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Abstract

We extend BLP’s aggregate discrete-choice model of product differentiation to

create more flexibility in the price functional form. We apply a Box-Cox specifi-

cation, which relaxes the typical unit demand assumption and creates flexibility

on demand curvature. The model provides a unifying framework for mixed logit

and mixed CES models, while remaining computationally tractable. We provide

an illustrative application to the ready-to-eat cereals market. This shows that the

cross-sectional relation between price elasticities and average prices per product

is more in line with descriptive elasticity patterns, and that substitution between

product pairs may be affected to some extent.
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1 Introduction

Substitution patterns between differentiated products are crucial to understanding

many important economic questions in industrial organization, international trade,

public economics and other fields. In their pioneering contributions, Berry (1994)

and Berry, Levinsohn, and Pakes (1995, hereafter BLP) developed a discrete-choice

random coefficients logit model to account for unobserved consumer heterogeneity in

the valuation of product characteristics. The popularity of the BLP model stems from

its ability to generate rich substitution patterns using only market-level sales data and

a limited number of parameters.

The literature has paid considerable attention to account for unobserved consumer

heterogeneity through flexible specifications for the random coefficients. However, it

has largely neglected the role of demand curvature, i.e. the functional form through

which a product’s price enters the consumers’ indirect utility. Most of the discrete-

choice literature using market-level sales data has assumed that utility is linear in price

or, more generally, additive in income and price, so that utility-maximizing consumers

purchase a single unit of their preferred product. This functional form implies a

tendency for price elasticities to be increasing in price. This is most evident for logit

and nested logit models, where price elastictities are essentially linearly increasing

with prices. Nevertheless, the typical random coefficients logit models also contain

restrictions on demand curvature, and it remains an open question how this may bias

parameter estimates. Björnerstedt and Verboven (2016) consider an alternative utility

specification where utility is linear in the logarithm of both income and price. In this

specification consumers have unit-elastic demand for their preferred products, which

implies a tendency for price elasticities to be independent of price.1 From a different

angle, Adao, Costinot, and Donaldson (2017) and Dubé, Hortaçsu, and Joo (2021) posit

essentially the same empirical model by directly incorporating random coefficients in

a representative consumer CES demand model. Adao et al. (2017) label this a mixed

CES, as opposed to BLP’s mixed logit model.

Against this background, we relax the demand curvature restrictions that are im-

plicit in aggregate discrete choice demand models by introducing a simple yet flexible

1Nair, Dubé, and Chintagunta (2005) take a related approach, with a more complicated income term.
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Box-Cox transformation of price and income (from Box and Cox, 1964). This joint Box-

Cox and BLP model implies that consumers do not necessarily have perfectly inelastic

or unit-elastic demand for their preferred products. Our approach is attractive for

at least three reasons. First, the joint model permits richer substitution patterns by

allowing for a more flexible price functional form in addition to unobserved consumer

heterogeneity. This breaks the mechanical link between price elasticities and prices,

which may be responsible for biased elasticity estimates even under rich consumer

heterogeneity. Second, the Box-Cox specification nests both BLP’s mixed logit model

and the mixed CES model as special cases, and hence provides a unifying framework

for existing models in various fields. Third, our specification is tractable because it

requires only a single additional parameter relating to the functional form for price.

To identify this parameter, we suggest using transformations of the available price

instruments.

To illustrate our demand framework, we apply it to the “Ready-to-Eat” cereal market,

which several papers explain is particularly well suited for estimating demand in

differentiated product markets (Nevo, 2000, 2001; Backus, Conlon, and Sinkinson,

2021). We observe product-level sales data from Dutch supermarkets at a weekly

frequency during 2011-2013. A preliminary descriptive analysis reveals two stylized

facts. First, there is substantial price variation between different cereal products:

the most expensive cereal is priced an order of magnitude higher than the cheapest

one. Second, descriptive log-log regressions per product suggest that product-level

elasticities are roughly independent of average product prices. These findings indicate

the importance of allowing for sufficient flexibility in either unobserved consumer

heterogeneity or demand curvature, or both.

Given this motivating evidence, we next assess the ability of our joint Box-Cox and

BLP model to recover more plausible elasticities (and markups) compared to several

popular but more restricted models. The estimates of the joint model show that there

is significant heterogeneity in price sensitivity, and that price enters utility somewhere

in between the linear form of BLP’s mixed logit and the log-linear form of the mixed

CES. These findings imply that restricting either the Box-Cox or the price heterogeneity

parameter may entail biased estimates, and hence restrict substitution patterns.

We illustrate the implications of greater flexibility by plotting the own-price elas-
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ticities against prices for the various demand models. Using the descriptive estimates

as guidance, we find that the joint model successfully recovers own-price elasticities

that are roughly independent of prices across products. The simple Box-Cox model,

which abstracts from consumer heterogeneity, also recovers this pattern, but has the

drawback of restricting cross-price elasticities. By contrast, the simple logit model has

own-price elasticities that are linearly increasing in price (as is well-known), which is

inconsistent with our descriptive estimates. Finally, if there is sufficient heterogeneity,

the BLP model may entail a U-shaped profile of own-price elasticities against price.

This reflects the outcome of two opposing effects. First, because price enters utility

linearly, the own-price elasticities scale linearly with price (as in the simple logit). Sec-

ond, consumer heterogeneity means less price sensitive consumers are more likely to

purchase higher-priced products and vice versa. At low prices, the first effect dom-

inates, while at high prices the second effect may become more important (at least

under sufficient consumer heterogeneity).

Finally, we find that our extended model may alter the estimated substitution be-

tween product pairs (as measured by the diversion ratio) to some extent. But it does not

appear to affect relative patterns across products. As such, our model mainly affects

the pattern of own-price elasticities (and markups) across products, and the implied

cost pass-through.

We draw two implications for estimating differentiated products demand systems

with aggregate sales data. First, to uncover adequate substitution patterns, it is not suf-

ficient to focus on flexible random coefficients to account for consumer heterogeneity.

It is also important to incorporate a flexible functional form for price. This conclusion is

particularly relevant for applications that hinge on the demand curvature, such as the

pass-through of a tax, tariff or exchange rate. A second conclusion is more pragmatic.

The simple Box-Cox without random coefficients suggests that in our application the

CES model is not rejected by the data, in contrast with the logit model. Practitioners

who make use of logit or nested logit models because of data limitations or compu-

tational simplicity may therefore also consider the CES or nested CES as part of a

robustness analysis (micro-founded in the same discrete-choice setting).

Related Literature: This paper contributes to the growing literature on estimating mod-
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els of demand in differentiated products markets; for two recent surveys, see Berry

and Haile (2021) and Gandhi and Nevo (2021). Berry and Haile (2014) obtain non-

parametric identification results for differentiated products demand systems with

market-level data. Their framework allows for flexible specifications for price. Com-

piani (2021) builds on their theoretical results to estimate a non-parametric analogue of

the BLP model. While certainly allowing for additional flexibility, a non-parametric ap-

proach presents at least two practical challenges: the number of estimated parameters

grows exponentially with the number of products, and estimation requires sufficiently

rich price variation. Compiani therefore illustrates his framework to the market for

fresh strawberries, which consists of only two products and exhibits large seasonal

price movements. Our more targeted approach strikes a more pragmatic balance be-

tween flexibility and tractability. The Box-Cox approach easily accommodates many

products and can be estimated using standard levels of price variation. Moreover, it

nests several popular but more restricted models, so can pragmatically guide applied

demand analysis.

A number of papers focus on obtaining more flexibility by using either micro-

moments (Berry, Levinsohn, and Pakes, 2004) or consumer-level data (Griffith, Nesheim,

and O’Connell, 2018). Most relevant to our paper is Griffith et al. (2018). Their concep-

tual framework shows how consumer heterogeneity in price sensitivity allows for more

flexible demand curvature, including the possibility of log-convex demand. They use

consumer-level data and focus on flexibly modelling income heterogeneity to obtain

economically meaningful differences in the pass-through of a tax. In a recent paper

Miravete, Seim, and Thurk (2023) also stress the importance of consumer heterogene-

ity, considering in addition the role of distributional assumptions of unobservable

heterogeneity in price sensitivity. Our approach shows how additional flexibility on

demand curvature can also be obtained in the absence of consumer heterogeneity in

price sensitivity, by relaxing the usual assumption of perfectly inelastic conditional

demand.

Finally, we contribute to the microfoundations of aggregate demand systems. Head

and Mayer (2021) analyze the ability of the CES model to generate predictions in line

with the BLP model. We show how our joint Box-Cox and BLP model can guide the

choice of functional form in empirical applications, as it provides a unifying framework
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that is microfounded in a discrete choice theory. Our framework strikes a balance

between incorporating heterogeneity with linear price, and alternative functional forms

such as logarithmic price without heterogeneity. In an independent recent paper,

Anderson and De Palma (2020) use a variant of our specification, but their focus is

different. They do not provide an empirical framework, but instead analyze theoretical

relationships between equilibrium distributions of productivity, output, etc.

2 Demand Model and Elasticities

This section derives the joint Box-Cox and BLP model, which allows for both flexibility

in the price functional form and for unobserved consumer heterogeneity. Subsection

2.1 formulates the theoretical framework and subsection 2.2 derives the estimating

equations. Next, subsection 2.3 outlines implications for own- and cross-elasticities.

2.1 Utility and Demand

Consumers choose both their preferred product, and how many units to purchase of

it. In this subsection, we first specify utility and conditional demand for the preferred

product, then the choice probability of each product, and finally aggregate demand.

Utility: In each market (i.e. region and week), there exist 𝐿 consumers, 𝑖 = 1, . . . , 𝐿.

Each consumer chooses one alternative from 𝐽 + 1 differentiated products, 𝑗 = 0, . . . , 𝐽,

where 𝑗 = 0 is the outside good. Conditional on purchasing 𝑗, consumer 𝑖 has the

following indirect utility function:

𝑢𝑖 𝑗 = 𝑥 𝑗𝛽 + 𝛼𝑖 𝑓 (𝑦𝑖 , 𝑝 𝑗) + 𝜉𝑗 + 𝜀𝑖 𝑗 , (1)

where 𝑥 𝑗 is a vector of observed product characteristics; 𝑦𝑖 and 𝑝 𝑗 denote consumer

income and price (in real terms); and 𝑓 (𝑦𝑖 , 𝑝 𝑗) specifies how price and income enter

indirect utility. For simplicity, the taste parameter vector for the product characteristics,

𝛽, is common across consumers. The price sensitivity parameter, 𝛼𝑖 , is a normally

distributed random coefficient with mean 𝛼 and standard deviation 𝜎, i.e. 𝛼𝑖 = 𝛼 +
𝜎𝜈𝑖 , where 𝜈𝑖 is a standard normal variable. Last, 𝜉𝑗 captures unobserved product
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characteristics, which are common to all consumers, and 𝜀𝑖 𝑗 is a consumer-specific

taste term for good 𝑗.

Box-Cox specification and conditional demand: We specify that price and income enter

utility through a power function or Box-Cox transformation (Box and Cox, 1964), i.e.:

𝑓 (𝑦𝑖 , 𝑝 𝑗) = 𝛾𝜆−1

𝑦𝜆
𝑖
− 1

𝜆
−
𝑝𝜆
𝑗
− 1

𝜆
, (2)

where 𝜆 ≤ 1 represents the Box-Cox parameter and 𝛾 is the fraction of income a

consumer allocates to the cereal category. In statistics, the Box-Cox transformation

is used to transform non-normal random variables with a skewed distribution into

a normal shape, and covers the normal and log-normal distribution as special cases.

We also use the transformation to cover the linear and logarithmic form of price and

income, but the economic intuition instead relates to the implied consumer’s demand,

as we discuss below.2 Note that the budget share parameter 𝛾 is a potential market

size variable, similar to the number of consumers 𝐿. In our application below, we will

not estimate them, but make assumptions on both 𝛾 and 𝐿. Conditional on selecting

product j, the demand of consumer 𝑖 follows from Roy’s identity, 𝑞𝑖 𝑗(𝑦𝑖 , 𝑝 𝑗) = −𝜕𝑢𝑖 𝑗/𝜕𝑝 𝑗
𝜕𝑢𝑖 𝑗/𝜕𝑦𝑖 .

Using (1) and (2), this is given by:

𝑞𝑖 𝑗(𝑦𝑖 , 𝑝 𝑗) =
(
𝛾𝑦𝑖
𝑝 𝑗

)
1−𝜆

. (3)

The Box-Cox parameter 𝜆 allows for flexibility, but also nests two existing speci-

fications in the literature. First, with 𝜆 = 1, price and income enter utility linearly,

i.e., 𝑓 (𝑦𝑖 , 𝑝 𝑗) = 𝑦𝑖 − 𝑝 𝑗 , and a consumer purchases one unit of her preferred product

(𝑞𝑖 𝑗(𝑦𝑖 , 𝑝 𝑗) = 1). This linear price specification with unit demand is often adopted in the

traditional BLP model.3 Second, as 𝜆 −→ 0, price and income enter utility logarithmi-

cally (from l’Hôpital’s rule), i.e., 𝑓 (𝑦𝑖 , 𝑝 𝑗) = 𝛾−1
ln(𝑦𝑖)− ln(𝑝 𝑗)). In this case, a consumer

spends a constant fraction of her income to her preferred product (𝑞𝑖 𝑗(𝑦𝑖 , 𝑝 𝑗) = 𝛾𝑦𝑖
𝑝 𝑗

).

2One can in principle have a separate Box-Cox parameter for price (𝜆𝑝) and income (𝜆𝑦), but it is less

obvious how to identify 𝜆𝑦 from aggregate sales data. In their theoretical contribution, Anderson and

de Palma (2020) essentially specified 𝜆𝑦 = 1.

3BLP consider an alternative specification where price and income enter through the term 𝛼 ln(𝑦𝑖−𝑝 𝑗).
Since both variables enter additively, this also results in unit demand. As we will see below, their

specification creates flexibility only through heterogeneity in price sensitivity.

6



This is essentially a CES specification derived from a discrete choice model. Björn-

erstedt and Verboven (2016) refer to it as a constant expenditures specification, and

it is increasingly adopted in applied work (e.g., see Fang, 2019; Eizenberg, Lach, and

Oren-Yiftach, 2021; Hatan, Fleischer, and Tchetchik, 2021).

One may also specify other functional forms for 𝑓 (𝑦𝑖 , 𝑝 𝑗) than the Box-Cox spec-

ification (2), such as polynomials in 𝑦𝑖 and 𝑝 𝑗 (with suitable parameter restrictions).

Other empirical work has restricted attention to functional forms of the type 𝑓 (𝑦𝑖 − 𝑝 𝑗),
implying unit demand (Griffith et al., 2018; Miravete et al., 2023).4

Choice Probability: We can write utility more compactly as:

𝑢𝑖 𝑗 = 𝐾𝑖 + 𝛿 𝑗 + 𝜇𝑖 𝑗 + 𝜀𝑖 𝑗 , (4)

where𝐾𝑖 = 𝛼𝑖𝛾𝜆−1
𝑦𝜆
𝑖
−1

𝜆 is constant for each consumer over products; 𝛿 𝑗 = 𝑥 𝑗𝛽−𝛼
𝑝𝜆
𝑗
−1

𝜆 +𝜉𝑗
is the mean valuation for product 𝑗 shared by all consumers; and 𝜇𝑖 𝑗 = 𝜎𝑣𝑖

𝑝𝜆
𝑗
−1

𝜆 is a

consumer-specific valuation for product 𝑗.

Each consumer 𝑖 chooses the product 𝑗 that maximizes her random utility 𝑈𝑖 𝑗 .

Assuming the random taste parameter, 𝜀𝑖 𝑗 , follows an extreme value distribution and

normalizing 𝛿0 = 0, the probability a consumer 𝑖 chooses product 𝑗 takes the form:

𝑠𝑖 𝑗 (δ, 𝜎,𝜆) ≡
exp

(
𝛿 𝑗 + 𝜇𝑖 𝑗

)
1 +∑𝐽

𝑘=1
exp (𝛿𝑘 + 𝜇𝑖𝑘)

, (5)

where the separable term 𝐾𝑖 cancels out from the choice probabilities.

Aggregate Demand: Assuming that 𝑣𝑖 , 𝑦𝑖 and 𝜀𝑖 𝑗 are independent, aggregate demand

for product 𝑗 is given by:

𝑞 𝑗 =

∫
𝑠𝑖 𝑗 (δ, 𝜎,𝜆) 𝑞𝑖 𝑗

(
𝑦𝑖 , 𝑝 𝑗

)
𝑑𝑃𝜈(𝜈)𝑑𝑃𝑦(𝑦)𝐿 (6a)

=

∫
𝑠𝑖 𝑗 (δ, 𝜎,𝜆) 𝑑𝑃𝜈(𝜈)

∫
𝑞𝑖 𝑗(𝑦𝑖 , 𝑝 𝑗)𝑑𝑃𝑦(𝑦)𝐿 (6b)

=

∫
𝑠𝑖 𝑗 (δ, 𝜎,𝜆) 𝑑𝑃𝜈(𝜈)

∫ (
𝛾𝑦𝑖
𝑝 𝑗

)
1−𝜆

𝑑𝑃𝑦(𝑦)𝐿 (6c)

4Miravete et al. (2023) also allow for alternative distributions of 𝛼𝑖 .
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where (𝑝𝑦 , 𝑝𝑣) are the income and price sensitivity distributions.

2.2 Estimating equations

Rearranging the aggregate demand from equation (6c) into an estimating equation

requires two steps. A first step specifies the distribution of income. For simplicity,

assume that all consumers have the same income (within a region), 𝑦̄, so

∫
𝑦1−𝜆
𝑖

𝑑𝑃𝑦(𝑦) =
𝑦̄1−𝜆

. Appendix A.1.1 shows how one may incorporate income heterogeneity using

two approaches: income draws from an empirical distribution, or a Taylor expansion.

The second step approximates the integral over unobserved consumer heterogeneity

𝜈. We follow the BLP methodology by taking 𝑛 simulated draws of a standard normal

distribution (see Berry et al., 1995). Combining these two steps and rearranging leads

to the following estimating equation for the joint Box-Cox and BLP model:(
𝑝 𝑗

𝛾 𝑦̄

)
1−𝜆 𝑞 𝑗

𝐿
=

1

𝑛

𝑛∑
𝑖=1

exp

(
𝛿 𝑗 + 𝜇𝑖 𝑗

)
1 +∑

𝑘 exp (𝛿𝑘 + 𝜇𝑖𝑘)
. (7)

The right-hand side has the usual interpretation as averaging over consumer choice

probabilities (where the Box-Cox parameter implicitly enters through 𝛿 𝑗 and 𝜇𝑖 𝑗). The

left-hand side of equation (7) may be interpreted as an average choice probability or

market share variable, which is less than one if 𝐿 and 𝛾 𝑦̄ are sufficiently large. For

instance, a linear price (𝜆 = 1) implies unit demand, so the market share variable

simplifies to a product’s aggregate demand relative to the total number of consumers,

𝑞 𝑗
𝐿 ; a log price (𝜆 = 0) implies constant expenditures demand, so the market share

variable simplifies to a product’s aggregate revenue relative to the total budget,

𝑝 𝑗𝑞 𝑗
𝛾 𝑦̄𝐿 .

Following BLP’s contraction mapping, the market share system (7), for 𝑗 = 1, · · · , 𝐽,
can be inverted to solve for the mean utilities 𝛿 𝑗 . Without unobserved heterogeneity,

one can follow the analytical inversion approach from Berry (1994) (see Appendix A.1.3

for details):

ln

(
𝑝1−𝜆
𝑗

𝑞 𝑗

𝐿(𝛾𝑦)1−𝜆 −∑𝐽

𝑘=1
𝑝1−𝜆
𝑘

𝑞𝑘

)
= 𝑥 𝑗𝛽 − 𝛼

𝑝𝜆
𝑗
− 1

𝜆
+ 𝜉𝑗 . (8)
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2.3 Implications for price elasticities and curvature

As shown in Appendix A.1.4, the own- and cross-price elasticities for the joint Box-Cox

and BLP model can be written as:

𝜂 𝑗𝑘 =


−
𝑝𝜆
𝑗

𝑠 𝑗

∫
𝛼𝑖𝑠𝑖 𝑗

(
1 − 𝑠𝑖 𝑗

)
𝑑𝑃𝜈(𝜈) − (1 − 𝜆) if 𝑗 = 𝑘

𝑝𝜆
𝑘

𝑠 𝑗

∫
𝛼𝑖𝑠𝑖 𝑗𝑠𝑖𝑘𝑑𝑃𝜈(𝜈) if 𝑗 ≠ 𝑘,

(9)

where 𝑠 𝑗 ≡
∫
𝑠𝑖 𝑗𝑑𝑃𝜈(𝜈). The first line is the own-elasticity, 𝜂 𝑗 𝑗 , which separates into the

typical average choice probability elasticity and a conditional demand elasticity. The

second line is the cross-elasticity, 𝜂 𝑗𝑘 . Equation (9) clarifies the role of both the Box-Cox

parameter and consumer heterogeneity.5

Intuitively, the Box-Cox parameter 𝜆 relaxes the typical unit demand assumption,

and creates greater flexibility on demand curvature. Specifically, equation (9) reveals

a relationship between elasticities and prices across products 𝑗, as seen from the terms

𝑝𝜆
𝑗

and 𝑝𝜆
𝑘

in front of the integral. With 𝜆 = 1, the own- and cross-price elasticities

scale quasi-linearly with own- and cross-prices. We say quasi-linearly because price

also enters the choice probability, 𝑠𝑖 𝑗 in the integral term. A key insight is that with

𝜆 < 1, this scaling becomes less than linear. For a log price specification, 𝜆 = 0, there

is no scaling between elasticities and price, while 𝜆 < 0 would imply a decreasing

relationship.

More formally, a measure of demand curvature is the second derivative of log

demand:

𝜕2
ln 𝑞 𝑗

𝜕𝑝2

𝑗

=

∫ (
𝑠𝑖 𝑗

𝑠 𝑗

𝜕2
ln 𝑠𝑖 𝑗

𝜕𝑝2

𝑗

)
𝑑𝑃𝜈

+
[∫ (

𝑠𝑖 𝑗

𝑠 𝑗

(
𝜕 ln 𝑠𝑖 𝑗

𝜕𝑝 𝑗

)
2

)
𝑑𝑃𝜈 −

(∫
𝑠𝑖 𝑗

𝑠 𝑗

𝜕 ln 𝑠𝑖 𝑗

𝜕𝑝 𝑗
𝑑𝑃𝜈

)
2

]
(10)

+(1 − 𝜆) 1

𝑝2

𝑗

,

5Table A.1 in Appendix A.1.4 presents the elasticities in several special cases: 𝜆 = 1 or 𝜆 = 0, with

and without heterogeneity in 𝛼𝑖
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as shown in Appendix A.1.5. This generalizes the expression obtained by Griffith

et al. (2018). The first and second terms have a similar structure, i.e. respectively the

weighted average of the second derivative of log individual demand and the weighted

variance of the slope of log individual demand. The third term is new and is the

absolute value of the conditional individual elasticity, divided by 𝑝2

𝑗
.

If expression (10) is positive (negative), demand is log-concave (log-convex). As

discussed by Griffith et al. (2018), the first term of (10) is negative if individual demand

is log-concave, and the second term is zero without consumer heterogeneity (𝜎 = 0)

and strictly positive otherwise. The new third term is zero with perfectly inelastic

conditional demand (𝜆 = 1) and strictly positive otherwise. Hence, unlike Griffith

et al. (2018) demand may be log-convex even in the absence of consumer heterogeneity

because of elastic individual demand (𝜆 < 1). Appendix A.1.5 provides a more detailed

formal discussion, including the relationship between (10) and the superelasticity and

pass-through. For example, the price elasticity (in absolute value) increases with price

(positive superelasticity) for 𝜆 ∈ (0, 1), whereas it may decrease with price if 𝜆 < 0.

Furthermore, lower values of 𝜆 translate into a higher pass-through rate.6

3 Illustrative Application

To illustrate our demand framework, we apply it to the “Ready-to-Eat” cereal mar-

ket, consistent with a prior literature using the cereal category to demonstrate the

performance of different demand models (e.g., Nevo, 2000, 2001; Backus et al., 2021).

3.1 Descriptive Evidence

Our data set on the “Ready-to-Eat” cereal market comes from IRI. A detailed discussion

of the data and summary statistics is provided in Appendix A.3. The unit of observation

is a product 𝑗 (barcode), region 𝑟 (i.e. 6 provinces in the North of the Netherlands)

and week 𝑡 (156 weeks during 2011-2013). The total number of observations is 50,836,

amounting to an average number of products of 54.31 per market and week (and

6One may in principle target a reduced-form estimate of the pass-through rate as an additional

moment if 𝜆 is otherwise difficult to identify in practice. But this would require a careful interpretation

of the reduced-form pass-through estimate (including whether it incorporates rival responses and/or

delayed adjustment).
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73 distinct products over the entire period). We have information on the following

variables: quantity sold (kg), revenues and price (
=C), and size (kg).

For each product 𝑗, we estimate the following descriptive regression:

ln(𝑞 𝑗𝑟𝑡) = 𝜂 𝑗 ln(𝑝 𝑗𝑟𝑡) + 𝑤 𝑗𝑟𝑡𝜃𝑗 + 𝑢𝑗𝑟𝑡 , (11)

where ln(𝑞 𝑗𝑟𝑡) and ln(𝑝 𝑗𝑟𝑡) are the log quantity and log price of product 𝑗 in market 𝑟

for week 𝑡. The vector 𝑤 𝑗𝑟𝑡 includes market, year and month-of-year fixed effects. To

account for possible endogeneity issues, we include a standard set of Hausman and

BLP instruments (as in our structural demand model, explained in more detail below).

Our main interest at this point is in the price coefficient 𝜂 𝑗 , which we interpret as

a descriptive estimate of the own-price elasticity of product 𝑗 (i.e., without directly

modeling substitution between different products). Our purpose is to obtain an idea of

the cross-sectional relationship between the elasticities and prices, without imposing a

detailed underlying structure on how 𝜂 𝑗 varies across products. However, we caution

that the estimated 𝜂 𝑗 do not measure the true elasticities (i.e., they may be biased)

because equation (11) assumes there are no cross-price effects.

Figure 1 presents these estimates by plotting the estimated own-elasticity against

the average price per product to make two points. First, cereal prices vary widely, with

the most expensive cereal price an order of magnitude higher than the cheapest one.

Second, the own-price elasticities are roughly independent of price. The joint findings

of wide price variation and a constant pattern of elasticities across products motivate a

joint Box-Cox and BLP demand model. Specifically, this model can evaluate to which

extent a traditional BLP model with a linear price variable can generate this constant

pattern, or whether a more flexible functional form through the Box-cox parameter 𝜆

is required.

3.2 Estimation

We discuss, in turn, the demand specification, identification and instruments, and the

estimating algorithm.

Specification: Our unit of observation is the product 𝑗 in region 𝑟 in week 𝑡, so we can
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add subscripts 𝑟 and 𝑡 to all variables in our (inverted) estimating equation (7), which

includes the unobserved quality or error term 𝜉𝑗𝑟𝑡 . We exploit the long weekly panel

to estimate a fixed effect for each product 𝑗 to account for time-invariant unobserved

product characteristics affecting mean utility. We further include a fixed effect per

year-region, and per month-of-year to capture unobserved demand shocks both across

time and between markets. The richness of these fixed effects, and in particular the

product fixed effects, enable us to focus attention on the joint role of the price functional

form and consumer heterogeneity in determining substitution patterns.

Defining the market share variable requires us to determine the size of the potential

market. As we discussed in Subsection 2.1, this includes both the total number of

potential consumers 𝐿 (as usual) and the consumers’ total potential budget allocated to

the cereal category, 𝛾 𝑦̄𝑟 . To obtain both variables, we first calculate the total quantity

and sales per market and week, we then take the maximum of each variable across

regions and weeks, and conservatively multiply each variable by a factor of ten. Previ-

ous research typically finds the demand parameter estimates are robust to assumptions

regarding 𝐿 (e.g., Nevo, 2000).

Identification and instruments: We start from the commonly used identification assump-

tion that the non-price product characteristics (in this case the various fixed effects)

are uncorrelated with the error term 𝜉𝑗𝑟𝑡 . Under this assumption, the fixed effects are

instruments for themselves. We require additional instruments to identify the price

coefficient, Box-Cox parameter, and consumer heterogeneity (𝛼,𝜆, 𝜎). Berry and Haile

(2014) establish identification in a setting that is more general than ours, and we focus

here on the role of specific instruments to identify the three main parameters.

To identify the price coefficient 𝛼, we use the average prices of the same product in

other markets, i.e., Hausman instruments from Hausman (1996). These instruments

mainly help to identify the price coefficient (𝛼). As discussed in more detail in Nevo

(2000), their validity is based on two assumptions: marginal costs are correlated across

markets and demand shocks are uncorrelated (conditional on the included year-region

fixed effects). We use Hausman instruments mainly for simplicity here. In other

settings, natural price instruments can be cost shifters, such as exchange rates or input

prices interacted with product characteristics (e.g., Reynaert and Verboven, 2014).
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Note that price enters the demand model non-linearly through the Box-Cox param-

eter 𝜆. To identify the shape of the demand curve, it is therefore natural to consider

different functional forms of the price instruments. Appendix A.2 shows how further

guidance can be obtained from constructing (approximately) optimal instruments in a

simplified setting without consumer heterogeneity (see also Reynaert and Verboven,

2014; Conlon and Gortmaker, 2020). Concretely, we use the Hausman instruments in

their original linear form, and also in square-root and logarithmic form. These are ap-

proximately optimal instruments for 𝛼 if respectively 𝜆 = {1, 0.5, 0}. The logarithmic

form also resembles the optimal instrument for 𝜆.

Finally, to identify the heterogeneity parameter 𝜎, we use functions of the other

product characteristics, i.e., BLP instruments from Berry et al. (1995). The set consists of

counts of own- and other-brand products for the following segmentations: entire cereal

category, broad product description (e.g. cornflakes or children’s cereal), detailed

product description (e.g., standard or organic muesli), packaging type and package

size. As explained in Berry and Haile (2014), BLP instruments mainly help identify

distributional parameters (i.e., 𝜎).

In summary, for all demand models our base specification includes the following

instruments (apart from the fixed effects): Hausman instruments in linear, square root

and logarithmic form, and BLP instruments. In a sensitivity analysis, we also use

different sets of instruments: (i) we omit the BLP instruments, as these may be less

relevant for demand models without heterogeneity; (ii) we add Hausman instruments

per price group (low, medium and high-priced), as this may help identify the het-

erogeneity coefficient, in particular if elasticities may show a non-linear relationship

with price; and (iii) we add approximately optimal instruments for 𝜆 assuming market

shares are small (based on equation (A.22) in Appendix A.2 for 𝜆 = {1, 0.5, 0}).

Estimation: Estimation of the joint model can proceed based on GMM, using the well-

documented BLP algorithm for inverting the market shares functions as outlined in

Berry et al. (1995). The market shares (i.e., the left-hand side of (7)) now depend on

𝜆; see Appendix A.1.3 for details. We estimate 𝜆 together with the other parameters

(𝜎, 𝛼, 𝛽), and as discussed above additional instruments can be helpful to identify 𝜆.

Note that one may in principle extend our approach to incorporate micro data.
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Such data could be used to validate whether the estimate of 𝜆 based on aggregate

demand data is consistent with the underlying individual demand equation (3). Al-

ternatively, one may use the micro data to impose moment conditions to help identify

𝜆 or have possibly more flexible functional forms than (3). See Appendix A.1.2 for

further discussion.

3.3 Demand parameter estimates

Table 1 summarizes the parameter estimates relating to the price variable: the mean

price coefficient 𝛼, the standard deviation 𝜎 and the Box-Cox parameter 𝜆. Panel (A)

reports estimates for the simple models without consumer heterogeneity (𝜎 = 0). Panel

(B) reports estimates for the random coefficient models.

In all specifications, 𝛼 enters with the expected sign and significantly, indicating that

consumers on average dislike paying higher prices. Taken together, 𝛼, 𝜎 and 𝜆 show

quite some variation across specifications, because the free parameters partly take over

the imposed restrictions on the fixed parameters. Nevertheless, the resulting average

own-price elasticities are remarkably similar across all models (and the corresponding

90% confidence intervals show overlap). In sharp contrast, the average implied cost

pass-through rates vary widely across the specifications: it is close to one for the logit

model, much above one for the simple Box-Cox and BLP models, and in between these

extremes for the joint Box-Cox and BLP model. The pass-through elasticity is close to

one for the Box-Cox (where 𝜆 ≈ 0), while it is less than one in the joint Box-Cox and

BLP model. These differences stem from the curvature parameter 𝜆 and heterogeneity

parameter 𝜎.

In the simple model without consumer heterogeneity (panel (A)), we estimate a Box-

Cox parameter 𝜆 = −0.039. Interestingly, this is not significantly different from zero

and significantly less than 1. Hence, we cannot reject the CES model with log-linear

price and market shares in value terms, while we can reject the logit model with linear

price and market shares in volume terms.

Now consider the random coefficients models of panel (B). In the standard random

coefficients logit of BLP (with 𝜆 = 1), we estimate significant heterogeneity in price

sensitivity: the standard deviation 𝜎 = 0.42, compared with a mean price sensitivity
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parameter 𝛼 = 1.12. In the joint Box-Cox and BLP model, we appear to estimate even

larger heterogeneity, 𝜎 = 0.56, but the mean price sensitivity parameter also increases

to 𝛼 = 1.52 (so 𝜎 actually becomes somewhat less important in relative terms). The Box-

Cox parameter 𝜆 equals 0.592, which is significantly different from both the traditional

BLP model (𝜆 = 1) and the mixed CES model (𝜆 = 0). The estimate of 𝜆 = 0.592 under

consumer heterogeneity contrasts with our earlier estimate of 𝜆 = −0.039 in the simple

model without consumer heterogeneity. In that model, 𝜆 entirely captured the earlier

documented independence between price elasticities and prices (Figure 1), while in

the random coefficients model both 𝜎 and 𝜆 take this role.

Table A.3 reports the estimation results from a sensitivity analysis with our three

alternative instrument sets discussed above. We find that the results remain very

similar to those using the base instruments.

3.4 Implications for price elasticities and markups

In Figure 2, we show how the own-price price elasticities vary across the price distri-

bution by plotting the own-elasticity against own-price for all 73 products. This plot

allows us to evaluate the various demand models against the descriptive evidence on

price elasticities in subsection 3.1 (Figure 1).

The simple logit with linear price (denoted using the blue dots on Figure 2) serves

as a reference model to explain how more flexible models may generate more plau-

sible elasticity patterns. Average product prices vary from
=C1.06 to

=C14.01. This

implies, through the logit structure, that own-price elasticities also vary by an order

of magnitude from -0.49 to -6.50. Beyond the implausibly large variation of own-price

elasticities, it is particularly striking that the highest priced products are also the most

price elastic.

The red dots denote the own-price elasticities from the BLP model. The BLP model

firstly shows a significantly flatter profile compared to the simple logit, and secondly

reveals an interesting U-shaped profile. The U-shaped profile reflects the outcome

of two opposing channels. First, the own-price elasticities tend to scale linearly with

price because price enters utility linearly (i.e., the same mechanism as in the simple

logit). Second, because of heterogeneity in the price coefficient, less price sensitive
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consumers are more likely to purchase higher-priced products and vice versa. From

the lowest price of roughly
=C1 up to roughly

=C6, the first channel of linear price

dominates. As a result, own-price elasticities increase from roughly -1 for the lowest

priced product to almost -3 for the products priced around
=C6. At a price of around

=C6, the second channel of consumer heterogeneity starts to dominate. Accordingly,

demand becomes less elastic and the own-price elasticity equals roughly -1.2 for the

most expensive product (so that the own-elasticity of the most expensive and the

cheapest products are similar). While the range of these elasticities is certainly more

plausible than the simple logit, the specific U-shape profile of elasticities may not

necessarily be realistic.7 In particular, this pattern implies that elasticities almost triple

from the cheapest products to the middle priced products and then implausibly fall by

a factor of almost three.

We next present the results for the simple Box-Cox and the joint Box-Cox and BLP

model. The orange dots report the simple Box-Cox own-price elasticities, which are

roughly independent of price. This constant elasticity pattern results from the Box-Cox

parameter 𝜆 being close to zero, which breaks the mechanical linear scaling between

elasticities and prices. The black dots represent the joint Box-Cox and BLP model,

which generates a flatter profile of elasticities when compared to the BLP model. More

specifically, own-price elasticities are roughly -2.3 for the cheapest products, and settle

to roughly -2.5 from around
=C4. Compared to the BLP model, the flatter U-profile

arises because the estimated Box-Cox parameter is less than one and 𝜎 has lower

relative importance. While the difference in patterns should be clear, this comparison

can be further appreciated by referring to Figure A.2 in the appendix. This figure drops

the simple logit elasticities, which changes the y-scale, so the differences between the

joint model and BLP model are clearer.

These findings are reflected in the pattern of percentage and absolute (euro) markups

(reported in Figure A.3 in the appendix). Both the logit and BLP model entail con-

siderably higher percentage markups for the cheapest products; the BLP model has a

similar U-shaped profile, while the Box-Cox and joint Box-Cox and BLP model imply

more stable percentage markups over the price range. Absolute markups are nearly

7For a recent other illustration of a U-shape pattern stemming from price heterogeneity, see Xue

(2021). We note, however, that the U-shape profile in the BLP model does not need to hold generally,

but only under sufficient heterogeneity for the price valuation parameter.
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constant for the logit model. For the BLP model, they increase less than proportionally

with price at low price levels and more than proportionally at high price levels (with

an extremely high markup for the most expensive product).

We finally ask what the different models imply for the estimated substitution be-

tween product pairs. This can be measured by the diversion ratio, i.e. the fraction of

sales that goes from product 𝑗 (row) to product 𝑘 (column) after a price increase by

product 𝑗. To illustrate, Table A.4 of Appendix A.4 presents the diversion ratios for

the five top selling products. This table shows that including a Box-Cox parameter

may alter the estimated substitution to some extent, but not the relative patterns across

products. More specifically, in the standard logit (top panel), the diversion ratios are

approximately symmetric, and this remains the case in the simple Box-Cox (where

𝜆 = −0.039). In the BLP model (third panel), the diversion ratios are asymmetric

(because of the estimated consumer heterogeneity in price sensitivity 𝜎), and these

relative magnitudes remain comparable in the joint Box-Cox and BLP model.8

Summary: Taken collectively, these empirical patterns lead to four conclusions. First,

the linear scaling between elasticities and prices is especially restrictive in the presence

of large price variation. This point is worth emphasizing, as it may be a source of

misspecification even if cross-price elasticities would be relatively symmetric. Second,

consumer heterogeneity in the BLP model breaks this link in a very specific way, i.e.

through a U-shaped profile of both elasticities and markups. While not impossible, this

pattern follows directly from the assumed price functional form. Third, the joint Box-

Cox and BLP model generates a more plausible pattern for elasticities (and markups).

Specifically, the additional flexibility in the price functional form breaks the linear

scaling between elasticities and prices. By requiring a smaller role for consumer

heterogeneity, the U-shaped profile still exists but is significantly less pronounced.

Fourth, the simple Box-Cox model recovers roughly constant elasticities, which closely

resembles the results from the joint model. While the simple Box-Cox model may

represent a useful approximation for many applications, we caution it does not recover

8We caution that the relatively low diversion ratios do not allow one to conclude that, say, Kellogg and

Quaker are in different markets. The estimated demand model was designed to assess how curvature

affects the price/elasticity relationship rather than provide the most realistic cross-product substitution

patterns (since we do not account for non-price product characteristics). The low diversions ratios in

part follow from our conservative assumptions regarding the market size, and would also be higher if

calculated at the firm level instead of product level.
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rich patterns of cross-elasticities.

4 Concluding Remarks

We extend the frontier approach to estimating demand in differentiated product mar-

kets — the BLP approach — to relax functional form restrictions on price through

a simple yet flexible Box-Cox transformation. This extension breaks built-in links

between elasticities and prices.

We provide an illustrative application of our joint Box-Cox and BLP model to the

market for ready-to-eat cereals to draw two broad conclusions. First, our joint model

creates more flexibility to break the link between elasticities and prices across products.

The BLP model relies exclusively on consumer heterogeneity to break this link. This

creates a U-shaped profile between elasticities and prices. We also make a second,

more pragmatic contribution. Applied researchers often abstract from incorporating

unobserved consumer heterogeneity, or incorporate it in a simple way through a nested

logit demand structure. These models can be easily modified to include a Box-Cox

parameter, or alternatively a sensitivity analysis to (nested) CES models (with 𝜆 = 0)

should be considered more widely. This also provides guidance to practitioners in

other fields such as trade, macro and labor.

We see several avenues for future research. First, it would be interesting to confirm

whether our findings generalize to a broad set of product categories and industries

beyond our illustrative application.

Second, our more flexible functional form relies on extending the typical assump-

tion that consumers have unit demand for the preferred products to allow for elastic

conditional demand. While such extension is realistic in many consumer goods mar-

kets, it may seem less intuitive in durable goods industries such as automobiles (as in

BLP’s original application), where consumers purchase a single product on a purchase

occasion. Nevertheless, similar flexibility may arise by modeling elastic conditional

demand over the durable goods’ life-cycle, and exploring this would be interesting.

Alternatively, researchers may seek for other forms of increased flexibility on the price

parameter, for example through intermediate specifications between the standard BLP

model and the non-parametric approach of Compiani (2021), or by modeling consumer
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heterogeneity in price sensitivity more flexibly as in Griffith et al. (2018) and Miravete

et al. (2023).

Finally, our model provides increased flexibility to account for demand curvature. In

the presence of market power, curvature plays a key role in the extent of pass-through

(e.g. Bulow and Pfleiderer, 1983), and we also illustrated in our application. Applied

research that relies on demand estimation to study the pass-through of taxes, tariffs

and exchange rates would thus especially benefit from this increased flexibility. Never-

theless, we caution that our model mainly captures curvature through the relationship

between elasticities and prices in the cross-section of products. Further extensions to

model yet greater flexibility would also be very interesting in future research.

19



References

Adao, R., A. Costinot, and D. Donaldson (2017): “Nonparametric counterfactual

predictions in neoclassical models of international trade,” American Economic Review,

107, 633–89.

Anderson, S. P. and A. De Palma (2020): “Decoupling the CES distribution circle

with quality and beyond: equilibrium distributions and the CES-Logit nexus,” The

Economic Journal, 130, 911–936.

Backus, M., C. Conlon, and M. Sinkinson (2021): “Common Ownership and Compe-

tition in the Ready-To-Eat Cereal Industry,” .

Berry and Haile (2014): “Identification in Differentiated Products Markets Using Mar-

ket Level Data,” Econometrica, 82, 1749–1797.

Berry, Levinsohn, and Pakes (2004): “Differentiated Products Demand Systems from

a Combination of Micro and Macro Data: The New Car Market,” Journal of Political

Economy, 112, 68–105.

Berry, S. (1994): “Estimating Discrete-Choice Models of Product Differentiation,” The

RAND Journal of Economics, 25, 242–262.

Berry, S. T. and P. A. Haile (2021): “Foundations of Demand Estimation,” NBER.

Berry, S. T., J. Levinsohn, and A. Pakes (1995): “Automobile Prices in Market Equilib-

rium,” Econometrica, 63, 841–890.

Björnerstedt, J. and F. Verboven (2016): “Does merger simulation work? Evidence

from the swedish analgesics market,” American Economic Journal: Applied Economics,

8, 125–164.

Box, G. and D. Cox (1964): “An Analysis of Transformations,” Journal of the Royal

Statistical Society: Series B (Methodological), 26, 211–243.

Compiani, G. (2021): “Market Counterfactuals and the Specification of Multi-Product

Demand : A Nonparametric Approach,” .

20



Conlon, C. and J. Gortmaker (2020): “Best practices for differentiated products de-

mand estimation with pyblp,” The RAND Journal of Economics, 51, 1108–1161.

Dubé, J.-P., A. Hortaçsu, and J. Joo (2021): “Random-coefficients logit demand estima-

tion with zero-valued market shares,” Marketing Science.

Einav, L., E. Leibtag, and A. Nevo (2010): “Recording discrepancies in Nielsen Home-

scan data: Are they present and do they matter?” Quantitative Marketing and Eco-

nomics, 8, 207–239.

Eizenberg, A., S. Lach, and M. Oren-Yiftach (2021): “Retail Prices in a City,” American

Economic Journal: Economic Policy, 13, 175–206.

Fang, L. (2019): “The Effects of Online Review Platforms on Restaurant Revenue,

Survival Rate, Consumer Learning and Welfare,” .

Gandhi, A. and A. Nevo (2021): “Empirical Models of Demand and Supply in Differ-

entiated Products Industries,” NBER.

Griffith, R., L. Nesheim, and M. O’Connell (2018): “Income effects and the welfare

consequences of tax in differentiated product oligopoly,” Quantitative Economics, 9,

305–341.

Hatan, S., A. Fleischer, and A. Tchetchik (2021): “Economic valuation of cultural

ecosystem services: The case of landscape aesthetics in the agritourism market,”

Ecological Economics, 184.

Hausman, J. (1996): “Valuation of new goods under perfect and imperfect competitioin.

I,” The Economics of New Goods.

Head, K. and T. Mayer (2021): “Poor Substitutes? Counterfactual methods in IO and

Trade compared,” .

Miravete, E., K. Seim, and J. Thurk (2023): “Elasticity and Curvature of Discrete Choice

Demand Models,” Tech. rep., Working paper.

Nair, H., J.-P. Dubé, and P. Chintagunta (2005): “Accounting for primary and sec-

ondary demand effects with aggregate data,” Marketing Science, 24, 444–460.

21



Nevo, A. (2000): “A Practitioner’s Guide to Estimation of Random-Coefficients Logit

Models of Demand,” Journal of Economics & Management Strategy, 9, 513–548.

——— (2001): “Measuring Market Power in the Ready-to-Eat Cereal Industry,” Econo-

metrica, 69, 307–342.

Reynaert, M. and F. Verboven (2014): “Improving the performance of random coeffi-

cients demand models: the role of optimal instruments,” Journal of Econometrics, 179,

83–98.

Xue, Q. (2021): “Vertical Relations, Demand Risk, and Upstream Concentration: the

Case of the US Automobile Industry,” .

22



5 Table and Figures

Figure 1: Descriptive own-price elasticity vs. own-price

Explanation: Scatter plot of descriptive estimate of own-price elasticity against average price

of product. We estimate an own-elasticity separately per product using equation (11) for 73

products in the cereal category. The figure excludes 8 observations because the estimate is not

statistically significant, or the estimated elasticity is positive. The navy dashed line represents

the estimated relationship (i.e., fitted values) between own-price elasticity and price.
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Table 1: Demand Parameter Estimates

(A) Simple (B) Random Coefficient

Logit Box-Cox Logit Box-Cox

Price (−𝛼) -0.46 -1.55 -1.12 -1.52

(0.004) (0.058) (0.04) (0.06)

Price Heterogeneity (𝜎) 0.00 0.00 0.42 0.56

– – (0.01) (0.02)

Box-Cox (𝜆) 1.00 -0.039 1.00 0.592

– (0.040) – (0.057)

Own-elasticity (𝜂 𝑗 𝑗) -2.47 -2.50 -2.45 -2.48

Confidence Interval [-2.51, -2.43] [-2.56, -2.43] [-2.56, -2.37] [-2.58, -2.38]

Pass-through rate 0.99 1.67 1.80 1.20

Pass-through elasticity 0.56 1.00 1.29 0.72

Notes: Simple refers to a model imposing zero consumer heterogeneity (𝜎 = 0), while Random

Coefficient refers to a model estimating consumer heterogeneity. Logit refers to the traditional linear

price and unit demand model (i.e., 𝜆 = 1), while Box-Cox estimates the Box-Cox parameter as derived

in equation (2). Robust standard errors reported in parentheses (and “–” denotes an imposed values

e.g., a linear price or zero consumer heterogeneity). “Own-elasticity” refers to the average own-price

elasticity across products and markets. A 90% confidence interval for the own-elasticity of the average

product is computed using a parametric bootstrap procedure (100 draws of the parameters from their

asymptotic distribution). The pass-through rate (elasticity) of product 𝑗 is the absolute (percentage)

price increase after a unit (percentage) cost increase of product 𝑗, holding other products’ costs constant

and assuming single product Bertrand competition (see also Appendix A.1.5 ). The reported numbers

refer to averages across products and markets. The parameters are estimated using a sample of 50,836

observations for 2011–2013, where an observation represents a product-province-week. The demand

specification includes a fixed effect for each product, year-market combination, and month.
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Figure 2: Own-elasticity vs. own-price

Notes: Each dot represents a pair of own-price elasticity and own-price for a particular

product and model. Own-elasticity for each model is calculated using equations listed

in Table A.1 of Appendix A.1.4. Own-price is the average price per product. The sample

consists of 73 products in the cereal category.
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A Appendix

This online Appendix provide additional details relating to the model and data for the

paper “Estimating Substitution Patterns and Demand Curvature in Discrete-Choice Mod-

els of Product Differentiation” by Cameron Birchall, Debashrita Mohapatra and Frank

Verboven.

A.1 Model

Section A.1.1 discusses the extension of the model to incorporate income heterogeneity.

Section A.1.2 discusses the model’s implied relationship between expenditure, income

and prices, which may be used if one has available micro data. Section A.1.3 derives

the analytical Berry inversion in the case without consumer heterogeneity. Section

A.1.4 derives the model’s own- and cross-price elasticities. Section A.1.5 derives the

model’s implied curvature, superelasticity and pass-through rate.

A.1.1 Income heterogeneity extension

Two methods can incorporate heterogeneous income per market into

∫
𝑦1−𝜆
𝑖

𝑑𝑃𝑦(𝑦). A

first method uses income tables or random draws, while a second method uses a Taylor

Expansion.

1) Income table or random draws: An income table lists the fraction of consumers, Φ𝑔

with income 𝑦𝑔 per group g, such that

∑𝐺
𝑔=1

Φ𝑔 = 1. Substitute this definition into the

joint Box-Cox and BLP estimating equation:

𝑝1−𝜆
𝑗

𝑞 𝑗

𝐿𝛾1−𝜆 ∑𝐺
𝑔=1

Φ𝑔𝑦
1−𝜆
𝑔

=

∫
𝑠𝑖 𝑗 (δ, 𝜎) 𝑑𝑃𝜈(𝜈) (A.1)

Alternatively one may take simulated income draws e.g., by assuming the data is

normally distributed and one knows the mean and standard deviation.

2) Taylor Expansion: We may approximate the income integral,

∫
𝑦1−𝜆
𝑖

𝑑𝑃𝑦(𝑦) using

a Taylor expansion. Write 𝑦𝑖 as the mean income plus a deviation from the mean, so∫
𝑦1−𝜆
𝑖

𝑑𝑃𝑦(𝑦) =
∫
(𝑦 + (𝑦𝑖 − 𝑦))1−𝜆 𝑑𝑃𝑦(𝑦). Taking the second-order Taylor expansion

1



of the bracketed term gives:

(𝑦 + (𝑦𝑖 − 𝑦))1−𝜆 ≈ (𝑦̄)1−𝜆 + (1 − 𝜆)(𝑦̄)−𝜆 (𝑦𝑖 − 𝑦̄) −
𝜆(1 − 𝜆)(𝑦̄)−𝜆−1

2

(𝑦𝑖 − 𝑦̄)2 (A.2)

Noting that

∫
(𝑦𝑖 − 𝑦̄) 𝑑𝑃𝑦(𝑦) = 0 and

∫
(𝑦𝑖 − 𝑦̄)2 𝑑𝑃𝑦(𝑦) = 𝜎2

𝑦 , we write

∫
𝑦1−𝜆
𝑖

𝑑𝑃𝑦(𝑦)
as: ∫

𝑦1−𝜆
𝑖 𝑑𝑃𝑦(𝑦) ≈ (𝑦̄)1−𝜆 −

𝜆(1 − 𝜆)𝜎2

𝑦

𝑦̄1+𝜆 . (A.3)

One may feasibly substitute this approximation into the estimating equation. The

Taylor expansion also allows us to sign the bias from ignoring income heterogeneity.

For example, unit- or constant expenditures-demand (𝜆 = {0, 1}) implies no bias.

Otherwise, for intermediate 𝜆 values, bias depends on the combination of (𝜆, 𝑦, 𝜎2

𝑦).
To improve the approximation, one may also add a third-order term to (A.3):

(1 + 𝜆)𝜆(1 − 𝜆)(𝑦̄)−𝜆−2

6

∫
(𝑦𝑖 − 𝑦̄)3 𝑑𝑃𝑦(𝑦), (A.4)

which includes the third central moment of the income distribution. Note that this

term is zero if the income distribution is normal, but it is positive if it is skewed (as

empirically observed, e.g. under a log normal income distribution) and 𝜆 ∈ (−1, 1).

A.1.2 Implications for the relationship between expenditure, income, and prices

In this section, we show how different values of the Box-Cox parameter 𝜆 affect the

relationship between conditional demand, income, and price. The purpose is twofold:

(i) show how relaxing the elasticity-price relationship affects relationships between

consumption and price/income; (ii) show how one could use these relationships as

additional micro moments if one had access to micro data.

The conditional demand equation (3) implies that an individual 𝑖’s consumption

share for product 𝑗 is

𝑝 𝑗𝑞𝑖 𝑗

𝑦𝑖
= 𝛾

(
𝑝 𝑗

𝛾𝑦𝑖

)𝜆
Hence, its consumption share is independent of income if 𝜆 = 0, it is decreasing in

income for 𝜆 ∈ (0, 1), and it is increasing in income for 𝜆 < 0. With micro data, one

2



may assess this to validate the aggregate demand model. Taking the log of the demand

equation (3) gives

ln(𝑞𝑖 𝑗) = (1 − 𝜆) ln(𝛾) + (1 − 𝜆) ln(𝑦𝑖) − (1 − 𝜆) ln(𝑝 𝑗). (A.5)

Using micro data, the constant identifies 𝛾, and variation in price and income identifies

𝜆. The equation constrains the price and income elasticities to be equal, but this can be

made more flexible with separate 𝜆𝑝 and 𝜆𝑦 as discussed in footnote 2:

ln(𝑞𝑖 𝑗) = (1 − 𝜆𝑦) ln(𝛾) + (1 − 𝜆𝑦) ln(𝑦𝑖) − (1 − 𝜆𝑝) ln(𝑝 𝑗). (A.6)

Hence, with micro data one can validate the plausibility of 𝜆 from the aggregate

demand model. If this turns out to be too restrictive, one may allow for a separate

income coefficient 𝜆𝑦 or consider even more flexible conditional demands, such as in

Griffith et al. (2018).

A validation analysis may in principle also be conducted with aggregate data but

in our application variation in budgets (𝛾 𝑦̄𝑟) is limited to only six regions. To make

this concrete, Figure A.1 plots the relationship between the total (weekly) quantity of

cereal and income per potential consumer, for each region.9 This clarifies there is no

clear pattern, so in our application we identify the curvature parameter 𝜆 from price

rather than income variation.

A.1.3 Market Share System Inversion

Estimating the model requires solving the demand system (7), i.e. 𝑠 𝑗 = 𝑠 𝑗(𝛿) for

𝑗 = 1, ..., 𝐽, for the mean valuation vector 𝛿. For a fixed value of 𝜆 ≤ 1, the “market

shares” (or aggregate choice probabilities) 𝑠 𝑗 are defined by

𝑠 𝑗 ≡
(
𝑝 𝑗

𝛾 𝑦̄

)
1−𝜆 𝑞 𝑗

𝐿
, (A.7)

which are less than one if 𝑞 𝑗 < 𝐿 and 𝑝 𝑗 < 𝛾 𝑦̄. The market share functions 𝑠 𝑗(𝛿) in (7)

are the same as in Berry et al. (1995), hence satifying their conditions for a contraction

9Note that the budget is calculated using the methodology in subsection 3.2, but we obtain a very

similar picture if we instead use a direct income measure.
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Figure A.1: Cereal consumption per potential consumer vs. income

Explanation: Each dot represents a pair of total (weekly) cereal consumption per potential

consumer and income (𝛾 𝑦̄𝑟), for a particular province 𝑟. The budget is calculated using

the methodology explained in subsection 3.2.

mapping:

𝑓 (𝛿) = 𝛿 + ln 𝑠 − ln 𝑠(𝛿) (A.8)

To obtain a solution to 𝑓 (𝛿) = 𝛿, one may apply fixed point iteration on (A.8), or use

a fixed point acceleration method, as discussed in Conlon and Gortmaker (2020). In

practice, simple fixed point iteration worked well with our data, and we also did not

encounter convergence difficulties when choosing alternative values of 𝜆 to minimize

the GMM objective function.

Abstracting from consumer heterogeneity we can obtain an analytic solution for

the market share inversion following similar steps as in Berry (1994). The estimating

equation (7) simplifies to:

𝑝1−𝜆
𝑗 𝑞 𝑗

𝐿 (𝛾 𝑦̄)1−𝜆
=

exp

(
𝛿 𝑗

)
1 +

𝐽∑
𝑘=1

exp (𝛿𝑘)

. (A.9)
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Summing over 𝑗 = 1, ..., 𝐽, and rearranging, we may write the following choice proba-

bility for good 0:

𝐿(𝛾 𝑦̄)1−𝜆 −
𝐽∑
𝑘=1

𝑝1−𝜆
𝑘

𝑞𝑘

𝐿(𝛾 𝑦̄)1−𝜆
=

1

1 +
𝐽∑
𝑘=1

exp (𝛿𝑘)

. (A.10)

Dividing the choice probability for each product 𝑗 by the choice probability of the

outside good 0 leads to the following ratio of choice probabilities:

𝑝1−𝜆
𝑗 𝑞 𝑗

𝐿(𝛾 𝑦̄)1−𝜆 −
𝐽∑
𝑘=1

𝑝1−𝜆
𝑘

𝑞𝑘

= exp

(
𝛿 𝑗

)
. (A.11)

Taking logs arrives at equation (8).

A.1.4 Elasticities

We derive the own- and cross-elasticities for the joint Box-Cox and BLP model and

then list the elasticities for special cases.

Own-elasticity:

𝜂 𝑗 𝑗 =
𝜕𝑞 𝑗

𝜕𝑝 𝑗

𝑝 𝑗

𝑞 𝑗
(A.12)

=

(∫
𝜕𝑠𝑖 𝑗

𝜕𝑝 𝑗
𝑑𝑃𝜈(𝜈)

(
𝛾 𝑦̄

𝑝 𝑗

)
1−𝜆

𝐿 +
∫

𝑠𝑖 𝑗𝑑𝑃𝜈(𝜈)
𝜕

𝜕𝑝 𝑗

(
𝛾 𝑦̄

𝑝 𝑗

)
1−𝜆

𝐿

)
𝑝 𝑗

𝑞 𝑗
(A.13)

=

[
−

∫
𝛼𝑖𝑝

𝜆
𝑗 𝑠𝑖 𝑗

(
1 − 𝑠𝑖 𝑗

)
𝑑𝑃𝜈(𝜈) −

∫
𝑠𝑖 𝑗𝑑𝑃𝜈(𝜈)(1 − 𝜆)

]
1

𝑠 𝑗
(A.14)

= −
𝑝𝜆
𝑗

𝑠 𝑗

∫
𝛼𝑖𝑠𝑖 𝑗

(
1 − 𝑠𝑖 𝑗

)
𝑑𝑃𝜈(𝜈) − (1 − 𝜆). (A.15)

The second line follows from the product rule, since price enters both through the

choice probability and conditional demand. The third line firstly inserts the share

derivative of

𝜕𝑠𝑖 𝑗
𝜕𝑝 𝑗

= −𝛼𝑝𝜆−1

𝑗
𝑠𝑖 𝑗

(
1 − 𝑠𝑖 𝑗

)
, secondly inserts the conditional demand deriva-

tive of
𝜕
𝜕𝑝 𝑗
𝑝𝜆−1

𝑗
= (𝜆 − 1)𝑝𝜆−2

𝑗
, and thirdly cancels one conditional demand term. Last,
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the fourth line recognizes that

∫
𝑠𝑖 𝑗𝑑𝑃𝜈(𝜈) = 𝑠 𝑗 .

Cross-elasticity:

𝜂 𝑗𝑘 =
𝜕𝑞 𝑗

𝜕𝑝𝑘

𝑝𝑘

𝑞 𝑗
(A.16)

=

(∫
𝜕𝑠𝑖 𝑗

𝜕𝑝𝑘
𝑑𝑃𝜈(𝜈)

(
𝛾 𝑦̄

𝑝 𝑗

)
1−𝜆

𝐿

)
𝑝𝑘

𝑞 𝑗
(A.17)

=
𝑝𝜆
𝑘

𝑠 𝑗

∫
𝛼𝑖𝑠𝑖 𝑗𝑠𝑖𝑘𝑑𝑃𝜈(𝜈), (A.18)

where line three follows by inserting

𝜕𝑠𝑖 𝑗
𝜕𝑝𝑘

= 𝑠𝑖 𝑗𝑠𝑖𝑘𝛼𝑖𝑝𝜆−1

𝑘
and rearranging.

Table of Elasticities: Table A.1 list the own- and cross-elasticities for each model.

Table A.1: Own- and Cross-elasticities for each model

RC Model Own-elasticity, 𝜂 𝑗 𝑗 Cross-elasticity, 𝜂 𝑗𝑘

Yes

Box-Cox −
𝑝𝜆
𝑗

𝑠 𝑗

∫
𝛼𝑖𝑠𝑖 𝑗

(
1 − 𝑠𝑖 𝑗

)
𝑑𝑃𝜈(𝜈) − (1 − 𝜆) 𝑝𝜆

𝑘

𝑠 𝑗

∫
𝛼𝑖𝑠𝑖 𝑗𝑠𝑖𝑘𝑑𝑃𝜈(𝜈)

Unit − 𝑝 𝑗
𝑠 𝑗

∫
𝛼𝑖𝑠𝑖 𝑗

(
1 − 𝑠𝑖 𝑗

)
𝑑𝑃𝜈(𝜈) 𝑝𝑘

𝑠 𝑗

∫
𝛼𝑖𝑠𝑖 𝑗𝑠𝑖𝑘𝑑𝑃𝜈(𝜈)

Const Exp -
1

𝑠 𝑗

∫
𝛼𝑖𝑠𝑖 𝑗

(
1 − 𝑠𝑖 𝑗

)
𝑑𝑃𝜈(𝜈) - 1

1

𝑠 𝑗

∫
𝛼𝑖𝑠𝑖 𝑗𝑠𝑖𝑘𝑑𝑃𝜈(𝜈)

No

Box-Cox −𝑝𝜆
𝑗
𝛼

(
1 − 𝑠 𝑗

)
− (1 − 𝜆) 𝑝𝜆

𝑘
𝛼𝑠𝑘

Unit - 𝑝 𝑗𝛼
(
1 − 𝑠 𝑗

)
𝑝𝑘𝛼𝑠𝑘

Const Exp −𝛼
(
1 − 𝑠 𝑗

)
− 1 𝛼𝑠𝑘

Notes: RC refers to Random Coefficient for price. Unit and Const exp refers to unit-

demand and constant expenditures. For instance, the standard BLP is RC = yes and

Model = Unit.

6



A.1.5 Curvature, superelasticity and pass-through

Log-concavity versus log-convexity: To gain a further understanding on the role of the

curvature parameter 𝜆, we first calculate the second derivative of the log of aggregate

demand with respect to price 𝑝 𝑗 . If this is negative (positive), demand is log-concave

(log-convex). Tedious calculations show that:

𝜕2
ln 𝑞 𝑗

𝜕𝑝2

𝑗

=
1

𝑠 𝑗

∫
𝜕2𝑠𝑖 𝑗

𝜕𝑝2

𝑗

𝑑𝑃𝜈 −
(

1

𝑠 𝑗

∫
𝜕𝑠𝑖 𝑗

𝜕𝑝 𝑗
𝑑𝑃𝜈

)
2

+ (1 − 𝜆) 1

𝑝2

𝑗

=

∫ (
𝑠𝑖 𝑗

𝑠 𝑗

𝜕2
ln 𝑠𝑖 𝑗

𝜕𝑝2

𝑗

)
𝑑𝑃𝜈

+
[∫ (

𝑠𝑖 𝑗

𝑠 𝑗

(
𝜕 ln 𝑠𝑖 𝑗

𝜕𝑝 𝑗

)
2

)
𝑑𝑃𝜈 −

(∫
𝑠𝑖 𝑗

𝑠 𝑗

𝜕 ln 𝑠𝑖 𝑗

𝜕𝑝 𝑗
𝑑𝑃𝜈

)
2

]
+(1 − 𝜆) 1

𝑝2

𝑗

,

where 𝑠 𝑗 ≡
∫
𝑠𝑖 𝑗𝑑𝑃𝜈 = 𝑞 𝑗𝑝

1−𝜆
𝑗

/
(∫

(𝛾𝑦𝑖)1−𝜆 𝑑𝑃𝑦𝐿
)
. The second equality neatly gener-

alizes the expression obtained by Griffith et al. (2018) to our joint Box-Cox and BLP

model. The first and second terms are similar (although now a function of 𝜆), i.e.

respectively the weighted average of the second derivative of log individual demand

and the weighted variance of the slope of log individual demand. The third term is

new and is the absolute value of the conditional individual elasticity, divided by 𝑝2

𝑗
.

As discussed by Griffith et al. (2018), the first term is negative if individual demand

is log-concave. The second term is zero without consumer heterogeneity (𝜎 = 0),

and strictly positive otherwise. The third term is strictly positive except if conditional

individual demand is perfectly inelastic (𝜆 = 1). In sum, despite possibly log-concave

individual demands (first term), aggregate demand may be log-convex because of

either consumer heterogeneity (second term) or elastic individual demand (third term).

Put differently, unlike Griffith et al. (2018) demand may be log-convex even in the

absence of consumer heterogeneity.
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To see this more concretely, without consumer heterogeneity (𝜎 = 0) we obtain:

𝜕2
ln 𝑞 𝑗

𝜕𝑝2

𝑗

=
𝜕2

ln 𝑠 𝑗

𝜕𝑝2

𝑗

+ (1 − 𝜆) 1

𝑝2

𝑗

= −𝛼2𝑝
2(𝜆−1)
𝑗

𝑠 𝑗(1 − 𝑠 𝑗)

+(1 − 𝜆) 1

𝑝2

𝑗

(
𝛼(1 − 𝑠 𝑗)𝑝𝜆𝑗 + 1

)
, (A.19)

since the second term vanishes and the first term simplifies because 𝑠𝑖 𝑗 = 𝑠 𝑗 . In the

usual unit demand case (𝜆 = 1), this is negative, so demand is log-concave. However,

if 𝜆 < 1, this becomes positive provided that 𝑠 𝑗 is sufficiently small.

Superelasticity: Further insights can be obtained from the superelasticity 𝐸 𝑗 , i.e. the

elasticity of the own-price elasticity. In general, we can calculate this as

𝐸 𝑗 ≡
𝜕𝜂 𝑗 𝑗

𝜕𝑝 𝑗

𝑝 𝑗

𝜂 𝑗 𝑗

=

(
𝜕2𝑞 𝑗

𝜕𝑝2

𝑗

𝑝 𝑗

𝑞 𝑗
−

𝜕𝑞 𝑗

𝜕𝑝 𝑗

𝑝 𝑗

𝑞2

𝑗

𝜕𝑞 𝑗

𝜕𝑝 𝑗
+

𝜕𝑞 𝑗

𝜕𝑝 𝑗

1

𝑞 𝑗

)
𝑝 𝑗

𝜂 𝑗 𝑗

=
𝜕2

ln 𝑞 𝑗

𝜕𝑝2

𝑗

𝑝2

𝑗

𝜂 𝑗 𝑗
+ 1.

According to the last equality, 𝐸 𝑗 > 1 if and only if demand is log concave (

𝜕2
ln 𝑞 𝑗

𝜕𝑝2

𝑗

< 0).

If there is no consumer heterogeneity (𝜎 = 0), we can insert (A.19) and use 𝜂 𝑗 𝑗 =

−𝛼𝑝𝜆
𝑗

(
1 − 𝑠 𝑗

)
− (1 − 𝜆) from Table A.1 to obtain:

𝐸 𝑗 = 𝛼𝑝𝜆𝑗

(
𝜆 + 𝛼𝑝𝜆𝑗 𝑠 𝑗

)
(1 − 𝑠 𝑗)

−1

𝜂 𝑗 𝑗
.

In the usual unit demand case (𝜆 = 1),

𝐸 𝑗 = 𝛼𝑠 𝑗𝑝 𝑗 + 1,

so the superelasticity 𝐸 𝑗 strictly exceeds 1 and approaches 1 as 𝑠 𝑗 becomes small. In
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the constant expenditures case (𝜆 = 0),

𝐸 𝑗 =
𝛼2(1 − 𝑠 𝑗)𝑠 𝑗
𝛼(1 − 𝑠 𝑗) + 1

,

so the superelasticity 𝐸 𝑗 may be below 1 and approaches 0 as 𝑠 𝑗 becomes small. For

intermediate cases, i.e. 𝜆 ∈ (0, 1), we have that 𝐸 𝑗 ∈ (0, 1) as 𝑠 𝑗 becomes small (because

then 𝐸 𝑗 = 𝜆
𝛼𝑝𝜆

𝑗

𝛼𝑝𝜆
𝑗
+1−𝜆 ). Finally, for 𝜆 < 0, it is possible that 𝐸 𝑗 < 0 provided that 𝑠 𝑗 is

sufficiently small.

In sum, without consumer heterogeneity and with sufficiently small market shares

the own-price elasticity increases nearly proportionally with price for 𝜆 = 1, it is nearly

independent of price if 𝜆 = 0, and it may be decreasing in price if 𝜆 < 01. Adding

consumer heterogeneity complicates the relationship, and can give rise to a U-shaped

pattern, as documented in the application, especially if 𝜆 is close to one (traditional

BLP model).

Pass-through: It is also instructive to consider simplified analytical expressions of

the cost pass-through rate. Assume single product price-setting firms with constant

marginal costs 𝑐 𝑗 for firm 𝑗 and consider the own-cost pass-through rate, holding

constant the other firms’ prices, i.e. abstracting from equilibrium responses by other

firms.10 Firm 𝑗’s first-order condition defines the optimal price 𝑝∗
𝑗
(𝑐 𝑗). Implicit dif-

ferentiation gives the following relationship between the pass-through rate and the

superelasticity:

𝜕𝑝∗
𝑗

𝜕𝑐 𝑗
=

(−𝜂 𝑗 𝑗)
(−𝜂 𝑗 𝑗 − 1 + 𝐸 𝑗)

=
1

1 − 𝜕2
ln 𝑞 𝑗

𝜕𝑝2

𝑗

𝑝2

𝑗

𝜂2

𝑗 𝑗

,

which confirms the well-known result that pass-through is incomplete if and only if

𝐸 𝑗 > 1, or equivalently, if and only if demand is log-concave.

For our demand model without consumer heterogeneity (𝜎 = 0), it can be verified

10The reported pass-through rates in our application account for equilibrium responses.
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that

𝜕𝑝∗
𝑗

𝜕𝑐 𝑗
=

(
𝛼(1 − 𝑠 𝑗)𝑝𝜆𝑗 + (1 − 𝜆)

)
2

𝛼2(1 − 𝑠 𝑗)𝑝2𝜆
𝑗

− (1 − 𝜆)𝜆 + 𝛼(1 − 𝑠 𝑗)𝑝𝜆𝑗 (1 − 𝜆)

In the unit demand case (𝜆 = 1), this simplifies to:

𝜕𝑝∗
𝑗

𝜕𝑐 𝑗
= 1 − 𝑠 𝑗 .

So the pass-through rate is strictly less than 1, but it approaches 1 as 𝑠 𝑗 becomes small.

In the constant expenditures case (𝜆 = 0), this becomes

𝜕𝑝∗
𝑗

𝜕𝑐 𝑗
=

(
𝛼(1 − 𝑠 𝑗) + 1

)
2

𝛼 (𝛼 + 1) (1 − 𝑠 𝑗)
.

So the pass-through rate exceeds 1 if 𝑠 𝑗 is sufficiently small. The pass-through elasticity

𝜕𝑝∗
𝑗

𝜕𝑐 𝑗

𝜕𝑐 𝑗
𝜕𝑝∗

𝑗

=
𝛼(1−𝑠 𝑗)+1

𝛼+1
is less than 1, but it approaches 1 as 𝑠 𝑗 becomes small.

In sum, without consumer heterogeneity and with small 𝑠 𝑗 there is constant absolute

pass-through for 𝜆 = 1 while there is constant percentage pass-through for 𝜆 = 0. The

parameter 𝜆 thus provides extra flexibility on the pass-through rates compared with

the unit demand or constant expenditures models.

A.2 Optimal instruments for Box Cox model without heterogeneity

To gain intuition on choosing functional forms of specific instruments, this Appendix

provides approximate expressions of optimal instruments for the Box Cox model with-

out heterogeneity. The error term in the Box Cox demand model is:

𝜉𝑗 = ln

(
𝑞 𝑗𝑝

1−𝜆
𝑗

(𝛾𝑦)1−𝜆 𝐿 −∑
𝑘 𝑞𝑘𝑝

1−𝜆
𝑘

)
− 𝑥 𝑗𝛽 − 𝛼

(
𝑝𝜆
𝑗
− 1

𝜆

)
(A.20)

The optimal (i.e “most efficient”) instrument for a parameter is the expected value of

the derivative of that parameter.

10



A.2.1 Optimal instrument for 𝛽

The optimal instrument for 𝛽 is the expected value of

𝐸

(
𝜕𝜉𝑗

𝜕𝛽

)
= −𝐸

(
𝑥 𝑗

)
= −𝑥 𝑗 .

So the optimal instrument for 𝛽 is simply the variable itself.

A.2.2 The optimal instrument for 𝛼

The optimal instrument for 𝛼 is the expected value of:

𝐸

(
𝜕𝜉𝑗

𝜕𝛼

)
= −𝐸

(
𝑝𝜆
𝑗
− 1

𝜆

)
= −

𝐸
(
𝑝𝜆
𝑗

)
− 1

𝜆
.

A first-order Taylor expansion around the mean 𝑝̂ 𝑗 ≡ 𝐸
(
𝑝 𝑗

)
gives

𝐸

(
𝜕𝜉𝑗

𝜕𝛼

)
≈ −

𝑝̂𝜆
𝑗
− 1

𝜆
.

One may obtain 𝑝̂ 𝑗 from a regression on instruments 𝑤 𝑗 , and then compute 𝑝̂𝜆
𝑗

(re-

moving the scaling and constant). This instrument is however not feasible because it

depends on 𝜆. As a solution one may use inefficient instruments in a first stage. For ex-

ample, one may take three instruments 𝑝̂ 𝑗 , 𝑝̂
0.5
𝑗

and ln 𝑝̂ 𝑗 as implied by 𝜆 = {1, 0.5, 0} to

obtain a first-stage estimate 𝜆̂𝐹𝑆 and then use this value in an (approximately) efficient

second stage.

A.2.3 Optimal instrument for 𝜆

Calculating the derivative of (A.20) with respect to 𝜆 is much more involved because 𝜆

enters in both the share term and the price term in (A.20). Tedious calculations show

that

𝜕𝜉𝑗

𝜕𝜆
= − ln 𝑝 𝑗 +

(𝑦𝛾)1−𝜆 𝐿 ln (𝑦𝛾) −∑
𝑘 𝑞𝑘𝑝

1−𝜆
𝑘

ln 𝑝𝑘

(𝛾𝑦)1−𝜆 𝐿 −∑
𝑘 𝑞𝑘𝑝

1−𝜆
𝑘

− 𝛼
𝜆𝑝𝜆

𝑗
ln 𝑝 𝑗 − 𝑝𝜆𝑗 + 1

𝜆2

= − ln 𝑝 𝑗 +
ln (𝑦𝛾) −∑

𝑘 𝑠𝑘 ln 𝑝𝑘

1 −∑
𝑘 𝑠𝑘

− 𝛼
𝜆𝑝𝜆

𝑗
ln 𝑝 𝑗 − 𝑝𝜆𝑗 + 1

𝜆2

, (A.21)
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where the second equality substitutes the shares 𝑠𝑘 =
𝑝1−𝜆
𝑘

𝑞𝑘

(𝛾𝑦)1−𝜆𝐿
.

One may again substitute predicted values 𝑝̂ 𝑗 and 𝑞̂ 𝑗 (or 𝑠̂𝑘) and apply a two-

stage approach. In a first stage, one may calculate three instruments by substituting

𝜆 = {1, 0.5, 0} in (A.21). This is straightforward for 𝜆 = 1 and 𝜆 = 0.5. For 𝜆 = 0, apply

l’Hospital’s rule twice on last term to obtain:

− ln 𝑝 𝑗 +
ln (𝑦𝛾) −∑

𝑘 𝑠𝑘 ln 𝑝𝑘

1 −∑
𝑗 𝑠𝑘

− 𝛼

(
ln 𝑝 𝑗

)
2

2

If 𝑠𝑘 and

∑
𝑘 𝑠𝑘 are small, we can simplify (A.21) to

𝜕𝜉𝑗

𝜕𝜆
≈ − ln 𝑝 𝑗 + ln (𝑦𝛾) − 𝛼

𝜆𝑝𝜆
𝑗

ln 𝑝 𝑗 − 𝑝𝜆𝑗 + 1

𝜆2

. (A.22)

Overall, these formulas provide guidance to indicate that one may use different

functional forms of 𝑝̂ 𝑗 as instruments.

A.3 Data

The data on the “Ready-to-Eat” cereal market come from IRI, who provide scanning

technology for supermarkets. The IRI data records weekly sales revenue and quantities

per barcode for over 1,262 supermarkets in the Northern Netherlands from January

2011 to December 2013. A barcode defines a product, which is a distinct combination

of a brand, flavor, packaging, and size. This product definition implies a 375-gram box

of Kellogg’s Special K is a different product than a 550-gram box or a 375-gram box of

the dark chocolate flavor. The data is largely comparable to the widely used Nielsen

data covering US retailers, as summarized in Einav, Leibtag, and Nevo (2010).

We refer to Statistics Netherlands to define a geographic market as a province. We

have information on the following six provinces: Noord-Holland, Friesland, Gronin-

gen, Drenthe, Utrecht, and Flevoland.

We aggregate across all supermarkets within a province, so an observation of prod-

uct 𝑗 in geographic market 𝑚 in week 𝑡 is the total revenue, 𝑟 𝑗𝑚𝑡 , and total quantity,

𝑞 𝑗𝑚𝑡 . Using these two variables, we calculate the price by dividing the total revenue

by total quantity, so 𝑝 𝑗𝑚𝑡 =
𝑟𝑗𝑚𝑡
𝑞 𝑗𝑚𝑡

. This step only aggregates over the 903 supermarkets
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for which we have complete data (i.e., open for the full three-year sample, meaning we

drop supermarkets, which open or close partway through the sample period). As is

common in the discrete choice literature, we normalize prices to a common size, in our

case to a price per kg.

For tractability, we trim the data to keep only economically meaningful products. We

select these products by first ranking them by total sales revenue, and second dropping

the long tail of products, which make up the bottom 30% of revenue. After dropping

these products, the final data set covers 73 products, 6 geographic markets, and 156

weeks. This aggregates to 50,836 total product-market-week observations. Table A.2

provides context by summarizing the main variables. The mean revenue is
=C1,641.

The standard deviation is large, as some products have considerably larger sales than

other products. The median price per serving equals
=C5,39/kg, but product prices

vary widely. For further context, the average size equals 0.50 kg, so half a kilogram.

Last, the average market-week contains observations for 54 products.

Table A.2: Summary Statistics for Cereal 2011-2013

Mean Median P25. P75. St Dev Min Max

Revenue (
=C) 1,641 700 333 1,833 2,495 18.93 34,325

Quantity (kg) 424 151 63 418 804 1.72 24,155

Price (
=C/kg) 5.39 5.12 3.96 6.57 2.50 0.97 15.12

Size (kg) 0.52 0.50 0.40 0.50 0.23 0.10 1.00

Products 54.31 54.00 52.00 57.00 2.84 48.00 59.00

Notes: Observation is product-market-week. Data covers 73 products, 6 geographic

markets, and 156 weeks, which aggregates to over 50,836 total product-market-week

observations. Products is number of products per category-market-week.
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A.4 Additional Tables and Figures

This section reports additional tables and figures referred to in the text. Table A.3

reports the demand parameter estimates using alternative instrument sets, as a sensi-

tivity analysis to Table 1 in the text. Table A.4 reports the diversion ratios from each

demand model for the 5 most-selling products, computed as−𝜕𝑠𝑘/𝜕𝑝 𝑗
𝜕𝑠 𝑗/𝜕𝑝 𝑗 . Figure A.3 shows

how implied product markups vary with own price.

Table A.3: Demand Parameter Estimates – Alternative Instruments

(i) (ii) (iii) (iv)

Logit

Price (−𝛼) -0.46 -0.46 -0.45 -0.46

(0.004) (0.004) (0.004) (0.004)

Simple Box-Cox

Price (−𝛼) -1.55 -1.56 -1.54 -1.54

(0.06) (0.06) (0.06) (0.06)

Boxcox (𝜆) -0.039 -0.043 -0.044 -0.031

(0.040) (0.040) (0.041) (0.041)

BLP

Price (−𝛼) -1.12 -1.15 -1.12 -1.13

(0.04) (0.03) (0.03) (0.03)

Price heterogeneity (𝜎) 0.42 0.44 0.43 0.43

(0.01) (0.01) (0.01) (0.01)

BLP & Box-Cox

Price (−𝛼) -1.52 -1.52 -1.49 -1.52

(0.06) (0.07) (0.07) (0.07)

Price heterogeneity (𝜎) 0.56 0.57 0.55 0.56

(0.02) (0.03) (0.03) (0.03)

Box-Cox (𝜆) 0.592 0.645 0.631 0.595

(0.057) (0.053) (0.055) (0.059)

Notes: Robust standard errors reported in parentheses. The parameters are

estimated using a sample of 50,836 observations for 2011–2013, where an

observation represents a product-province-week. The demand specification

includes a fixed effect for each product, year-market combination, and month.

(i) refers to base IV, as presented in Table 1; (ii): base IV without BLP instru-

ments; (iii) base IV plus Hausman instruments per price group; (iv) base IV

plus approximately optimal instruments for 𝜆 under small market shares.
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Figure A.2: Own-elasticity vs. own-price (without simple logit)

Explanation: Each dot represents a pair of own-elasticity and own-price for a particular

product and model. We calculate the elasticity for each model using equations listed in

Table A.1 of Appendix A.1.4. Own-price is the average price per product. The sample

consists of 73 products in the cereal category.
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Figure A.3: Markups vs. own-price

Explanation: Both panels report the distribution of the markup vs. own-price for a

particular product and model. The left panel reports percentage markups, which are

𝜇𝑗 =
𝑝 𝑗−𝑐 𝑗
𝑝 𝑗

= 1

𝜖 𝑗 𝑗
and the right panel reports absolute (or Euro) markups, which are

𝜇𝑗 = 𝑝 𝑗 − 𝑐 𝑗 =
𝑝 𝑗
𝜖 𝑗 𝑗

. For each figure, each dot represents a pair of markups and price for a

particular model. The product markups use the elasticity for each model using equations

listed in Table A.1 of Appendix A.1.4. Own-price is the average price per product. The

sample consists of 73 products in the cereal category.
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Table A.4: Diversion ratios of top selling models

Product K Special Q Cruesli K Fruit & Fibre J Original K Loops

Logit

Kellogg’s Special - 0.0023 0.0013 0.0227 0.0008

Quaker Cruesli 0.0016 - 0.0013 0.0227 0.0008

Kellogg’s Fruit & Fibre 0.0016 0.0023 - 0.0227 0.0008

Jordans Original 0.0016 0.0024 0.0013 - 0.0008

Kellogg’s Loops 0.0016 0.0023 0.0013 0.0227 -

Simple Box-Cox

Kellogg’s Special - 0.0015 0.0014 0.0056 0.0010

Quaker Cruesli 0.0022 - 0.0014 0.0056 0.0010

Kellogg’s Fruit & Fibre 0.0022 0.0015 - 0.0056 0.0010

Jordans Original Crunchy 0.0023 0.0016 0.0014 - 0.0010

Kellogg’s Loops 0.0022 0.0015 0.0014 0.0056 -

BLP

Kellogg’s Special - 0.0062 0.0053 0.0249 0.0035

Quaker Cruesli 0.0019 - 0.0018 0.0239 0.0011

Kellogg’s Fruit & Fibre 0.0044 0.0048 - 0.0247 0.0023

Jordans Original 0.0005 0.0017 0.0007 - 0.0004

Kellogg’s Loops 0.0053 0.0053 0.0042 0.0247 -

BLP & Box-Cox

Kellogg’s Special - 0.0045 0.0041 0.0150 0.0028

Quaker Cruesli 0.0025 - 0.0019 0.0145 0.0012

Kellogg’s Fruit & Fibre 0.0044 0.0038 - 0.0150 0.0021

Jordans Original 0.0009 0.0015 0.0008 - 0.0005

Kellogg’s Loops 0.0050 0.0041 0.0035 0.0150 -

Explanation: This table reports the diversion ratios for the top selling products. The diversion ratio from

product 𝑗 (row) to product 𝑘 (column) is defined as the ratio of the cross-price derivative over the absolute

value of the own-price derivative, i.e.

𝜕𝑞𝑘/𝜕𝑝 𝑗
−𝜕𝑞 𝑗/𝜕𝑝 𝑗 .
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