennial crop 

option. However, adopting switchgrass is not profitable given the current biomass price scenarios 

in this study. Existing study shows that landowners would be more likely to plant switchgrass when 

the biomass price ranges from $113 Mg-1 to $176 Mg-1 (Chen et al., 2021). 

5. Conclusions 

The aim of this research is to examine how adopting a cover crop on existing land use improves 

N leaching and how incorporating perennial crops given different biomass prices affects land use 

change, N leaching, and total farm profits. This study applies the stochastic modeling approach to 

account for uncertainty in N reduction and uses both grid- and county-scale data to examine 

differences in the estimated land use changes, N leaching, and total farm profits at different data 

scales. 

The results of this study show that a high biomass price can induce more perennial crop 

production and corn stover production, so the introduction of the perennial crop alone without the 
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N reduction target may not be sufficient to reduce N losses. The interaction effect of adopting 

cover crop and perennial crops with the implementation of the N leaching reduction target on land 

use change and N leaching indicates that the implementation of the N reduction target is anticipated 

to incentivize the adoption of cover and perennial crops, promote the utilization of marginal land, 

and result in a lower N leaching. In scenarios where policymakers prioritize reducing uncertainty 

in N loss and require a higher assurance level to curtail N leaching, a decrease in corn production 

is expected to occur and a higher estimated N abatement cost, leading to diminished N leaching 

but greater losses in total farm profits.  

The implications of these results suggest that the cover crop adoption can curtail N leaching, 

while a high biomass price can incentivize more corn stover production, in turn, more demand for 

corn land. Thus, the effectiveness of the cover crop practice on the N leaching reduction can also 

be partially offset by a relatively high biomass price (e.g., $100 Mg-1) because more corn 

production is expected to occur to produce corn stover. Therefore, in addition to promoting the 

adoption of cover crop and perennial crop alone, the implementation of the N reduction target 

policy can be an effective approach to ensure the overall land use allocation is toward the pathway 

to decreasing N leaching. The findings of this study provide insights into how adopting cover crop 

on the existing land use can reduce N leaching with a relatively low cost in terms of cover crop 

subsidy expenses, and how adopting perennial crops can alter land use change, N leaching, and 

total farm profits. All the results in this study are investigated at grid- and county-scale, 

respectively. The comparison of the estimated results between two distinct modeling granularities 

shows that, overall, the results from both models have similar patterns with ±20% differences in 

magnitudes depending on the skewness of data distribution (Section 3.3 and SI 5). 
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This watershed-based study provides valuable insight into nutrient loss management and the 

associated implications to land use changes and regional economy. While the external validation 

of this study may be limited due to a small-closed economy assumption, where the price changes 

in the small watershed won’t affect the market prices in a larger economy scale. For instance, the 

biomass price would be affected by widespread adoption of perennial crops in a larger scope, and 

the resulting massive supply would decrease the market price. This indirect feedback loop is not 

captured in a relatively small watershed-based study. Continued efforts are needed to consider 

price changes on a larger economic scale.  
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Supporting Information 

SI 1. Stochastic and dynamic mathematical programming model 

Since the perennial crop lasts multiple years unlike annual crops, the model is solved in 

multiple recursive iterations with considering terminal value of perennial crops at the end of the 

modeling year. Specifically, decisions made in year t account for potential profit over the following 

nine years (t to t+9), assuming perennial crops have a lifetime of ten years. Once the first iteration 

(i.e., t to t+9) is completed, the model obtains the optimal land use allocation and crop mix in year 

t based on the outcome of the maximum profits incurred over t to t+9. Next, the model starts a new 

iteration (t+1 to t+10) given the optimal land allocation, land rent, and profits of each crop 

determined in the previous iteration. The crop yield growth rate is assumed to be 2% every year. 

The illustration of the above decision-making process is shown in Figure S1. The next sub-section 

describes the formulation of the mathematical programming model, consisting of a profit 

maximization objective function and a set of constraints and being solved in every recursive 

iteration. 

 

Figure S1. Recursive decision-making process. 
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Table S1. Mathematical notation description: subscripts, variables, and function 
Notations Definition 

Subscripts 

𝒕 Recursive planning period in each iteration 

𝒄 Grid cell (at the 10 km scale) 

𝒊 Primary crop products (corn, soybeans, alfalfa, oats) 

𝒋 Processed products (corn oil, ddg, and soybean oil) 

𝒌 Primary livestock products 

𝒛 A product vector 𝑧 =(𝑖, 𝑗) 

𝒍 Merchantable livestock products 

𝒓 Rotation type (coco, cosb, alfa-alfa, oat-oat) 

𝒏  Tillage type (no tillage, conventional tillage) 

𝒗 Corn stover removal rate (0, 30%, 50%) 

𝒅  Land type 

𝒂  Age of perennial crops 

𝒇 Fertilizer type (N, P, K) 

𝒑 Perennial crop type (miscanthus, switchgrass) 

𝒈 Grazing land type 

𝒎 Animal group type 

𝒖 Nutrition type required for livestock activities 

Variables 

𝑷𝑹𝑰𝑴𝑨𝑹𝒀𝒊,𝒄,𝒕 Primary row crop 𝑖 produced in cell 𝑐 in year 𝑡 (Unit: bushel for corn\soybean\oats; ton for alfalfa) 

𝑸𝑪𝑬𝒕  The amount of corn ethanol produced in year 𝑡 (gal) 

𝑸𝑫𝑺𝑳𝒋,𝒕  The amount of biodiesel produced from processed products 𝑗 in year 𝑡 (gal) 

𝑩𝑴𝑨𝑺𝑺𝒄,𝒕  The amount of total biomass production in cell 𝑐 in year 𝑡 (ton) 

𝑳𝑺𝒌,𝒕  The quantity of livestock product 𝑘 produced in year 𝑡 (animal unit) 

𝑹𝑷𝑳𝑨𝑵𝑻𝒓,𝒏,𝒗,𝒅,𝒄,𝒕  
Land allocated for rotation 𝑟 with tillage method 𝑛 and removal rate 𝑣 on land type 𝑑 in cell 𝑐 in year 𝑡 

(acre) 

𝑷𝑷𝑳𝑨𝑵𝑻𝒑,𝒂,𝒅,𝒄,𝒕  Land allocated to plant perennial crop 𝑝 at age 𝑎 on land type 𝑑 in cell 𝑐 in year 𝑡 (acre) 

𝑪𝑺𝑷𝑳𝑨𝑵𝑻𝒓,𝒏,𝒗,𝒅,𝒄,𝒕 
Land allocated for corn stover production in rotation 𝑟 with tillage method 𝑛 and removal rate 𝑣 on land 

type 𝑑 in cell 𝑐 in year 𝑡 (acre) 

𝑷𝑹𝑶𝑪𝑬𝑺𝑺𝒊,𝒕  The quantity of row crop 𝑖 processed in year 𝑡 (bu) 

𝑹𝑨𝑪𝒊,𝒅,𝒄,𝒕 Row crop production by row crop 𝑖 on land type 𝑑 in cell 𝑐 in year 𝑡 (acre) 

𝑷𝑨𝑪𝒑,𝒅,𝒄,𝒕 Perennial crop production by perennial crop 𝑝 on land type 𝑑 in cell 𝑐 in year 𝑡 (acre) 

𝑾𝒄,𝒕 ∈ [𝟎, 𝟏] The weight based on historical crop mixes assigned in cell 𝑐 in year 𝑡 

𝑯𝑾𝒄,𝒕 ∈ [𝟎, 𝟏] The weight based on hypothetical crop mixes assigned in cell 𝑐 in year 𝑡 

𝑾𝑾𝒕 ∈ [𝟎, 𝟏] The weight based on historical crop mixes assigned at the entire watershed domain in year 𝑡 

𝑯𝑾𝑾𝒕 ∈ [𝟎, 𝟏] The weight based on hypothetical crop mixes assigned at the entire watershed domain in year 𝑡 

𝑼𝑵𝑼𝑺𝑬𝑫𝑨𝑪𝒅,𝒄,𝒕 The amount of unused cropland on land type 𝑑 in cell 𝑐 in year 𝑡 (acre) 

𝑺𝑼𝑷𝑷𝑳𝒀𝒊,𝒄,𝒕 The total supply of row crop 𝑖 in cell 𝑐 in year 𝑡 (bushel for all crops except for alfalfa in ton)  

𝑭𝑫𝒛={𝒊,𝒋},𝒌,𝒕 The amount of primary crop product 𝑖 or processed product 𝑗 for producing livestock product 𝑘 in year 𝑡 

𝑸𝑶𝑰𝑳𝒋,𝒕 The amount of oil-related products produced from processed products 𝑗 in year 𝑡 

𝑩𝑴𝑨𝑺𝑺𝑪𝑺𝒅,𝒄,𝒕 The amount of biomass produced from corn stover on land type 𝑑 in cell 𝑐 in year 𝑡 (ton) 

𝑵𝑼𝑻𝑹𝒖,𝒌,𝒕  The amount of nutrition 𝑢 needed per livestock product 𝑘 in year 𝑡 

𝑵𝑳𝑬𝑨𝑪𝑯𝒄,𝒕 N leaching in cell 𝑐 in year 𝑡 (kg of N) 

Function  

𝟏[∙] Indicator function, which is 1 if the condition described in [∙] is met, and 0 otherwise. 

Note: * denotes the unit of the corresponding variable varies by different types of products.   
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Table S2. Mathematical notation description: parameters 
Notations Definition 

Parameters  

𝑻 Planning period length (10 years) 

𝝅  Social discount rate (3%) 

𝒓𝒑𝒊  Average market price of row crop 𝑖 over 2016-2021 ($/*) 

𝒄𝒆𝒑  Corn ethanol price ($/gal) 

𝒃𝒅𝒔𝒍𝒑  Market price of biodiesel ($/gal) 

𝒃𝒑𝒔  Biomass price under 𝑠 scenario ($/ton) 

𝒍𝒔𝒑𝒌,𝒕  Market price of livestock product 𝑘 in year 𝑡 ($/animal unit) 

𝒄𝒄𝒑 Cover crop incentive payment ($/acre)(Table S3) 

𝒓𝒚𝒊,𝒓,𝒏,𝒗,𝒄,𝒕  Yield of row crop 𝑖 produced in rotation 𝑟 with tillage method 𝑛 and removal rate 𝑣 in cell 𝑐 in year 𝑡 (*/acre) 

𝒓𝒑𝒄𝒊,𝒓,𝒏  Production variable cost (excluding fertilizer cost) for row crop 𝑖 in rotation 𝑟 with tillage method 𝑛 ($/yield)  

𝒇𝒄𝒊,𝒓,𝒏,𝒇  Cost of applying fertilizer 𝑓 for row crop 𝑖 in rotation 𝑟 with tillage method 𝑛 in cell 𝑐 ($/lb) 

𝒏𝒑𝒌𝒊,𝒓,𝒏,𝒇,𝒗,𝒄  Application rate of fertilizer 𝑓 for row crop 𝑖 in rotation 𝑟 with tillage method 𝑛 and removal rate 𝑣 in cell 𝑐 

(lbs/yield) 

𝒏𝒇𝒓 Cost saving from nitrogen fertilizer reduction due to the cover crop practice ($/lb)(Table S3) 

𝒓𝒇𝒄𝒊,𝒓,𝒏  Production fixed cost of row crop 𝑖 in rotation 𝑟 with tillage method 𝑛 ($/acre) 

𝒄𝒄𝒔 Cover crop saving from erosion/weed reduction ($/acre)(Table S3) 

𝒑𝒑𝒄𝒑,𝒄  Production cost of perennial crop 𝑝 in cell 𝑐 ($/acre) 

𝒑𝒚𝒑,𝒄  Yield of perennial crop 𝑝 per acre in cell 𝑐 (ton/acre) 

𝒑𝒇𝒄  Cost of applying Nitrogen fertilizer for perennial crops ($/acre) 

𝒍𝒄𝒄𝒄  Land conversion cost for marginal land to produce crops in cell 𝑐 ($/acre) 

𝒍𝒓𝒄𝒅,𝒄,𝒕  Land rent cost for land type 𝑑 in cell 𝑐 in year 𝑡 ($/acre) 

𝒄𝒔  Production cost of corn stover ($/*) 

𝒑𝒔𝒄𝒊  Processing cost of row crop 𝑖 ($/bu) 

𝒄𝒏𝒄𝒕  Production cost (including refinery processing, transportation, tax) for corn ethanol in year 𝑡 ($/gal) 

𝒍𝒑𝒄𝒌  Production cost of primary livestock 𝑘 ($/animal unit) 

𝒗𝒑,𝒄  Value of the remaining life of standing perennial crop 𝑝 in cell 𝑐 beyond the planning period 𝑇 ($/ton) 

𝒘𝒑,𝒄  Opportunity cost for alternative land use except for perennial crop 𝑝 in cell 𝑐 beyond the planning period 𝑇 

($/ton) 

𝒂𝒍𝒅,𝒄  Available land by land type 𝑑 in cell 𝑐 (acre) 

𝒄𝒄𝒂𝒓  Cover crop adoption rate (% of the total corn and soybeans land) 

𝒉𝒊,𝒄,𝒕  Historically observed acreage patterns for row crop 𝑖 in cell 𝑐 in year 𝑡 (acre) 

�̂�𝒊,𝒄,𝒕  Hypothetical acreage patterns for row crop 𝑖 in cell 𝑐 in year 𝑡 (acre) 

𝒉𝒘𝒊,𝒕  Historically observed acreage patterns for row crop 𝑖 at the entire watershed domain in year 𝑡 (acre) 

𝒉�̂�𝒊,𝒕  Hypothetical acreage patterns for row crop 𝑖 at the entire watershed domain in year 𝑡 (acre) 

𝒅𝒅𝒈𝟐𝒅𝒔𝒍 Conversion rate of producing diesel from DDG  

𝒐𝒊𝒍𝟐𝒅𝒔𝒍𝒊,𝒋 Conversion rate of producing diesel from processed product 𝑗 (gallon/ton) 

𝒆𝒕𝒉𝟐𝒅𝒅𝒈 Conversion rate of producing DDG from corn ethanol (ton/gallon) 

𝒓𝒂𝒘𝟐𝒑𝒓𝒐𝒊,𝒋 Conversion rate of producing processed product 𝑗 from row crop 𝑖 (ton/bushel) 

𝒄𝒐𝒓𝒏𝟐𝒆𝒕𝒉 Conversion rate of producing corn ethanol from corn (gallon/bushel) 

𝒄𝒔𝒚𝒓,𝒏,𝒗,𝒄,𝒕  Yield of biomass produced from corn stover in rotation 𝑟 with tillage method 𝑛 and removal rate 𝑣 in cell 𝑐 in 

year 𝑡 (ton/acre) 

𝒂𝒔𝒎,𝒌 Share of livestock product 𝑘 in each animal group 𝑚 

𝝀𝒈,𝒄  The amount of forage required per animal unit per acre of grazing land 𝑔 in cell 𝑐 (animal unit/acres) 

𝒏𝒓𝒂𝒏,𝒖  Required amount of nutrition 𝑢 per animal 𝑎𝑛 (*/100lbs) 

𝒇𝒘𝒄𝒛={𝒊,𝒋} Feed weight conversion rate from primary crop product 𝑖 and processed product 𝑗 

𝒓𝒆𝒛={𝒊,𝒋},𝒖  Nutrition 𝑢 contented in primary crop product 𝑖 or in processed product 𝑗 

𝒅𝒅𝒈𝒘𝒍𝒌 DDG weight limit for producing primary livestock product 𝑘 

𝜹𝒕  Existing corn ethanol target mandate in year 𝑡 (gallon/year) 

𝒓𝒏𝒍𝒓𝒓,𝒏,𝒗,𝒄,𝒕  N leaching rate for rotation 𝑟 with tillage method 𝑛 and removal rate 𝑣 in cell 𝑐 in cell 𝑐 in year 𝑡 

𝒑𝒏𝒍𝒓𝒑,𝒄,𝒕  N leaching rate for land allocated to perennial crop 𝑝 in cell 𝑐 in year 𝑡 

𝒅𝒆𝒄,𝒕 N delivery efficiency in cell 𝑐 in year 𝑡 

𝒏𝒍𝒕  N leaching limit in cell 𝑐 in year 𝑡 (kg of N per year) 
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SI 1.1 Objective function 

The objective function, including revenues, production costs, and transportation costs, land 

conversion costs, and terminal perennial crop values, can be expressed as below: 

𝑀𝑎𝑥 ∑ 𝑒―𝜋𝑡
𝑇

𝑡=0
{∑ 𝑟𝑝𝑖 ∙ 𝑃𝑅𝐼𝑀𝐴𝑅𝑌𝑖,𝑐,𝑡

𝑖,𝑐
 

↪ Sum of revenues from row crops directly selling to the market 

+𝑐𝑒𝑝 ∙ 𝑄𝐶𝐸𝑡 

 ↪ Sum of revenues from corn ethanol  

+ ∑ 𝑏𝑑𝑠𝑙𝑝 ∙ 𝑄𝐷𝑆𝐿𝑗,𝑡
𝑗

 

↪ Sum of revenues from biodiesel 

+𝑏𝑝 ∙ 𝐵𝑀𝐴𝑆𝑆𝑐,𝑡 

↪ Sum of revenues from biomass  

+ ∑ 𝑙𝑠𝑝𝑘,𝑡 ∙ 𝐿𝑆𝑘,𝑡
𝑘

 

↪ Sum of revenues from the livestock products 

+ ∑ 𝑐𝑐𝑝 ∙ 1[𝐶𝐶] ∙ 𝑅𝑃𝐿𝐴𝑁𝑇𝑟,𝑛,𝑣,𝑑,𝑐,𝑡
𝑙,𝑐

 

↪ Subsidy revenue from cover crop incentive payments 

− ∑ [𝑟𝑦𝑖,𝑟,𝑛,𝑣,𝑐,𝑡  (𝑟𝑝𝑐𝑖,𝑟,𝑛 + 𝑓𝑐𝑖,𝑟,𝑛,𝑓 ∙ (𝑛𝑝𝑘𝑖,𝑟,𝑛,𝑓,𝑣,𝑐 − 𝑛𝑓𝑟 ∙ 1[𝐶𝐶])) + 𝑟𝑓𝑐𝑖,𝑟,𝑛 − 𝑐𝑐𝑠
𝑓,𝑟,𝑛,𝑣,𝑐

∙ 1[𝐶𝐶]] ∙ 𝑅𝑃𝐿𝐴𝑁𝑇𝑟,𝑛,𝑣,𝑑,𝑐,𝑡 

↪ Production costs of row crops 

− ∑ (𝑝𝑝𝑐𝑝,𝑐 ∙ 𝑝𝑦𝑝,𝑐 + 𝑝𝑓𝑐) ∙ 𝑃𝑃𝐿𝐴𝑁𝑇𝑝,𝑎,𝑑,𝑐,𝑡
𝑝,𝑎,𝑑,𝑐

 

↪ Production costs of perennial crops 
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− ∑ 𝑙𝑐𝑐𝑐(𝑅𝑃𝐿𝐴𝑁𝑇𝑟,𝑛,𝑣,𝑑,𝑐,𝑡 + 𝑃𝑃𝐿𝐴𝑁𝑇𝑝,𝑎,𝑑,𝑐,𝑡)
𝑝,𝑎,𝑑,𝑐

 

↪ Land conversion costs of marginal land for producing row and perennial crops  

− ∑ 𝑙𝑟𝑐𝑑,𝑐,𝑡(𝑅𝑃𝐿𝐴𝑁𝑇𝑟,𝑛,𝑣,𝑑,𝑐,𝑡 + 𝑃𝑃𝐿𝐴𝑁𝑇𝑝,𝑎,𝑑,𝑐,𝑡)
𝑟,𝑛,𝑝,𝑎,𝑑,𝑐

 

↪ Land rent costs for planting row crops and perennial crops 

− ∑ 𝑐𝑠 ∙ 𝐶𝑆𝑃𝐿𝐴𝑁𝑇𝑟,𝑛,𝑣,𝑑,𝑐,𝑡
𝑟,𝑛,𝑐

 

↪ Production costs of corn stover  

− ∑ 𝑝𝑠𝑐𝑖 ∙ 𝑃𝑅𝑂𝐶𝐸𝑆𝑆𝑖,𝑐,𝑡
𝑖,𝑐

 

↪ Processing costs of primary crop 

−𝑐𝑛𝑐𝑡 ∙ 𝑄𝐶𝐸𝑡 

↪ Production costs for producing corn ethanol 

−𝑐𝑛𝑐𝑡 ∙ 𝑄𝐷𝑆𝐿𝑗,𝑡 

↪ Production costs for producing corn ethanol 

− ∑ 𝑙𝑝𝑐𝑘𝐿𝑆𝑡,𝑘
𝑘

} 

↪ Production costs of livestock products 

+𝑒―𝜋𝑇 ∑ (𝑣𝑝,𝑐 − 𝑤𝑝,𝑐)𝑃𝑃𝐿𝐴𝑁𝑇𝑝,𝑎,𝑑,𝑐,𝑡=𝑇
𝑝,𝑎,𝑑,𝑐

                                                                   𝐸𝑞. (1.1) 

↪ The economic value of the remaining life of standing perennial grasses beyond the planning 

period T 
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SI 1.2 Constraints 

SI 1.2.1 Land use constraints 

The balance constraint between total row crop production and total planted area by distinct framing 

practices on different land types: 

𝑅𝐴𝐶𝑖,𝑑,𝑐,𝑡 = ∑ 𝑅𝑃𝐿𝐴𝑁𝑇𝑟,𝑛,𝑣,𝑑,𝑐,𝑡
𝑟,𝑛,𝑣

   ∀𝑞, 𝑑, 𝑐, 𝑡     𝐸𝑞. (1.2) 

𝐸𝑞. (1.3) ensures the total land allocated to produce corn stover don’t exceed the total corn land. 

𝐶𝑆𝑃𝐿𝐴𝑁𝑇𝑟,𝑛,𝑣,𝑑,𝑐,𝑡 ≤ 𝑅𝑃𝐿𝐴𝑁𝑇𝑟,𝑛,𝑣,𝑑,𝑐,𝑡   ∀𝑟 = {𝑐𝑜𝑠𝑏, 𝑐𝑜𝑐𝑜, 𝑐𝑜𝑠𝑏𝐶𝐶, 𝑐𝑜𝑐𝑜𝐶𝐶}, 𝑛, 𝑣, 𝑑, 𝑐, 𝑡 

𝐸𝑞. (1.3) 

𝐸𝑞. (1.4) is the balance constraint for total perennial crop production and total planted area by 

distinct perennial crop 𝑝 with age 𝑎 on land type 𝑑 in cell 𝑐 in year 𝑡. 

𝑃𝐴𝐶𝑝,𝑑,𝑐,𝑡 = ∑ 𝑃𝑃𝐿𝐴𝑁𝑇𝑝,𝑎,𝑑,𝑐,𝑡
𝑎

   ∀𝑝, 𝑑, 𝑐, 𝑡     𝐸𝑞. (1.4) 

𝐸𝑞. (1.5) is the balance constraint for current, existing, and new perennial crop 𝑝 by age 𝑎 on land 

type 𝑑 in cell 𝑐 in year 𝑡. 

𝑃𝑃𝐿𝐴𝑁𝑇𝑝,𝑎,𝑑,𝑐,𝑡 = 𝑃𝑃𝐿𝐴𝑁𝑇𝑝,𝑎>2,𝑑,𝑐,𝑡=1 + 𝑃𝑃𝐿𝐴𝑁𝑇𝑝,𝑎=1,𝑑,𝑐,𝑡=1 + 𝑃𝑃𝐿𝐴𝑁𝑇𝑝,𝑎>1,𝑑,𝑐,𝑡>1     

∀𝑝, 𝑎, 𝑑, 𝑐, 𝑡     𝐸𝑞. (1.5) 

𝐸𝑞. (1.6) ensures the total land allocated to row crops and perennial crops don’t go beyond the 

total available arable land. 

∑ 𝑅𝑃𝐿𝐴𝑁𝑇𝑟,𝑛,𝑣,𝑑,𝑐,𝑡
𝑟,𝑛,𝑣,𝑑

+ ∑ 𝑃𝑃𝐿𝐴𝑁𝑇𝑝,𝑎,𝑑,𝑐,𝑡
𝑝,𝑎,𝑑

≤ ∑ 𝑎𝑙𝑑={𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑,𝑖𝑑𝑙𝑒},𝑐
𝑑

   ∀𝑐, 𝑡      

𝐸𝑞. (1.6) 



36 

 

where 𝑅𝑃𝐿𝐴𝑁𝑇𝑟,𝑛,𝑣,𝑑,𝑐,𝑡 is the land allocated for rotation 𝑟 with tillage method 𝑛 and removal rate 

𝑣 on land type 𝑑 in cell 𝑐 in year 𝑡. 𝑃𝑃𝐿𝐴𝑁𝑇𝑝,𝑎,𝑑,𝑐,𝑡 is the land allocated to plant perennial crop 𝑝 

at age 𝑎 on land type 𝑑 in cell 𝑐 in year 𝑡. 𝑎𝑙𝑑,𝑐 is the total available land in cell 𝑐.  

𝐸𝑞. (1.7) restricts the total perennial crop production is not larger than the 25% of the total 

arable land in year 𝑡.  

∑ 𝑃𝐴𝐶𝑝,𝑎,𝑑,𝑐,𝑡
𝑝,𝑎,𝑑,𝑐

≤ 0.25 ∙ ∑ 𝑎𝑙𝑑={𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑,𝑖𝑑𝑙𝑒},𝑐
𝑑,𝑐

   ∀𝑡     𝐸𝑞. (1.7) 

𝐸𝑞. (1.8) reflects the existing situation where the row crop production with the no-tillage 

practice is no more than 18% of the total arable land in year 𝑡.  

∑ 𝑅𝑃𝐿𝐴𝑁𝑇𝑟,𝑛={𝑛𝑜 𝑡𝑖𝑙},𝑣,𝑑,𝑐,𝑡
𝑟,𝑛,𝑣,𝑑,𝑐

≤ 0.18 ∙ ∑ 𝑎𝑙𝑑={𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑,𝑖𝑑𝑙𝑒},𝑐
𝑑,𝑐

   ∀𝑡     𝐸𝑞. (1.8) 

𝐸𝑞. (1.9) ensures the cover crop adoption rate is not less than the required adoption rate in year 

𝑡.  

∑ 𝑅𝑃𝐿𝐴𝑁𝑇𝑟={𝑜𝑠𝑏𝐶𝐶,𝑐𝑜𝑐𝑜𝐶𝐶},𝑛,𝑣,𝑑,𝑐,𝑡
𝑟,𝑛,𝑣,𝑑

≥ 𝑐𝑐𝑎𝑟 ∙ ∑ 𝑅𝑃𝐿𝐴𝑁𝑇𝑟={𝑐𝑜𝑠𝑏,𝑐𝑜𝑐𝑜,𝑐𝑜𝑠𝑏𝐶𝐶,𝑐𝑜𝑐𝑜𝐶𝐶},𝑛,𝑣,𝑑,𝑐,𝑡
𝑑

    

∀𝑡     𝐸𝑞. (1.9) 

𝐸𝑞. (1.10)  and 𝐸𝑞. (1.11)  together prevent unrealistic and extreme changes in crop mixes and 

land use by constructing a convex combination of historically observed acreage patterns (ℎ𝑖,𝑐,𝑡) 

and hypothetical acreage patterns (ℎ̂𝑖,𝑐,𝑡)(Chen & Önal, 2012) for each row crop 𝑖 in cell 𝑐 in year 

𝑡.  

∑ 𝑅𝐴𝐶𝑖,𝑑,𝑐,𝑡
𝑑

= ℎ𝑖,𝑐,𝑡𝑊𝑐,𝑡 + ℎ̂𝑖,𝑐,𝑡𝐻𝑊𝑐,𝑡   ∀𝑖, 𝑐, 𝑡     𝐸𝑞. (1.10) 

𝑊𝑐,𝑡 + 𝐻𝑊𝑐,𝑡 ≤ 1   ∀𝑐, 𝑡     𝐸𝑞. (1.11) 
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where 𝑊𝑐,𝑡 and 𝐻𝑊𝑐,𝑡 are the weights based on historical crop mixes and hypothetical crop mixes 

assigned in cell 𝑐 in year 𝑡, respectively. The sum of the endogenous weights assigned to each cell 

𝑐 in year 𝑡 must be less than or equal to 1 (convexity requirement), as shown in 𝐸𝑞. (1.11). 

Similarly, 𝐸𝑞. (1.12)  and 𝐸𝑞. (1.13)  together prevent unrealistic and extreme changes in crop 

mixes and land use for each row crop 𝑖 at the entire watershed domain in year 𝑡.  

∑ 𝑅𝐴𝐶𝑖,𝑑,𝑐,𝑡
𝑐,𝑑

= ℎ𝑤𝑖,𝑡𝑊𝑊𝑡 + ℎ�̂�𝑖,𝑡𝐻𝑊𝑊𝑡   ∀𝑖, 𝑡     𝐸𝑞. (1.12) 

𝑊𝑊𝑡 + 𝐻𝑊𝑊𝑡 ≤ 1   ∀𝑡     𝐸𝑞. (1.13) 

where 𝑊𝑊𝑡 and 𝐻𝑊𝑊𝑡 are the weights based on historical crop mixes and hypothetical crop 

mixes assigned at the entire watershed domain in year 𝑡, respectively.  

The cropland availability constraint in cell 𝑐 in year 𝑡:  

∑ 𝑅𝑃𝐿𝐴𝑁𝑇𝑟,𝑛,𝑣,𝑑,𝑐,𝑡
𝑟,𝑛,𝑣,𝑑={𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑}

+ ∑ 𝑃𝑃𝐿𝐴𝑁𝑇𝑝,𝑎,𝑑,𝑐,𝑡
𝑝,𝑎,𝑑={𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑}

+ 𝑈𝑁𝑈𝑆𝐸𝐷𝐴𝐶𝑑={𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑},𝑐,𝑡 = 𝑎𝑙𝑑={𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑},𝑐   ∀𝑐, 𝑡     𝐸𝑞. (1.14) 

The idle land balance constraint which adjusts un-used cropland to be idle land in cell 𝑐 in year 

𝑡: 

∑ 𝑅𝑃𝐿𝐴𝑁𝑇𝑟,𝑛,𝑣,𝑑,𝑐,𝑡
𝑟,𝑛,𝑣,𝑑={𝑖𝑑𝑙𝑒}

+ ∑ 𝑃𝑃𝐿𝐴𝑁𝑇𝑝,𝑎,𝑑,𝑐,𝑡
𝑝,𝑎,𝑑={𝑖𝑑𝑙𝑒}

+ 𝑈𝑁𝑈𝑆𝐸𝐷𝐴𝐶𝑑={𝑖𝑑𝑙𝑒},𝑐,𝑡

= ∑ 𝑎𝑙𝑑={𝑖𝑑𝑙𝑒},𝑐
𝑑

+ 𝑈𝑁𝑈𝑆𝐸𝐷𝐴𝐶𝑑={𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑},𝑐,𝑡   ∀𝑐, 𝑡     𝐸𝑞. (1.15) 

SI 1.2.2 Primary product balance constraints  

The balance of the total product supply 

𝑆𝑈𝑃𝑃𝐿𝑌𝑖,𝑐,𝑡 = ∑ 𝑟𝑦𝑖,𝑟,𝑛,𝑣,𝑐,𝑡 ∙ 𝑅𝑃𝐿𝐴𝑁𝑇𝑟,𝑛,𝑣,𝑑,𝑐,𝑡
𝑟,𝑛,𝑣,𝑑={𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑}

  ∀𝑖, 𝑐, 𝑡     𝐸𝑞. (1.16) 

The balance between the total production supply and processed products 
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𝑃𝑅𝑂𝐶𝐸𝑆𝑆𝑖={𝑐𝑜𝑟𝑛,𝑠𝑜𝑦𝑏𝑒𝑎𝑛𝑠},𝑡 + ∑ 𝐹𝐷𝑧={𝑐𝑜𝑟𝑛,𝑠𝑜𝑦𝑏𝑒𝑎𝑛𝑠},𝑘,𝑡
𝑘

≤ 𝑆𝑈𝑃𝑃𝐿𝑌𝑖={𝑐𝑜𝑟𝑛,𝑠𝑜𝑦𝑏𝑒𝑎𝑛𝑠},𝑐,𝑡  ∀𝑖, 𝑐, 𝑡     𝐸𝑞. (1.17) 

The balance between the total production supply and primary products sold to the market 

𝑆𝑈𝑃𝑃𝐿𝑌𝑖,𝑐,𝑡 − 𝑃𝑅𝑂𝐶𝐸𝑆𝑆𝑖,𝑡 − ∑ 𝐹𝐷𝑧={𝑖},𝑘,𝑡
𝑘

= ∑ 𝑃𝑅𝐼𝑀𝐴𝑅𝑌𝑖,𝑐,𝑡
𝑐

 

+ ∑ 𝐹𝐷𝑧={𝑐𝑜𝑟𝑛},𝑘,𝑡
𝑘

  ∀𝑡     𝐸𝑞. (1.18) 

The balance for corn production and corn-related products 

𝑆𝑈𝑃𝑃𝐿𝑌𝑖={𝑐𝑜𝑟𝑛},𝑐,𝑡 = ∑ 𝑃𝑅𝐼𝑀𝐴𝑅𝑌𝑖={𝑐𝑜𝑟𝑛},𝑐,𝑡
𝑐

+ ∑ 𝐶𝑁𝐸𝑐,𝑡
𝑐

+ 𝑃𝑅𝑂𝐶𝐸𝑆𝑆𝑖={𝑐𝑜𝑟𝑛},𝑡 

+ ∑ 𝐹𝐷𝑧={𝑐𝑜𝑟𝑛},𝑘,𝑡
𝑘

  ∀𝑡     𝐸𝑞. (1.19) 

SI 1.2.3 Bioproduct constraints  

𝐸𝑞. (1.20) shows the oil-related products balance, where corn can produce DDG while being 

converted to corn ethanol for feeding livestock 𝑘 in cell 𝑐 in year 𝑡 (𝐹𝐷𝑧={𝐷𝐷𝐺},𝑘,𝑐,𝑡 in tons) and be 

converted to corn oil for producing biodiesel ( 𝑄𝐷𝑆𝐿𝑗={𝐷𝐷𝐺},𝑡  in gallons); soybeans can be 

converted to soybean oil. The left-hand side of the 𝐸𝑞. (1.20) presents the usage of secondary 

product produced from the source of processed product 𝑗, and the right-hand side of the 𝐸𝑞. (1.20) 

presents the production amount of processed product 𝑗. 

[∑ 𝐹𝐷𝑧={𝐷𝐷𝐺},𝑘,𝑡
𝑘

+
𝑄𝐷𝑆𝐿𝑗,𝑡

𝑑𝑑𝑔2𝑑𝑠𝑙
] ∙ 1[𝑗 = {𝐷𝐷𝐺}] +

𝑄𝐷𝑆𝐿𝑗,𝑡

𝑜𝑖𝑙2𝑑𝑠𝑙𝑖,𝑗
∙ 1[𝑗 = {𝑐𝑜𝑟𝑛 𝑜𝑖𝑙, 𝑠𝑜𝑦𝑏𝑒𝑎𝑛 𝑜𝑖𝑙}] = 

∑ 𝑒𝑡ℎ2𝑑𝑑𝑔 ∙ 𝐶𝑁𝐸𝑐,𝑡
𝑐

∙ 1[𝑗 = {𝐷𝐷𝐺}] + 𝑟𝑎𝑤2𝑝𝑟𝑜𝑖,𝑗 ∙ 𝑃𝑅𝑂𝐶𝐸𝑆𝑆𝑖,𝑡

∙ 1[𝑗 = {𝑐𝑜𝑟𝑛 𝑜𝑖𝑙, 𝑠𝑜𝑦𝑏𝑒𝑎𝑛 𝑜𝑖𝑙}]   ∀𝑡 

𝐸𝑞. (1.20) 
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The balance between corn used for producing corn oil: 

𝑄𝑂𝐼𝐿𝑗,𝑡 = 𝑟𝑎𝑤2𝑝𝑟𝑜𝑖={𝑐𝑜𝑟𝑛},𝑗 ∙ 𝑃𝑅𝑂𝐶𝐸𝑆𝑆𝑖={𝑐𝑜𝑟𝑛,𝑐𝑜𝑟𝑛𝐶𝐶},𝑡         ∀𝑗 = {𝑐𝑜𝑟𝑛 𝑜𝑖𝑙}, 𝑡     𝐸𝑞. (1.21) 

The balance between DDG used for feedstock: 

∑ 𝐹𝐷𝑧={𝐷𝐷𝐺},𝑘,𝑡
𝑘

+ 𝑄𝐷𝑆𝐿𝑗={𝐷𝐷𝐺},𝑡 ≤ 𝑐𝑜𝑟𝑛2𝑒𝑡ℎ ∙ ∑ 𝐶𝑁𝐸𝑐,𝑡
𝑐

         ∀𝑡     𝐸𝑞. (1.22) 

The balance between biomass produced from corn stover and corn stover acreage: 

𝐵𝑀𝐴𝑆𝑆𝐶𝑆𝑑,𝑐,𝑡 = ∑ 𝑐𝑠𝑦𝑟,𝑛,𝑣,𝑐,𝑡 ∙ 𝐶𝑆𝑃𝐿𝐴𝑁𝑇𝑟,𝑛,𝑣,𝑑,𝑐,𝑡
𝑗={𝑆𝑡𝑜𝑣𝑒𝑟},𝑟,𝑛,𝑣

   ∀𝑑, 𝑐, 𝑡     𝐸𝑞. (1.23) 

The balance of the total biomass production from perennial crops 𝑝 and corn stover in cell 𝑐 in 

year 𝑡: 

𝐵𝑀𝐴𝑆𝑆𝑐,𝑡 = ∑ 𝑝𝑦𝑝,𝑐𝑃𝐴𝐶𝑝,𝑎,𝑑,𝑐,𝑡
𝑝,𝑎,𝑑

+ ∑ 𝐵𝑀𝐴𝑆𝑆𝐶𝑆𝑑,𝑐,𝑡
𝑑

   ∀𝑐, 𝑡     𝐸𝑞. (1.24) 

The quantity of corn ethanol produced (𝑄𝐶𝐸𝑡) in year 𝑡 is equal to the amount of corn used for 

producing corn ethanol in cell 𝑐 in year 𝑡 (𝐶𝑁𝐸𝑐,𝑡) multiplied by the conversion rate of producing 

corn ethanol from corn biomass (𝑐𝑜𝑟𝑛_𝑡𝑜_𝑒𝑡ℎ).  

𝑄𝐶𝐸𝑡 = 𝑐𝑜𝑟𝑛2𝑒𝑡ℎ ∙ ∑ 𝐶𝑁𝐸𝑐,𝑡
𝑐

   ∀𝑡     𝐸𝑞. (1.25) 

SI 1.2.4 Livestock products constraints  

The relation between animal units and the grazing land availability: 

𝐿𝑆𝑘={𝑐𝑎𝑡𝑡𝑙𝑒},𝑡 ∙ 𝑎𝑠𝑚,𝑘 ≤ ∑
𝑎𝑙𝑑={𝑔𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑},𝑐

𝜆𝑔,𝑐𝑔
   ∀𝑐, 𝑡     𝐸𝑞. (1.26) 

The balance of nutrition required by producing each livestock product: 

𝑁𝑈𝑇𝑅𝑢,𝑘,𝑡 = ∑ 𝑎𝑠𝑚,𝑘 ∙ 𝑛𝑟𝑎𝑛,𝑢 ∙ 𝐿𝑆𝑘,𝑡
𝑚

   ∀𝑢, 𝑘, 𝑡     𝐸𝑞. (1.27) 

The balance of calories required by producing each livestock product: 
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∑ 𝑁𝑈𝑇𝑅𝑢,𝑘,𝑡
𝑢={𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑠}

= ∑ 𝐹𝐷𝑧={𝑖,𝑗},𝑘,𝑡 ∙ 𝑓𝑤𝑐𝑧={𝒊,𝒋} ∙ 𝑟𝑒𝑧,𝑢={𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑠}
𝑧

   ∀𝑘, 𝑡     𝐸𝑞. (1.28) 

The balance of protein required by producing each livestock product: 

∑ 𝑁𝑈𝑇𝑅𝑢,𝑘,𝑡
𝑢={𝑝𝑟𝑜𝑡𝑒𝑖𝑛}

= ∑ 𝐹𝐷𝑧={𝑖,𝑗},𝑘,𝑡 ∙ 𝑓𝑤𝑐𝑧={𝒊,𝒋} ∙ 𝑟𝑒𝑧,𝑢={𝑝𝑟𝑜𝑡𝑒𝑖𝑛}
𝑧

   ∀𝑘, 𝑡     𝐸𝑞. (1.29) 

The weight limit constraint of DDG used for producing each livestock product: 

𝐹𝐷𝑧={𝑑𝑑𝑔},𝑘,𝑡 ∙ 𝑓𝑤𝑐𝑧={𝑑𝑑𝑔} ≤ ∑ 𝐹𝐷𝑧={𝑑𝑑𝑔},𝑘,𝑡 ∙ 𝑓𝑤𝑐𝑧={𝑑𝑑𝑔} ∙ 𝑑𝑑𝑔𝑤𝑙𝑘
𝑘

   ∀𝑘, 𝑡     𝐸𝑞. (1.30) 

The balance between soybeans used for producing soybeans meal as feedstock: 

∑ 𝐹𝐷𝑧={𝑠𝑜𝑦𝑏𝑒𝑎𝑛𝑚𝑒𝑎𝑙},𝑘,𝑡
𝑘

= 

𝑟𝑎𝑤2𝑝𝑟𝑜𝑖={𝑠𝑜𝑦𝑏𝑒𝑎𝑛𝑠},𝑗={𝑠𝑜𝑦𝑏𝑒𝑎𝑛𝑚𝑒𝑎𝑙} ∙ 𝑃𝑅𝑂𝐶𝐸𝑆𝑆𝑖={𝑠𝑜𝑦𝑏𝑒𝑎𝑛𝑠,𝑠𝑜𝑦𝑏𝑒𝑎𝑛𝑠𝐶𝐶},𝑡     ∀𝑡     𝐸𝑞. (1.31) 

SI 1.2.5 Policy constraints  

The corn ethanol mandate constraint presents as 

𝑄𝐶𝐸𝑡 ≥ 𝛿𝑡   ∀𝑡     𝐸𝑞. (1.32) 

where 𝛿𝑡 is the existing corn ethanol mandate target in year 𝑡.  

The total amount of N leaching in cell 𝑐 in year 𝑡 (𝑁𝐿𝐸𝐴𝐶𝐻𝑐,𝑡) can be expressed as: 

∑ 𝑟𝑛𝑙𝑟𝑟,𝑛,𝑣,𝑐,𝑡𝑅𝐴𝐶𝑖,𝑑,𝑐,𝑡
𝑖,𝑑

+ ∑ 𝑝𝑛𝑙𝑟𝑝,𝑐,𝑡𝑃𝐴𝐶𝑝,𝑎,𝑑,𝑐,𝑡
𝑝,𝑎,𝑑

= 𝑁𝐿𝐸𝐴𝐶𝐻𝑐,𝑡   ∀𝑐, 𝑡     𝐸𝑞. (1.33) 

where 𝑛𝑙𝑟𝑞,𝑐,𝑡 and 𝑛𝑙𝑟𝑝,𝑐,𝑡 are N leaching rate for row crops and perennial crops, respectively.  

∑ 𝑑𝑒𝑐,𝑡
𝑐

𝑁𝐿𝐸𝐴𝐶𝐻𝑐,𝑡 ≤ 𝑛𝑙𝑡   ∀𝑡     𝐸𝑞. (1.34) 

The N leaching limit in year 𝑡 (𝑛𝑙𝑡) is an upper bound for the total amount of N leaching after 

considering the delivery efficiency in cell 𝑐  in year 𝑡  (𝑑𝑒𝑐,𝑡 ). However, the above constraint 

equation is deterministic, assuming the constraint can be met at a probability of 100%. This 

assumption may not be very realistic given the fact that there are several factors in nature 
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influencing N leaching. Thus, a more realistic way to modify the assumption is to convert the 

deterministic constraint to a stochastic one using the chance-constraint method (Cardwell & Ellis, 

1993; Ellis, 1987; Fujiwara et al., 1986; Sethi et al., 2006; Wang et al., 2015; Y. Zhou et al., 2018). 

The chance-constraint formula for N leaching constraint is: 

𝑃𝑟 [∑ 𝑑𝑒𝑐,𝑡
𝑐

𝑁𝐿𝐸𝐴𝐶𝐻𝑐,𝑡 ≤ 𝑛𝑙𝑡] ≥ 𝛼   ∀𝑡     𝐸𝑞. (1.35) 

which ensures the likelihood of meeting the required N leaching limit in year 𝑡 is realized at a 

minimum probability 𝛼. The stochastic version the N leaching constraint can be expressed as: 

∑ 𝜇𝑐
𝑐

𝑁𝐿𝐸𝐴𝐶𝐻𝑐,𝑡 + Φ−1(𝛼) ∙ √∑(𝜎𝑐𝑁𝐿𝐸𝐴𝐶𝐻𝑐,𝑡)
2

𝑐

≤ 𝑛𝑙𝑡   ∀𝑡     𝐸𝑞. (1.36) 

where 𝜇𝑐  is the average of N leaching delivery efficiency in cell 𝑐 . Φ−1(𝛼)  is the inverse 

cumulative distribution function of a standard normal random variable. 𝜎𝑐 is standard deviation of 

N leaching delivery efficiency in cell 𝑐. A detailed derivation of chance-constraint can refer to 

Jacobs et al. (1997). 
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Table S3. Cover crop parameter assumptions. 

Parameters Values References 

N reduction 48% w/ winter rye (Kaspar et al., 2012) 

Yield change Year 1: -5% 

Years 2 –5: 

unchanged 

Years 6 –10: +5% 

(Majeed, 2023) 

Cover crop fertilizer 

reduction (corn) 

15 lbs of N/acre (Majeed, 2023; Schnitkey et al., 2021) 

Cover crop planting cost $37/acre (Zulauf & Schnitkey, 2022) 

Cover crop cost saving from 

erosion/weed reduction 

$9.5/acre (Majeed, 2023; Myers et al., 2019) 

Observed cover crop 

production in 2016 

Grid level data for the 

model validation 

(Zhou et al., 2022) 
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SI 2. Land Classification Description  

This section describes the land classification used in this study. In Jiang et al. (2021), the raw 

Cropland Data Layer (CDL) was first aggregated into seven types in each year of 2008-2015: 

cropland, idle cropland, grassland, forest, shrubland, bare land, and built-up area. Then, they 

integrated the time series data and identified six land use types without land use change (LUC), 

permanent cropland, permanent grassland, permanent forest, permanent shrubland, permanent 

bare areas, and built-up areas, and three types of land use change (LUC), which are cropland in 

transition with confidence, cropland in transition with uncertainty, and other LUC areas (each 

definition is provided in the definition section). 

To identify cropland in transition with confidence and uncertainty, they applied a logistic 

regression and a trend analysis to classify if pixels were cropland in transition with confidence or 

uncertainty. After classifying cropland in transition with confidence and uncertainty, they used land 

productivity as an indicator of land productivity and land vulnerability, which is determined by the 

sum of water erodibility and wind erodibility and as an indicator of land environmental conditions, 

to identify economically marginal land. Specifically, they calculated mean and standard deviation 

values of land productivity and land vulnerability as the threshold to distinguish between cropland 

in transition with the uncertainty and potential classification errors, which can be further classified 

into six subcategories (i.e., high/average/low productivity and high/low vulnerability), as shown 

in Figure S2. 

Jiang et al. (2021)’s classification for marginal land with uncertainty (i.e., the blue area in 

Figure S2) is a relatively narrow classification, because they only classified land with “average 

productivity and low vulnerability” as marginal land with uncertainty. This study expands Jiang et 
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al. (2021)’s classification for marginal land with uncertainty by also considering land with “high 

productivity” and “average productivity and high vulnerability” (i.e., the red area in Figure S2). 

 

 

Figure S2. Land productivity and land vulnerability for different land use types. 

Source: Modified from Jiang et al. (2021) 
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SI 3. Mathematical programming model validation results 

Figure S3. 10 km scale grid-by-grid validation for the major crops during 2016-2019. 
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Table S4. Validation results at the entire watershed level                 (Unit: ha) 

Year Scale 
Corn Soybeans Alfalfa Oats 

Obs. Est. Diff. (%) Obs. Est. Diff. (%) Obs. Est. Diff. (%) Obs. Est. Diff. (%) 

2016 10 km  441,068   392,454  -11.02  286,341   267,553  -6.56  8,932   8,716  -2.42  819   799  -2.42 

2017 10 km  419,726   372,852  -11.17  310,253   287,486  -7.34  6,050   5,953  -1.6  1,178   1,170  -0.69 

2018 10 km  410,914   362,422  -11.8  318,413   295,129  -7.31  6,485   6,479  -0.08  1,175   1,171  -0.34 

2019 10 km  429,695   379,611  -11.66  305,188   282,193  -7.53  6,228   6,063  -2.64  981   944  -3.76 

2016 County  441,068   402,196  -8.81  286,341   274,432  -4.16  8,932   8,918  -0.16  819   819  0 

2017 County  419,726   370,764  -11.67  310,253   296,071  -4.57  6,050   5,742  -5.08  1,178   1,178  0 

2018 County  410,914   368,240  -10.39  318,413   300,840  -5.52  6,485   6,485  0  1,175   1,172  -0.28 

2019 County  429,695   389,917  -9.26  305,188   289,854  -5.02  6,228   6,228  0  981   969  -1.16 

 

 

Table S5. Validation results of cover crop adoption acreage at the entire watershed level             (Unit: ha) 

Year Scale Crop Obs. Est. Diff. (%) 

2016 10 km Corn with the cover crop practice 16,100 16,923 5.1 

2016 County Corn with the cover crop practice 16,100 17,349 7.8 

Note: Observed cover crop acreage data is from Zhou et al. (2022).
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SI 4. County-scale model result 

a. Land use change by crop types          b. Land use change by rotation types 

 
Figure S4. Effect of perennial and cover crop adoption on land use changes in 2045 
Note: ‘coco’ denotes continuous corn rotation; ‘cosb’ denotes corn-soybean rotation; ‘(CC)’ denotes a rotation with the cover crop 

practice; ‘rm’ denotes the corn stover removal rate. 

 

 a. Aggregated profit and subsidy          b. N leaching  

 
Figure S5. Effect of perennial and cover crop adoption on nutrient loss and aggregated profit in 

2045  
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a. 2.5% cover crop adoption rate         b. 10% cover crop adoption rate  

 

Figure S6. Effect of N reduction policy on land use changes in 2045 

a. Aggregated profit and subsidy          b. N leaching  

 

Figure S7. Effect of N reduction policy on nutrient loss and aggregated profit in 2045 
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Table S6. Estimated cover crop adoption rates under various scenarios in 2045  

Required minimum  

cover crop adoption rate 
N policy constraint $0/Mg $70/Mg $100/Mg 

≥ 2.5% No N constraint 2.50 2.50 2.50 

Deterministic 22.42 27.95 31.97 

Stochastic (95%) 38.78 42.16 47.84 

≥ 10% No N constraint 10.00 10.00 10.00 

Deterministic 22.42 27.95 31.97 

Stochastic (95%) 38.78 43.63 45.89 

Unit: % of the total corn and soybean land 

 

Table S7. N abatement cost (Nitrate tax) in 2045 

Required minimum  

cover crop adoption rate 

N policy 

constraint 
$0/Mg $70/Mg $100/Mg 

≥ 2.5% Deterministic 1.685 2.266 3.033 

 Stochastic (95%) 2.169 2.283 2.933 

≥ 10% Deterministic 1.685 2.266 3.033 

 Stochastic (95%) 2.169 2.274 2.838 

Unit: $/kg- N 
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SI 5. Corn yield distribution comparison between 10 km- and county-scales 

 

Figure S8. Illustration of converting continuous corn yield from 10 km-scale to county-scale. 

Figure S9. Distribution of continuous corn yield from all 10 km-scale grids in each county. 

 

 

 10 km grids 

10 km grids  
grouped by counties  

County level 
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Figure S10. Spatial distribution of 35-year average continuous corn yield at 10 km-scale. 
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Figure S11. Spatial distribution of 35-year average N leaching from continuous corn land at 10 

km-scale. 
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