

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. Labor Supply Elasticity in a Job Matched Platform – Empirical Evidence from Matched Farmworker-

Farm Data

Hung-Hao Chang, Professor, Department of Agricultural Economics, National Taiwan University, hunghaochang@ntu.edu.tw Yi-Ting Hsieh, PhD student, Agricultural and Applied Economics, University of Wisconsin-Madison, yhsieh43@wisc.edu

Selected Poster prepared for presentation at the 2024 Agricultural & Applied Economics Association Annual Meeting, New Orleans, LA: July 28-30, 2024

Copyright 2024 by Hung-Hao Chang and Yi-Ting Hsieh. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

Overview

This paper estimates labor supply elasticity of farmworkers in an online job matched platform in Taiwan. To cope with endogeneity of hourly wage and platform externality on hours of work, we estimate instrumental variable fixed effect models. We control for farm and farmworker fixed effects and the endogeneity of wage and platform externality. Moreover, we find evidence to support the income targeting hypothesis which indicates that farmworkers with piece-rate scheme stopped working when the targeted level of income is reached.

Introduction of the platform

- To mitigate farm labor shortage problem, Taiwanese government launched and sponsored a job-matched digital platform in April of 2017.
- Wage salary is negotiated between farms and workers.
- Government pays additional subsidies (flat rate per hour) and provides training programs to farmworkers.
- Operation of the platform:

Farms (demand)	Platform	 Farmworkers (supply)	

Objectives

- Estimate labor supply responses of farmworkers in a job matched with a piece rate scheme of farm labor.
- Highlight the role of platform externality on the estimation of labor supply response.
- Test the income targeting hypothesis in a job matched online platform for farmworkers.

Data

- Construct a matched farm-farmworker panel data using an administrative data.
- Include all successful matched pieces of jobs between April 1, 2017 and December 31, 2020 with detailed information of farm, farmworker and job characteristics.
- In total, 92,210 pieces of jobs (5,644 farms and 2,059 farmworkers).
- [Key variables] Hour: working hours per job; Wage: hourly wage; Externality: diversity of farms on the platform per township per month
- [Control] Other variables: meal, job type dummy var.

Labor Supply Elasticity in a Job Matched Platform – Empirical Evidence from Matched Farmworker-Farm Data Hung-Hao Chang¹, Yi-Ting Hsieh²

¹Department of Agricultural Economics, National Taiwan University, ²Agricultural and Applied Economics, University of Wisconsin-Madison

	. •	• • •		_	1•.				
Result 1. Hou	ir equation without externality								
	FE model				IV-FE	model	nodel		
	Hour equation			Wage e	equation	Hour equation			
Variable	Coef.	S.E.		Coef.	S.	E. Coef.	S.E.		
IVW				0.455*** 0.0		24			
log(wage)	1.063** 0.474					0.895* 0.475			
Other variables	Yes			Yes		Yes			
Weak IV test				36	2.91				
Adjusted R ²	0.601			0.	987	0.601			
# of jobs				92,2	210				
2. Bargaining p		Equation	on	Но	Hour				
Equation Hour				Panel B. unobserved worker					
Panel A. unobser	ved farm fa	ctors		factors					
variable	Coef.	S.E	Ξ.	Variable		Coef.	S.E.		
Fruit	-0.864**	* 0.1	09	Male		-0.036	0.029		
Vegetable	-0.408**	* 0.1	09	Junior		0.008	0.070		
Rice	-0.751**	* 0.1	16	Senior		0.050	0.064		
Flower	-0.560**	* 0.1	35	College		0.065	0.065		
Mushroom	-0.400**	0.1	57	Age2534		0.040	0.063		
Теа	0.253*	0.1	30) Age3544		0.014	0.063		
Other crop	-0.632**	* 0.1	12	Age4564		0.004	0.065		
Constant	-0.095	0.1	07	Age5564		0.020	0.067		
# of farms	5,6	44		Age65		0.004	0.091		
Adjusted R ²		Train_long		-0.323*	0.186				
1 Incomo tara		Train_short		0.087	0.071				
4. Income targeting				Em_self-farm		-0.037	0.116		
				Em_hired		-0.099	0.109		
				Em_non-farm		-0.112	0.109		
				Constant		0.158	0.127		
0.10.20.30.40.50.60.70.80.9				# of workers		2,059			
-10Coef.				Adjusted R ²		-0.001			
coef_v	wage_low wage_upper				. •	• . 1			
				3. Hour	equati	on with e	xternalit		
	FE model				IV-FE model				
	Ext			rnality equation		Outcome equation			
Variable	Coef.	S.E	C	Coef.	S.E	Coef.	S.E		
IVE			0.8	837***	0.029				
Externality	0.268*** 0).036				0.570***	0.096		
Elasticity						0.453			
log(wagehat)	0.762*).453	-0.2	.68***	0.076	0.613**	0.253		
Weak IV test				830.27	7				
Endogeneity test						9.897(p= 0.002)			
Adjusted R ²	0.602			0.825		0.017			
# of jobs				92,210					

Empirical Method

1. Hour equation without platform externality located in township c and time t With endogenous wage rate: the IV-FE Model 3. Hour equation with platform externality

Conclusion

- Hill et al. 2020).
- rather than farmworkers.

- receiving large salaries.

• With exogenous wage rate: the Fixed Effect Model $\log(H_{ipfct}) = \alpha_0 + \gamma_0 \times \log(W_{ipfct}) + \beta_0' X_{ipfct} + u_p + u_f + u_t + v_{0ipfct}$ H_{ipfct} is the hours of work for the ith job for farmworker p in farm f that is $\log(W_{ipfct}) = \alpha_1 + \gamma_1 \times \log(IVW_{ipfct}) + \beta_1'X_{ipfct} + u_p + u_f + u_t + v_{1ipfct}$ $\log(H_{ipfct}) = \alpha_2 + \gamma_2 \times \log(\widehat{W}_{ipfct}) + \beta_2' X_{ipfct} + u_p + u_f + u_t + v_{2ipfct}$ *IVW_{ipfct}* : Farm specific average paid-wage rate per day (NT\$/hour). 2. Bargaining power: farm/farmworker fixed effects on time invariant factors $\hat{u}_f = \theta_1 + \eta_1' K_f + \varepsilon_{1ipcft}$ / $\hat{u}_p = \theta_2 + \eta_2' K_p + \varepsilon_{2ipcft}$ • With exogenous platform externality: the FE Model $\log(H_{ipfct}) = \alpha_3 + \gamma_3 \times \log(W_{ipfct}) + \delta_3 \times E_{ipfct} + \beta_3' X_{ipfct} + u_p + u_f + u_t + v_{3ipfct}$ With endogenous platform externality: the IV-FE Model $\log(E_{ipfct}) = \alpha_4 + \gamma_4 \times \log(\widehat{W}_{ipfct}) + \delta_4 \times IVE_{ipfct} + \beta_4' X_{ipfct} + u_p + u_f + u_t + v_{4ipfct}$ $\log(H_{ipfct}) = \alpha_5 + \gamma_5 \times \log(\widehat{W}_{ipfct}) + \delta_5 \times \widehat{E}_{ipfct} + \beta_5' X_{ipfct} + u_p + u_f + u_t + v_{5ipfct}$ *IVE*_{ipfct}: Average externality cumulated to the previous months 4. Income targeting: unconditional quantile regression model To test whether the labor supply elasticities can be negative for hours that are located in the higher percentiles of the hour distribution

1. Our estimated farmworker labor supply elasticity is 0.895, which is larger than previous studies in a non-platform setup (0.05-0.27, see

2. Bargaining power on hourly wage and hours of work are toward farms

3. Platform externality is positively associated with hours of work and makes farmworkers less responsive to hourly wage.

 With the consideration of platform externality and its endogeneity, the estimated elasticity of hour to wage is 0.613.

4. Income targeting hypothesis is evident in our case, suggesting that the elasticity of hours with respect to wage is negative for farmworkers