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Abstract 

As climate change accelerates, the Western U.S. is projected to experience an increase in both 

the frequency and intensity of extreme droughts. This looming crisis underscores the need to 

better understand potential adaptive responses from households. In this study, we employ a 

spatial equilibrium framework to examine the influence of drought-induced water shortage on 

household location choices within counties across the Western U.S. Our findings are 

multifaceted: First, households experience reduced utility when residing outside their birth state, 

with significant preference heterogeneity regarding relocation. Second, water shortage impacts 

household location choices by reducing utility and raising rents, prompting households to move 

to locations where higher incomes offset these risks. Third, households are willing to pay $0.18 

to avoid an additional gallon of unmet water demand. Lastly, counties experiencing water 

shortage have a more inelastic housing supply. Our study highlights the critical role of water 

scarcity in shaping population distribution and economic behaviors in the Western U.S.  

 

Keywords: Residential Sorting; Water Shortage; Housing Market 
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1. Introduction 

Since 2000, the Western United States has been experiencing some of the driest conditions on 

record. Particularly affected is the southwestern region, which is enduring a megadrought—the 

driest 22-year period in 1,200 years (Maxwell and Soulé 2009; King et al. 2024). Climate change 

has exacerbated this aridity, leading to more frequent, prolonged, and severe droughts (Zhang et 

al. 2021; Dannenberg et al. 2022; Yuan et al. 2023). Consequently, these droughts have become 

one of the most devastating natural hazards in the U.S., often resulting in annual economic losses 

totaling billions of dollars (Zhou, Leng and Peng 2018). At the same time, a significant 

demographic shift is occurring, with populations migrating from the Northeast and Midwest to 

the Western and Southern states (Maley and Hawkins 2018)—regions grappling with heightened 

drought risks. This paper examines whether these relocations are coincidental or a reflection of 

deliberate decision-making, investigating how households weigh wages, rents, and moving costs 

against drought risks. 

 

To capture this sorting process, we estimate a spatial equilibrium model of household location 

choice. Our theoretical framework is informed by Roback (1982), while our empirical approach 

follows Diamond (2016). We use data from the 2020 5-year American Community Survey 

(ACS), focusing on heads of household and their spouses aged 19-64, with at least one member 

employed full-time at the time of the survey. Our analysis includes a choice set of 83 counties in 

the U.S. West. To quantify drought risks, we use a novel unmet water demand metric developed 

from the University of New Hampshire's water balance model, reflecting a 10-year average 

(2010-2019) of water deficit within each location.  
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Following the methodology established by Berry, Levinsohn and Pakes (1995), we estimate a 

two-stage structural model. In the first stage, we recover estimates of household preference 

heterogeneity with respect to moving costs and a set of mean indirect utility values for each 

county. The second stage involves decomposing this utility and estimating a housing supply 

equation using a simultaneous generalized method of moments (GMM) estimator. Specifically, 

in our utility equation, we instrument for wages and rents to derive estimates of the marginal 

utility of income, water shortage, and amenities. Simultaneously, in the housing supply equation, 

the model instruments for housing demand to identify the inverse elasticity of housing supply in 

response to geographic constraints, land-use regulations, and water shortage. The instruments 

employed in the GMM model are constructed based on the shift-share theory developed by 

Bartik (1991).  

 

Results from the first stage of our model emphasize the importance of controlling for moving 

costs. We find that households generally experience a decrease in utility when residing outside 

their birth state. Moreover, there is significant heterogeneity in preferences related to relocation. 

Specifically, households with kids and those led by single or female heads exhibit a lower 

propensity to move from their home state compared to their counterparts. In contrast, household 

heads who are college-educated, over the age of 30, white, and renters show a higher likelihood 

of relocating. In the second stage, our utility equation results reveal that while an increase in real 

income generally improves household utility, this is offset by water shortage. This finding is 

consistent with the Rosen-Roback spatial equilibrium prediction that households require higher 

compensation to remain in locations with increased disaster risks—real income must rise to 

maintain utility constant as disaster risk escalates. Furthermore, our housing supply equation 
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suggests that water shortage tends to drive up rents and results in a more inelastic housing supply, 

after controlling for geographic constraints and land-use regulations.  

 

Using our marginal utility estimates from the second stage, we calculate that households are 

willing to pay $0.18 to avoid an additional gallon of unmet water demand per year. Regarding 

extreme weather events, only days with extreme precipitation are significant, with households 

willing to pay $XXX for each additional day with more than one inch of rain. Additionally, we 

estimate housing supply elasticity for each location, utilizing coefficients derived from our 

housing supply equation. Across counties in the West, the population-weighted average elasticity 

of supply is estimated at 0.98, with an unweighted average of 1.01. Counties like Whatcom, 

Imperial, Davis, Solano, and Marin feature the most inelastic markets, whereas Deschutes, Clark 

(Nevada), Washington, Yakima, and Clark (Oregon) counties have more elastic supplies. These 

elasticity estimates suggest that increasing water scarcity could significantly influence future 

housing market stability and demographic trends. 

 

Our paper makes significant contributions to the existing body of literature. Building on Tiebout 

(1956), which explores how individuals with heterogeneous preferences choose living 

environments that best suit their needs, recent studies have estimated individual or household 

preferences for various spatial amenities (Bayer and Timmins 2007; Walsh 2007; Allen Klaiber 

and Phaneuf 2010). These include factors such as extreme weather or natural disasters (Timmins 

2007; Fan and Bakkensen 2022; Bakkensen and Ma 2020; Wrenn 2023). However, these studies 

often assume a fixed housing supply or rely on a constant-elasticity assumption. Beyond wages, 

rents play a crucial role in households' decision-making processes regarding where to live. As 
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heterogeneous households sort themselves across different locations, their collective choices 

significantly impact housing prices, particularly in regions with inelastic housing supplies where 

high demand can lead to sharp increases in rents. From a utility perspective, while certain 

locations may offer higher wages, the advantages could be offset by higher rents. If rents become 

too high, households may start relocating to more affordable areas, thereby exerting downward 

pressure on rents until there is no further incentive to move. To fully understand the interplay 

between labor and housing markets, it is essential to analyze both simultaneously within the 

framework of spatial equilibrium. Building on (Diamond 2016) analysis of workers’ sorting 

patterns across U.S. cities, which includes a housing supply equation, our model extends this 

framework to incorporate the impact of water shortage on housing supply. As droughts become 

increasingly frequent in the Western U.S., drought-induced water shortage can restrict housing 

development either by limiting the availability of developable land (Cremades et al. 2021) or 

through regulatory measures such as water-related building moratoria (Shen, Fisher-Vanden and 

Wrenn 2023). Overall, our work offers valuable insights into demographic shifts and population 

adaptations to escalating drought risks in the West. 

 

The remainder of the paper is organized as follows. Section 2 details the data and presents 

descriptive statistics for our variables. Section 3 describes the theoretical framework of our 

spatial equilibrium model. Section 4 explains our identification strategy for estimating the 

empirical models. Section 5 presents our main results, and Section 6 concludes. 

 

2. Data 
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To create our county-level dataset for the Western U.S., we draw on multiple sources. Below, we 

outline each data source followed by a detailed explanation of how we construct the final dataset. 

 

2.1. Demographic Data and Choice Set 

We use the 1% microdata sample from the 2020 (2016-2020) 5-year ACS, administered by the 

United States Census Bureau. This dataset provides comprehensive individual and household-

level information, including wages, housing prices, household composition, state of birth, and 

household location at the Public Use Micro Area (PUMA) level. Our analysis focuses on a 

choice set of 83 counties in the Western U.S., identified in the 2020 sample. Figure 1 maps the 

spatial distribution of these counties, covering the major populated areas of the West and 

representing 87% of the region's total population. 

 

In our study, we consider the head-of-household to be the primary decision-maker. Our focus is 

on heads of household and their spouses aged 19-64, with at least one member employed full-

time at the time of the survey. The demographic profiles of these heads are detailed in Table 1. 

To capture moving costs, we define MovingCost as a binary variable: it is set to one if a 

household's residing county is outside its birth state and zero otherwise. This definition is based 

on the hypothesis that relocating from familial roots to areas with different climates, job markets, 

and cultural norms can incur significant psychological costs (Bayer, Keohane and Timmins 2009; 

Klaiber 2014; Diamond 2016; Fan and Bakkensen 2022; Wrenn 2023).  

 

2.2. Water Shortage Data 
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Our novel water shortage index is calculated using the water balance model. In the Western U.S., 

water demands are regulated by a water rights system in each water management area (WMA). 

Water rights are granted to users based on the order in which their claims were made. Often, 

water rights are overallocated, meaning more rights have been allocated than the available water 

in the system. This leaves some junior rights holders without water during shortages.  

 

We collect water rights data across all sectors and construct cumulative curves for each water 

management area in the West. Our water balance model uses the actual water availability and 

demands from all sectors to determine a threshold—the cutoff date—beyond which rights 

holders may not receive water allocations. An earlier cutoff date indicates a more severe water 

shortage. However, because water rights might be systematically established earlier in some 

regions than in others, cutoff dates are not directly comparable across different areas. 

Consequently, for regions with a specified cutoff date, we calculate the log of the physically 

unmet water demand in the agricultural sector, weighted by population, as a proxy for the 

severity of water shortage for that WMA. This data is then aggregated to the county level. Figure 

2 illustrates the spatial distribution of water shortage, with California, Arizona, and Denver 

experiencing the most acute conditions. 

 

2.3. Weather Data 

We source our weather data from the PRISM Climate Group (PRISM Climate Group, 2020). 

Since 1981, PRISM has been providing daily temperature and precipitation records for the 

contiguous U.S., with a granular 4km grid resolution. Each grid point's value is interpolated from 

nearby weather stations. For our analysis, we extract daily maximum and minimum temperatures, 
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as well as precipitation data for each county over a ten-year retrospective period (2011-2020). 

From this data, we then calculate the average annual figures for the following variables: HotDay 

(number of days with a maximum temperature above 90 °F), ColdDay (number of days with a 

minimum temperature below 32 °F), and ExtPrecip (number of days with total precipitation 

above one inch).  

 

Table 2 shows the summary statistics of these extreme weather variables. Notable variances are 

evident across counties. For instance, southern counties generally experience more extreme hot 

days, in contrast to the cooler conditions observed in northwestern counties. Specifically, Yuma 

County in Arizona consistently recorded the highest number of hot days. On the other hand, 

several counties in Washington had no days that reached the hot day threshold. Regarding 

extreme precipitation, Humboldt County in California led with the most days recorded, while 

Imperial County, located at the southernmost tip of California, recorded the fewest days of 

extreme precipitation. 

 

2.4. Geographic Constraints  

Geographic constraints refer to the proportion of land within a county that is unsuitable for 

residential development, as characterized by (Saiz 2010). These undevelopable areas consist of 

two main components. The first includes wetlands, lakes, and other internal water bodies, which 

we quantify using satellite-based geographic land use data from the United States Geological 

Survey (USGS). The second component encompasses terrains within each county with slopes 

exceeding 15 percent. We delineate these topographical features using the USGS Digital 

Elevation Model on a 90-square meter cell grid. Utilizing ArcGIS Pro, we calculate the shares of 

both internal water bodies and steep terrains for each county, summing them to determine the 
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total share of undevelopable land per county. Table 2 presents the summary statistics for our 

geographic data, indicating an average of 21% undevelopable land across the counties. 

 

2.5. Wharton Residential Land Use Regulation Index  

We utilize the 2018 Wharton Residential Land Use Regulation Index (WRLURI), developed by 

Gyourko et al. (2021), as our benchmark for assessing land-use regulations. This comprehensive 

dataset comprises 12 subindexes, each evaluating different aspects of the regulatory landscape 

across approximately 2,500 U.S. communities. These subindexes highlight the influence of key 

stakeholders, including local councils, state legislatures, and local citizens, in shaping the 

regulatory environment. They also account for specific regulations such as permitting caps, 

density restrictions, affordable housing mandates, and impact fees. By employing a simple factor 

analysis, the authors aggregate and standardize these subindexes into a single index, WRLURI18, 

which reflects the overall regulatory stringency at the census place level. To fully capture local 

land-use regulations, we aggregate WRLURI18 to the county level. The summary statistics of 

this county-level index are presented in Table 2, where a lower (or higher) index value indicates 

a more lenient (or stringent) regulatory environment, with an average value of 0.47.  

 

2.6. Data Construction 

In this section, we outline the process of transforming raw data into the final estimation sample 

used in our spatial equilibrium model. We start by using the Census Tract to PUMA Relationship 

File, provided by the Census Bureau, to link observations lacking a recognizable COUNTYFP to 

specific census tracts and subsequently to counties. Next, we use STATEFIP and COUNTYFP 

codes to create a unique FIPS code identifier for each county, allowing us to accurately 
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determine the current residence of each individual when both codes are available. We then 

restrict our sample to individuals residing in the Western U.S. Additionally, we calculate the 

number of kids below and above 19 in each household and retain only the household heads and 

their spouses, ensuring our data focuses on traditional housing units and excludes roommates and 

other unrelated individuals. Our analysis further focuses on age constraints, targeting working-

age individuals between 19 to 64 years old—adults likely past high school and not yet of 

retirement age. We also exclude non-U.S. born individuals who may face mobility restrictions, 

such as visa limitations. To concentrate on the most mobile demographic, we exclude farming 

households and those with businesses. Moreover, we retain only those employed full-time, 

defined as working at least 30 hours per week and 48 weeks per year, and earning wages. We 

also drop households lacking home value data or not paying rent, as both wages and rents play a 

role in the budget constraint. Lastly, we exclude individuals living in group quarters, further 

refining our sample for analysis. 

 

In our model, a budget constraint incorporates both wages and rents, for which we run separate 

regressions to derive their respective values. We start by using census microdata to create 

household wage estimates. For each individual in a county, a wage value is assigned. To mitigate 

bias from households endogenously sorting themselves across locations based on economic 

opportunities, we adopt the method developed in Dahl (2002), adjusting wages for non-random 

sorting. Specifically, for each individual earning a non-zero wage, we regress the log of real 

wages ($2000), on race, gender, age, a household head indicator, educational attainment, and a 

set of control functions that account for non-random sorting across states by education status. 

These regressions are performed separately for each county. Using the coefficients obtained from 
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these regressions, we calculate wage estimates for individuals by zeroing out the control 

functions. The calculated wages are then aggregated at the household level to determine average 

household wages for each county. Due to separate regressions for each of the 83 counties, we 

summarize the findings by presenting the mean values of the coefficients and their standard 

errors in Appendix Table A1, instead of individual regression outputs. A more detailed 

description of the wage adjustment methodology is provided in Appendix—Wages and Rents. 

 

To create our county-level rent estimates, we also use micro census data on rents and house 

values. Each household in the county is associated with an actual rent value for households that 

rent, or an estimated housing price for homeowners. To create our final household-level rent 

values, we combine actual rents with a user cost value of rent for homeowners. This user cost 

adjustment translates home prices into imputed rents that capture what a homeowner would pay 

if they were renting from themselves, adjusting for the benefits and costs of homeownership. We 

then follow previous research and hedonically adjust rent values for compositional differences in 

housing across space (Bayer et al. 2009; Fan, Klaiber and Fisher-Vanden 2016). We regress the 

log of real monthly rent ($2000) on a matrix of variables capturing the characteristics of each 

house and a county fixed effect that measures the price of housing services. This produces a 

quality-adjusted price of housing services in each county, which serves as our measure of rents. 

A full explanation of the estimation process for equation 2 is given in Appendix—Wages and 

Rents. Table A2 providing regression results for the model along with average rent values. 

 

Our final dataset is completed by integrating a series of computed variables for each county, 

including wages, rents, water shortage, extreme weather events, geographical constraints, and 
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land-use regulations. This county-level dataset forms the foundation for estimating our spatial 

equilibrium model and generating all economic variables within the model. 

 

3. Spatial Equilibrium Model  

We adopt the spatial equilibrium framework developed by Diamond (2016), incorporating two 

main components: the labor market and the housing market. Each of these components will be 

explored in detail in the subsequent discussion. 

 

3.1. Labor Market 

Each household i , represented by a head-of-household, chooses to live in a county j  that 

provides them with the highest level of utility. Specifically, household inelastically supplies one 

unit of labor in exchange for a wage, 
jW . Using this wage, they purchase a national good, C , at 

price P , and a local good, 
jH , at price 

jR , assuming that they exhibit Cobb-Douglas 

preferences over local and national goods. Additionally, the household gains utility from 

consuming a bundle of these goods, as well as from local attributes, which include our water 

shortage 
jS , and other amenities, 

jA , and paying moving costs, 
ijM . As described earlier, we 

define 
ijM  as a binary variable that takes the value of one if the household resides in the same 

state where the head-of-household was born, and zero otherwise. The corresponding utility and 

budget constraint are: 

 

1

,
max ln( ) ln( )

s.t. ,

j

j j j ij
C H

j j j

C H S M

PC R H W

 − + + + +

+ 

A
                                                (1) 
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where   signifies a household's relative preference for the local good. Under the Cobb-Douglas 

preference framework,   represents the share of expenditure allocated to the local goods bundle.  

Following Wrenn (2023)’s paper, we assume that   remains consistent across all counties, 

fixing this parameter's value at 0.2 for all models. By solving the utility maximization problem in 

equation 1, we can express each household’s optimal locational decision via the following 

indirect utility function. The detailed derivation from equation 1 to equation 2 is provided in 

Appendix. 

 

ln( ) ln( )

,

j j

ij j j ij

j j j j ij

W R
V S M

P P

w r S M





= − + + +

= − + + +

A

A

                                             (2) 

 

where ln( )
j

j

W
w

P
=  and ln( )

j

j

R
r

P
= . The price of the national good, P , is measured by the urban 

consumer price index (CPI-U) index from the Bureau of Labor Statistics, and is quantified in real 

2000 U.S. dollars. For empirical estimation of our model, we assume that household utility has 

an idiosyncratic error term, 
ij . This error term captures unobservable attributes that are 

uncorrelated to wages, rents, local amenities, and moving costs. The resultant indirect utility 

function can be expressed as: 

 

( ) ,I S A M

ij j j j j j ij ijV w r S M      = − + + + + +A                           (3) 
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where term 
j  captures all attributes that are unobservable to the researcher. We rearrange 

equation 3 to move all terms that vary only by location j  into a new variable 
j . Consequently, 

equation 3 can be reformulated as: 

 

,M

ij j ij ijV M  = + +                                                        (4) 

 

and 

 

( ) ,I S A

j j j j j jw r S     = − + + +Α                                    (5) 

 

where 
j  is the mean indirect utility value shared by all households in location j . Assuming 

idiosyncratic preferences 
ij  have an independent and identically distributed type I extreme 

value distribution, we obtain a multinomial logit model. This model has a closed form expression 

for the probability of household i  choosing location j : 

 

( )

( )

1

exp
( ) ,

exp

M
j ij

M
k ik

M

ij ik J M

k

P V V k j

 

 

+

+

=

   =


                                          (6) 

 

with its log-likelihood function given by: 

 

1 1
ln ,

N J

ij iji j
ll Y P

= =
=                                                        (7) 
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where 
ijY  is a dummy variable indicating whether household i  chooses to live in location j . 

 

We estimate equation 7 using maximum likelihood estimation (MLE) and a contraction-mapping 

algorithm. This process recovers preference coefficients of households associated with moving 

costs ˆ M and a unique vector of fixed effects 
j

̂ . The contraction mapping iteratively updates 

j
̂  within the MLE framework until the observed and predicted population shares converge. This 

is in contrast to estimating these terms using gradient-based searches. Berry (1994) demonstrates 

that including a complete set of alternative specific constants results in predicted and observed 

population shares coinciding as a necessary condition for maximum likelihood estimation. These 

location-specific constants quantify the mean indirect utility for each location, relative to a 

reference location that is excluded from the analysis. 

 

Also, we derive the average household's demand for local goods, denoted as housing demand 

jHD :  

 

,
j

j j

j

W
HD N

R


=                                                             (8) 

 

where jN  is the number of households of county j . This is obtained from summing the 

probabilities of all households choosing a specific county, as specified in equation 6. The 

housing expenditure, jW , maintains a constant proportion to wages. 
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3.2. Housing Market 

Our model for housing supply builds on the work developed in Saiz (2010) and is further 

extended by Diamond (2016). The empirical specification for the supply equation is as follows: 

 

ln( ) ln( )

exp( ) exp( )

j

j j j j

Geo Geo Reg Reg S

j j j j

R
r HD

P

x x S

 

    

= = +

= + + +

                                      (9) 

 

where 
jHD  is the aggregate housing demand in county j . 

j  represents unobservables, such as 

the construction costs and other factors impacting house prices (rents) that are exogenous to 

housing demand (Gyourko and Saiz 2006; Diamond 2016). 
j  represents inverse housing supply 

elasticity, which is a function of the base inverse elasticity, geographic constraints, land-use 

regulations, and water shortage.  

 

Geographic constraints, Geo

jx , measure the share of land within a specific county that is 

unsuitable for development. This includes areas covered by wetlands, lakes, and other internal 

water bodies, as well as terrains with slopes exceeding a 15 percent (Saiz 2010). As the 

proportion of undevelopable land in a county increases, the elasticity of housing supply 

decreases. In other words, we would expect 
Geo to be positive. 

 

Similarly, our measure for local land-use regulations, Reg

jx , is obtained from the Wharton survey 

data (Gyourko et al. 2021). Higher values in this index signify the enforcement of more 
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restrictive real estate development policies, resulting in a less elastic housing supply. 

Consequently, we would also expect 
Reg  to be positive. 

 

In addition to geographic constraints and land-use regulations, we further introduce a water 

shortage variable, 
jS , into the housing supply equation. This variable retains its earlier definition: 

the average annual unmet water demand in county j . The intuition is that water shortage can 

lead to wildfire risks (Littell et al. 2016), and land degradation (Vicente-Serrano et al. 2015). 

These conditions make land less suitable for developments and may cause local governments to 

delay or halt new construction. As a result, housing supply is limited, thereby driving up rents.  

 

In our framework, the total labor supply for a given location is determined by summing the 

probabilities of all households choosing that specific location. These probabilities, as outlined in 

equation 6, depend on how households weigh factors such as wages, rents, moving costs against 

drought risks when choosing between locations. We calculate the total housing demand for each 

location using the predicted probabilities from equation 8. The final step involves calculating 

housing prices and location choices, as specified in equation 9, to determine a new equilibrium 

where housing supply matches housing demand across all locations. 

 

4. Econometric model  

4.1. Estimation 

We employ a two-stage procedure to estimate our spatial equilibrium model, aligning with 

methodologies previously established by Berry et al. (1995). In the first stage, we use MLE to 

reveal the heterogeneity in households' preferences regarding moving costs. Importantly, this 
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stage computes the mean indirect utility for each county, shedding light on how households 

balance factors such as wages and rents against water shortage and other local amenities when 

making residential decisions. In the second stage, we decompose the estimated mean indirect 

utility and estimate a housing supply equation using a simultaneous GMM estimator, 

instrumenting for wages, rents, and housing demand. 

 

The indirect utility function for household i , in county j  is written as: 

 

1

,
K

M k k

ij j ij i ij ij

k

V M HC M   
=

= + + +                                            (10) 

 

and 

 

( ) ,I S A

j j j j j jw r S     = − + + +A                                                     (11) 

 

 

where we introduce an interaction term between k  variables that describe household 

characteristics, k

iHC , and the moving cost variable 
ijM , to capture household preference 

heterogeneity with respect to relocation. In the first stage, we recover ˆ M , ˆ K , and ˆ
j , where 

ˆ M  represents marginal utility associated with moving costs, and ˆ K  corresponds to marginal 

utility related to moving costs compared to a reference group of households, both recovered 

through MLE. Meanwhile, ˆ
j  is a vector of mean indirect utility derived by contraction mapping. 
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Given that only relative utility matters, we normalize one of the J  fixed effects to zero. 

Consequently, the model recovers only 1J −  unique values.  

 

In the second stage, we decompose mean indirect utility estimates into two components: one 

explained by observables, wages, rents, water shortage, amenities, as well as the other portion 

explained by unobservables, 
jt .  

 

ˆ ( ) ,I S A

j j j j j jw r S     = − + + +A                                                 (12) 

 

For our water shortage variable, 
jS , and amenity variables, 

jA , based on prior work that 

examines the long-run impact of natural disasters and extreme weather on migration decisions 

(Fan and Bakkensen 2022; Wrenn 2023), we calculate them using a rolling 10-year lookback for 

each location. 

 

Moving to housing supply equation, we adopt a specification similar to that used in Diamond 

(2016): 

 

( exp( ) exp( ) ) ln( ) ,Geo Geo Reg Reg S

j j j j j jr x x S HD    = + + + +                               (13)                   

 

In our final estimation, we use a simultaneous GMM estimator to estimate equations 12 (labor) 

and 13 (housing). Our model assumes that household sorting is an equilibrium outcome, with 

each household selecting their optimal location based on factors such as wages, rents, moving 
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costs, water shortage, and local amenities. The coefficients for wages and rents, 
I  , for water 

shortage, 
S , and for amenities, 

A , capture the marginal utility derived from each. 

Furthermore,   reflects the base inverse supply elasticity, and parameters 
Geo , 

Reg , and 
S  

respectively measure how exp( )Geo

jx , exp( )Reg

jx , and 
jS  influence this inverse elasticity, 

capturing the responsiveness of housing supply to changes in these variables. 

 

4.2. Instrumentation 

Due to potential time-varying correlations persist among 
j , wages, 

jw , and rents, 
jr , within the 

labor equation, as well as the likely correlation between housing demand, ln( )jHD , and time-

varying construction costs and other dynamic unobservables, 
j , within the housing equation, 

addressing endogeneity is crucial. To tackle this, we use a Bartik-style shift-share instrument, 

following the approaches proposed by Diamond (2016).  

 

The Bartik instrument is designed to capture shifts in local labor demand based on two key 

factors: national industry growth rates and a region's specific industrial composition. When 

national industry trends are on an upward trajectory, areas with a pre-existing emphasis on those 

industries tend to experience a rise in labor demand. This increase in labor demand boosts wages, 

attracting more workers to those areas or convincing existing residents to stay. Both scenarios 

contribute to a surge in housing demand and, subsequently, rents. A significant advantage of the 

Bartik instrument is its exogeneity. The growth rates of industries at the national level are 

influenced by broader economic dynamics, not local conditions. By integrating these national 

growth patterns with a region's industrial profile, we can make predictions about local wages, 
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housing demand, and rents that are unaffected by potential local confounding factors (Bartik 

1991). 

 

We define our Bartik instrument as follows: 

 

, ,2000

, , , ,2000

1 ,2000

( )( ),
D

d jB

jt d j t d j

d j

N
Z w w

N
 − −

=

 = −                                               (14) 

 

where d  defines the industry. 
, ,d j tw −

 and 
, ,2000d jw −

 are the average log wage of workers in 

industry d  in period t  and the year 2000, respectively, excluding county j . 
, ,2000d jN  is the total 

number of workers in industry d , in county j , in the year 2000, and 
,2000jN  is the total 

workforce in the same location and year.  

 

To increase our identification power, we also calculate the Bartik instrument based on the skill 

level of workers, specifically, those with and without a four-year degree. Recent study indicates 

that high-skill workers exhibit a stronger response to productivity shocks (Diamond 2016; 

Notowidigdo 2020). Moreover, we introduce interactions between our Bartik instrument, B

jtZ  , 

and geographic constraints, Geo

jx , as well as land-use regulations, Reg

jx . Both of these variables 

evaluate the degree of restrictiveness in the housing supply. Specifically, increased geographic 

restrictions and/or more stringent land-use regulations result in lower housing supply elasticities. 

Therefore, the intuition behind these instruments is straightforward: shocks in labor demand spur 

growth in labor supply, which, in turn, increases the demand for housing. Consequently, this 

surge in housing demand causes rents to rise more significantly in areas characterized by lower 



21 
 

housing supply elasticities. For exogeneity, prior study has validated that interactions between 

the Bartik instrument and these housing supply restrictiveness variables remain uncorrelated with 

the error terms in equations 12 and 13 (Diamond 2016). 

 

We use our final set of instruments:  

 

, ,

, ,

, ,

, ,

, , ,

,

B High B Low

jt jt

B High Geo B Low Geo

jt jt j jt j

B High Reg B Low Reg

jt j jt j

Z Z

Z Z x Z x

Z x Z x

 

  

 

  
  

 =   
 
   

                                            (15) 

 

together with a GMM procedure. We simultaneously estimate equations 12 and 13, where 

( )j jtE Z   and ( )j jtE Z   denote the respective population moment conditions. 

 

5. Results 

In this section, we begin by presenting the results from the first stage of our spatial equilibrium 

model, highlighting the significant preference heterogeneity among households with respect to 

relocation. We then delve into our findings from the second stage, where we focus on analyzing 

the labor and housing equations. 

 

5.1. First Stage 

Results from the first stage are presented in Table 3. A key advantage of using a structural model 

is its ability to account for moving costs. The negative coefficient on MovingCost suggests that 

households receive significant negative utility in relocating away from their birth state, a finding 



22 
 

that is consistent with previous studies (Bayer et al. 2009; Klaiber 2014; Diamond 2016; Fan and 

Bakkensen 2022; Wrenn 2023).  

 

Our findings also reveal significant heterogeneity in household preferences regarding relocation. 

Specifically, households with kids, and those led by single or female heads exhibit a lower 

propensity to move from their home state compared to their counterparts. In contrast, household 

heads who are college-educated, over the age of 30, white, and renters, show a higher likelihood 

of relocating. Most importantly, this estimation stage retrieves a full set of baseline utilities for 

each model, ˆ
j . Any variables not captured in the first stage are included in these mean indirect 

utility estimates (TBC). 

 

5.2. Second Stage 

Results from our second-stage estimation are presented in Table 4. Column 1 is a base model 

that excludes the water shortage variable from both the labor and housing equations. In line with 

prior studies, our results confirm that an increase in income enhances household utility. 

Additionally, an increase in undevelopable land along with stricter land-use regulations both 

contribute to higher rents (Saiz 2010; Diamond 2016). In column 2, we introduce the water 

shortage variable into both equations. Our assumption is that water shortage directly affects 

household utility, for instance, by restricting lawn watering frequencies. Moreover, water 

shortage indirectly shapes housing supply through factors such as increased wildfire risks (Littell 

et al. 2016), land degradation (Vicente-Serrano et al. 2015), and delayed or halted new 

construction (Shen et al. 2023).  
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Our results show that water shortage impact household location choices by reducing utility and 

raising rents, with households moving to locations where higher incomes offset these risks. 

Additionally, we observe a significant decrease in household utility with higher ExtPrecip values. 

This suggests that extreme precipitation, which may lead to increased flooding or other adverse 

conditions, detrimentally affects the quality of life and living expenses, thereby reducing overall 

utility. Furthermore, our housing supply equation suggests that water shortage tends to drive up 

rents, and results in a more inelastic housing supply, after controlling for geographic constraints 

and land-use regulations.  

 

Using our marginal utility estimates from the second stage, we calculate that households are 

willing to pay $0.18 to avoid an additional gallon of unmet water demand per year. Regarding 

extreme weather events, only days with extreme precipitation are significant, with households 

willing to pay $XXX for each additional day with more than one inch of rain. Additionally, we 

estimate housing supply elasticity for each location, utilizing coefficients derived from our 

housing supply equation. Across counties in the West, the population-weighted average elasticity 

of supply is estimated at 0.98, with an unweighted average of 1.01. Counties like Whatcom, 

Imperial, Davis, Solano, and Marin feature the most inelastic markets, whereas Deschutes, Clark 

(Nevada), Washington, Yakima, and Clark (Oregon) counties have more elastic supplies. These 

elasticity estimates suggest that increasing water scarcity could significantly influence future 

housing market stability and demographic trends (TBC). 

 

6. Conclusion 

As the threat of climate change escalates, the Western U.S. is anticipated to face more frequent 

and intense severe droughts. Understanding how households might respond to these changes 
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becomes crucial. Our study delves into the complex relationship between household migration 

and housing market responses, framed within a two-stage spatial equilibrium model, placing 

particular emphasis on the effects of severe droughts. 

 

In the first stage of our analysis, we identify a marked negative utility associated with moving 

away from one's birth state, alongside varying preferences regarding water shortage. 

Specifically, households with kids and those headed by single individuals or women are less 

likely to relocate from their home state compared to others. Conversely, household heads who 

are college-educated, over the age of 30, white, and renters demonstrate a greater propensity to 

move. 

 

In the second stage, we offer key insights into the factors that influence household decision-

making processes, including wages, rents, drought impacts, and amenities. Our findings reveal 

that households prefer locations with higher income. Moreover, water shortage has a direct 

influence on households’ utilities and also shapes their location preferences through housing 

costs. These insights are important for both research and policy formulation, especially as 

policymakers confront the immediate challenges posed by our shifting climate. 
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Figures 

Figure 1: 83 Counties in the Western U.S. Identified in 2020 Census Sample 

  

Sources: 1% microdata sample from the 2020 5-year (2016-2020) American Community Survey. 
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Figure 2: Unmet Water Demand in the West 

 

Notes: This figure plots the log of unmet water demand (m³/yr) for all counties in our choice set. Darker areas 

represent more severe water shortage. 
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Tables 

Table 1: Summary Statistics for Data Used in the First Stage of the Model 

Variables Description Mean Std. Dev. 

MovingCost Whether county j  is out of the head-of-

household i ’s birth state (Yes = 1; No = 0) 
0.44 0.50 

Kid Whether the head-of-household i  has any kids 

under 19 years old (Yes = 1; No = 0) 
0.37 0.48 

ColGrad Whether the head-of-household i  is a college 

graduate (Yes = 1; No = 0) 
0.52 0.50 

Age30-39 Whether the head-of-household i  is between 

30 and 39 years old (Yes = 1; No = 0) 
0.94 0.24 

Age40-49 Whether the head-of-household i  is between 

40 and 49 years old (Yes = 1; No = 0) 
0.94 0.24 

Age50-64 Whether the head-of-household i  is between 

50 and 64 years old (Yes = 1; No = 0) 
0.94 0.24 

White Whether the head-of-household i  is White 

(Yes = 1; No = 0) 
0.85 0.35 

Single Whether the head-of-household i  is single 

(Yes = 1; No = 0) 
0.46 0.50 

Female Whether the head-of-household i  is female 

(Yes = 1; No = 0) 
0.48 0.50 

Renter Whether the head-of-household i  is a renter 

(Yes = 1; No = 0) 
0.38 0.49 

Notes: The demographic data are sourced from the census 2020 5-year American Community Survey (ACS) sample. 
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Table 2: Summary Statistics for Data Used in the Second Stage of the Model 

Variables Description Mean Std. Dev. 

Shortage Unmet water demand (m3/yr) in county j  7.83 4.89 

HotDay 
Number of days with a maximum temperature 

above 90 ℉ in county j  
31.09 32.98 

ColdDay 
Number of days with a minimum temperature 

below 32 ℉ in county j  
73.08 63.98 

ExtPrecip 
Number of days with total precipitation above 

one inch in county j  
7.00 5.85 

ViolentCrime 
Count of violent crime per 100K people in 

county j  
173.60 71.23 

GeoConstraint Share of undevelopable area in county j  0.21 0.18 

WRLURI 
Wharton Residential Land Use Regulation 

Index in county j  
0.47 0.83 

Notes: Water shortage data are from the University of New Hampshire's water balance model. Weather data are 

from the PRISM Climate Group (PRISM Climate Group, 2020). Crime data are from FBI Uniform Crime Statistics 

1960-2017, County and City Data Book, U.S. Census Bureau. All shortage, weather, and crime variables represent 

average annual, over a decade-long retrospective window, specifically, 2010-2019 for the water shortage data, 2011-

2020 for weather data, and 2008-2017 for crime data. Geographic data are from the United States Geological Survey, 

and land-use regulations data are from the survey conducted by Gyourko et al. in 2018 (Gyourko et al. 2021).  
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Table 3: Results from the First Stage of the Model 

 Estimates Std. Err. 

MovingCost -3.3257*** 0.0231 

MovingCost X Kid -0.1232*** 0.0128 

MovingCost X ColGrad 0.2644*** 0.0110 

MovingCost X Age30to39 0.0669*** 0.0178 

MovingCost X Age40to49 0.2413*** 0.0185 

MovingCost X Age50to64 0.3255*** 0.0178 

MovingCost X White 0.2758*** 0.0145 

MovingCost X Single -0.1165*** 0.0122 

MovingCost X Female -0.0667*** 0.0108 

MovingCost X Renter 0.3327*** 0.0126 

Notes: Results are shown for the first-stage multinomial logit models, with the dependent variable being the log of 

indirect utility in equation 10. The microdata used are from the 2020 ACS 5-year survey. The first column presents 

the estimates, and robust standard errors are presented in the second column. County fixed effects are not shown. 
* Significant at 10%; ** significant at 5%; *** significant at 1%. 
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Table 4: Results from the Second Stage of the Model 

 (1) (2) 

 A. Utility 

Income 0.224*** 0.337*** 

 (0.058) (0.061) 

Shortage  -0.152*** 

  (0.043) 

HotDay -0.017*** -0.005 

 (0.004) (0.005) 

ColdDay 0.001 0.001 

 (0.001) (0.001) 

ExtPrecip -0.094*** -0.065* 

 (0.032) (0.035) 

ViolentCrime -0.002 -0.002 

 (0.002) (0.002) 

 B. Rents 

HD 0.908*** 0.857*** 

 (0.043) (0.050) 

GeoConstraint X HD 0.025 0.031 

 (0.034) (0.033) 

WRLURI X HD 0.011*** 0.007*** 

 (0.002) (0.002) 

Shortage X HD  0.007*** 

  (0.002) 

Notes: This table shows results from GMM estimation of the second stage of our spatial equilibrium model. Data 

include observations from 83 counties. Income enters the model in the form of a budget constraint, 
j jw r−  , 

where jw  is the log of real monthly household wages, jr  is the natural log of real monthly rent, and   is the 

expenditure share on local goods, set at a value of 0.2. We instrument for Income and ln( )jHD  using a shift-share 

method similar to Diamond (2016). Standard errors are clustered at the county level and shown in parentheses. 

* Significant at 10%; ** significant at 5%; *** significant at 1%. 
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Appendix—Extra Table and Derivation  

 

Derivation of Indirect Utility Function (equation 2) from the Utility Function (equation 1) 

 

The original utility function and budget constraint are presented as equation A1, which 

corresponds to equation 1 in the main body of the paper. 

 

1

,
max ln( ) ln( )

s.t. ,

j

j j j ij
C H

j j j

C H S M

PC R H W

 − + + + +

+ 

A
                                         (A1) 

 

where C  is the consumption of the national good; 
jH  is the consumption of the local good;   is 

the relative taste parameter for the local good; P  is the price of the national good; 
jR  is the price 

of the local good, and 
jW  is the total wages of a household in county j . 

 

To maximize the utility function, we set up the Lagrange function: 

 

1( , , ) ln( ) ln( ) ( ).j j j j ij j j jL C H C H S M PC R H W  −= + + + + − + −A                (A2) 

 

Taking partial derivatives of L  with respect to C  and 
jH  gives us the following first-order 

conditions. 

 

For C : 

 

1
0,

L
P

C C




 −
= − =


                                                      (A3) 

 

which yields: 
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.
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
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−
=                                                                (A4) 
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For 
jH : 

 

0,j

j j

L
R

H H





= − =


                                                    (A5) 

 

which yields: 

 

.
j jH R


 =                                                              (A6) 

 

Now, we equate the two expressions for   to first solve for C : 

 

1
,

j jCP H R

 −
=                                                             (A7) 

 

which yields: 

 

(1 )
.

j jH R
C

P





−
=                                                          (A8) 

 

We substitute C  from equation A8 into the budget constraint A1 to solve for 
jH : 
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Now that we have 
jH , we can substitute this back into equation A8 to solve for C : 
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So, we have derived expressions for C  and 
jH  in terms of the wages 

jW  and the prices P  and 

jR . Since the utility function is of the Cobb-Douglas form and the budget constraint is linear, we 

can also derive expressions for C  and 
jH  without using the Lagrange method. This means that a 

household will allocate the share   of their budget to the local good 
jH , and the share 1 −  of 

their budget to the national good C , which is consistent with our results. 

 

Next, we substitute C  and 
jH  into the utility function A1 to get the indirect utility: 
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expanding the logarithms by the power rule of logarithms ln( ) ln( )ba b a= , we get: 
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(1 ) ln ln .
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ij j j ij
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A                            (A12) 

 

Notice that the expenditure shares (1 )−  and   in the indirect utility function will not change 

the maximization problem since they are constants. Therefore, they can be omitted from the 

logarithmic terms, yielding: 
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A                                  (A13) 

 

Finally, we distribute (1 )−  and  : 

 

ln ln ln ,
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which simplifies to the indirect utility function presented as equation 2 in the main body of our 

paper: 
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Wages and Rents 

Our models capture the spatial equilibrium outcome, represented by the shares of households in 

each county. These outcomes are produced as households choose their optimal location based on 

the wages, rents, and local amenities available in each location. Therefore, it is essential to 

estimate wages and rents for every location. 

 

Wages 

To estimate wages in each location, we employ a wage model that considers several key 

variables as follows: 

 

2

2

2
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     
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+ + + + + +

      (A16) 

 

where the dependent variable is the log of the monthly wages of an individual residing in county 

j , adjusted for inflation using CPI-U price index, P . Each regression includes a set of 

individual characteristics that are most influential in determining wages, such as race (whether 

the person is white), gender (whether the person is a male), age and its square (a proxy for 

experience), head-of-household status, and educational attainment. The education levels are 

categorized as less than high school ( )LHSG , high school graduate ( )HSG , some college ( )SC , 

and college graduate ( )CG . The last two variables in the model, iCF  and 2

iCF  are control 

functions that capture all unobserved factors affecting an individual’s wage for a given location.  

 

The intuition is that people do not randomly choose where to live. Their decisions are often 

influenced by a variety of observed and unobserved factors. For instance, consider individual A 

with a master's degree. When seeking employment, this individual is more likely to relocate to a 

region rich in high-tech sector opportunities and the prospect of higher wages. In contrast, 

individual B, who has a high school degree, might opt for a region with more manufacturing or 

blue-collar job opportunities. Their relocation decisions, clearly, are not random. They are rooted 

in their educational backgrounds and the potential for higher wages in locations that match their 

skill sets. Also, there might be unobserved state-specific factors influencing wages. By including 
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a control function that reflects both education background and migration path, we can control for 

the potential non-random sorting of individuals. 

 

To calculate our control functions, we first categorize individuals based on their education levels. 

We then determine migration shares for each educational group based on established 

relationships between birth state and current state of residency (Wrenn 2023; Pan 2023). As a 

result, each individual in our dataset is allocated a specific share, conditional on their educational 

background and migration path, described as: 

 

[ , | , , , ],a bCF Share State State LHSG HSG SC CG=                               (A17) 

 

which is the share of people with a given level of education born in state a  and currently living 

in state b . These shares are the iCF  control functions in equation A17, aiding in controlling for 

potential endogenous sorting between states based on education levels. 

 

With the control functions in place, equation A17 is estimated separately for each location. 

Following each estimation, we remove the control function terms and predict wages for each 

individual using only demographic variables. We then aggregate the wages of individuals across 

households to get total household income, and compute an average wage for each county. These 

averages serve as our county estimates of household wages, ˆ
jW . 

 

Given that we have 83 separate regressions, it is challenging to present all the results altogether. 

Instead, we gather estimates and their respective standard errors from each regression and take a 

yearly average. These averages are summarized in Table A1. Overall, our results are consistent 

with prior research: Whites typically earn more, men tend to have higher wages, income rises 

with age, non-head-of-household generally earn less, and higher education links to higher wages. 

 

Rents 

Similar to wages, we restrict our sample to focus only on homeowners. Each household is 

associated with an estimated house value, hjHP , where h  denotes the household, j  represents 
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the county. To compute an equivalent monthly rent value for each homeowner, we leverage the 

concept of user costs. This idea treats homeowners as if they were renting from themselves. 

Specifically, it converts actual house values by multiplying them with a coefficient. This 

coefficient translates the values to reflect the amount a household would pay if they were renting 

the same property, adjusting for any benefits and costs of homeownership relative to renting 

(Bieri, Kuminoff and Pope 2023; Himmelberg, Mayer and Sinai 2005). We source user costs 

data from Wrenn (2023). Since Wrenn’s data are presented at the community zone level, we 

average them out to the state level, assuming all counties within a state share a uniform state-

level user cost, 
jUC . Moreover, we utilize the user costs data from 2010 as a proxy for our 2020 

sample. We then multiply each household's house value by the user costs to derive the rent 

values, 
hj j hjR UC HP=  . 

 

We generate county rent estimates, ˆ
jR , using individual house values, 

hjR . Building on prior 

research, we implement rent regressions that hedonically adjust rents. This allows us to net out 

the pricing effects of housing characteristics, such as the structure of the house and its age (Fan 

and Bakkensen 2022; Wrenn 2023). We estimate the model as follows: 
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                           (A18) 

 

where the dependent variable is the natural log of the monthly rents of a household residing in 

county j , adjusted for inflation using CPI-U price index, P . Each model includes a full set of 

controls for housing characteristics, such as acres, numbers of units in the building, numbers of 

rooms and bedrooms, and the age of the house. We also introduce a county fixed effect, 
j , 

which quantifies the rental price for each county. This rent index serves as our estimates for 

county rents in the second stage of our model. Results from our hedonic rent regressions are 

presented in Table A2.  
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Table A1: Results from Dahl Wages Regressions 

 
_

  
_

. .S E  

   

White 0.092 0.053 

Male 0.476 0.032 

Age 0.174 0.010 

AgeSqrd -0.002 0.001 

Head 0.177 0.035 

HSG 0.336 0.234 

SG 0.473 0.241 

CG 0.875 0.293 

   

N 83 

R2 0.302 
Notes: This table displays average coefficient values and standard errors from the wage regression in equation A16. 

The regression runs separately for 83 counties. The columns show the mean coefficients and standard errors taken 

across all regressions. Average R2 values are shown at the bottom of the table.  
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Table A2: Results from Hedonic Rents Regressions 

largelot 0.482*** 

 (0.024) 

unit2 -0.735*** 

 (0.135) 

unit3 1.472*** 

 (0.047) 

unit4 1.392*** 

 (0.049) 

unit5 1.575*** 

 (0.068) 

unit6 1.338*** 

 (0.055) 

unit7 1.311*** 

 (0.058) 

unit8 1.351*** 

 (0.071) 

unit9 1.457*** 

 (0.052) 

unit10 1.560*** 

 (0.061) 

room2 -0.005 

 (0.102) 

room3 0.115 

 (0.103) 

room4 0.154 

 (0.104) 

room5 0.195* 

 (0.106) 

room6 0.280** 

 (0.107) 

room7 0.374*** 

 (0.106) 

room8 0.451*** 

 (0.105) 

room9 0.636*** 

 (0.104) 

bedroom2 -0.188** 

 (0.082) 

bedroom3 -0.005 

 (0.086) 

bedroom4 0.132 

 (0.086) 

bedroom5 0.261*** 

 (0.088) 
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bedroom6 0.384*** 

 (0.089) 

builtyr2 -0.134*** 

 (0.012) 

builtyr3 -0.254*** 

 (0.014) 

builtyr4 -0.296*** 

 (0.016) 

builtyr5 -0.399*** 

 (0.023) 

builtyr6 -0.458*** 

 (0.021) 

builtyr7 -0.389*** 

 (0.027) 

N 336,882 

R2 0.492 

Mean Rent ($) 1,509 
Notes: This table displays results from hedonic models estimated using 2020 census microdata on housing rents. 

Model controls for acres, building size in units, numbers of rooms and bedrooms, and age of the structure. The 

models also include a full set of county fixed effects (not shown), which are used to generate the quality-adjusted 

rent values used in the model. Mean Rent is the unlogged, average monthly rent, in $2000. 
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