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Abstract  

 

Effectively managing pests and mitigating the negative externalities of pesticide applications 

require integrated pest management (IPM). IPM aims to discourage the development of pest 

populations while keeping pesticide usage at economically justified levels and minimizing risks 

to human health and the environment. However, more than half a century since its conception, 

IPM has not been adopted to a satisfactory extent. The high cost of practice and perceptions of 

increased risks associated with IPM have been identified as the most critical barriers to its 

adoption in the U.S. This study evaluates the cost-effectiveness and risks associated with the 

status quo strategy (i.e., calendar-based spraying) and five monitoring-based IPM strategies with 

two monitoring techniques (i.e., adult trapping and larva-sampling) for controlling a devastating 

invasive species affecting the soft-fruit industry in the U.S. (i.e., Spotted wing drosophila 

(SWD)). We utilize a Bayesian bioeconomic framework which incorporates both biological and 

economic uncertainties related to SWD control, focusing on conventional blueberry production 

in New York state. Our results indicate that the status quo strategy remains the optimal control 

strategy for profit-maximizing growers with the lowest expected total costs and the least 

variability in yield and total costs. While all monitoring-based spraying strategies result in higher 

expected total costs than the status quo approach, the expected total costs and risk level of the 

larva-sampling based IPM strategy show only a small difference compared to the status quo one. 

Policymakers could consider offering small incentives to cover this difference in expected total 

costs and encourage the adoption of improved IPM practices for sustainability. These findings 

contribute to the sustainable management of invasive species at the farm level and provide 

insights for policies aimed at promoting environmental-friendly and sustainable agricultural 

practices.  
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1. Introduction  

Integrated pest management (IPM), created in the late 1950s (Deguine et al. 2021), is a 

science-based and sustainable decision-making process that utilizes information on pest biology, 

environmental data, and technology to manage pest damage in a way that minimizes economic 

costs and risks to people, property, natural resources, and the environment (White and Wetzstein 

1995; Greene et al. 1985; Tait et al. 2021). Since 2000, four regional IPM centers funded by the  

USDA National Institute of Food and Agriculture were created to promote nationwide adoption 

of IPM in the United States (U.S.) (Balew et al. 2023). However, more than half a century after 

its conception, IPM has not been adopted to a satisfactory extent (Balew et al. 2023; Rasche et al. 

2016; Creissen et al. 2019; Deguine et al. 2021), especially in fruit and vegetables (Greene et al. 

1985; Wyckhuys et al. 2021).  

The low levels of farmer adoption and insufficient diffusion of IPM technology are 

ascribed to different factors. The high cost of practice, and the perception of increased risks 

associated with IPM strategies are the most critical barriers to IPM adoption in the U.S. (Greene 

et al. 1985; Lane, Walker and Grantham 2023). Moreover, most growers are risk-averse, and 

those who are more risk averse are less likely to take such preventive measures due to less 

certain net return from IPM strategies (Wang and Finger 2023). Improved economic cost-benefit 

analysis that highlight profitability of IPM practices, therefore, is essential for promoting new 

and existing IPM innovations, which was also ranked as the most critically important way to 

increase IPM adoption by IPM professionals (Lane et al. 2023). With better cost-benefit 

analyses, economists can better predict which incentives might have the most impact on 
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increasing IPM adoption. Other barriers, including difficulty of implementation and lack of 

awareness, could be mitigated by extension and education programs.  

This research aims to evaluate the cost-effectiveness and risk level of a promising 

integrated pest management strategy for controlling a devastating invasive species affecting the 

soft-fruit industry in the U.S. (i.e., Spotted wing drosophila (SWD)). This study involved an 

interdisciplinary effort among agricultural economists and entomologists to acquire and analyze 

biological and economic data on SWD management in New York State. This research builds on 

previous work (Fan et al. 2020) by utilizing a Bayesian bioeconomic approach while 

concurrently devoting major attention to a monitoring-based IPM strategy with improved 

monitoring technique for controlling SWD and risk analysis with detailed biological and 

economic data.  

Spotted-wing drosophila (SWD), native to Southeast Asia, is a devastating invasive pest 

of soft-skinned fruits (e.g., strawberries, cherries, blackberries, blueberries, raspberries, etc.). In 

the last ten years, SWD has expanded its range to affect all major American and European fruit 

production regions (Asplen et al. 2015). Infestation by SWD generates both direct and indirect 

economic impacts through yield losses, shorter shelf life of infested fruit, and increased 

management costs. It has estimated significant economic losses from SWD invasion in different 

regions within and among countries (Yeh et al. 2020; Farnsworth et al. 2017; De Ros et al. 

2015).  

Managing SWD is challenging with few current technologies that provide relief as a 

standalone option (Tait et al. 2021). Currently, growers of soft fruits rely on a single and 

aggressive management strategy: calendar-based insecticide applications (Farnsworth et al. 
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2017). However, this conventional method may exacerbate externalities from intensive use of 

insecticides, including water pollution, soil erosion, human health issues and insecticide 

resistance (Van Timmeren et al. 2018; Gress and Zalom 2019). Growers are urged to use an 

integrated pest management (IPM) approach to manage this highly adaptive insect. Effective 

IPM strategies could significantly reduce pesticide applications by integrating other control 

strategies, such as monitoring, sanitation, and biological and behavioral control (Tait et al. 2021). 

Among all existing IPM strategies for controlling SWD, monitoring-based control strategy is 

gaining increasing interest from both growers and entomologists due to its practicality and 

effectiveness. 

In this study, we evaluate the risk and cost-effectiveness of an improved monitoring-

based management strategy: larva sampling-based spraying strategy. Fan et al. (2020) studied the 

cost-effectiveness of a traditional monitoring-based strategy that utilizes adult trapping to guide 

spraying decisions. However, recent studies show that adult catches are a poor indication of pest 

population and fruit infestations (Tait et al. 2021). During summer months of harvesting season, 

when temperatures are warm and reproduction peaks, the population’s life stage distribution is 

primarily skewed towards nonadult life stages (Grassi et al. 2018; Emiljanowicz et al. 2014). It 

indicates that targeting mobile adult flies may not be the most effective means of managing this 

pest. There are some regions where adult trap monitoring has been largely abandoned (Tait et al. 

2021). Entomologists suggested to incorporate fruit sampling in the field to observe early life 

stages (i.e., egg and larva) of SWD, which could provide real-time information and a more 

accurate estimate of crop damage that growers can use to adjust insecticide applications 

(Farnsworth et al. 2017).  
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Bioeconomic modelling is favored for evaluating the economic performance of integrated 

pest management strategies as it enables simultaneous accounting of the economic and 

ecological aspects of the problem (Sanchirico and Wilen 1999; Epanchin-Niell and Wilen 2012; 

Chalak, Polyakov and Pannell 2017; Fan et al. 2020; Yeh et al. 2023). The economic injury level 

is determined by dynamic biological and economic parameters, which can be highly variable and 

uncertain. SWD population and infestation intensity are largely affected by local climatic 

conditions and the availability of host fruit, implying that varying climatic conditions could 

significantly impact SWD-related yield losses and profits (Farnsworth et al. 2017). 

Understanding uncertain SWD population dynamics, coupled with crop susceptibility, is 

especially important to help guide grower management practices. To incorporate key 

uncertainties, we extended a Bayesian bioeconomic model (Fan et al. 2020) that integrate farm-

level cost-benefit analysis with a dynamic population model parameterized using the most recent 

data on the presence of SWD and weather conditions in New York State. 

With observed SWD population in twenty-one counties in New York state during 

growing seasons of conventional blueberry production from 2013 to 2022, we use Bayesian 

inference via Markov Chain Monte Carlo to estimate the posterior distribution of key parameters 

characterizing SWD population dynamics, including intrinsic growth rate, initial population rate, 

temperature effects, and pest migration effects. These parameters are then used to simulate SWD 

population dynamics for a representative blueberry grower in New York across 10,000 

simulations. Then we evaluate the distribution of crop damage and total costs under various 

SWD management strategies. Our results indicate that the status quo strategy of weekly spraying 

remains the optimal strategy for profit-maximizing blueberry growers, offering the lowest 

expected total costs and the least variability in yield and total costs. While both improved (i.e., 
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utilizing larva sampling) and traditional (i.e., utilizing adult trapping) monitoring-based spraying 

strategies result in higher expected total costs than the status quo approach, the risk level and 

expected total costs of the larva-sampling initiated spraying strategy show only a small 

difference compared to the status quo one. Policymakers could consider offering small incentives 

to cover this difference in expected total costs and encourage the adoption of improved IPM 

practices in New York state.  

The research provides timely insights for stakeholders on optimal SWD management 

strategies, contributes to improving growers’ welfare and sustainability, and sheds light on the 

field of bio-economics for pest management and the adoption of integrated pest management. 

Our work also adds to the limited economic analysis of SWD control and management. Based on 

these findings, policies offering monetary incentives for IPM adoption, such as Environmental 

Quality Incentives Programs, can encourage grower adoption of IPM strategies for controlling 

SWD infestations. 

2. Literature Review 

Economics of Spotted Wing Drosophila  

Economic studies of spotted wing drosophila (SWD) can be broadly grouped into two categories: 

evaluation of economic impacts due to SWD damages; and comparison of economic 

performance with the adoption of different SWD management strategies. Researchers have 

estimated significant economic losses due to SWD damage in different regions within and 

among countries (De Ros et al. 2015; Knapp, Mazzi and Finger 2021; Yeh et al. 2020). Recently, 

attention has turned to the economic performance of SWD control management strategies, 

especially integrated pest management strategies, in a variety of crops and regions using tools 
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such as cost-benefit analysis, economic modeling, and simulation (Farnsworth et al. 2017; Yeh et 

al. 2020; Fan et al. 2020).  

Combining biology of invasive pest species and grower’s economic behaviors, 

bioeconomic framework is appropriate to evaluate integrated pest management (IPM) strategies 

for controlling SWD infestation. Fan et al. (2020) is the first study that developed a Bayesian 

bioeconomic framework to assess economic performance of SWD management strategies and 

focused on conventional monitoring strategy: adult trapping. However, the adult trapping 

methods have been abandoned in some regions because of their inaccurate observation of true 

SWD infestation. Now entomologists show the fruit-sampling based strategy could provide 

information for more accurate and efficient observation of SWD (Van Timmeren, Davis and 

Isaacs 2021). A recent study also shows that incorporating fruit sampling and early harvest is 

more cost appealing than the status quo strategy for large organic growers in Oregon state (Yeh 

et al. 2023). This study employed a bioeconomic state-space approach, but did not consider 

spatial heterogeneity and local micro-environmental factors due to data availability.  

Bioeconomic modelling for controlling invasive species  

One challenging issue of research on controlling invasive species is imperfect 

observation of true population size, which limits manager’s ability to effectively manage 

invasive species. Previous literature overcame this problem by constructing the problem as a 

partially observable Markov Decision Process (POMDP) (Fackler and Haight 2014; Haight and 

Polasky 2010). These studies assume the state is one of a small number of categories describing 

the population of the species. The POMDP framework provides a way to explicitly incorporate 

the value of a monitoring program and to determine the optimal control strategy by solving a 

dynamic optimization problem. Haight and Polasky (2010) model the problem of monitoring and 
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treating a site for an invasive species using a state variable that takes on one of three values: no, 

moderate or severe infestation. In their model, the manager can do nothing or can treat, monitor, 

or both. (Fackler and Haight 2014) extended POMDP framework and showed how information 

content affects optimal monitoring strategies. This literature has been limited to highly simplified 

models with state and action spaces that are discrete and small. MacLachlan, Springborn and 

Fackler (2017) overcomes this problem and applies to continuous variables by extending 

POMDP framework with density projection. However, it works only if we assume exponential 

families of densities for parameters, which limits its applicability. When modelling pest 

population size as state variable, the standard distribution for count data is Poisson or binomial 

distribution, which are not in the exponential family.  

Structural uncertainty is another challenge in modelling invasive species problem due to 

insufficient knowledge of underlying structure of population dynamics. While the basic POMDP 

framework is effective in addressing observational uncertainty, it is limited in handling structural 

uncertainty due to incomplete knowledge of the values of the state transition equations (Fackler 

and Haight 2014). There has been an extension to the POMDP framework that enables both 

structural uncertainty and observational uncertainty by encompassing both standard POMDPs 

and Adaptive Management (AM) (Fackler and Pacifici 2014). In this framework, newly collected 

information helps to resolve structural uncertainty, resulting in new estimates of unknown 

parameters.  

The Bayesian state-space model is a novel research framework applied to controlling 

invasive species. State space models, as a special type of hierarchic model, offer a way to 

incorporate observational uncertainty, model uncertainty, and environmental stochasticity 

(Newman et al. 2014). Recently, (Fan et al. 2020) developed a Bayesian state-space framework 
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for sustainable pest control and evaluated cost-effectiveness of SWD management strategies. In 

our research, we extended this bioeconomic model and used Bayesian inference via the Markov 

Chain Monte Carlo (MCMC) method to generate the posterior distribution of population model 

parameters. The Bayesian state-space framework solves observation uncertainty by decomposing 

an observed time series of counts into a state process component and an observation process 

component. The state-space model also takes into account structure uncertainty from modelling 

the function form of state process and observation process. Simulation methods such as MCMC 

are used to estimate the posterior distributions. Although time consuming, MCMC may be the 

only practical approach for estimating parameters, especially for hierarchical models with many 

random effects. Software packages such as JAGS make these methods readily available.  

3. Method 

3.1 Stage 1: Bayesian State-space model 

We model SWD population dynamics by extending the state-space model proposed by Fan et al. 

(2020). State-space model is a special type of hierarchical model, which is common approach to 

model population dynamics in ecological research when the quantities of interest (e.g., the 

population density of a species) are unknown and evolving over time. State-space models 

typically consist of two equations that describe: (a) the state process that captures the stochastic 

dynamics of the unobserved state variables, and (b) the observation process that associates the 

data to the state variables, which may involve some observation noises. Observable variables 

provide partial but noisy information about the true population.  

Our state-space model is specified as follows. At a given time step, the unobserved state 

variable (i.e., the true SWD population) includes three life stages: egg stage 𝑁𝐸,𝑖,𝑡, larva stage 
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𝑁𝐿,𝑖,𝑡, and adult 𝑁𝐴,𝑖,𝑡. We assume that grower observes the population with accuracy rate α𝐹𝑆 for 

larvae from fruit sampling, and adult catch rate α𝐴𝑇 for adult SWD by using traps in the field. 

Equation (1) and (2) model grower’s observation process, where 𝑦𝐴,𝑖,𝑡 is the SWD adult count 

data at the site 𝑖 in period 𝑡 and 𝑦𝐿,𝑖,𝑡 is the number of larvae observed by fruit sampling at the 

site 𝑖 in period 𝑡.  

Adult via trapping: 𝑦𝐴,𝑖,𝑡~binomial(𝑁𝐴,𝑖,𝑡, α𝐴𝑇)                                                   (1) 

Larva via fruit sampling: 𝑦𝐿,𝑖,𝑡~binomial(𝑁𝐿,𝑖,𝑡, α𝐹𝑆)                                          (2) 

In this extended model, the initial adult population is explicitly modeled as a Poisson 

distribution with mean 𝜆 where  𝑁𝐴,𝑖,1 is the adult population size at site 𝑖 (for 𝑖 = 1, … , 𝐼) in 

period 1 (Equation (3)). Poisson distribution is the standard distribution to model count data 

assuming that the mean and the variance are both 𝜆. Modeling the initial population separately 

can help characterize the spatial variation in the data and reduce estimation bias by using 

spatially replicated count data. Equation (4) models the population size subsequent periods using 

the well-known growth function where 𝑁𝑖,𝑡 = 𝑁𝑖,𝑡−1 ∗ (𝑟𝑡 + 1).  𝑁𝐴,𝑖,𝑡 is the population at site 𝑖 

in period 𝑡 (for 𝑡 = 2, … , 𝑇).   𝑟𝑡 is the net growth rate per period, where 𝑒𝑟𝑁 is the intrinsic 

growth rate of adult population. The intrinsic growth rate measures the maximum rate at which a 

population can grow under ideal conditions. 𝑟0 measures how temperature in each period affect 

the population growth of SWD adult. It is calculated by subtracting the death rate from the 

reproduction rate per generation time.             

𝑁𝐴,𝑖,1~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)                                 (3)                                           

𝑁𝐴,𝑖,𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 ((𝑁𝐴,𝑖,𝑡−1 − 𝑦𝐴,𝑖,𝑡−1) ∗ (𝑟 + 1) + 𝑀𝑖𝑔𝑟𝑡)                      (4)  
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Where log(𝑟𝑡) = 𝑟𝑁 + 𝑟0 ∗ 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑡 and 𝑀𝑖𝑔𝑟𝑡 = 𝜎 ∗ 𝑦𝑖𝑒𝑙𝑑𝑡 

rt = 𝑒𝑟𝑛 ∗ 𝑒𝑟𝑇∗𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑡  

For the birth subprocess, we assume Poisson distribution for new egg birth with the 

fertility rate 𝜌.  

𝑁𝐸,𝑖,𝑡~𝑃𝑜𝑠𝑠𝑖𝑜𝑛(𝑁𝐴,𝑖,𝑡 ∗ 𝜌)                                       (5) 

For the last subprocess, egg develops to larval inside fruit. During the growing season, it 

takes 3 days from egg to larval and the larval stage will keep around 5 to 7 days. Thus, the total 

time for egg transiting into larval stage will be 8 to 10 days and we assume the larva population 

at time 𝑡 + 1 can be presented as:  

            𝑁𝐿,𝑖,𝑡 = 𝑁𝐸,𝑖,𝑡−1                                                   (6) 

We also assume larva go through the binomial processes with survival probability ϕ𝐿: 

𝑁𝑠,𝐿,𝑖,𝑡~binomial(𝑁𝐿,𝑖,𝑡, ϕ𝐿)                             (7) 

If grower sprays at time 𝑡, with the insecticide efficacy rate at 𝑘𝑖, where 𝑘𝑖 ∈ {𝑘𝐿 , 𝑘𝐴}, the 

larva population  �̃�𝐿,𝑖,𝑡 and adult population �̃�𝐴,𝑖,𝑡 at time t can be represented as:  

                                     �̃�𝐿,𝑖,𝑡 = (1 − 𝑘𝐿) ∗ 𝑁𝑠,𝐿,𝑖,𝑡                                                   (8) 

                                     �̃�𝐴,𝑖,𝑡 = (1 − 𝑘𝐴) ∗ 𝑁𝐴,𝑖,𝑡                                                      (9) 

We parametrize the model using values proposed from previous studies and summarize in 

Table 1. Each week is considered as one time step in the model. For survival probabilities, 

studies suggest that the possible range is above 80%, with larva having higher survival rate than 

adult. For transition between egg stage and larva stage, we assume it takes a week for egg to 

transit into larva. The fertility rate affects the shape of the population curve, with a value of 0.1 

from previous studies.  
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Table 1. Parameter assumptions for the state-space model 

Parameter  Notation       Value Source 

Time step 𝑡 Week Authors’ assumption 

Fertility rate  ρ 0.1 (Rendon et al. 2019) 

Insecticide mortality rate for 

larva 

𝑘𝐿 0.6 (Fan et al. 2020 and Rendon, Mermer, 

L. J. Brewer, et al. 2019) 

Insecticide mortality rate for 

adult 

𝑘𝐴 

 

0.7 (Fan et al. 2020 and Rendon, Mermer, 

L. J. Brewer, et al. 2019) 

Fruit sampling accuracy rate α𝐿 0.9 Authors’ assumption  

Trap catch rate  

  

α𝐴 0.0052 (Kirkpatrick, Gut and Miller 2018) 

  
Survival probability of larva ϕ𝐿 0.9 (Asplen et al. 2015; Rendon et al. 

2019) 

Note: All authors’ assumptions were consulted with industry representatives and extension specialists. 

The posterior distribution in above equations involves high-dimensional integrations that 

are very difficult to evaluate analytically. Some studies used likelihood-based methods for 

estimating the parameters of their model. Bayesian inference is an alternative to classical 

inference with several appealing features. First, it allows direct probability statements to be made 

about a hypothesis, given data. Secon, Bayesian method offers straightforward approaches for 

combining data from multiple sources or using existing estimates of parameters as prior 

distributions. Third, a common usage of state-space models is to predict future population size, 

and this is easily accomplished using Bayesian methods. (Hostetler and Chandler 2015). In this 

paper, we use Bayesian inference via the MCMC method to generate samples from the posterior 

distribution that will be further used to summarize statistics of parameters and the states.  

3.1.1 Data 

The observed D. suzukii adult data were collected from 21 counties in New York State for the 

growing season from 2013 to 2022 from Species Distribution Maps dataset. We treat each site at 

one growing season as a site, and we have a total of 63 sites based on our data. For each site, 

adult D. suzukii individuals were monitored for eight weeks when the fruit is ripe enough and 
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harvest starts. We collected historical county-level temperature data from the Global Historical 

Climate Network (GHCN) database to test the effect of temperature, humidity, and rainfall on 

population dynamics.  

 We also collected data from a field experiment conducted at four representative farms in 

New York State during the 2021 and 2022 growing seasons. The experiment utilized dry traps 

and a salt-based sampling method to obtain adult counts and early stages (i.e., eggs and larvae) at 

four commercial farms. Each farm was treated as one site for one growing season, resulting in a 

total of eight sites. Following the estimation of the state-space model, we utilized this dataset to 

examine and validate our candidate model. 

Figure 1 illustrates the average weekly yields, calculated as a percentage of total yield, 

based on weekly yield data collected from a representative grower in New York state during the 

growing season from 2016 to 2022. As complete yield data for the other 62 sites are not 

available, we assume that all sites have the same relative weekly yield distribution as depicted in 

figure 1.  

 

Figure 1: Weekly yield (share of total seasonal yield) of blueberry during harvesting 

season in New York state 
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3.2 Stage 2: An economic model  

In this section, we explain how we use the posterior distributions of the parameters of the 

population model to simulate the response of the SWD population levels (i.e., eggs, larvae, and 

adults) under alternative SWD management strategies, which we rank using a cost-damage 

minimization framework.  

Each period, the grower needs to choose monitoring decisions 𝑀𝑘,𝑡. We define binary 

variables 𝑀𝑘,𝑡 to denote monitoring decisions (e.g., 𝑀𝐿,𝑡 = 1 if grower monitors the activity of 

SWD by larva sampling, and 𝑀𝐴,𝑡 = 1 if grower monitors the activity of SWD by adult trapping 

and 0 otherwise ). After the monitoring decision, the grower chooses whether to spray 

insecticide. Let 𝑆𝑡 denote the spraying decision (𝑆𝑡 = 1 if the grower decides to spray at period 

and 0 otherwise) and Efficacy denotes the efficacy of the insecticide, which is measured as the 

percent reduction in SWD population. Note that the spraying decision may depend on the 

monitoring results. Following the spray decision, SWD with the population size 𝑁�̃� causes 

damage to fruits on the farm.  

The grower’s objective is to minimize the expected total cost, which is the sum of 

expected damages and management costs across time, by choosing the optimal SWD 

management strategy. The strategy 𝛿 is a rule that maps 𝑋𝑡 into the grower’s monitoring decision 

and spraying action for 𝑡 = 1, … , 𝑇. 

min
𝛿

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡𝑠(𝛿) = 𝐸{∑ 𝐷𝑎𝑚𝑎𝑔𝑒𝑡(𝑁𝑡(𝛿)) + 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡𝑠(𝑆𝑡(𝛿) + 𝑀𝐴,𝑡 (𝛿) +𝑇
𝑡=1

𝑀𝐿,𝑡(𝛿))}                                                            (13) 
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We assume that damage depends on the population level after monitoring and spraying 

control actions and that SWD only causes damage by reducing marketable yields. Let 𝑑𝐿 be the 

yield reduction rate per larva. 𝑑𝐿 is calibrated based on a 50% yield loss if no control action is 

taken. The damage for period t is the product of weekly blueberry yields, the price of blueberries, 

the total larva counts and the probability of SWD damage.  

𝐷𝑎𝑚𝑎𝑔𝑒𝑡(𝑁�̃� ) = 𝑦𝑖𝑒𝑙𝑑𝑝𝑒𝑠𝑡 𝑓𝑟𝑒𝑒,𝑡 ∗ 𝑝𝑟𝑖𝑐𝑒 ∗ �̃�𝐿,𝑖,𝑡 ∗ 𝑑𝐿                          (14) 

Management costs are the sum of monitoring costs and spraying costs. Assuming that 

growers follow the manufacturers’ recommended single dosage of insecticide every week, 

management costs can be expressed as:  

𝑃𝑒𝑠𝑡 𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡𝑠𝑡 = 𝑈𝑛𝑖𝑡 𝑆𝑝𝑟𝑎𝑦𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 ∗ 𝑆𝑡 + 𝑈𝑛𝑖𝑡 𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔𝐶𝑜𝑠𝑡𝐴 ∗ 𝑀𝐴,𝑡 +

𝑈𝑛𝑖𝑡 𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔𝐶𝑜𝑠𝑡𝐿 ∗ 𝑀𝐿,𝑡                                                                        (15) 

 We run simulations over a growing season of two weeks to evaluate six different 

strategies (Table 2) for managing a SWD infestation in a one-acre representative blueberry farm. 

The grower does not take any control action under the no-intervention scenario. The most 

commonly adopted management strategy by growers is the calendar-based spray, which is 

weekly pesticide application in New York state; we choose this strategy as the baseline to 

compare outcomes of alternative strategies and evaluate its cost effectiveness and risk level. The 

rest of the strategies are monitoring-based IPM strategies. We assess the yield loss and economic 

performance of five monitoring-based control strategies. Strategy 2 and 4 are monitoring- 

initiated strategies, in which the grower initiates weekly monitoring at the beginning of the 

harvesting season employing adult trapping (Strategy 2) or larva sampling (Strategy 4), and starts 

spraying after the number of SWD caught reaches or exceeds a predetermined threshold, and 
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then continues weekly sprays for the remainder of the season while stopping monitoring 

activities. Strategy 3 and 5 are monitoring guided strategies, in which the grower monitors 

weekly throughout the harvesting season and sprays only in weeks when the number of SWD 

(adult or larva) caught by adult trapping (Strategy 3) or larva sampling (Strategy 5) reaches or 

exceeds a predetermined threshold. Strategy 6 is adult-trapping initiated with sampling guided, in 

which the grower initiates adult monitoring by utilizing trapping at the beginning of the 

harvesting season, and starts weekly monitoring using larva sampling after the number of SWD 

adults caught by traps reaches or exceeds a predetermined threshold, and then sprays only in 

weeks when the number of SWD larva reaches or exceeds a predetermined threshold.   

Table 2. D. suzukii control strategies: Definitions and Descriptions  

Strategy (𝜹)  Description  Monitor  Spray  

0. No intervention Never monitor; Never 

spray  

Never  Never 

1. Weekly spraying  Spray throughout the 

season  

Never Always 

2. Adult trapping-based spray: 

Monitor-to-initiate 

Threshold =1 adult per 

acre 

Sometimes Sometimes 

3. Adult trapping-based spray: 

Monitor-to-guide 

Threshold =1 fly per acre Always Sometimes 

4. Fruit sampling-based spray: 

Monitor-to-initiate 

Threshold =1 larva per 

acre 

Sometimes Sometimes 

5. Fruit sampling-based spray: 

Monitor-to-guide 

Threshold =1 larva per 

acre 

Always Sometimes 

6. Adult trapping initiated, and 

sampling guided  

Threshold =1 fly/larva per 

acre 

Always  Sometimes 
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We use the samples of the posterior distribution of the population model parameters 

generated by the MCMC estimation to simulate the economic performance of the strategies. For 

each strategy 𝛿, we use the population dynamics, the population model parameters in the 

posterior distribution sample, and monitoring decisions, and spraying decisions described by 𝛿 to 

obtain simulated values of true SWD population and observed SWD counts for each period of 

the growing season. Environmental stochasticity, demographic stochasticity, and observational 

uncertainty are introduced during this simulation process, using Poisson distribution and 

binomial distribution described in equations (1) to (9). The total cost of each strategy is also 

calculated in the simulation process. The whole process is replicated for 10,000 samples of the 

posterior distribution and the total cost of each strategy is averaged. The total costs of strategies 

are ranked using the objective function, and the strategy with the lowest total cost is deemed the 

optimal strategy among the twelve strategies considered in this study.  

The economic parameters that we used to calculate the total cost of each strategy are 

shown in table 3. Blueberry harvesting in New York typically starts in early July and ends in late 

August. For the costs related to blueberry production and SWD controls, the information is based 

on previous studies and consultation with industry representatives and extension specialists. We 

account for the extra monitoring costs incurred by using adult trapping and larva sampling 

strategies.  
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Table 3. Parameter values of a representative New York blueberry farm 
Parameter Value Source 

Pick-on-your-own Prices $2.16 per lb. Ag MRC (2021) 
https://www.agmrc.org/commodities-
products/fruits/blueberries 

Costs 
  

adult trapping cost  $10 per acre Authors’ assumption 

fruit sampling cost  $17 per acre Authors’ assumption 

Spraying cost (High efficacy 
insecticide)  

Spraying cost (low efficacy 
insecticide)  

$38 

 

$26 

Calculation based on quotes from NY 
blueberry growers 

Calculation based on quotes from NY 
blueberry growers 

Others    

Baseline annual pest-free yield  5,000 lbs. per acre  (Fan et al. 2020) 

Harvest window  8 weeks (early July to 
late August) 

Authors’ assumption 

Note: All authors’ assumptions were consulted with industry representatives and extension specialists. 

 

Results and Discussion  

In this section, we first present the posterior distribution of estimated parameters from Bayesian 

state-space model. Then we show the economic performance of alternative SWD management 

strategies under the status quo insecticide efficacy and monitoring efficiency (including trap 

catch rate and fruit sampling accuracy rate). We then conduct sensitivity analyses to evaluate the 

performance of alternative SWD control strategies under various biological and economic 

parameters.  
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Posterior distribution of key parameters in Bayesian state-space model  

Table 4. Descriptive statistics of the marginal posterior distributions of the key parameters 

Parameter 

 Posterior distributions of the key 

parameters  

Convergence 

diagnostic  

Prior distribution 

Mean SD 2.50% 50% 97.50% 

 

R hat 

𝜆 ~Uniform(0,200)  59.35 1.806 55.83 59.3 62.9 1.00 

𝑟𝑁 ~Norm(0, 0.01) -2.69 0.178 -2.82 -2.72 -2.3 1.00 

𝑟0 ~Norm(0, 0.01) 0.03 0.002 0.02 0.029 0.032 1.01 

𝛿 ~Uniform(0, 50) 0.19 0.187 0.005 0.129 0.69 1.01 

 

Table 4 summarizes the marginal posterior distributions of key parameters generated 

from the Bayesian state-space model. The mean SWD adult count in the initial period in each 

location, 𝜆 ,is around 59. We define the growth rate in subsequent periods using the equation 

rt = 𝑒𝑟𝑁 ∗ 𝑒𝑟𝑇∗𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑡 . The estimated average intrinsic growth rate of SWD adults, 𝑒𝑟𝑁, is 

around 0.068 with an average 𝑟𝑁 of -2.69, falling within the established range of intrinsic growth 

rates for commercial blueberry in laboratory experiment (0.01-0.2). The parameters 𝑟0 shows a 

0.03 percentage change in SWD adult population growth rate with one-unit increase in 

temperature. Our result is consistent with previous studies on how SWD population changes with 

rising temperature (Tochen et al. 2014; Baser et al. 2015), which have shown a 0.033 percentage 

change in growth rate with a one-unit increase in temperature from 10-30°C. 

The model provides estimates of the time series of the average latent (unobserved) SWD 

population if the SWD infestation is not controlled. In figures 2 and 3, we show the population 

dynamics of SWD (adult, egg, and larva) over one harvesting season for a one-acre 

representative farm across 10,000 simulations. We simulated the population dynamics using the 

MCMC posterior distributions of population model parameters and a baseline temperature in 

Onondaga, NY, during the 2022 harvesting season, where our representative farm is located.  
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Figure 2: Simulated SWD adult population (mean and standard deviation) based on posterior 

distribution of model parameters 

 

Figure 3: Simulated SWD egg and larva population (mean and standard deviation) based on 

posterior distribution of model parameters  
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Results under baseline insecticide efficacy and monitoring efficiency  

We evaluate the economic outcomes for a representative blueberry farm in New York state over 

a harvesting season (early July to late August) based on the estimated distribution of true SWD 

population dynamics. Table 5 displays the main results under six SWD management strategies, 

assuming a baseline monitoring efficiency (i.e., a trapping efficiency of 0.0052 and sampling 

accuracy rate of 0.9) and insecticide efficacy (i.e., insecticide mortality of  0.7 for SWD adults 

and 0.6 for SWD larvae). We present the expected outcome and variability of yield, total costs 

(including damage costs, monitoring costs, and spraying costs), as well as total spraying and 

monitoring times for a calendar-based spraying strategy and five monitoring-based spraying 

strategies. Summarizing results over 10,000 simulations, we find that the status quo strategy 

adopted by most growers in New York, weekly spraying, still demonstrates its cost advantage, 

exhibiting the lowest expected total costs and the least risk among all SWD control strategies.  
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Table 5. Estimated average economic performance under various management strategies 

for a representative blueberry grower in New York State   

Note: 1Results are averaged over 10,000 simulations; 2 Uncertainty indicated by standard deviation of 

economic outcomes suggested by our model are reported in the parentheses.   

The no-intervention scenario (Strategy 0) yields the highest expected total costs and risk 

level, as expected. Under this scenario, the grower experiences an average loss of about 54% of 

crop yield, consistent with our field observations. The calendar-based spraying strategy has the 

lowest expected total costs (around $609) among all SWD management strategies, offering the 

most certain net return. This strategy is also the most commonly adopted by berry growers in 

New York state due to its low total losses, driven by frequent pesticide applications and high 

expected crop yield compared to all monitoring-based control strategies. While monitoring-based 

strategies (both fruit sampling-based and trapping-based spraying) could reduce insecticide use 

25% to 50% and are more environmentally sustainable, they do not perform as well 

Strategy  Yield  

Total 

costs 

Damage 

costs 

Monitoring 

costs 

Spraying 

costs 

Total  

spraying  

Total 

monitoring 

Unit  (lbs./acre)       

No SWD 

infestation  5000 0 0 0 0 0 0 

0. Never monitor, 

never spray 

2,316.5 

(208) 

5,796.47 

(455.3) 

5,796.5 

(455) 

0 

  0  

0 

 

0 

 

1. Weekly spray 

  

4,814.4 

(22) 

608.91 

(47.67) 

400.9 

(48) 

0 

  

208.00 

(0) 

8 

 

0 

 

2. Adult trapping-

initiated spray  

4735.5 

(79) 

741.05              

(156.19) 

571.38 

(170.67) 

23.96 

(10.92) 

145.71 

(28.40) 

5 

 

3 

 

3. Adult trapping-

guided spray 

4,640.5 

(104) 

972.95 

(211.48) 

776.52 

(228.74) 

80.00 

(0) 

116.43 

(21.15) 

4 

 

8 

 

4. Larva sampling-

initiated spray 

4,773.0 

(25) 

680.27 

(53.57) 

490.35 

(53.68) 

34.15 

(1.57) 

155.78 

(2.40) 

6 

 

2 

 

5. Larva sampling-

guided spray  

4,772.9 

(25) 

782.23 

(52.82) 

490.47 

(53.07) 

136.00 

(0) 

155.76 

(2.48) 

6 

 

8 

 

6. Adult trapping-

initiated, and larva 

sampling-guided 

spray 

4,736.4 

(78) 

 

833.79 

(52.82) 

569.39 

(164.57) 

119.32 

(7.6) 

145.07 

(27.43) 

6 

 

8 
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economically as the status quo strategy. The reduced spraying costs from monitoring-based 

spraying do not offset the high monitoring costs, primarily labor costs. Notably, the improved 

monitoring-based strategy (i.e., larva-sampling initiated spraying), has lower total costs and more 

certain results than conventional trapping-based spraying, with total costs of $680 per acre, 

owing to improved monitoring accuracy of SWD population and fruit infestation with timely 

pesticide applications. 

The distributions of yield and total costs with a random draw of SWD population 

dynamics over 10,000 simulations shows the risk levels associated with each SWD control 

strategy, as depicted in Figures 4 and 5. All monitoring-based strategies (S2-S6) shift the 

distribution of blueberry yields downward and increase yield variability (Figure 4). Both larva-

sampling spraying and trapping-based spraying strategies increase the probability of achieving 

low yields and decrease the probability of achieving high yields. Notably, both initiated and 

guided larva-sampling strategies exhibit low yield variability and high expected yields, 

comparable to those of the status quo strategy. 

We also assess the distribution of total costs for six SWD management strategies (Figure 

5). Consistent with the yield distribution shown in Figure 4, all monitoring based IPM strategies 

shift the distribution of total costs upward, indicating higher costs and increased variability. Our 

results indicate that the sampling-initiated spraying strategy carries the least risk among all 

monitoring-based strategies, with an expected total cost difference of $71 compared to the status 

quo strategy (S1). In contrast, the conventional monitoring-based strategies (S2 and S3) utilizing 

adult trapping exhibit significantly higher variability in expected total costs than the improved 

larva-sampling spraying strategies (S4 and S5). 



 

Draft – please do not cite or circulate without author’s permission. 

24 
 

 

Figure 4: simulated distribution of yield with six SWD control strategies for a representative one-

acre blueberry farm in New York state 

 

 

Figure 5: simulated distribution of total costs with six SWD control strategies for a representative 

one-acre blueberry farm in New York state 
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Sensitivity Analysis  

Insecticide efficacy  

Changing insecticide efficacy affects the economic performance of SWD management 

strategies. For example, excessive insecticide application can result in development of 

insecticide resistance and decreased efficacy. Our main results are based on a baseline insecticide 

efficacy of 70%. In this section, we explore how the economic performance of monitoring-based 

control strategies shifts with variations in insecticide efficacy due to resistance development and 

technological advancements. 

Under high insecticide efficacy, both the calendar-based spray strategy and monitoring-

based spray strategy show lower expected total costs and reduced variability in yield and total 

costs compared to the baseline efficacy scenario. In this context, larva sampling-initiated 

spraying emerges as the most cost-effective strategy, with only a $1 per acre difference in 

expected total costs compared to the calendar-based strategy. Conversely, under low insecticide 

efficacy, all adult-trapping and larva-sampling control strategies (including both initiated and 

guided strategies) become significantly more expensive compared to the baseline scenario. The 

status quo strategy remains the optimal cost-effective action, with monitoring-based control 

strategies costing around $300-500 more per acre than the status quo. These findings underscore 

that growers would be much more inclined to keep adopting the calendar-based spray strategy if 

insecticide efficacy decreases in the future due to overspray and resistance development.  
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Conclusion  

In this paper, we extended a Bayesian state-space bioeconomic framework to assess the cost-

effectiveness and risks associated with various invasive species management strategies, 

particularly when multiple integrated pest management (IPM) strategies are available to evaluate 

uncertain pest population and infestation levels. We applied this framework to the control of 

Spotted Wing Drosophila (SWD), a destructive invasive pest impacting the soft-skinned fruit 

industry. We conducted the economic evaluation of the status quo strategy, calendar-based 

spraying, and five monitoring-based IPM strategies, analyzing their yield and costs distributions 

under uncertainties in pest population. Additionally, we performed sensitivity analyses to 

examine the impact of changes in biological and economic parameters on the economic 

performance of alternative SWD control strategies.  

The calendar-based spraying remains the most cost-effective and least risky SWD control 

strategy, with the lowest expected total costs, yield and costs variabilities compared to 

monitoring-based IPM strategies. However, it incurs high spraying costs due to frequent 

insecticide applications. The larva-sampling initiated and guided control strategies yield higher 

total costs and risk levels compared to the status quo control strategy. However, growers can 

save 25% in spraying costs by transitioning to larva-sampling guided control, albeit with slight 

increases in total costs. The larva-sampling spraying strategy offers more accurate population 

and infestation estimates than adult trapping but comes with increased monitoring and labor 

costs. Monitoring-based IPM strategies elevate total cost distributions and variabilities, yet, the 

sampling-initiated control strategy shows the least risky results among them, with an expected 

total costs difference of $71 compared to the status quo strategy. In contrast, conventional 
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monitoring-based strategies utilizing adult trapping exhibit significantly higher expected total 

costs and greater variability than improved larva-sampling spraying strategies.  

These findings suggest that policies offering monetary incentives for IPM adoption, such 

as Environmental Quality Incentives Programs, can encourage growers to adopt improved 

monitoring-based strategies for SWD control. Our results are valuable for the soft-skinned fruit 

industry, extension personnel, and other stakeholders interested in enhancing SWD management 

practices. Nonetheless, our modeling approach has several limitations that should be addressed in 

the future. 
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Appendix  

1. MCMC Procedure  

Going forward, we use brackets to denote probability distributions. Letting 𝜃1 = (𝜆, 𝑟0, 𝑟1, 𝛿) and 

assuming site independence, the stochastic transition defined in equation (4) can be written as 

[𝑁𝐴,𝑖,𝑡|𝑁𝐴,𝑖.𝑡−1, 𝜃1]. Let 𝑡 = {1, … , 𝑇} denote the time series for which observations are available. 

Conditional on 𝜃1, the sequence of unknown states {𝑁𝐴,𝑖,1, … , 𝑁𝐴,𝑖,𝑇} follows a first-order Markov 

chain. Using the transition kernel defined by equation (4), the joint prior distribution of 𝜃1  and 

{𝑁𝐴,𝑖,1, … , 𝑁𝐴,𝑖,𝑇} can be formulated as:  

[{𝑁𝐴,𝑖,1, … , 𝑁𝐴,𝑖,𝑇}, 𝜃1] = [𝜃1] × [𝑁𝐴,𝑖,1] × ∏ [𝑁𝐴,𝑖,𝑡|𝑁𝐴,𝑖,𝑡−1, 𝜃1]𝑇
𝑡=2                                      

Assume these random variables are independent. Conditional on state 𝑁𝐴,𝑖,𝑡 and letting 𝜃2 = 𝛼𝐴𝑇 , 

the joint prior distribution of 𝜃2 and {𝑦𝐴,𝑖,1, 𝑦𝐴,𝑖,2, … , 𝑦𝐴,𝑖,𝑇} can be written as:  

[{𝑦𝐴,𝑖,1, 𝑦𝐴,𝑖,2, … , 𝑦𝐴,𝑖,𝑇}, 𝜃2] = [𝜃2] × ∏ [𝑦𝐴,𝑖,𝑡|𝑁𝐴,𝑖,𝑡, 𝜃2] × [{𝑁𝐴,𝑖,1, … , 𝑁𝐴,𝑖,𝑇}, 𝜃1]𝑇
𝑡=1        

Combining the prior on the parameters [𝜃] = [𝜃1, 𝜃2], and applying Bayes’ rule, the full 

posterior distribution of all unknowns can be decomposed as: 

[{𝑁𝐴,𝑖,1, … , 𝑁𝐴,𝑖,𝑇}, 𝜃|{𝑦𝐴,𝑖,1, … , 𝑦𝐴,𝑖,𝑇}] ∝ [𝜃] × [𝑁𝐴,𝑖,1] × ∏ [𝑦𝐴,𝑖,𝑡|𝑁𝐴,𝑖,𝑡, 𝜃2]𝑇
𝑡=1 ×

∏ [𝑁𝐴,𝑖,𝑡|𝑁𝐴,𝑖,𝑡−1, 𝜃1]𝑇
𝑡=2                                                    
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2. Trace of posterior distribution of key populatio parameters  

 

 

 

 

 

 


