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I Introduction

In recent years, there has been growing interest in the use of external information to identify
the parameters of econometric models. This external information, derived from features of
the data or from proxies designed to capture specific structural shocks, is often combined with
restrictions on the parameter space suggested by economic theory. A case in point is the lit-
erature that exploits heteroskedasticity to identify simultaneous equations systems (Rigobon,
2003) and structural vector autoregressive (SVARs) models (Lanne and Liitkepohl, 2008).
When the data exhibit volatility clusters that can be attributed to shifts in the variance of
structural innovations — while holding the parameters of the conditional mean constant — there
are important gains in terms of identification of the structural parameters (see, for example,
Kilian and Liitkepohl, 2017, Chapter 14, or the recent empirical work of Brunnermeier, Palia,
Sastry, and Sims, 2021).

While heteroskedastic SVAR models have become a standard tool in macroeconometrics, it
is important to recognize that two caveats apply when using them. First, identification through
heteroskedasticity is a purely statistical identification strategy. In other words, shocks have a
structural interpretation only if they give rise to impulse responses with a credible economic
interpretation. Second, the size of the shifts in the variance of different shocks must be
sufficiently heterogeneous for the identification to be valid.

On the contrary, if some of the shifts in the variances are not distinct, heteroskedasticity
cannot be used to identify structural shocks. In this case, the literature does not provide
a specific solution for continuing to use HSVAR models, and other identification schemes -
provided they are credible - must be considered to solve the identification problem. Inter-
estingly, Carriero et al. (2023) propose a blended approach, where heteroskedasticity can be
combined with sign restrictions, narrative restrictions, and external instruments.

This paper presents a new strategy that allows researchers to keep using HSVAR mod-
els even in the absence of information to identify the shocks of interest. Our approach starts
where statistical tests would suggest stopping: namely, when some shifts in the variances of the

structural shocks are suspected to be statistically indistinguishable from each other. Although

!Liitkepohl et al. (2020) developed a formal test for identification by heteroskedasticity. Lewis (2022)
proposes an alternative test of weak identification in the context of heteroskedastic SVARs (HSVARs). This
test, based on the IV literature, can be applied in very specific specifications.



in a rather different setup, based on simultaneous equation models for cross-sectional data,
Liitkepohl, Milunovich, and Yang (2020) also investigate the situation where (conditional)
heteroskedasticity involves only a subset of equations. They propose tests for the heteroske-
dasticity rank and a way for estimating and doing classical inference on the parameters of the
equations associated with conditional heteroskedasticity.

Instead, our idea is to combine the presence of heteroskedasticity with some zero and/or
sign restrictions on parameters or functions of them. This strategy allows us to deal with
HSVAR models that are not point, but only set identified. The paper makes three main
contributions. The first concerns the development of analytical results on identification. We
show that, apart from normalisation constraints, a combination of heteroskedasticity and zero
restrictions allows point identification in HSVAR models even in the absence of heterogeneous
variance shifts. Importantly, the number of zero restrictions in this case is much smaller than
that generally used for point identification in traditional SVAR models.

Our second contribution, closely related to the first, is to extend the topological analysis of
the identified set offered in Giacomini and Kitagawa (2021) for SVAR models to the HSVAR
literature, and to derive analytical results for point identification and for set identification
with convex identified sets. The mapping between the reduced and structural form parameters
facilitates the extension of the literature on set identification, largely used in standard SVAR
models, to the HSVAR framework.

Finally, another contribution concerns estimation and inference on the identified set. In
this respect, we adapt the robust Bayesian approach of Giacomini and Kitagawa (2021) to
our setup. In fact, this approach is perfectly suited to the peculiarities of HSVARs, where
the identifying assumptions are violated due to heterogeneous variance shifts in the structural
shocks. We provide a useful algorithm to implement our strategy for estimation and inference
of the identified set. This provides applied economists and econometricians with a new tool
for their empirical analyses when clusters of volatility provide a useful but insufficient source
of information for the identification of structural shocks.

An empirical example about the identification of structural shocks driving the real price
of crude oil illustrates our methodology. In this example, we show how to set or point identify

structural shocks when the standard HSVAR approach fails.



The rest of the paper is organized as follows. The next section briefly surveys the literature;
Section II introduces the econometric framework and provides some preliminary results on the
identification of HSVARs. Section III is dedicated to the theory of identification in HSVARs.
Section IV focuses on the inferential analysis of identified sets through a Robust Bayesian
approach. Section V presents the empirical example and Section VI concludes. An appendix

with the proofs and many other results completes the paper.

I.1 Related literature

This paper is strongly related to the identification through heteroskedasticity literature both
for simultaneous equations systems (Rigobon, 2003; Klein and Vella, 2010; Lewbel, 2012;
Liitkepohl, Milunovich, and Yang, 2020) and SVARs (see e.g. Lanne and Liitkepohl, 2008;
Bacchiocchi, 2017; Kilian and Liitkepohl, 2017; Liitkepohl and Netsunajev, 2017). However,
to the best of our knowledge, the idea that heteroskedasticity can be helpful in identifying
econometric models has been firstly proposed by Sentana and Fiorentini (2001) in a context
of factor models, nesting SVAR models as well. Our contribution builds on the results of the
statistical tests for heterogeneous variance shifts by Liitkepohl et al. (2020) and Lewis (2022),
in the sense that our approach can be implemented when any statistical tests suggest a failure
of the identifying information from heteroskedasticity to point identify the structural shocks.?
As previously mentioned, a paper that relates to our research is Carriero et al. (2023),
where the authors combine different identification strategies, each of which can contribute
resolving the critical issues of the others. Specifically, they propose different algorithms that
combine sign restrictions, heteroskedasticity and external instruments. In our approach we
focus on weak identification due to lack of (or, better, not enough) heterogeneity in the vari-
ances, where zero and sign restrictions are tools for recovering the identification issue. In their
approach, instead, heteroskedasticity is mainly intended as a tool to reduce the identified set
obtained by sign restrictions, narrative restrictions, and external instruments approaches.

While in our contribution the main assumption is that only the variances of the shocks

2Different approaches exploiting heteroskedasticity for the identification of structural shocks are the recent
contribution by Lewis (2021), that does not require volatility clusters, but simply needs for time-varying
volatility of unknown form, as well as Liitkepohl and Schlaak (2021), who analyse identification through
heteroskedasticity in the context of proxy SVAR models. See also Sims, 2020, for a recent contribution on
heteroskedastic SVARs with misspecified regimes.



are subject to breaks, other authors find evidence of structural shifts among the structural
parameters of the model, too (see, among others Sims and Zha, 2006; Inoue and Rossi, 2011;
Boivin and Giannoni, 2006). This literature, that does not focus solely on SVAR models,
allows for impulse responses to be different in the different regimes, while they are the same
when only the variances do change.?

This paper contributes also to the literature on point and set identified SVARs. For
point identification, we exploit the general criteria in Rubio-Ramirez et al. (2010), with sub-
sequent modifications proposed by Bacchiocchi and Kitagawa (2021), for global identification
on SVARs. As for set identification, we use sign restrictions to set identify the structural im-
pulse response functions of interest (Rubio-Ramirez, Waggoner, and Zha, 2010; Uhlig, 2005).

Strictly connected to this last point is the literature on how to do inference on set identified
models. As stated in the introduction, our approach builds on Giacomini and Kitagawa (2021),

but other approaches have been proposed in the literature to pursue this purpose.?

I SVARs and HSVARs: some definitions

II.1 Econometric framework

Consider the following Structural Vector Autoregressive (SVAR) model

!
Aoyr = a + Z Aiyi—i + &4 (1)
i=1

where y; is a n-dimensional vector of observable variables, ¢; is a vector of mutually ortho-
gonal white noise processes, normally distributed with mean zero and time-varying covariance

matrix. Specifically, let the covariance matrix of the structural shocks ¢; be as follows

, L, if 1<t<Tp
Eleie) = (2)
A i Tp<t<T

3However, only few papers constructively use the presence of regime shifts to solve the identification issue
(Magnusson and Mavroeidis, 2014; Bacchiocchi and Fanelli, 2015; Bacchiocchi and Kitagawa, 2023).

4Gafarov et al. (2018) and Granziera et al. (2018) provide results based on a frequentist setting, while,
among others, Baumeister and Hamilton (2015) and Arias et al. (2018) adopt Bayesian inference.



where 1 < Tp < T is the break date, I, is the (n x n) identity matrix, and A is a (n x n)
diagonal matrix made of strictly positive numbers.> The n x 1 vector a contains the intercepts
and the n x n matrices A;, with ¢ =0, ..., [, collect the structural parameters. The structural
parameters can be indicated as § = (A, AL, A) € © € RO with m = nl + 1, and
where the n x m matrix Ay = (a, Ay, ..., A;). We denote the open dense set of all structural
parameters by P¥ ¢ R*™)+7  The model in Eq.s (1)-(2) is a standard SVAR model with
structural shocks characterized by different volatility regimes. As shown in Eq. (2), structural
innovations have unit variance before the break, and variance equal to the diagonal elements
of A, denoted as \; after the break. Hereafter, this model is referred to as heteroskedastic
SVAR (HSVAR).

The reduced-form VAR model can be written as

!
Y =b+ Z Biyy—i +uy (3)

=1

where b = Aj'a, B; = Ay'A;. Furthermore, for both the regimes, the vector of error terms is

defined as u; = A; Le,, with

Blund) = 2 = A T AGY if 1<t<Tg n
2= AP AAGY  if Ty <t<T.

The VAR model, thus, presents different covariance matrices of the error terms (2, and (2,
and thus heteroskedasticity, as in, among others, Rigobon (2003), Lanne and Liitkepohl
(2008), and Bacchiocchi and Fanelli (2015). The reduced-form parameters are denoted by
b= (B, 2, 0) € dC R x 2, x 2,, where the n x m matrix B = (b, By, ..., B;) and £,
is the space of positive-semidefinite matrices of dimension n x n. The set of all reduced-form

parameters is denoted by P# ¢ R*+7(+1)  The reduced form will be denoted HVAR.
Conditional on the restrictions of the domain @ such that all the roots of the characteristic

polynomial lie outside the unit circle, there exists an equivalent VMA (00) representation for

®We consider the initial conditions for the first regime, yo,...,y1_;, as given, while for the second regime
they are fixed as the last [ observations of the former, in order to guarantee the contiguity of the regimes on
the whole sample.



the HVAR in Eq. (3), assuming the form®

Yy =c+ Z CjAglet_j (5)

Jj=0

-1
where C} is the j-th coefficient matrix of (In — 22:1 B,-Li) . Based on the VMA represent-

ation, the long-run impulse response, I R, and the one at any h, IR", are, respectively

h—o0

l
IR® = lim IR" = (In -3 Bj>A01 and  IR"=CRAy", (6)
7j=1

whose (i, j)-element represents the response of the i-th variable of y;,, to a unit shock on the

j-th element of ¢;, independently of the regime considered.

I1.2 Preliminary results on the identification of HSVARs

As is well known in the SVAR literature, without any restriction it is impossible to uniquely
pin down the structural parameters based on the reduced form of the model. If, instead, we
suppose the parameters of the conditional mean in the HSVAR in Eq. (1) to remain stable
across the two regimes, then Rigobon (2003), for a bivariate case, and Lanne and Liitkepohl
(2008), for the general case, proved there is some gain in terms of identification. In this section
we introduce some general theoretical results for the HSVAR in Eq. (1). All the results will
be formally presented in Appendix A.

Consider an n-variable HSVAR model as in Eq.s (1)-(2). Following the parametrization
and notations we have been using so far, we analyze identification of the n x n matrix C' that
represents the inverse of structural coefficient matrix Ay, i.e. C = Ay', and A, n x n diagonal

matrix with strictly positive elements. Given the reduced-form covariance matrix at regime 1

6The HVAR in Eq.s (3)-(4) is characterized by the same parameters for the conditional mean over the
two regimes, therefore breaks are confined to second moments parameters. As a consequence, the absence of
unit roots is a characteristic of the model in the whole sample, and not within each regime. Furthermore, as
shown in Eq. (5), the VMA representation is unique and not regime-specific. It follows that, if shocks have
the same magnitude, impulse response functions in the two regimes are equivalent. If instead one considers
a one standard deviation structural shock, impulse responses will be of different magnitude, but have exactly
the same shape in different regimes.



and 2, denoted by (2; and {2, respectively, C' and A solve
0, =cc’ and 2y, = CAC". (7)

The first important result on the identification of the HSVAR is about the set of solutions,
in terms of (C, A), of the system of equations in (7). In Theorem 4 in Appendix A we show
that the solution is not unique, but any permutations and change of signs of the column
vectors in C, as far as the same permutations are applied to the diagonal elements of A,
remain observationally equivalent. In order to solve this indeterminacy, one possibility is to
fix a specific ordering for the equations, that corresponds to fixing a specific ordering for the
variances of the structural shocks in the second regime, i.e. the diagonal elements in A. Of
course, this becomes problematic when some of the variances are equivalent.

In this direction, the second important result, reported in Theorem 5 in Appendix A, states
how point identification is possible only once the solution for A is characterized by all distinct
elements on the main diagonal. In this case, fixing a specific ordering of the structural shocks,
as well as the standard sign normalization, leads the solution (C, A) to be unique, and thus
point identified.

Finally, the third important result concerns the representation of the system in (7) as an
eigen-decomposition problem. To see this, let {2, 4, be a lower triangular Cholesky decomposi-
tion of 2. Following Proposition A.1 of Uhlig (2005), the set of non-singular matrices solving
Eq. (20) can be expressed as C' = §214,Q, Q € O(n), where O(n) is the set of n x n orthogonal

matrices. Plugging this representation of C' into Eq. (7), leads to

C= Ql,tr@

(8)

Symmetry of (2 }TQQQi » and orthogonality of Q implies that solving Eq. (8) is precisely
the eigen-decomposition problem. Identification of (C, A) can be therefore cast as uniqueness
of the eigen-decomposition of §2; tlTQQQi Y into the diagonal matrix of eigenvalues and the

corresponding eigenvectors collected in (). According to the previous result, an HSVAR can

be point identified, up to permutations and sign changes, if the eigenvalues of (2 gTQQQi Y are



all distinct. A nice geometric interpretation for this result, for the simple bivariate case, is

discussed in Appendix B.

III Set-identification due to proportional volatility shifts

In this section we extend the preliminary results reported in Section I1.2 where, conditional on
the reduced-form parameters, the identification issue was addressed as an eigen-decomposition
problem. Specifically, let A = (A1, Aa, ..., A,) be the eigenvalues of the eigen-decomposition
problem in Eq. (8), where C = Aj' collects impact responses, @ is the orthogonal matrix
containing the eigenvectors, and §2;, i = {1, 2}, are the reduced-form covariance matrices
with (2;, the related Cholesky lower triangular matrices. Theorem 6 shows that a necessary
condition for point identification of the structural parameters is the absence of multiplicity
in eigenvalues in A. In the case of multiple eigenvalues, in fact, the identification of C fails.
In particular, if two (or more) eigenvalues are equal, say A; = A;;1, then the corresponding
columns of ) — i.e. the eigenvectors associated to A; and A;;; — denoted by ¢; and ¢4, are
not unique. In fact they represent a basis for the two-dimensional vector space in R", but any
other couple of orthogonal unitary vector belonging to such a space could be an acceptable
candidate to enter in the () matrix. The matrix (), thus, will not be a singleton in O(n)
anymore, but will be a set of admissible orthogonal matrices solving the eigen-decomposition
problem in Eq. (8).

More suitable notations and formalization are thus necessary. We start by formalizing the

eigen-decomposition problem, with the possibility of multiple eigenvalues.

Definition 1 (Eigenspace of multiple eigenvalues). Let the eigen-decomposition problem in

Eq. (8) be characterized by the following eigenvalues

MAE AN

where the generic i-th distinct eigenvalue has algebraic multiplicity equal to m;, i.e. g(\;) =

m;, 1 = 1,...,k, with Zle m; = n. Let Q()\;) be the eigenspace associated to the i-th



eigenvalue \;, i.e.

QN\) = <span (qi, ,qin) N 8”1> Cc R (9)

where ¢f, ..., ¢, are linearly independent (not unique) eigenvectors associated to \; with
8" ! being the unit sphere in R™. Moreover, given the result in Lemma 3 in Appendix C,

dim (Q(N;)) = m. O

According to Definition 1, let Q) = Q(A1) X --- X Q(A). It is possible to introduce the set

of all admissible matrices () as follows

Qo) = {(QI; @, -1 qn) € Qx}- (10)

As in the case of multiplicities Q(¢) is not a singleton in O (n), one could think of imposing
restrictions, likewise it is traditionally done in SVARs. This will be the topic of the next

section.

III.1 Normalization, equality and sign restrictions

One of the characteristics of HSVARs is that the identification is obtained from a statistical
point of view, without imposing restrictions on the parameters. However, we have seen in
Section II.2 that normalization restrictions are important and play a relevant role. Moreover,
we will see that in some cases, imposing equality or sign restrictions can be interesting to
improve the results obtained through HSVARs, especially when some of the assumptions in
Theorems 5 to 7 are no longer valid, as the presence of multiplicities. In this section we discuss
normalization restrictions first, then we move to the equality restrictions before concluding

with sign restrictions.

Normalization restrictions

The normalization issue has been largely debated in econometrics. Specifically for SVAR
models, we refer to Waggoner and Zha (2003) and, more recently, to Hamilton, Waggoner,
and Zha (2007). They show that a poor normalization rule can invalidate statistical inference

on the parameters. In our setup, the first normalization restriction consists in imposing the

10



covariance matrix of the structural shocks to be the identity matrix in the first regime, i.e.
E(gg)) = I, and, as a consequence, the A matrix in the second regime, i.e. E(gie}) = A, as
already introduced in Eq. (2). However, as discussed in Section II.2; indeterminacy of the
solutions also arises in terms of the sign of the columns of C' and the particular ranking of the

variaces in A. The normalization rule used in this paper is summarized here below.

Definition 2. (Normalization) A normalization rule can be characterized by a set N C P°
such that for any structural parameter point § = (Ag, A;, A) € P, there exists a unique
permutation matrix P € P(n) and a unique diagonal matrix S € D(n), with +1 and -1 along

the diagonal, such that (PSA, PSA,, PAP’) € N. ]

For the sake of simplicity, concerning the ordering of the elements in the diagonal matrix
A, we assume

A A > > A (11)

It is important to stress that all the results developed in the paper can be rephrased in terms

of different normalization rules coherent with Definition 2.

Equality restrictions

The classical approach to address the identification issue in SVARs is to impose equality
restrictions on the structural parameters or on particular linear and non-linear functions of
them. Although not common in the literature of heteroskedastic SVARs, we do not preclude
this possibility and allow for possible equality and sign restrictions. We first consider the
former, while the latter will be presented in the next section.

Giacomini and Kitagawa (2021) and Arias et al. (2018), in the context of SVARs, stress
that imposing constraints on the structural parameters, or on suitable functions of them, such
as on the impulse responses, corresponds to restrict the columns of the orthogonal matrix
Q € Q(¢). Here below, we show that it also happens in the context of HSVARs. In fact,
as shown in Eq. (8), the structural-form parameters can be defined as the product of the
orthogonal matrix ) and quantities coming from the reduced form. As these latter elements

are unrestricted, imposing restrictions is equivalent to constrain the columns of ). The set of

11



equality restrictions we consider, in compact notation, are as follows:

F(6,Q) = ((F0)a) , (B0)a) - (F(d)a)) =0 (12)
where F;(¢), of dimension f; x n, depends on the reduced-form parameters ¢ = (B, {2y, {25)
only, while ¢; is the i-th column of (). The total number of restrictions characterizing the
HSVAR is given by f = fi1 + -+ fy.

Focusing our attention on the i-th eigenspace as in the eigen-decomposition in Definition 1,
let the set of restrictions on the vectors (q{, cey q}n) € Q()\;) be contained in the f*xn matrix
F'(¢,Q), with f denoting the total number of restrictions on the vectors (g, ..., ¢, )-
Moreover, let the fj restrictions on the j-th vector ¢ be defined as Fj(¢)q; = 0. This allows

us to introduce the following definition:

Definition 3 (Non redundant restrictions). Given reduced-form parameter ¢ = (B, {21, {2),

let the HSVAR be characterized by the eigen-decomposition in Definition 1. Moreover, let the

m, vectors (q{, ce ,qini) € Q(N), i = 1,...,k, be characterized by zero restrictions of the
form F]’(¢)q§ = 0. Such identifying restrictions are non redundant if, for 7 = 1,...,m;, the
orthogonal vectors (qi, ey ,q}_l) are linearly independent of the row vectors of F;(qb) O

Bacchiocchi and Kitagawa (2021) introduced first this definition of non redundant restric-
tions to complement the result in Theorem 7 in Rubio-Ramirez, Waggoner, and Zha (2010)
on the identification of SVARs. In the same way, we will use it for developing conditions for

point identification in our HSVARs.

Sign restrictions

Uhlig (2005), among others, proposes sign restrictions to impulse responses in order to obtain
identified sets rather than point identification. Giacomini and Kitagawa (2021) and Arias et
al. (2018) combine sign and zero restrictions to tighten the impulse response identified sets.
As for the equality restrictions, sign restrictions can be seen as constraints on the columns
of the () matrix. Suppose to impose a set of s, ; restrictions on the impulse responses to the
i-th shock at the h-th horizon. We can write the sign restrictions as Sy, ;(¢)g; > 0, where,

given the definition of the impulse response provided in Eq. (6), Sh; = Dp; Ch(B)f214 is a

12



Sp,; X n matrix with Dy, ;, of dimension s, X n, a selection matrix made of 1 and —1 elements
indicating the restricted impulse responses. A compact notation for all the sign restrictions

can be defined by
S(¢, Q) > 0. (13)

Admissible structural parameters and identified set

Based on the parametrization of the model and the set of all possible restrictions considered
above, it is now possible to formally define when a point in the parametric space can be

indicated as admissible.

Definition 4 (Admissible parameters). A structural parameter point (Ag, A, , A) is said ad-
missible if it satisfies the normalization restrictions of Definition 2, the equality restrictions
in Eq. (12) and the sign restrictions in Eq. (13). Given the set of reduced-form parameters

¢ € @, the set of admissible parameters can be defined as

A(9) = { (Ao, A, 1) = (QL. QLB A) €N|Q € QW) F(6,Q) =0, S(6.Q) 20}, [
At the same time, it is interesting to focus on the set of all the admissible matrices ). We
thus provide the following definition.

Definition 5 (Admissible () matrices). An orthogonal matrix @ is said admissible if, condi-
tional on the reduced-form parameters, it satisfies the normalization restrictions of Definition
2, the equality restrictions in Eq. (12) and the sign restrictions in Eq. (13). The set of all

admissible Q matrices is defined as

Q@ |F,S) = {Q € 9(9) ‘ (Ap, Ay, A) € Ar(gﬁ)}. 0

Finally, given that the attention could not be limited to the structural parameters but on
transformations of them, like impulse response functions, it is also important to define the so

called identified set.

Definition 6 (Identified set). Given the set of admissible @) matrices Q(¢ |F, S) according to

13



Definition 5, an identified set is defined as

18(61F,.8) = {n(6,Q) | @ € Q0 |F. ) }.

with 7(¢, Q) being the transformation of the structural parameters of interest, defined as

77(¢> Q) = IRI;] = e;Oh(B)Ql,trer = Clgh(¢) 4j

where TR}, is the (g,j)-th element of TR" and ¢}, (¢) is the g-th row of Cj,(B){2y 4. O

II1.2 Point-identification in HSVARs with proportional volatility

shifts

As discussed in the previous sections, point identification in HSVAR can be achieved only if
the eigen-decomposition problem in Eq. (8) is characterized by n distinct eigenvalues. This
feature does correspond to non proportional shifts in the variances of the structural shocks
among the two regimes.

If this is not the case, or, practically speaking, we do not have credible evidence on struc-
tural breaks on the second moments of some of the variables in our HSVAR, point identification
can still be reached by combining heteroskedasticity with zero restrictions. The next theorem

formalizes this intuition.

Theorem 1. Consider an HSVAR characterized by the eigenvalues and eigenspaces as in
Definition 1 and by the admissible parameters as in Definition 4. The structural parameter
(Ag, Ay, A) € A"(¢) is point identified if and only if, for each XN;;, i = 1,...,k, Q(N;) =
(dh. ... dk,), the unit-length vector ¢\ is subject to fi = m;—j non-redundant zero restrictions,

forjg=1,...,m;.
Proof. See the Appendix C. n

Remark 1. The previous theorem generalizes two important results in the literature of SVAR

models. Firstly, when all the eigenvalues are distinct, then £ = n and the algebraic multiplicity
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m; = 1,4 =1,...,n. As a consequence, Q()\;) = (¢'), and no zero restriction is needed for
point identification, being f* = 1 — 1 = 0, as originally introduced by Lanne and Liitkepohl
(2008), and restated in the previous Theorems 5 and 6. Secondly, if one has no credible
believes about structural breaks on the second moments of the observable variables, or the
shift produces perfectly proportional covariance matrices in the two regimes, i.e. {25 = A\
for any positive scalar A (specifically, A = 1 in the case of no breaks), then 2 = (2} 1:17.02!21_7 Y=
27 FRVON O \/XQL”Q; Y = MI,; there is just an eigenvalue whose associated eigenspace is the
whole 8”1, i.e the unit sphere in R®. The condition in Theorem 1 reduces to the identification

condition for global identification in Rubio-Ramirez et al. (2010) (Theorem 7).

Remark 2. Identification in HSVARs is essentially a statistical issue, in the sense that, once
the information contained in the data in terms of the two volatility regimes allows to point
identify all the structural parameters, the path of the impulse responses allows the researcher
to identify a posterior: the shocks of interest. In this respect, if the eigenvalues do not present
multiplicity, the only task will be to see which shocks produce impulse responses coherent
with the economic theory and label these shocks accordingly. The same happens if, even in
the case of multiplicity, the shocks of interest are those corresponding to the eigenvalues with
no multiplicity, whose eigenvectors (uniquely identified) will constitute the columns of () one
is interested in. A problem could arise when, in the case of multiplicity, none of the already
identified impulse responses are consistent with what expected from economic theory for the
shocks of interest. In this case, the results of Theorem 1 can be of extreme interest as including
zero restrictions allows to point identify such shocks that, thus, will be identified based on
economic restrictions rather than on statistical basis. Importantly, the number of restrictions
is much less than what is required for traditional SVARs, as some of the columns of the @
matrix have been already identified by the heteroskedasticity. In our view, this can be an

important added value of Theorem 1.
Example 1 (Distinct eigenvalues). Consider an HSVAR with three variables, (n = 3), and

k = 3 distinct eigenvalues, Ay # Ao # A3. In this case, m; = 1 for all ¢ = 1,..,3. Theorem

1 states that the HSVAR is point identified if and only if the unit vector q;- is subject to
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f; = m; — j zero restrictions for j = 1 and ¢ = 1,...,3. It follows that no restrictions are

needed because each ); is associated with a unique eigenvector ¢'.

Example 2 (Eigenvalue multiplicity). Consider a HSVAR with three variables (n = 3) and
k = 2 distinct eigenvalues, A\ > Ao, Ao = A3. In this case, the first eigenvalue is distinct from
the others, hence m; = 1, while the second eigenvalue has multiplicity ms = 2. Theorem
1 implies that, as far as the first unique eigenvalue \; is concerned, we do not need any
restriction on ¢f (i.e. fi =1 —1=0). The second eigenvalue, \s, is associated with my = 2
linearly independent, not unique, eigenvectors (i.e. ¢2 and ¢3). Writing Q as [q] ¢? ¢3] point
identification is achieved with fZ = 2 — 1 = 1 zero restriction on ¢? and f7 = 2 -2 = 0

restriction on ¢3.

II1.3 Set-identification in HSVARs with proportional volatility shifts

The results obtained in Section II.2 allow to point identify all the columns of @ € O (n)
associated with eigenvalues without multiplicity. For all the other columns, they can be point
identified according to the particular pattern of zero restrictions suggested by Theorem 1.

Let A; be an eigenvalue with algebraic multiplicity g(\;) = m;, in this section we consider

restrictions that make the (¢i,..., ¢, ) columns of @ only set identified, being
with strict inequality for at least one j = {1,...,m;}.

Example 3 (Set identification of an HSVAR with multiple eigenvalues). Consider an HSVAR
model with three variables v, = (Y14, Yo, y2:). Let us assume that there are k = 2 distinct
eigenvalues: A1 > Ay and Ay = A3. Suppose that plotting the impulse responses to the first
shock, we observe a pattern that is consistent with an economically meaningful structural
shock. Given that the second eigenvalue, Ay, has multiplicity ms = 2, we can write the matrix
Q as [¢} ¢¢ ¢3]. Without any zero restriction, f? < 1, and the second and third column of @

are only set identified.

As in many empirical applications, suppose we are interested in one single shock, i.e. one

column of (). Moreover, according to Remark 2, it is crucial to understand whether the
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point identified impulse responses obtained through the eigenvalues without multiplicity can
be compatible with the shock of interest. If this is not the case, it is likely to suppose this
latter to be associated with the eigenspace generated by \;, with multiplicity m,;. We first
introduce a specific ordering of the shocks according to the identifying restrictions in Eq. (14),

and then provide the conditions for the identified set to be convex.

Definition 7 (Ordering of variables). The variables associated with the eigenvalue \;, with al-
gebraic multiplicity m;, are ordered according to the number of zero restrictions on (¢t, . . ., qfni),

and specifically, such that they follow the relation
fizfiz. >fi >0 (15)

In case of ties, the shock of interest, represented by the j*-th column of (¢t,. .., qfni), is ordered
first. In other words, let j7* = 1 if no other column has a larger number of restrictions than

qj-. If j7* > 2, then let the variables be ordered such that fi._, > f/..

The next theorems, based on Proposition 3 in Giacomini and Kitagawa (2021), provides
sufficient conditions for the impulse response identified set 1.5(¢ | F, S) to be convex. Precisely,
we first consider the case of zero restrictions only, and then extend to the case of zero and

sign restrictions.

Theorem 2 (Convexity of identified set under zero restrictions). Consider an HSVAR charac-
terized by the eigenvaules and eigenspaces as in Definition 1 and by the admissible parameters
as in Definition 4. Let \; be an eigenvalue of algebraic multiplicity g(N\;) = m;, with associated
eigenspace Q(N;) as in Eq. (9), containing qji-*, the column of Q) associated with the j*-th
structural shock (shock of interest). Moreover, let 1 = 1(¢, Q) = ¢;,(¢)qs- € 1S(¢|F,S) be the
impulse responses to the shock of interest. Finally, let the variables be ordered as in Definition
7.

Then, the identified set for r is non empty and bounded for any l € {1,...,n} and h =
1,2,..., ¢-a.s. Moreover, a sufficient condition for the identified set to be convex is that any

of the following exclusive conditions holds:
1. 7*=1and fi <m; —1;

17



2. j*22andf;<m,~—j,f07“j:1,...,(j*—1);

3. 7* > 2 and there exists 1 < k < (5% — 1) such that (¢}, ..., q.) is eractly identified as in

Theorem 1 andf; <m;—j, forj=k+1,... 7"
Proof. See Appendix C. O]

The previous theorem just consider zero restrictions on the vectors of Q();). The following
one, instead, also allows for sign restrictions, although these last can be imposed on the vector

qji-* associated with the shock of interest.

Theorem 3 (Convexity of identified set under zero and sign restrictions). Consider an HSVAR
as 1 Theorem 2, where, as before, q;'-* 15 the column wvector corresponding to the shock of
interest, and let q; € Q(N\i), the eigenspace associated with the eigenvalue \;, of algebraic
multiplicity g(\;) = m;. Moreover, let the sign restrictions be imposed on the shock of interest,

only.

1. Let the zero restrictions F'(¢, Q) = 0 satisfy one of the conditions (1) and (2) of Theorem

2. If there exists a unit length vector ¢ € R™ such that
Fi(¢)g=0 and qg>0 (16)

then the identified set is non empty and convex for everyl € {1,...,n} andh =0,1,2,...

2. Let the zero restrictions F'(¢,Q) = 0 satisfy condition (3) of Theorem 2, and let
(q’i(¢), . ,q,i(¢)) be the first k vectors that are exactly identified. If there exists a unit

vector ¢ € R™ such that

PN i i i ! Sj(9)
(Fj*(¢) SV s Vemyy s G(D) qk(qﬁ)) g=0 and qg>0 (17)

Sk
ol

where (vi,...,v’én_mi)) is a basis for the space QL()\;), then the identified set is non

empty and convex for everyl € {1,...,n} and h =0,1,2,...
Proof. See Appendix C. O
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Taken jointly, the results of Theorems 2 and 3 generalize Proposition 3 in Giacomini and
Kitagawa (2021) to the case of a structural break on the variances of the shocks, with potential
eigenvalue multiplicity.

On the other side, the two theorems provide important insights on the possibility to apply
the standard identification-through-heteroskedasticity approach to the case in which some of
the switches in the variances are the same. As we will see in the next section, these new results
represent the foundations for developing an estimator for the bounds of the identified set and

produce the related inference.

IV Inference in Set-identified HSVARs: a Robust Bayes
Approach

In this section we present a completely brand new approach to conduct inference on set-
identified HSVARs, where the set identification comes from the fact that not all the shifts in
the variances of the shocks are statistically different. Details on how to estimate the reduced-
form parameters and on how to check for proportional variance shifts are reported in Appendix
E and Appendix F, respectively. In this section, instead, we deal with all situations in which
some of such variances are not significantly different each other, and we introduce our Robust

Bayes approach to conduct inference on the identified set of interest.

IV.1 Inference on the identified set

Now suppose some of the eigenvalues obtained by the eigen-decomposition in Eq. (8) present
potential multiplicity. This evidence, for example, could be statistically checked by the Liitke-
pohl et al. (2020) or Lewis (2022) tests. Once this evidence is “statistically confirmed”, a
natural way of proceeding is to impose such eigenvalues to be effectively equal. This choice,
however, imposes implicitly restrictions on the covariance matrices of the reduced form. While
ML estimator subject to constraints on the parameters is generally implementable, it is rather
problematic in the specific case of imposing equality restrictions among the eigenvalues. In
such particular case, in fact, firstly, imposing the restrictions makes the model no longer

identified, and thus creating convergence problems of the algorithm maximizing the likelihood
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function and, secondly, it is technically difficult to impose restrictions on some parameters that
are observationally equivalent to permutations, as highlighted in Theorem 4 in the Appendix.

Our strategy, instead, is based on the following lemma, that, according to evidence of
potential eigenvalue multiplicity, suggests imposing the multiplicities as the result of a min-

imization problem about the unrestricted and restricted covariance matrices of the HVAR.

Lemma 1 (Similarities of positive-definite symmetric real matrices). Let {2 be a n X n sym-
metric and positive definite real matriz characterized by the eigen-decomposition 2 = QAQ)’,
with the eigenvalues contained in the diagonal matriz A = diag(A1, Ao, ..., A\y), and the associ-
ated eigenvectors contained in the n x n orthogonal matriz Q. Moreover, let 2 = QAQ’, where
the diagonal matriz A contains the first m elements fized to a scalar \, while the remaining
n —m are the corresponding eigenvalues in A.

_ 2
Then, according to the Frobenius metric, min HQ — QH 1s reached when
A F

- 1 &
A=—=> . (18)
m h=1

Proof. See Appendix C. m

The previous lemma provides a theoretical ground for fixing the common eigenvalues,
when they are not statistically distinct, such that the unrestricted and restricted reduced-form
covariance matrices are as close as possible, according to a specific metric. The assumption
considered in the previous lemma is that the matrix (), containing the eigen-vectors, is common
in the two matrices 2 and 2. This assumption is completely reasonable for our problem in
that it states that for the eigenvalues without multiplicity the eigenvectors are common in {2
and (2. Those associated to the eigenvalue with multiplicity, say \;, being not identified, must
simply lay on the sub-space Q()\;), orthogonal to Q+();). In this respect, the eigenvectors
(qi,...,q") obtained through the eigen-decomposition of {2 share this feature and can be used
also as eigenvectors of 2. This explains the common @ matrix used in Lemma 1 both for 2
and (2.

Let 74 be a probability measure on the space ¢ of reduced-form parameters. In order to

obtain a prior distribution for ¢ we need to restrict the support of 7, such that its elements

satisfy the sign, normalization and equality restrictions, as well as the fact that they show
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eigenvalue multiplicities as in Eq. (10). In this respect, we define the prior distribution for

the reduced-form parameters as follows

ry o 8 1{Q(¢|F, S) # 0}
75 ({Q0|F.5) # 0})

that, by construction, assigns probability one to the distribution of data that admits eigenvalue
multiplicity and is consistent with the identifying restrictions. As the structural parameters
are a function of (¢, Q) € & x O(n), we define a joint prior for the two sets of parameters
(¢,Q) as myq = Tq|p Ty, Where g4 is supported on Q(¢ |F,S) € O (n).

In the case of no multiplicity, sign and permutation normalizations allow to pin down
just one admissible (), and g4 becomes a degenerate distribution centered on such . In
the case of multiplicity and zero restrictions satisfying the pattern in Eq. (14), instead, the
HSVAR will be only set identified and the prior mg4 has to be specified in order to obtain
a posterior distribution for the structural parameters and impulse responses, as desired in
standard Bayesian approach. Other than being a challenging task for applied economists to
specify mg)e, it has been shown that the choice of such a prior, being never updated by the data,
can have non-negligible impact on the posterior inference even asymptotically (Baumeister and
Hamilton, 2015).

In order to fix this unpleasant issue, we use the robust Bayes inference proposed by Gi-
acomini and Kitagawa (2021). This approach consists in fixing a single prior 7, for the
reduced-form parameters, but a set of priors for mg|,. This strategy allows to obtain a class of
posteriors for (¢, Q)) and, as a consequence, for the impulse response of interest r = r(¢, Q).

According to Giacomini and Kitagawa (2021), the results of this procedure can be sum-
marized by reporting the posterior mean bounds interval, that can be seen as an estimator
for the identified set, and an associated robustified credible region measuring the uncertainty
related to the former. In particular, if we define ¢(¢) = inf{r(¢, Q): Q€ Qp|F, S)} and
u(¢) = sup{r(¢,Q) : Q € Q(¢|F,S)}, the posterior mean bounds interval can be written as
[ Js U(D)dy: [, u(qﬁ)d@)} . The robustified credible region, instead, consists in an interval C,

for which the posterior probability is greater than or equal to a uniformly, i.e. .y (Cy) > a.
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IV.2 Computing posterior bounds

In this subsection we present an algorithm to be used in the case of two volatility regimes in the
data with known break date. This last assumption is rather standard in the literature, being
the break dates associated to well documented changes in the policy conduct or to financial

crises.”

Algorithm 1. Let y_;i1,...,Y%0,Y1,---,yr be a sample of observations characterized by a
break in the volatility occurred at time Ty, that is known or exogenously determined. Fiz a

normalization rule N.

(Step 1) Estimate the HSVAR model through the ML estimator as in Eq. (67)° obtain the
estimated Q and A and check for eigenvalue multiplicity (e.g. Liitkepohl, Meitz,
Netsunajev, and Saikkonen, 2021, or Lewis, 2021). If there is no multiplicity, or
the shock of interest can be attributed to a particular g that comes out from an
eigenvalue without multiplicity, then such shock is point identified (apart from sign)
and the inference on the IRFs is standard. Then STOP.

If there are multiplicities and the shock of interest cannot be attributed to the already
identified columns of Q, then consider equality and sign restrictions, F(¢,Q) and
S(p,Q), respectively, to identify the shock of interest associated to q;* € Q(\;); then

move to Step 2.

(Step 2) Specify a prior for the reduced-form parameters 7, and estimate a Bayesian HVAR
as suggested in Appendix E and obtain draws from the posterior distribution of Te|y,

the parameters of the reduced form of the HVAR.

(Step 3) Take one draw ¢ = (B, £21,§2,) from the posterior distribution of Ty . From this draw
obtain the covariance matrices £y and §25. Solve the eigen-decomposition in Eq. (8)

and collect the eigenvalues in the matriz A and the eigenvectors in the matriz ().

(Step 4) Extract from Q the basis of the space Q(N;), whose columns are associated with the

possible multiple eigenvalues, and define the matriz Q», containing the n — m; ei-

"See, among many others, Lanne and Liitkepohl (2008), Boivin and Giannoni (2006), Angelini, Bacchiocchi,
Caggiano, and Fanelli (2019), Rigobon (2003), Bacchiocchi (2017), Carriero, Marcellino, and Tornese (2023).
Moreover, Rigobon (2003) also shows consistency of the estimated parameters in the case of break date miss-
specification.

80r through the feasible GLS as in Eq. (66).
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genvectors orthogonal to Q(N;). If the zero restrictions meet the rank condition in
Theorem 1, then Q(¢|F,S) is non-empty and the point identified columns of Q(N\;),
for the draw of ¢, can be easily determined through Algorithm 1 in RWZ; then move
to Step 5. If, instead, the zero restrictions do not meet the rank condition in The-
orem 1, then the model is only set identified and, given the draw of ¢, check whether

Q(@|F,S) is empty or not by following the sub-routines below:

(Step 4.1) Let z; ~ N(0, I,,) be a draw of an n-variate standard normal random variable.
Let G} = M,z be the nx1 residual vector in the linear projection of z; onto an
n x fi regressor matriz Fi(¢)'. For k= 2,...m;, run the following procedure
sequentially: draw z, ~ N(0,1,) and compute G, = Mz, where Myzy is
the residual vector in the linear projection of zj, onto the n X (fi +mn —m; +
k—1) matriz (Fi(¢),Qx, @, . .-, ds_1). The vectors i, ..., q., are mutually
orthogonal, orthogonal to Qy,, and satisfy the equality restrictions.

(Step 4.2) Given G, ..., q.,, obtained in the previous step, define

qi G,
Q)\i = ~1 Y ~ ’
14t G,
where || -|| is the Euclidean metric in R, then arrange the sign of each column

of Q, according to the sign normalization as defined by S € D(n). Based
on the obtained Q)y, with appropriate sign normalization, form the () matrix
by collecting the columns in Q», and Qy, according to the correct ordering
determined by the permutation matriz P € P(n).
(Step 4.3) Check whether @) obtained in (Step 4.2) is such that

(Ap, Ay) = (PSQ’Z;},,, PSQ’Z;}TB), for appropriate S € D(n) and P €
P(n), satisfies the sign restrictions S(¢,Q) > 0. If so, retain this @ and
proceed to (Step 5). Otherwise, repeat (Step 4.1) and (Step 4.2) a mazimum
of L times (e.g. L = 3000) or until Q is obtained satisfying S(¢,Q) > 0. If
none of the L draws of Q satisfies S(¢,Q) > 0, approximate Q(¢ |F,S) as

being empty and return to (Step 3) with the following draw of ¢.

(Step 5) Given ¢ and QQ = (Q,\i, Q,\i), with the correct ordering determined by P € P(n), and
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correct sign normalization determined by S € D(n), obtained in (Step 4), compute the
lower and upper bounds of I1S(¢ |F,S) by solving the following constrained nonlinear

optimization problem:

((¢) = arg min (D),

Ag

s.t. Q/Q = Iy, F(¢7 Q) =0
(PSQ' X1, PSQ'YT,.B) € N, and 8(¢,Q) >0

and u(p) = argrgzixc;h(@q;* under the same set of constraints. If the zero restrictions

K3

meet the rank condition in Theorem 1, then @ = (Q)\i, Q,\Z) is a singleton and (@) =
u(¢).

(Step 6) Repeat (Step 3) - (Step 5) M times to obtain [{(¢m), u(dm)], m=1,..., M. Approa-
imate the set of posterior means by the sample averages of <€(q§m), m=1,..., M)
and (u(¢m), m = 1,...,M>.

(Step 7) To obtain an approzimation of the smallest robust credible region with credibility

€ (0,1), define d(n,¢) = max {|n — (o), |n — u(®)|}, and let Z,(n) be the sample
a-th quantile of (d(n, Gm):m=1,... M) An approzimated smallest robust credible

region for n is an interval centered at arg min, Z,(n) with radius min, Z,(n).

Some remarks about the algorithm are in order. The first one is about the prior for the
two covariance matrices {21 and (2. As the aim of the analysis is to highlight the possible
eigenvalue multiplicity, it would be preferable to use diffuse priors, like diagonal matrices with
equal values on the main diagonal, that from one side are non-informative and on the other
side consider all the eigenvalues to be equal and let the likelihood function to play the relevant
role in this respect.

Second, the way the draws from the posterior distribution are obtained depends on the
theoretical results of Appendix E. Using independent priors for (2, {2, and ¢p allows to
develop a Gibbs sampler that is rather simple and permits to explore the joint posterior
distribution in a very convenient way. Step 3 of our algorithm is based on this approach for
generating the draws ¢ from the distribution 74y. Any alternative way, however, can be

performed without altering the other steps of the algorithm.
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Third, checking for the emptiness of the identified set in the case of sign restrictions is per-
formed in Step 4 by using linear projections starting from normal draws, as in Giacomini and
Kitagawa (2021) and many other contributions in the Bayesian literature. As an alternative,
we could use the QR decomposition as proposed by Arias et al. (2018).

Fourth, for each of the draws consistent with the zero and sign restrictions, we consider
it as if there were eigenvalue multiplicities, regardless of whether it is effectively so from a
statistical point of view, for the draw ¢. In this respect, the eigenvectors associated to the
potential multiple eigenvalues act as a basis for the space of the not identified columns of Q).
From one side, this way of proceeding is extremely conservative as it completely ignores the
amount of information contained in all those draws where all the eigenvalues are substantially
distinguished. From the other side, however, it avoids the consequences of a pre-testing step to
be applied to each draw to statistically check for eigenvalue multiplicity. Our inference, thus,
is robust to eigenvalue multiplicity in the sense that we apply the robust Bayesian approach
to the set identified columns of () associated to the suspected multiple eigenvalues.

Fifth, the constrained nonlinear optimization problem in Step 5 is less demanding than the
one in Algorithm 1 by Giacomini and Kitagawa (2021), as the argument is not the entire matrix
@ but just a subset of its columns. Even if the HVAR model is relatively large, the number
of eigenvectors generating the subspace Q()\;) is in general relatively small and we do not
expect concerns about the convergence properties of the numerical optimization step. On the
contrary, we could replace Step 5 by a new algorithm in the spirit of Algorithm 2 in Giacomini
and Kitagawa (2021), where the constrained nonlinear optimization problem is substituted by
iterating many times Step 4.1-Step 4.3 and approximate the interval [E(gbm), u((bm)} with the
minimum and maximum values obtained in such iterations. If the number of iterations goes
to infinity, such alternative bounds still provide a consistent estimator of the identified set.

Sixth, the algorithm works even in the case the zero restrictions allow to point identify the
matrix @). In this case, the set Q(¢ |F,S) is always non-empty, and the constrained nonlinear
optimization problem simply returns ¢(¢) = u(¢). The inference, then, becomes standard.

From a theoretical point of view, Giacomini and Kitagawa (2021) discuss the importance
of convexity, continuity and differentiability of the identified set 1.S(¢ |F,S) for the posterior

means to have a valid frequentist interpretation. Obviously, the same has to be verified in our
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setup. If this is the case, they show that the set of posterior means is a consistent estimator
of the true identified set and the robust credible region is an asymptotically valid confidence
set for the true identified set.

Concerning convexity, we have already proved it in the previous Theorems 2 and 3. About
continuity and differentiability, since we use the same set of zero and sign restrictions as in
Giacomini and Kitagawa (2021), extending their Proposition 4 and Proposition 5 to our setup
is straightforward. Definitely, appropriate choice of zero and sign restrictions associated with
mild regularity conditions on the coefficient matrices of such restrictions guarantee our results

on HSVARs to have a valid frequentist interpretation, as for traditional SVARs.

V  Empirical Application

We apply our methodology to the SVAR model for the global crude oil market of Kilian (2009)
that includes three variables: the percent change in global crude oil production (Aprod,), an
index of global real economic activity (rea;) and the logarithm of the real price of crude oil
(rpo). Data are monthly and the sample period runs from January 1973 through December
2007.° While Kilian (2009) identifies three structural shocks that drive the real price of
crude oil using a simple recursive scheme, Liitkepohl et al. (2020), Liitkepohl and NetSunajev
(2014) and Liitkepohl (2013) show that the same structural innovations can also be recovered
by exploiting the existence of distinct volatility regimes.!® We set the lag order of the VAR
equal to 12 and follow Liitkepohl et al. (2020) that distinguish between two volatility regimes
with — an exogenously determined — change point in October 1987.1

Table 2 in Appendix G reports the estimated As and the results of the test by Liitkepohl
et al. (2020) for eigenvalue multiplicity. From the test it clearly emerges that Hy : Ay = A3
cannot be rejected by the data, implying that standard identification through heteroskedasti-
city fails. In fact, only one structural shock can be statistically identified relying on changes

in volatility. If the identified shock cannot be given an interpretation that is consistent with

9We rely on exactly the same dataset as Kilian (2009). See Appendix G for details and additional results.
10T dentification through heteroskedasticity has found other applications in studies of the crude oil market.
See e.g. Bruns and Liitkepohl (2023) and Kénzig (2021).

"Note that Liitkepohl et al. (2020), Liitkepohl and Netsunajev (2014) and Liitkepohl (2013) rely on a VAR
of order 3, while Kilian (2009) stresses that a VAR of order 24 is necessary to capture long price cycles of
crude oil and hence for accurately estimating the impulse responses in global oil market models. The selected
lag order is thus a compromise between these two approaches.
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Table 1: Sign Restrictions on impact responses (C'= Agy') in model M,

Oil supply Positive aggregate  Positive oil-specific
disruption demand shock demand shock
Aprody () + *
rea; - (+) *
POy + + (+)
Notes: “ * 7 denotes that the sign of the impact response is unrestricted. Signs along the {nain diagonal are in brackets to

highlight that these are not actual sign restrictions, but sign normalizations placed on C' = A .

economic theory, or if one wishes to identify other structural shocks, additional sign or exclu-
sion restrictions are needed. In this case, Theorem 1 and its implementation in Algorithm 1

become extremely useful.

V.1 Point and set identification of oil supply and demand shocks

We write the relationship between structural innovations, ¢, and reduced-form errors, u; = Ce,

as follows:
Aprod oil supply shock
Uy €11 C12 C13 €t
_ aggregate demand shock
u; — | €1 C22 Co3 e (19)
rpo oil—specific demand shock
Uy C31 C32 Cs3 €t

where C' corresponds to the impact response matrix (A;'). We consider four SVARs based

on different identifying restrictions:

e M, a recursively identified SVAR model with c¢io = ¢13 = co3 = 0;

e M, a standard HSVAR model identified exploiting changes in volatility and assuming

distinct eigenvalues;

e M,, an HSVAR model that imposes eigenvalue multiplicity and exploits static and

dynamic sign restrictions;

e M3, an HSVAR model that allows for eigenvalue multiplicity and imposes one exclusion

restriction (cg; = 0).

Model M, is the recursively identified SVAR model of Kilian (2009) used as a benchmark
against which we compare results from HSVAR models. Three exclusion restrictions — ¢j5 =
c13 = co3 = 0 — allow to point identify an oil supply shock and two demand shocks (i.e. aggreg-

ate and oil-specific demand shocks). Oil supply shocks represent innovations to the current
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physical availability of crude oil. Aggregate demand shocks capture unexpected changes of
the demand for all industrial commodities driven by fluctuations in the global business cycle,
while oil-specific demand shocks represent shifts in the precautionary demand for crude oil
triggered by concerns about the future availability of supplies.

The HSVAR model M; exploits changes in volatility for identifying structural shocks,
without imposing additional exclusion or sign restrictions. We assume the eigenvalues to be
all distinct, although results in Table 2(b) in the Appendix highlight the existence of eigenvalue
multiplicity.

For this reason, in model My we impose the constraint Ay = A3 in Step 3 of Algorithm 1.
With two distinct eigenvalues, we can point identify only one structural shock that, as will be
shown in Section V.2, yields impulse responses consistent with those associated with an oil-
specific demand shock. The remaining structural shocks are set identified combining static and
dynamic sign restrictions. See Table 1 in Appendix G. We postulate that a negative oil supply
shock increases the real price of crude oil and depresses global real economic activity on impact.
A positive aggregate demand shock is expected to raise oil price and production on impact.
Notice that we also place sign normalizations on the main diagonal of C'= A;"'. Furthermore,
we constrain the sign of the response of real crude oil price to oil supply disruptions to be
positive for twelve months, starting from the impact response. These additional restrictions
rule out models with the real price of crude oil decreasing below its starting level after a
negative oil supply shock.

While specification M allows to point identify a single structural shock, because of eigen-
value multiplicity the HSVAR model remains set identified. In this case, Theorem 1 shows
that point identification of the HSVAR model can be achieved with a single exclusion restric-
tion. In model M3, we add one exclusion restriction on the impact response matrix: co; = 0.
This restriction implies that the first shock does not affect real economic activity within the
same month. Compared to the recursively identified model, M, when a volatility shift is ex-
ploited the identification scheme is less demanding. In fact in model M3 point identification
is achieved — at least in statistical sense — combining the shift in the volatility of one of the

structural shocks with a single zero restriction.
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V.2 Impulse response analysis

All specifications are estimated with Bayesian techniques drawing from the posterior of reduced-
form parameters until we obtain 1000 realizations of the non-empty identified set. We estimate
the whole set of structural impulse response functions over an horizon of 24 months. Notice
that we report the implied response of world crude oil production obtained by cumulating
that for Aprod;. We focus on shocks that are expected to raise the real price of crude oil.
Therefore, in the case of supply shocks we plot the responses to a negative shock representing
a disruption of crude oil supply.

Impulse responses for M, and M, as not informative for the implementation of our meth-
odology, are reported in Appendix G to save space (Figures G.8 and G.9, respectively). Not
surprisingly, the impulse responses for M are totally in line with the original ones in Kilian
(2009).'* Model M, instead, builds on the standard identification through heteroskedasticity
approach assuming implicitly that all eigenvalues are distinct. However, as the test by Liitke-
pohl et al. (2020) shows, changes in volatility alone here might not convey enough information
to point identify all the structural shocks. We overcome this issue by imposing restrictions in
My and Ms. Impulse responses from HSVAR models My-M3 are displayed in Figures 1-2.13

Static and dynamic sign restrictions in model M, allow to set identify supply and demand
shocks that are expected to drive the real price of crude oil. Since the only distinct eigenvalue
is associated with the oil-specific demand shock, sign restrictions are imposed on the remaining
columns of ). The impulse responses appearing in the first two columns of Figure 1 specifically
refer to those columns of @) and, as such, we also present the set of posterior means (blue
vertical bars) and the bounds of the robust credible region with credibility 68% obtained with
Algorithm 1.1

Imposing sign restrictions we recover oil supply and aggregated demand shock whose effects
on the endogenous variables of the VAR are consistent with expectations from economic theory

and previous analyses (see e.g. Kilian and Murphy, 2012). The shape of impulse responses in

12 As for the estimation, we rely on a noninformative improper Jeffreys’ prior that allows to draw reduced-
form parameters from a normal-inverse-Wishart posterior.

13Since HSVAR models normalize structural residuals to have identity covariance matrix in the first regime,
the scaling of these figures is not the same as that of Figure G.8.

40Our implementation is based on the constrained nonlinear optimization problem highlighted in Step 5 of
Algorithm 1. We follow Giacomini and Kitagawa (2021) that mitigate possible convergence problems using
five different starting values for the optimization problem in Step 5.
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Figure 1: Impulse response functions My
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Figure 2: Impulse response functions Ms
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the first two columns of Figure 1 are in line with those implied by the recursively identified
model, M. Also notice that the combination of volatility changes and sign restrictions delivers
reasonable impulse responses even in the presence of multiple eigenvalues and using less sign
restrictions than what is usually done in the literature.'® In fact, we leave one of the columns of
() completely unrestricted and exploit changes in volatility to point identify the corresponding
shock. Contrary to the standard HSVAR, M, oil supply shocks implied by M, are associated
with impulse responses that reasonably summarize the expected effects of such shocks on real
economic activity and the real price of crude oil. Here we observe a positive response of the
price of crude oil with a peak after 6 months.

The width of the HPD and of the robust credible regions for both oil supply and aggregate
demand shocks are similar. We can thus draw essentially the same conclusions using any
of them.'® Giacomini and Kitagawa (2021) propose a measure of the informativeness of the
choice of an unrevisable prior for ) that compares the width of such regions. The fact that
in our case such measure is generally small (at any horizon), indicates that the fraction of the
credible region tightened by choosing a particular unrevisable prior is very modest.!”

Model M3 illustrates that our methodology allows to point identify HSVAR models in the
presence of multiple eigenvalues and that this can be achieved with less zero restrictions than
in the case of recursive identification. In M3 we impose that the first shock does not affect
real economic activity within the same month. Interestingly, this restriction is consistent with
the evidence in Figures 1 and G.8 where we see that the impact response of real economic
activity to an oil supply shock is close to zero.

Results for M3 are reported in Figure 2. Here, the zero restriction has the effect of tightening

the width of the HPD regions, when compared to the standard HSVAR model M;. Focusing

15Tn Appendix E we show results based on the implementation of Algorithm 1 while performing the Liitkepohl
et al. (2020) test for heteroskedasticity on each draw of ¢ in the context of set identified impulse response
functions. Figure G.11 shows how performing the test for identification thorugh heteroskedasticity does not
affect the results.

16Results based on an alternative implementation of Algorithm 1 are almost identical. In such implementa-
tion, we follow Giacomini and Kitagawa (2021) and substitute Step 5 with 10000 iterations of Step 4.1-Step 4.3.
The interval [E(gbm), u(¢m)] is then approximated by the minimum and maximum values over such iterations.
This also confirms the convergence of the numerical algorithm in Step 5. See Appendix G.

1TThe informativeness of the prior with credibility a is defined as
{1 — [width highest posterior density(«))/width robust credible region(a)]}. Such fraction is in the range
0.05-0.52 for the impact response to an oil supply shock (i.e. the largest fraction is that associated with the
response of real economic activity) and in the range 0.03-0.37 for the impact response to an aggregate demand
shock (i.e. the largest fraction is that associated with the response of world crude oil production). At horizon
12 such intervals become 0.03-0.21 and 0.06-0.22.
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on the response of real price of oil to an oil disruption, we see that in this case the response is
slightly more significant, as the HPD region does not always contain the zero. One difference
with the benchmark, My, concerns the response of world crude oil production to an aggregate
demand shock that here is positive, with highest posterior density region that does not contain

the zero up to horizon 20.

VI Conclusion

This paper deals with SVAR models with structural breaks on the second moments of the
structural shocks, offering some new contributions. We first study the identification theory
and propose a set of results for easily checking whether the model is globally identified. Second,
we study the consequences on the impulse response functions of HSVARs that do not satisfy
such identifying conditions. We deal with a SVAR model with heteroskedasticity, where non
distinct changes in the variance shifts raise an identification issue. We solve the identification
problem by imposing equality and sign restrictions and provide a methodology that helps
giving a structural economic interpretation to the set or point identified shocks, by requiring
fewer restrictions to be imposed. A way to do inference on the model both in case of point and
set-identification is also proposed, as well as an empirical application of our approach to the
global crude oil market model. Some issues remain to be addressed by future research, such
as extending the model to more than two volatility regimes and analysing the consequences

of having an unknown break date.
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Appendix A Preliminary results on the identification of

HSVARSs

Some of the theoretical results we present in this section are not completely new in the liter-
ature, although they have been derived independently from other authors. However, we have
decided to report them as prerequisites for a better understanding of the main results provided
in the paper. Detailed references will be reported accordingly.

Consider an n-variable SVAR model with two regimes in structural shock variances, but
maintaining the homogeneity of the structural coefficients. We normalize the covariance matrix
of the structural shocks to n x n identity matrix in the first regime. Following the parametriz-
ation and notations we have been using so far, we analyze identification of the n x n matrix
C' that represents the inverse of structural coefficient matrix Ay, i.e. C = A; Land A, n xn
diagonal matrix with strictly positive elements. Given the reduced-form covariance matrix at

regime 1 and 2, denoted by (2, and (2, respectively, C' and A solve

0 = oo, (20)

2, = CAC' (21)

The next theorem characterizes the set of (C, A) solving this equation system. To state it,
we define P(n) as the set of n xn permutation matrices, such that pre-multiplying P € P(n) to
any matrix M performs a row-permutation of M, and post-multiplying it performs a column-
permutation. Moreover, in the case of a diagonal matrix D of size n, P’"DP performs a
permutation of the diagonal elements of D. Let D(n) be the set of n x n diagonal matrices
whose diagonal entries are either +1 or —1. That is, if the i-th diagonal entry of S € D(n) is
—1, pre-multiplying (post-multiplying) S to any matrix M flips the sign of the i-th row (resp.

column) vector of M.

Theorem 4 (Sign normalization and column-permutation). Assume (21 and {2 are non-

singular. Suppose (C*, A*) is a solution of the equation system (20)-(21). Then, the set of
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solutions solving (20)-(21) is represented as

{(C,A) = (C*SP',PA*P'): P € P(n),S € D(n)}. (22)

Proof. See the appendix. n

This theorem clarifies the fundamental indeterminacy of the solutions in the equation sys-
tem (20)-(21). Specifically, the representation of the solutions in Eq. (22) shows that (C, A)
remains observationally equivalent with respect to any permutation and change of signs of the
column vectors in C' as far as the same permutation is applied to the diagonal elements of A.
The observational equivalence with respect to S € D(n) corresponds to the indeterminacy of
the signs of structural shocks common in any SVAR modelling (see Lanne, Liitkepohl, and
Maciejowska, 2010, for an equivalent result on HSVARs). We often control such sign inde-
terminacy by imposing the sign normalization restrictions that pin down S, e.g., restricting
the diagonal elements of Ay = C'~! to be non-negative. The observational equivalence with re-
spect to the permutations corresponds to the indeterminacy of the structural parameters with
respect to the reordering of the structural equations. Rigobon (2003) noted this indeterminacy
of the ordering of the structural equations in bivariate HSVAR models and argued that sign

restrictions placed on the off-diagonal elements of Ay = C~! resolve such indeterminacy.

Theorem 4 implies that with sign normalization restrictions imposed, point-identification of
(C, A) requires an assumption that pins down the ordering of the equations (i.e., permutation
matrix P). One way to constrain the ordering of the equations is to exploit available knowledge
on the ratios of the structural shock variances of regime 1 to regime 2. In particular, assuming
a complete ordering of the structural shocks according to their variance ratios can fix the order
of the structural equations based on the diagonal entries of the true A. Hence, if a solution of
A is such that all of its diagonal elements are distinct, a complete ordering of such elements
reduces the set of solutions in Eq. (22) to a singleton. The following theorem hence follows

as a corollary of Theorem 4.

Theorem 5 (Point identification). In addition to the assumptions of Theorem 4, assume that

a solution of A has the diagonal terms all distinct. Then, with sign normalization restrictions
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and complete ordering of the structural shocks according to the variance ratios imposed, (C, A)

1s point-identified.

Proof. The theorem, apart from the potential indeterminacy due to the column permutation,
corresponds to Proposition 1 in Lanne, Liitkepohl, and Maciejowska (2010), and can be proved
in exactly the same way. However, according to Theorem 4 here before, fixing the ordering of

the shocks is also necessary in order to have point identified (C, A). O

If a solution of A has some of the diagonal elements identical, then invariance of A with
respect to a permutation that permutes only these elements fails to uniquely pin down C
within the set of solutions in Eq. (22). Partial identification of C' matrix in this case is to be
considered below.

The identification result of Theorem 5 is not constructive and it does not provide an explicit
analytical expression of (C, A) as a function of ({21, (2). A more constructive identification
result for (C,A) can be obtained by representing the equation systems (20) and (21) as a
certain eigen-decomposition problem, as already presented in Eq. (8). This perspective yields

the following succinct analytical characterization of the solutions of the equation system.

Theorem 6 (Identification and eigen-decomposition). The set of solutions solving system
(20)-(21) can be represented by (§214,.Q, A), where A is a diagonal matriz of eigenvalues of
Qigr(ZQthlr' and @Q 1s an orthogonal matriz of the corresponding eigenvectors. Hence, if the
eigenvalues of Qfgrﬁgﬂftl,f are all distinct, (C,A) is identified up to permutations and sign

changes of the structural equations.

Proof. The result immediately follows from Theorem A9.9, and the related proof, in Muirhead
(1982). 0

The claim of this theorem simplifies computation of an estimator of (C, A); the maximum
likelihood estimator for (C, A) can be computed by performing an eigen-decomposition on the
maximum likelihood estimator of {2, P $25807  subject to the sign normalization. If a complete
ordering assumption on A is available (e.g., the diagonal elements of A is decreasing), we

can obtain a point-estimator for (C, A) by ordering the eigenvalues accordingly through the

38



decomposition. If the ordering assumption is not available, then permutations of the diagonal
elements in A and the corresponding eigenvectors in ) span the identified set of (C, A). The
idea of treating identification and estimation of HSVARs as an eigen-decomposition issue has
been also pursued by Liitkepohl, Meitz, Netsunajev, and Saikkonen (2021), that developed
their test for identification via heteroskedasticity as a test on equivalent eigenvalues.

An alternative way to see and address the identification problem of (C, A) is to look at
system (20)-(21) in a slightly different way. In fact, given that A is made of positive elements,
it is possible to rewrite Eq. (21) as 2y = CAY2AY2C". The quantity CAY? could not be
unique because of the presence of an orthogonal matrix @y such that 2y = CAY2Q,QLAY2C".
Using the result in Proposition A.1 of Uhlig (2005) for the decomposition of {2 and (2, yields

the following system

C = Ql,trQl

Doy = CAV2Q,
and plugging the definition of C into the second equation we obtain
QitlrQQ,tr = Ql/ll/QQz- (23)
The next theorem discusses the identification issue of the structural parameters (C, A) in terms

of the uniqueness of ()1 and @)s.

Theorem 7 (Identification and Single Value Decomposition). The set of solutions of sys-
tem (20)-(21) can be represented by (£214,Q1,A), where A is a diagonal matriz made of
positive elements and ()1 is an orthogonal matrix solving the Single Value Decomposition
of Ql_’tlrﬂur = Q1 AY2Q,. If the entries in A are all distinct, then Q1 and Qo are unique
apart from simultaneous sign changes and permutation of their corresponding columns. Hence,

(C, A) is identified up to permutations and sign changes of the structural equations.

Proof. See the Appendix C. n
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Appendix B Geometry of identification in bivariate SVARs
and HSVARs

This appendix is dedicated to the identification issue in bivariate SVAR models. We first
introduce the notion of set identification in standard SVARs as in Giacomini and Kitagawa
(2021), and derive point identification as a particular case. Second, we move to the core of the
paper and extend the set and point identification notions to SVARs characterized by structural
breaks, that, as shown in Bacchiocchi and Fanelli (2015), is more general than the separate
analysis of each single regime.

Consider the following bivariate model, where, for simplicity, the dynamics is omitted, as

not directly involved in the identification issue:

1 —5 Dt Et
= (24)
—a 1 qt Mt
or, more compactly,
Am = €¢. (25)

In order to ease the explanation, we introduce a theoretical foundation to the model and
interpret the first equation as a demand equation while the latter as a supply equation. The
vector Y; = (py, q;) collects the two observable variables and ¢, = (g;, 1;)’ the two structural
shocks. Furthermore, let the structural shocks be characterized by null expected values and

by the following covariance matrix:

The A matrix, containing the parameters of the simultaneous relationships among the observ-

able variables, a and (3, can also be rescaled by dividing for the standard deviations of the
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shocks and obtain
1/o. —B/o.
Ag=Z712A=
—afo, 1/o,
Actually, from the observation of p; and ¢, the amount of information is contained in the

estimable covariance matrix

that is connected to the structural parameters through the non-linear system of equations

Q0 = A'¥ATY

= Aj'AyY (26)

for which, when the solution with respect to the structural parameters is unique, the identific-
ation problem is clearly solved. As is well known, however, without imposing any restriction
on the structural parameters, the solution cannot be unique as the three (estimable) empir-
ical moments contained in (2 are not sufficient to consistently estimate the four structural
parameters in Ag. In fact, the amount of information contained in {2 is the same as the one

contained in the three elements of its lower triangular Cholesky factorization, that can be

given by
W 0
\Ql,t'r - 1/2
2 _ .2 /2
Wog/wp (W — why/wp)
whose inverse is given by
= 0
o7l = “r = (w1, wo) (27)
Ltr — 2\ —1/2 2\ —1/2 = W1, W2
_qu ( : N w_p2q> (OJ2 N wp2q)
wp q wp q wp

where the two (2 x 1) vectors w; and wy are the two columns of (2, e
According to Uhlig (2005), the identification issue can be seen in terms of the non-

uniqueness of an orthogonal matrix @ € O (2), where O (2) is the set of (2 x 2) orthonormal
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matrices, such that Ay = Q'£27,, for which £ = (A{A,)~". In other words, a unique @ guar-
antees a unique Ay through a suitable rotation of 2} ., containing all the information coming
from the reduced form parameters (or, better, the information coming from the data).
Denoting with @ = (¢1, ¢2), with ¢; and g being the columns of @), the Ay matrix can be
given by
Ag=Q' 2, = (wy, wa) . (28)
P

Moreover, we consider the following assumptions:

Assumption 1. (Sign normalization) Coherently with the sign normalization presented in
Section III.1, among all the possible rotations of (2 1 through the orthogonal matrix Q €
O (2), we consider only those guaranteeing the elements on the main diagonal of Ay = Q'f2; P

to be positive. In different words, we consider only ¢; and ¢, such that ¢jw; > 0 and ¢jws > 0.

Assumption 2. (Sign restriction on o and ) Coherently with the demand and supply curves

in Eq. (24), we assume a > 0 and 3 < 0.

The first assumption, that is standard in the SVAR literature, asserts that, as the product
of Ag'Ag" is invariant to sign changes on the columns of Ag', we select only Ay = Q'f2;,
such that the elements on the main diagonal are strictly positive. Equivalently, we assume
the shock to have a positive on impact effect on the corresponding observable variable. The
second assumption, instead, refers to the economic interpretation of the two equations of the

bivariate model in Eq. (24) as a demand and a supply equation, respectively.

B.1 Set identification in bivariate SVARs

Given the bivariate SVAR model discussed before, the following proposition provides the
identification set for the two structural parameters a and (3, according to the two potential

cases of wy, > 0 or wy, < 0.

Theorem 8 (Set identification in bivariate SVARs). Given the bivariate model in Eq. (24),
under Assumption 1, then:
(Case 1): if wyy > 0, then a € <—oo; :—i} and € (—o0; 00);

(Case 11): if wyy < 0, then o € (—o0; 00) and f € (—o0; 00);
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Figure B.3: Identification of o and 3. Case I: w,, > 0

g =—o0 feasible a=0
w w
A2 q2 AWY2 feasible m
n g2
J B=0 |o = 400 o= —00
T N 2
w w
Sign restriction: 8 <0 Sign restrictions: S < 0 and a > 0

Notes: Set identification of the parameter S (left panel) and joint set identification of o and 8 (right panel). The identified set,
under the sign restriction consistent with a demand curve, i.e. 5 < 0, is represented by the red arc in both panels. In the right
panel, the set identification of o under the further sign restriction consistent with a supply curve, i.e. a > 0, is represented by
the green arc. In both cases, the standard assumption of positive diagonal terms on Ao is considered (o > 0 and o, > 0): in
light red for the first equation and in light green for the second equation.

under Assumption 1 and Assumption 2, then:
(Case I): if wyy > 0, then a € [m %ﬂ and B € (—oo; 0];

2
OJp w

(Case I1): if wyy < 0, then o € [0 00) and [ € [w—’z’ m]

) 2
Wpq wy

Proof. See the Appendix D. n

As is well known, unless we impose at least one equality restriction on one of the structural
parameters, the bivariate model cannot be point identified. More specifically, according to the
recent contribution by Rubio-Ramirez, Waggoner, and Zha (2010), if either « = 0 or § =0
(homogeneous restrictions) are imposed, the model will be globally identified, otherwise, if
any other non-homogeneous restriction is imposed, the model will be simply locally identified,
see Bacchiocchi and Kitagawa (2020). If no point restriction is imposed, the structural model
remains unidentified, but focusing on the sign restrictions coherent with the theoretical inter-
pretation of the model, together with the sign and magnitude of the elements in the reduced
form covariance matrix among the observable variables, it is possible to obtain an identified
set for & and . This is what Theorem 8 reports.

Although the formal proof is confined in the appendix, the intuition of the results can be

obtained from the graphical representations reported in Figure B.3 and Figure B.4, depending
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Figure B.4: Identification of o and 3. Case II: wy,, < 0

f=—-o0 a=10
AW2 feaSible

w7 qz

q1 g2

o = +00
A} q2
Sign restriction: f <0 Sign restrictions: < 0 and a > 0

Notes: Set identification of the parameter S (left panel) and joint set identification of o and 8 (right panel). The identified set,
under the sign restriction consistent with a demand curve, i.e. 5 < 0, is represented by the red arc in both panels. In the right
panel, the set identification of o under the further sign restriction consistent with a supply curve, i.e. a > 0, is represented by
the green arc. In both cases, the standard assumption of positive diagonal terms on A is considered (o > 0 and o, > 0): in
light red for the first equation and in light green for the second equation.

on the two potential values of w,, > 0 (Case I) and w,, < 0 (Case II), respectively, under the
sign normalization restriction discussed in Assumption 1 and sign restrictions of Assumption
2.

In Figure B.3, left panel, we report the w; and wy vectors when the estimated w,, > 0
(Case 1), as well as all the possible ¢; vectors generating strictly negative values for the (3
parameter, as in an hypothetical demand curve. In the right panel, we also include the further
restriction of positive values for the parameter «, consistent with a supply curve. The two sign
restrictions, jointly, given the orthogonality condition regarding ¢; and ¢o, implicitly impose
a set restriction for «, in terms of the feasible g vectors highlighted with the green arc in the
right panel of Figure B.3. The width of the set, as discussed in Proposition 8, depends on the
estimable elements on the covariance matrix of the observable variables {2, or equivalently, on
the inverse of its Cholesky decomposition (21 L

Similarly, in Figure B.4, we discuss the set identification of a and § when w,, < 0 (Case
IT). In this latter case, a joint analysis of the sign restrictions on o and (§ (as well as the sign
normalization), provides an identified set for §, leaving instead a to be unrestricted (though
positive). The identified set for 3, in the right panel, is highlighted by the red arrow indicating

all feasible values for the ¢; vector.
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Corollary 1 (Point identification and OLS estimation of « and ). Given the bivariate model
in Eq. (24), under Assumption 1:
(Case 1): if wpq > 0 and we restrict =0, then o = 25

(Case II): if wyy < 0 and we restrict a = 0, then f = w%q.

Proof. See the Appendix D. O

The previous Corollary 1 simply restates a standard result in econometrics. In fact, if we
introduce a zero restriction on one of the two structural parameters, then the identified set,
depending on the observed wy,, reduces to a single point (point identification of the other
parameter), that can be consistently obtained through the OLS estimator, as stated in the

corollary.

B.2 Point and set identification in bivariate HSVARs

Consider the model in Eq.s (24)-(25), but with a clear evidence of a shift in the variances of
the observable variables. According to the HSVAR model introduced in Section II, such shift
is simply due to a structural change involving the variances of the structural shocks, leaving
unaffected the structural relationships among the variables, captured by the two parameters

a and [, i.e.

0
¥ = . i={1,2},

where i = 1 denotes the first regime (before the break), i = 2 indicates the second regime
(after the break), while the A matrix remains as defined in Eq. (25). Similarly as before,
we standardize with respect to the standard deviations of the structural shocks in the first

regime, and define

1/075,1 _B/Ua,l (73,2/03,1 0
AOEE;UQA: and A=X'%, = ,

_0‘/077,1 1/‘77771 0 0372/0371

and, coherently with the definitions in Sections II and I1.2, let C'= A, L
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From a different perspective, we consider that the change involves only the second moments

of the distribution of the observable variables in Y; = (p;, ¢;)', showing the two covariance

matrices
W2, Wy
Q,L' = b I;‘LZ s 7 = {17 2} s (29)
Wpq,i Wy

that are connected to the structural parameters through the non-linear system of equations
(20)-(21). When the solution of the system with respect to the structural parameters is unique,
the identification problem is clearly solved. As before, we define the lower triangular Cholesky

factorization of (2; as (2,;, i = {1,2}, whose inverses are given by

[ = (Wi, woq), 1=1{L,2}, (30)

i,tr

Wpq,i
— Bgiy .
“pi i Fyl

where the two (2 x 1) vectors wy; and ws; are the two columns of Q;}i, and where

wz ' -1/2
p?z

Based on the connections between the reduced-form and the structural-form parameters
highlighted in Eq.s (20)-(21), the identification issue can be addressed by studying the solutions
of the system of equations reported in Eq. (8). Theorem 6 shows that it can be addressed
as an eigen-decomposition problem that, under the condition of distinct eigenvalues, proves
the structural parameters contained in (C, A) (or, equivalently in A, X; and X3) to be point
identified, up to permutations and sign changes of the structural equations. However, as a

matter of comparison, we first report the Rigobon’s condition for identification in bivariate

HSVARs.

Theorem 9 (Rigobon (2003) condition for point identification in bivariate HSVAR). Given
the HSVAR model described in Eq. (24) with the two covariance matrices reported in Eq. (29),
under Assumption 1, a necessary and sufficient condition for the uniqueness of the structural

parameters (C, A) is that
Q) # afdy (32)
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for any scalar a > 0.

Proof. See the proof of Theorem 1 in Rigobon (2003) and the proof of our Theorem 10 in the

Appendix D. n

The following theorem, instead, restates the Rigobon’s condition (Proposition 1, page 780,
or our Theorem 9) as the solution of the eigen-decomposition problem based on the observed
covariance matrices in Eq. (29). Moreover, it extends the results to the case of lack of

identification due to equivalent eigenvalues.

Theorem 10 (Point and set identification in bivariate HSVAR). Given the HSVAR model
described in Eq. (24) with the two covariance matrices reported in Eq. (29), the structural
parameters (C, A) are obtained through the eigen-decomposition problem discussed in Theorem
6. In particular, the two variances of the structural shocks contained in A are given by the two

eigenvalues of ;2 2,07Y ie.

2 9 2 2
Wp1Wy 2 T Wy oWy 1 2Wpg,1Wpg2 £ A

Ay = 22 (33)

2,2 _ 2 )
2(on,lc‘)q,l Wpg,1

with

1/2
2
A= (w;lwgﬂ - wi?wg,l) +4 (wi,lwp%? - wg,zwpqvl) (w;lwpq,Z - ngwpq,l)
The associated unit eigenvectors qi and qo form the columns of the orthogonal matrix Q) =
(q1, q2) such that C = §2,4,.Q. Under Assumption 1, the necessary and sufficient condition
for the uniqueness of the structural parameters (C, A) is that A # 0. If, instead, A =0, then
Rigobon’s condition fails and the HSVAR will only be set identified according to the results of

the previous Theorem 8.

Proof. See the Appendix D. n

Theorem 10 provides analytical formula to calculate the structural parameters as a function
of the eigenvalues and eigenvectors of observable matrices, i.e. the covariance matrices of the

reduced form in the two regimes, 2; and (2. Furthermore, in proving the theorem, in the
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Appendix, we also show that the necessary and sufficient condition in Eq. (32), as expected,
is equivalent to say that the two eigenvalues in Eq. (33) must be distinct (as postulated in
Theorem 6) or, put differently, the shift in the variances of the structural shocks must be
different.

However, when the quantity A = 0, from Eq. (33) we have that the two eigenvalues A\; and
Ao coincide and, according to Theorem 6, there will be infinite (not parallel) eigenvectors ¢
and g2 and, as a consequence, the orthogonal Q = (¢1, ¢2) is not unique. The model, thus, is
not point identified though we are in the presence of a structural break with distinct covariance
matrices (21 and (2,. Put differently, the information coming from the two different covariance
matrices is not sufficient for point-identifying the structural parameters of the bivariate model.

We now move to the geometric interpretation of this result. Starting from Eq. (8), we
casily obtain that Q€2 $25:02,.027,/Q = A. Fixing the quantity 7" = (2}, 027 ,/Q, then
we have that 777 = A, or, equivalently, TA™'7" = I, with I, the (n x n) identity matrix.
Interestingly, the columns of 7", obtained as a linear transformation of the columns of @),
maintain the orthogonality condition, although their length is no longer unity, but given by

the elements on the main diagonal of A. Coming back to the bivariate case, it is easy to

remark that the equation TA~'Y" = I, is the representation of two orthogonal vectors, of
length ||vq]| = A1 and [Jve|| = A2, belonging to an ellipse of equation i{—j + f’\—z =1, as shown in
Figure B.5.

Once we know A; and \s, being the two eigenvalues of the eigen-decomposition highlighted
in Theorem 6, there will be just two pairs of orthogonal vectors (other than their opposite),
(v1, v9) and (0q, Uy), having A; and Mg as their length, shown in blue and in red, respectively,
in Figure B.5. Starting from these four pairs of vectors, using the definition of 7', it is possible
to obtain four values of ) simply by linearly transforming the columns of 7" by the known
quantities 214, and (2, i.e. Q = 2} ,.02,,/T. Based on Assumption 1 (sign normalization),
just two of the four ) matrices will be retained (upper-half or lower-half of the ellipse). Fixing
a specific ordering of the eigenvalues, or, equivalently, fixing the permutation matrix P € P(n),
helps reducing to one single admissible (), making the HSVAR point identified. The problem
arises when A\; = \y. The ellipse will collapse into a circle and infinite orthogonal vectors will

be potentially admissible. In this case, of course, the HSVAR will be no longer identified.
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Figure B.5: Identification of a bivariate HSVAR

— o ll=v2ll = A

2 2
Notes: Representation of the ellipse of equation i—l + g—z = 1, where A1 and Ay are the eigenvalues of 91727)92((2;,;)/. In blue the

pairs of orthogonal vectors (v1, v2) and (—v1, —v2). In red the other two pairs of orthogonal vectors (01, 02) and (=01, —02).
The vectors v1, 01, —v1, —01 have length exactly equal to A1, and v, U2, —v2, —U2 have length exactly equal to A2. The following
orthogonality conditions hold: (v1 L va2), (01 L 02), (—v1 L —v2), (=01 L —02).

Appendix C Proofs

We first introduce some notation that will be used in the following proofs. For any reduced-
form parameter ¢ € @, let \; be an eigenvalue of the eigenproblem as in Definition 1 with
algebraic multiplicity g(\;) = m;, with associated eigenspace Q()\;) as in Eq. (9), containing
qé*, the column of ) associated with the j*-th structural shock (shock of interest). We have
defined the zero restrictions on the vectors (qi,...,¢},,) € Q(\;) in terms of the matrix F!(¢),
with ¢-a.s. full row rank equal to f; Let Q+()\;), instead, be the linear space in R™, of
dimension (n — m;), whose elements are orthogonal to Q();). A basis for this linear space is
given by (U{, ce ,v(n,mi)). We define }";L(gb) the linear subspace of R™ that is orthogonal to
the row vectors of F(¢) and to @ (\;). We let #;(¢) be the half-space in R™ defined by the
sign-normalization constraint {z € R" ’(Jj )tz > 0}, with o’ being the j-th column of £2; ..
As before, S*! indicates the unit sphere in R". Finally, given % linearly independent vectors
in R", V = (vy,...,v;) € R™* let P(V) be the linear subspace in R", of dimension (n — k)

that is orthogonal to the column vectors of V.

Lemma 2 (Diagonalization of symmetric matrices). Let {2 be a symmetric matriz in R™ ",
then it is diagonalizable, i.e. there exists an orthogonal matriz Q € O (n), made of the (unit)
eigenvectors of §2, such that 20 = QD, or equivalently, QQ'2QQ = D, where D is diagonal.
Moreover, the matriz D contains the (real) eigenvalues of §2, corresponding to the eigenvectors
m Q.
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Proof of Lemma 2. See Magnus and Neudecker (2007), Chapter 1, Theorem 13 (page 17). [

Lemma 3. In real symmetric matrices the algebraic multiplicity does correspond to the geo-

metric multiplicity.

Proof of Lemma 3. Let A be and n x n symmetric matrix whose i-th eigenvalue is represented
by A;, with algebraic multiplicity equal to 1 < m; < n. Then, there exists some unit-length

eigenvector p;;. Let B = (pil C’) be an orthogonal matrix. Then we have

Yy 0
B'AB =
0 C'AC

As the algebraic multiplicity m,; is greater than one, from the characteristic polynomial we
have that ‘C” AC — )\Jn_1| = 0, that implies there will be some non-null vector ¢ such that
(C”AC’ — )\iln_l)q = 0. Let p;o = Cq. It is easy to show that p;, is an eigenvector of A. In
fact, from the previous relation (C’AC — )\i[n,l)q = 0 we have AC¢q = \;C ¢, that implies
Apis = Nipie. Moreover, by construction, p;; will be orthogonal to p;. It will be possible,

thus, to define a new B of the form B = (pﬂ Di2 C’) such that

Ai 0 0
BAB=1 0 XN 0
0 0 C'AC
and proceed as before for all the algebraic multiplicity of A;. The matrix £ = (p“, cee pzm)

will be a basis for the eigenspace of A associated with );, and the dimension of such space will

be clearly m;, being all the columns of F orthogonal. O]

Proof of Theorem 4. Let (C,A) be a solution of the equation system different from (C*, A*)
with non singular C'. Then, there exists a n x n matrix A such that C* = C'A holds. Note
that A has to be an orthogonal matrix AA" = I as otherwise 2, = C*C* = CC’ violates. In
order for (21) to hold for both (C*, A*) and (C, A),

Q= C*A*CY = CANA'C (34)
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must hold and, hence, A = AA* A" holds. We therefore investigate the conditions on orthogonal
matrix A such that AA*A’ yields a diagonal matrix with non negative entries.

Let (A},..., ;) be the diagonal elements of A* and a;; be (i, j)-element of A. Note that
non-singularity of (2, implies A\; > 0 for all £ = 1,...,n. Noting that the (i, j)-element of

AA* A" can be expressed as Y, Araixa;r, A has to satisfy

> oher Aaikajr =0, Vi#j

22:1 )\,’Zaikajk Z 07 \V/Z = ]

The second set of conditions does not at all constrain A, while the first set of conditions
constrains A to those such that every row vector in A has only one nonzero element and
none of the row vectors in A shares the column-index for the non-zero entry. Combined with

orthogonality of A, feasible A’s can be therefore represented by A = PS. O

Proof of Theorem 7. The proof of the theorem is trivial and completely based on the proof
of the Single Value Decomposition for square matrices, see among many others Magnus and
Neudecker (2007), pages 19-20. The first point to remark is that, if we call (2, = (2} 9,
then A'/? contains the positive square root of the eigenvalues of 2 = (o ;Qltrﬂé’trﬂi P
27 }TQQQi Y as described in Theorem 6. However, for symmetric and non-singular real
matrices like (2, the number of identical eigenvalues (real and different from zero) corresponds
to the number of degenerate singular values in (2;,. As a consequence, if all the elements
in AY? are distinct, then all the singular values are non-degenerate, and the singular value
decomposition is unique (@ and ()3 are unique), up to multiplication of a specific column of

Q and Q) by -1, or changing the ordering of the elements in A2 (or A). O

Proof of Theorem 1. The proof of the theorem takes inspiration from Rubio-Ramirez, Wag-
goner, and Zha (2010) (proof of their Theorem 7). When the two covariance matrices are
perfectly proportional, or even equal, then the condition in the theorem collapses to the well

known condition in Rubio-Ramirez, Waggoner, and Zha (2010) and Bacchiocchi and Kitagawa

51



(2021), and the proof is thus immediate. On the other side, if all eigenvalues are distinct, i.e.
k = n, then the results of Theorem 6 apply. Similar results apply for all eigenvalues with
algebraic multiplicity equal to one, i.e. m; = 1. According to Lemma 3, the geometric mul-
tiplicity is equal to the algebraic one, and thus, if m; = 1 the eigenspace associated to such
eigenvalues will generate spaces of dimension one, each. Imposing unit length and sign normal-
ization allows to uniquely identify such vectors. Moreover, given Lemma 2, such vectors will
be mutually orthogonal. They will constitute the columns of () associated with the eigenvalues
of multiplicity one.

We will now turn to the case when A has multiplicity greater than 1. Let A; be characterized
by algebraic multiplicity m; < 2. Given Lemma 3, the m,; associated eigenvectors, although
not unique, represent an orthonormal basis for the subspace Q()\;), of dimension m; in R™. For
the condition in Theorem 1 to be sufficient, we need to prove that imposing such particular

pattern of zero restrictions allows to uniquely pin down orthonormal vectors lying in Q(\;).

Let VI(\;) = (v’i, o ,vfni) be a basis for the eigenspace associated to A;. The identified vectors
(4i, --..4q., ) must satisfy the following conditions:

they must be a linear combination of the orthonormal basis identified through the eigen-

problem;

they must be orthogonal each other;

they must satisfy the zero and normalization restrictions;

they must have unit length.

We can think of writing a system of equations. The number of unknowns is m; for each
vector qﬁ-, j=1,...,m;. Let the ordering of the vectors be fixed according to the number of
restrictions, from the more the less constrained. We start from the first and most constrained
vector

i i i
@ =T+ F Uy Ty

that is subjected to the m; — 1 zero restrictions F}(¢)qt = 0. Substituting the definition of ¢;
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according to the previous relation, we simply obtain:

xy
nt - rion] | | o @
T,
As rank (Fi(¢)) = m; — 1, ¢-almost surely (a.s.), then the matrix |Fi(¢)vi --- Fi(¢)vl

projecting m; orthogonal vectors in R™ onto an m; — 1 dimensional space, will generate m; — 1
linearly independent vectors in R™i. As a consequence, there will be just a uni-dimensional
space in R™ that is orthogonal to F}(¢). Let & = (Z1,...,T;,,) be a unit vector representing

a basis for this vector space, then
g =viai;+ -+ + vim@fvmi.
However, ¢; must have unit length, thus

=1 = (Wi + - + 0l Em) (Vid + o U E) =1
= (T + - +in) =1

— =1 = a=4=+l,

indicating that there will be two opposite vectors candidates for ¢}, one of which, however,
is ruled out by the normality sign restrictions. The following step consists in determining
g, € Q(N;), orthogonal to ¢} and satisfying the (m; — 2) restrictions Fj(¢)qs = 0. We can

think of a system of equations of the form
Fy(¢)gs = 0
W, = 0

where ¢! is known from the previous step. Substituting for the definition of ¢} in terms of

the basis of the vector space it belongs, i.e. V()\;) = (vi, Ul ), with simple algebra, the

s Ymy
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system can also be written as

. T
) | . .
v+ vl : =0.

q qi

According to the assumed non-redundancy of the restrictions, as in Definition 3, the quantity

F3(¢)
a
We can thus proceed as before and obtain two potential opposite unit-length vectors ¢, one

has full row rank m; — 1, we are exactly in the same situation as in Eq. (35).

of which, however, is ruled out by the sign normalization restrictions. This strategy allows to
prove the point identification of all the (qi,...,q., ) vectors associated with the i-th multiple

eigenvalue \;. The sufficient direction of the condition is thus proved.

The necessary part of the condition can be proved as follows. Let the parameter (Ag, Ay, A) €
A" (¢) be point identified. As a consequence, the set of admissible orthogonal matrices
Q(¢|F,S) will be a singleton, say Q. If the i-th column of @ is the eigenvector associ-
ated to an eigenvalue with no multiplicity (m; = 1), then it is unique and no zero restriction
is needed, thus f; =m; —j7 =1—1=0 as predicted by the theorem. For those columns of )
associated with an eigenvalue with multiplicity m; > 1 the condition can be directly proved by
using Lemma 4 in Bacchiocchi and Kitagawa (2021), that extends Lemma 9 in Rubio-Ramirez,

Waggoner, and Zha (2010) to the case of non-redundant restrictions. O

Proof of Theorem 2. Let j7* the shock of interest, that is associated with q; € Q(N\), the
eigenspace related to \;, with multiplicity m;. According to Definition 1, the space Q()\;) is
orthogonal to the linear space generated by all the other eigenvectors of the eigenproblem, that
we denote by Q+();). The dimension of Q+();) is (n —m;) and let the vectors (vi, ... ,vénfmi))

be a possible basis. Moreover, let the vectors (¢t,. .., gm,) € Q()\;) be defined in the following
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recursive way:

G € Vi(¢)=FiH(9)NHi(e) NS
@ € V3(b.41) =F () NHa(d) N P(gi) NS
¢ € Vi(6,Qip) = F5 () N Hs(d) NP(Q1) NS (36)

where the generic .7-"]”(gb) is the linear subspace of R™ that is orthogonal to the row vectors of
Fi(¢) and to Q*+(X;). The dimension of Fi*(¢) is dim(F*(¢)) = n—(n—m;) — f} = m; — f.

If 7* = 1, then we know that fi < m; — 1, and Fit(¢) N Hi(¢) is the half-space of the
linear subspace of R? with dimension m; — fi > 1. As a consequence, V/(¢,q!) is non empty
for every ¢ € @. Similarly, if j* = 2,...,m;, ]-"J”(Qﬁ) N H;«(¢) N P(Q1,+) is the half-space of
the linear subspace of R™ of dimension at least m; — f]’ —(j*=1) > 1, being f; <m; — g%
For j* =1,...,m;, thus, V}(gzﬁ, Q’i:jtl) is non empty and, as a consequence, Q(¢, F') will be

non empty, too. Non emptiness of the impulse responses is a direct consequence. Concerning

the boundedness, it immediately follows from the fact that |7’Z* < |lan(9)|| < oo for any
le{l,....,n}, j*€{l,...,mi} and h =0,1,2,..., where ||¢;n(¢)|| < oo is guaranteed by the
invertibility of the VAR characteristic polynomial. The first part of the proof is thus complete.
We can move to prove the convexity of the identified set.

Let j* =1 and f{ < m; — 1 (condition 1). Being V{(¢) the intersection of an half-space of
dimension at least 2 and an unit sphere it is path connected for all values of the reduced-form
parameters ¢. Hence, the identified set rt = c¢;(¢)g will be an interval, being the impulse
response a continuous function with a path connected domain always an interval. Concerning
condition (2) of the Theorem, we can prove the result by applying Lemma A.1 in Giacomini
and Kitagawa (2014). According to the definition of F;*(¢), that collects not simply vectors
orthogonal to the row vectors of Fji(qb), but also orthogonal to all other vectors belonging to
Q*(\;), Lemma A.1 in Giacomini and Kitagawa (2014) allows to simplify the set of admissible
¢j.. In fact, if we define €. (¢) the set of admissible g}., then using Lemma A.1 we derive that
E.(¢) = Fj(¢) N Hj-(¢) N S"'. Hence, being &}.(¢) the intersection of a half-space of a

linear subspace with dimension m; — f]" > j* > 2 with the unit sphere, it is a path connected
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set on 8" !, and the convexity of the identified set immediately follows.

In a similar way we can prove the result for condition (3) of the theorem. In this respect
we can use Lemma A.2 in Giacomini and Kitagawa (2014), that, based on our definition
of Fi*(¢), allows to derive the set of potential gj. subject to condition (3), i.e. &.(¢) =
FiH (o) N M- (¢) NP(QL,) NS™ !, According to this definition, €. (¢) is the intersection of
a half-space of a linear subspace of dimension n — (n — m;) — f;* —k>3*—k>2anda
unit sphere, and, thus, it is a path connected set on S"~!. The convexity of the identified set,
hence, clearly holds.

In all cases, the convexity of the identified set depends on ¢ € @, being the multiplicity of

A; equal to m; only ¢-a.s. Thus, convexity of the identified set holds ¢-a.s. O]

Proof of Theorem 3. The proof builds on Lemma A.2 in Giacomini and Kitagawa (2014). Let
first j* = 1 and fi < m; — 1. According to the notation introduced in Eq. (36), the set of
admissible ¢} becomes Vi(¢) N {z € R™: Si(¢)x > 0}. Moreover, let g1 be another arbitrary
unit length vector satisfying the zero, sign normalization and sign restrictions. Clearly, ac-
cording to the sign restrictions, it must hold that ¢} # ¢{1. The intuition for proving the result
consists in observing that any weighted average of the two admissible vectors, with positive

weights summing to one, continues to belong to the set. Then, if we define

i 5qi + (1—6)Gi1

= . -~ 0el0,1 37
Iogi (1= 0)i1] 0,1 (37)

it represents a connected path in Vi (¢)N{z € R" : S{(¢) x > 0}, as the denominator is always
different then zero, given that ¢} # ¢i1. Any generic couple of admissible vectors, thus, can
be connected by a connected path. The convexity of the impulse response, thus, immediately
follows. We now assume that condition (2) in Theorem 2 holds. Now, let £/.(¢) be the set
of admissible q; satisfying zero, sign normalization and sign restrictions. Let q; and cj; be
two arbitrary vectors belonging to €. (¢). Clearly, due to the sign restrictions, ¢}« # .. As

before, we consider a path between these two vectors as follows

_ 0q- + (1 —0)q..
|0gt. + (1 — 6)Gt.

¢ (6) ., 6€10,1] (38)
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which is a continuous path on the unit sphere as the denominator is always different than
zero, being q; =+ (j; Now, the path connectedness of 5; (¢) depends on whether it is possible
to obtain an admissible set of vectors Q'(6) = (qi(d),...,q., (6)) whose j*-th element is
represented by the ¢i. (6) vector. Conditional on a basis (vf,. .., vfn_mi)) for the space Q1 (\;),
the first & vectors in Q(d), k = 1,...,7* — 1 can be obtained through the solutions of the

recursive system of equations

Fi(¢)

Un—m,;

4 (9)

q.(6)=0, d€][0,1] (39)

%i—l(é)
q5-(9)

satisfying the further sign normalization restriction. As the rank of the matrix in the system
is at most n — m; + k + fi, that is always less then n because fi < m; — k, a solution always
exists. The remaining vectors for j* + 1,...,m; can be obtained recursively by extending the
system in Eq. (39). The set SJZ (¢), thus, is non empty and path connected. The convexity of
the impulse response identified set immediately follows.

Concerning point (2) of the theorem, let the zero restriction satisfy condition (3) of The-
orem 2, and let (qi, e ,qli) be the exactly identified vectors, common to all admissible Q(\)
matrices. As before, we chose two arbitrary vectors q; and q*;l*, both satisfying the zero, sign
normalization and sign restrictions, and obtain the further vector ¢.(d) as in Eq. (38). We

can thus construct the set Q*(d), whose first k columns are given by (q{, e ,q,i). Conditional
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on the choice of 6, for s =k +1,...,5* — 1, we can recursively derive ¢%(d) by solving

¢(0) =0 6€l0,1] (40)

q§_1(5)
¢ (0)

where ¢’ (0) satisfies the sign normalization restriction, and where (vf, ..., vfn_mi)) is a basis for
the space Q+();). The system always admits a solution, being the rank of the matrix less than

n by the assumption on the number of zero restrictions on g 1,...,¢% 4, being fi < m; — s,

j
for s = 1,...,5* — 1. The remaining ¢}.,,(0),...,q;,, () vectors can be recursively derived
by extending the system in Eq. (40). Once proved on how to derive Q*(d) as a function of
d €0, 1], the set 5; (¢) is path connected, and the associated impulse response identified set

is convex for every variable at any horizon. O]

Proof of Lemma 1. The (squared of the) Frobenius norm states that

fo-o

2
F

However, given the definition of {2 and 02

2 =QAQ and 2=QAY,
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we have that

o2 = ul@4e - i) (@@ - i)
— u[(QU-DHR) Q- Q)]

= tr[(A— A2
= ) (=N

Clearly, this is minimized when \ = % Y he, Ap, e, the mean of the eigenvalues corresponding

to those restricted to be equal. O]

Appendix D Proofs of Theorems on bivariate SVARs

and HSVARs

Proof of Theorem 8. Given the decomposition of Agy as in Eq. (26), then

f= - [AO](1,2) / [Ao](m) = — (qw2) / (qyw1) (41)

a = —[Ayy/[Ao)ay = — (dhw1) / (gw2) (42)

where w; and w, are defined as in Eq. (27) while ¢; and ¢, are the two columns of the
orthogonal matrix (). The proof of the theorem is extremely intuitive when observing the two
graphs in Figure B.3 and Figure B.4. Consider the situation of w,, > 0 (Case I, Figure B.3),
first. In both panels we report the observable w; and wy vectors, compatible with w,, > 0. In
the left panel we focus on all the admissible 5. First of all, if we look at the definition of
in Eq. (41), it is very simple to obtain the two values of ¢; featuring the extreme values of
B = —oo and f = oco. In both cases, ¢g; must be orthogonal to w;; however, in one case the
numerator of 5 is negative (solid line), while in the other the numerator is positive (dotted
line). The vector ¢; featuring 5 = 0 has to be orthogonal to wy. This generates two potential

¢ vectors, i.e. ¢ = (0,1) and ¢; = (0,—1). The latter, however, has to be discarded given
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Assumption 1. It can be deduced, thus, that the admissible 8 are those generated by the ¢;
vectors lying on the right half of the unit circle (light red area) and, without any restriction,
f € (=00, 00). The arc in red, instead, highlight the feasible ¢; vectors consistent with the
sign restriction § < 0, as reported in Assumption 2. In the right panel, instead, we focus on
the coefficient o. Even in this case we report the two observable vectors w; and ws. Following
the same strategy as before, we determine all the admissible vectors g» compatible with the «
coefficient. However, keeping in mind that ¢; and ¢ must be orthogonal by construction, it
can be remarked that, when ¢; reaches the two extreme values § = —oo and = oo, it can
no longer rotate counterclockwise, as it is at odds with Assumption 1. This implies that g,
can not reach the limit case of @ = co. Without any further restriction, a € (=00, w /wy,),
where this upper bound of the interval is obtained by substituting in the definition of « in
Eq. (42) the value of ¢o that is orthogonal to ¢; featuring 5 = —oco (or, equivalently, the one
featuring f = o0), i.e. ¢ = —“’—1”, being ||w; || the Euclidean norm of w;. Thus, with simple

flw

algebra, we obtain

0=~ )/ (dhon) = — (o)) / (et = 2. (43)

Wpq

If, instead, we consider the sign restrictions in Assumption 2, then the admissible vectors for
¢1 and ¢ are indicated in red and green, respectively. Specifically, being ¢s orthogonal to ¢,
it must be in between wy and —w; (green arc), providing thus a ‘natural’ restriction on the set
of possible a’s consistent with the two sign restrictions. In particular, the lower bound of the
identified set can be obtained through the definition of « in Eq. (42) when ¢, is the unitary

vector parallel to wy, i.e. g = (0 1)’. This leads to

o= () i) =~ (0 1)) /(10 1) = 22 m

5 -
“p

The second case, when wy,, < 0, can be addressed in the same way, but now the two sign
restrictions in Assumption 2 induce an identified set for 5. In particular, the upper bound
of the identified set for § can be obtained by using the definition in Eq. (41), when ¢ is
a unitary vector parallel to w;, while the lower bound can be obtained when ¢; is a unitary

vector parallel to wsy. Simple algebra provides the result for Case II in the theorem. O
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Proof of Corollary 1. We know that when w,, > 0 and 8 = 0, from Eq. (41), ¢f w2 =0. As a
consequence, from Figure B.3 (left panel), this implies ¢; = (0 1)’. Thus, substituting for g,
in Eq. (eq:alpha) and using the definition of w; and w, in Eq. (27) leads to the same result
as in Eq. (44), proving thus the first part of the corollary.

When w,, < 0 and o = 0, then ¢, w; = 0. This implies that ¢; will be the unit vector

parallel to wyq, i.e. ¢1 = “’1”. Substituting in the definition of 5 in Eq. (41), leads to

flw

[leon] o]

= (dho)  ahon) =~ (o i) / (2wt ) = e (15)

which proves the second part of the corollary. O

Proof of Theorem 10. Based on the definition of (2; and (2, the first step is to calculate the

. . -1 -1
analytical expression for (2, (%2, ie.
_1 0 2 1 Wpga
0 0.0V — wp,1 Wr2  Wpg2 wp,1 w2 v
itrof29% tr Woe 1 9
__ Ypg,
G, M Wpg2  Wyo 0 gl
“-’g,2 *wg,zwqu*wpq,sz,l
. Wp,1 w1 !
—wi,zwpq,1+qu,2W§,1 qu,lwg,z_2wpq,1wpq,2“’§,1+w;,1‘*’2,2 2
wg,l "-’2,1 1

with v, defined as in Eq. (31). The following step is to calculate the eigenvalues of the previous
matrix, that, after some algebra, corresponds to find the solutions of the following quadratic

equation of the standard form a\? + b\ + ¢ = 0:

2,2 2 2 2,2 2
22 Wp,1%Wg 2 wp,2wq,1+2wpq,1wpq72 \ Wp2Wg2 — Wpg2 —0 46
+ + =0. (46)
w2 w2, —w? w? w2, —w?
p,177q,1 pg,1 p,17g,1 pg,1

In solving the quadratic equation it is crucial to focus on the discriminant A = b? — 4ac of the

equation

2 2 2 2 )\2 2 2 2 2
Wp1Wg 2 — wp,2wq71) +4 (wp,lwp%? B wp,2wpq:1) (wq,lwp%? - quwpq,l)

A:(P
2

2
2 ) )
(wp,lwq,l Wpg,1

. (47

Given that the original matrix (2, P 1y ' is symmetric, then the two eigenvalues are clearly

real, and this implies that the discriminant will be not negative. However, if we want the
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solutions to be distinct (distinct eigenvalues), then we need to find the conditions for A to
be strictly positive. Firstly, the denominator in Eq. (47) is clearly a real positive number
beign the square of the determinant of (2, that is clearly different from zero. The condition
of distinct eigenvalues, thus, has to be find on the positiveness of the numerator of Eq. (47).
The first term of the sum is clearly non-negative, and, if we show that the second one cannot
be negative, too, then the eigenvalues will be clearly distinct as A > 0. The non-negativeness

of the second term of Eq. (47), with simple algebra, can be seen as:

2 2 2 2
(Wp,lwpqﬂ - Wp,2wpq,1) (wq,lwpqﬂ - wq,2wpq,1) > 0. (48)

It immediately emerges that if w1 and w,y2 are of different sign, the previous quantity
becomes negative. If, instead, they maintain the same sign, we need to consider the two terms

separately

2
w w
2 2 pg,2 p;2
Wy 1Wpg,2 = Wy oWpg1 = 0 = ———= > —= (49)
Wpgl Wy
w2
Wpg,2 q,2

v
—~
[SX
(=)
~—

2 2
Wy 1Wpg,2 — Wy olpg1 = 0 <=

&
N

Wpg,1

—_

In order to prove when these quantities are positive, it can be useful to consider the definition

of w; and ws as a function of the structural parameters contained in C' = A e

2 2
ci, +c¢ C11C21 + C1aC
11 12 11621 12€22
o = CC = (51)
2 2
C11C21 + C12C22 Cy + C39
2 2
, ci1din + cip o c11Co1 411 + €122 A2
2, = CAC = (52)
2 2
c11621 A1 + c12C22 M99 cy A1+ oo
where
2 /2
A . /\11 0 _ 062/051 0
2/ 9
O )\22 0 0'772/0'711

and collects the relative shifts in the variances of the structural shocks across the two regimes.
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From these relationships we obtain

Wpg,2 cr1ca1din + craca s
Wpg,1 C11C21 + C12C22
ﬁ o A+ e
;2;,1 C%l + C%z
ﬁ o 5111 + 3y oo
W§,1 B C%l + C%z

that allow to investigate the previous inequalities in Eq.s (49)-(50) as follows

2 2 2
Wpq,2 Wp,2 cricarAin + cracaadan 011/111 + cia A2
E— 2 5 < Z 2 2
Wpg,1 — Wy C11C21 + C12C22 Cp + Cip
<= 1011 (C12021 — c11022) (A11 — Ag2) >0 (53)
2 2 2
Wpq,2 Wq,2 cr1ca1 A1 + craca s o A1 + oo
2 5 = = 2 2
Wpg1 Wiy C11C21 + C12C22 €1+ €
< C21C22 (011022 - 012021) (>\11 - /\22) > 0. (54)

Given that c¢y; and g9 are positive by construction, the system of inequalities becomes

C12 (012021 - 011022) ()\11 - >\22) >0 (55)

C21 (011022 - 012021) ()\11 - )\22) > 0. (56)

At this point it is important to remember that, from the definition of C' = Aj L ¢ >0 and
co1 < 0, due to the sign restrictions on o and 5. The previous inequalities, thus, are either
always jointly satisfied or jointly never, depending on the sign of (A;; — Ag2). This result
shows that the inequality in Eq. (48) is always satisfied and thus, being the two addends of
the discriminant in Eq. (47) both non-negative, the only possibility we have to exclude for
having distinct eigenvalues is when both of them are null, i.e. we have the following system

of equations:

2 2 2 2
Wp1We,2 = WpaWg1 = 0 (57)

2 2 2 2 _
(Wp,lwpqﬂ - Wp,2wpq,1) (wq,lwp(LQ - C‘)q,zwzvq,l) = 0. (58)
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for which the solutions are:

2 2 2 2

Wp1  Wga Wp1 Wyl Wpg,1 _ Wg,1 (59)
2~ T2 2 = ) =3

Wp2 W2 Wp2  Wpg2 Wpg2  Wgo

that corresponds to the case {21 = af2y, that has been excluded in the theorem.

The eigenvectors, instead, can be calculated from the two systems

D07 — IL\) ¢ = ! =
2445 2/Ai ) @i = ) l—{1,2} (60)

1,tr

(%3

2,ir

where ); is the i-th eigenvalue and ¢; is the i-th eigenvector. Tedious algebra, not reported

here to save space, but available from the authors upon request, proves the following result:

Aw2,1+D1 —Aw371+D1

2D [(Aw;ﬁpl)z/(wgm)ﬂ] b, 2Ds [(Aw;l—Dl)z/(ngAz)H] YD,

q1 = ) G2 = . (61)

1 1
(a2, +01)7/(20322) 41] 7 [(aw2,-D1)*/(20342)41)'

72

where
1/2
A = (wz%,lwga - w§,2wg,1)2 +4 (W;,lwpqﬁ - W;zwpq,l) (wg,lwpqﬁ - w§,2wpq,1)
Dy = —2Ww2 wpg1 — WaWa g + 2w 1Wpg 1Wpq,2 + W2 1 Wa oW |
Dy = (wpawg1— sz)q,l)m
Dy = (wg’lwpqg — wﬁzwp%l) )

The ¢; and gy unit vectors form the columns of the orthogonal matrix @ = (¢1, ¢2) such that
C = ‘Ql,tT‘Q'

If all the s are equal, the relation Q' 2], wa, §25,, 02, Q = A will become

Q7102002 QLY = \QQ'
= Q02,0 = M,
= Qo823 = My (2,
- 2 = M},
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which implies that the condition for identification fails. In other words, the two covariance
matrices, once rescaled for the factor A, contain the same amount of information. While A can
be used for estimating the variance of the structural shocks, the remaining part of information
will be used for estimating the parameters of the conditional expected value of the structural
form, i.e. Ag. However, this amount of information is the same as in standard bivariate SVARs,

indicating that the results of Theorem 8 can be applied. This completes the proof. O

Appendix E Frequentist and Bayesian estimators for reduced-

form HVAR

We present three estimators for the parameters of the HVAR: two frequentist ones and a
Bayesian one. This last is at the heart of our procedure for making inference in the case of

set identification.

E.1 GLS and ML estimators

Let the nm x 1 vector of parameters ¢ = vec (B) and the n x T matrices Y = [y1, 2 .. ., yr]
containing the data, and U = [uj uy ..., u] containing the error terms. We can define y =

vec (Y) and u = vec (U). Now, the presence of volatility clusters allows to write

I, ® (2 0
vioy=| (62)
0 Ip, ® (2
where 77 = Tg and Ty, = T — Tg. Given the initial observations y_;.1,...,y9, the m x T
matrix X =[xy, ..., x4 ..., x7|, with 2, = (L, y;_, ... y;_,)-

Given these definitions, the reduced-form HVAR in Eq. (3) can be written as

y=(X'®I,)¢p +u or Y =BX +U. (63)
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These compact notations, as well as a suitable partitioning of y and X as follows

!
y=[ "t and X = ( X1 Xy ) (64)
yQ m><T1 m><T2
nT2><1

allow to define a feasible generalized least squares (GLS) estimator. In particular, using the

well known formula for the GLS estimator

-1 -1
. Ir @ 2 0
bpars = | (Xen) | T (X'®1)
0 I, ® (2
-1
xony | B0 y (65)
0 Ip, ® (2

and according to the partitioning of y and X as given in Eq. (64), the formula for the GLS

estimator becomes:
2 A—1 SEN A—1 A—1
dBGLS = [(XlX{ ® Q7Y + (Xo X} @ 25 )} [(Xl ® Q7 Ny + (X @ 2y )yz} (66)

where (2, i = {1, 2}, is the covariance matrix of the residuals when Eq. (63) is estimated
with equation-wise ordinary least squares in a first step.
Moreover, apart from a constant term, and conditional on the initial observations y_;.1, ..., o,

the reduced-form Gaussian likelihood function can be written as

T Ty 1 , /
L(Y|¢B,Ql,\92)0( ‘.Ql| 2 |QQ| 2 exp _é[y_<X ®In)¢B]

-1
Ir ® (4 0
1 [y — (X' ® I,)d5] } (67)
0 I, ® (2
If the data generating process is Gaussian, maximizing L(Y |¢p, {21, {2) with respect to the
parameters (¢p, (21, {25) gives the maximum likelihood (ML) estimators. Instead, if departures

from gaussianity do arise, the resulting estimators are quasi-ML estimators.

The Gaussian likelihood function reported in Eq. (67) can be transformed in a more
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convenient way to derive the posterior distributions discussed in the next section. The term

in the exponent can be written as

—1 —1
I, ® 12 0 I, ® (2 0
y/ T 1 y — 2¢’B<X/ 2 [n)/ T 1 y—]—
0 Ir, ® (2 0 I, ® §2
-1
/ / / ITl ® Ql 0 /
0 I, ® (2

Using the mentionend partitioning of the X and y allows to write the addends as follows

-1
I, ® 0

y y = yilln, ® 2) y +ya(ln, @ 25) 'y,
0 I, ® (2
—1
/ / / ITl ® “Ql 0 o / / Q—l / / / Q_l 4
Pp(X' ® I,) y = ¢p(X1® 027 )y + dp(Xs® 0257)ys
0 I, ® $2
-1
l ’ / [Tl ® “(21 0 / _ / / -1 / 1 -1
Pp(X'® 1) (X' @ L)¢p = ¢p(XiX]® 27 )op + ¢p(XoXy ® (257 )dp.
0 I, ® (2

Thus, an alternative expression for the likelihood function becomes

51 _ 1 _ _
L(Y|¢p, 21, 25) o< |77 |27 F eXP{ 5 [y (I, ® 20) 'y + yh (I, ® $25) 'ya +
=205 (X1 @ 27" y1 — 2¢5(X5 @ 251 ya +

(X0 X] © 27 + Gp(Xa X © 25 )] J68)

E.2 Bayesian estimators

Combining the likelihood function in Eq. (68) with the following Normal and inverse Wishart

priors for ¢p, 21 and (2

¢B ~ N(M¢, V¢)
Q2 ~ (S, di)

2y ~ V(S do)
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allows to obtain the following posterior distributions for ¢, {2, and {2
_d1+n+1 _d2+n+l

T gt
P(¢p, 21, |Y) o |12 (|72 |72 [ 2

1 -1
exp{—sw— (X' @L)os (™", 0 ) w— (X ® L)ow)

2 0 Iy ® 22

1 1
exp { — Etr [_(21_151]} exp { — §tr [92_152}}. (69)

This joint distribution is not of a known form and drawing directly from it is very hard.
However, given the conditional distributions for ¢ given {2, and (25, and those of {2, and (2
given ¢p, derived in the following subsections, we can explore the posterior joint distribution

by using a Gibbs sampler.

E.2.1 Case I) Inference on ¢p with ; and (2, known

If £y and {2, are known parameters, the kernel of the likelihood that is relevant for ¢p is

1
L(Y|pp) o< exps — =[—2¢5(X] @ 27" y1 — 205(X5 @ 25 yo +
2

+ IR X] © 27)os + 0p(XaXp © 27 )] |
As a prior distribution for ¢ we can use

(bB NN(,ud)a V¢)7

where P(¢p) o< exp { — 3[(¢5 — ud,)’Vdjl((ﬁB — p)] }, with the argument of the exponential

function that can be written as
(68 — 16) V(08 — 1o)] = DV, b5 — 205V, s + 1,V g

where the last addend of the sum is not informative about ¢p.
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The posterior distribution, thus, can be written as

1
P(¢plY) o eXP{ ~3 [ — 2¢5(X] @ Q7 'y1 — 2¢75(X5 @ 251) yo +
+ ¢p(XaX] @ 27 s + ¢ (XoX) @ 2, ) op +

0V o — 205V ] |
However, it is possible to show that:

Pp(X1 X1 ® 7 )op + ¢p(Xo Xy @ 2 )bp + ¢V, 'op = O [(XiX] @ ) + (X X5 2, + V! ¢

x—1
V¢>

= ¢V, op.
Moreover:

—20l(X{ ® 27y — 2605(X3 ® 2571y — 205V, o
= =20 [(X] @ 7)) 'y1 + (X5 @ 2571 'ya + Vi ug]
= 20V V(X @ 07y + (X © 0257 o+ Vg
P
= =20V (X[ @ 27 + (X5 @ 251 + V'] T (X @ 00 1+ (X5 ® 2571 yo + Vg

w

= =200V i,

If we add the term p V; -1 1y, that is however not informative for the parameter ¢, the

posterior is proportional to a Normal distribution

where

-1
Vi = [(aXie o)+ (6Xe ) + V)

py = ViV e + (X7 © 20)'y + (X5 © 2)').

E.2.2 Case II) Inference on (2, and (2 with ¢ known

In the literature it is quite common to use inverse Wishart priors for covariance matrices. In

our case we follow this approach and proceed in the same way for each of the two covariance
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matrices (27 and (25:

Ql ~ ZW(Sl,dl)
2 ~ V(S dy)

d;+n+1

with P(£2;) oc [2;|7 2 exp{ — Ltr [02;7'S;], for i = 1, 2, and where E((2;) = =

i—n—1"

The first step consists in re-writing the likelihood function in a more convenient way. If

the underlying model is written as
y=X'®IL)¢p+u

the likelihood function is as in Eq. (67) before. The exponent can be re-written as

[y1(Ir, @ 27 )1 + ¢p(XaX]) @ 27N — 9i(X) @ 7)o — ¢5(Xy @ 27 )y ]

[y2(Ir, @ 025 )yo + ¢p(XoXE) @ 025 ) o — 12 (X @ 25 )dp — ¢p( X2 @ 25 )ys].
(71)

Using simple properties of the trace and vec operators, the first part under brackets can be

written as

yill, @ 7y = o {Y'27'Y )} =t {Q7'Y/}
Pp(X1 X @27 Nop = tr{BO'BX, X} =tr {2;'BX,X|B'}
y(X; @ Yy = tr{Y'Q7'BX ) =tr {07 'BX Y/}

Pp(X1027 Dy = tr{B' 7YX} =t {027V X B}
where we have used the decomposition

Y =[Y Y]

nxT TLXTl nXTQ

and the fact that ¢p = vec (B). Obviously, these transformations can be replicated for the
second part under the brackets of the exponent of the likelihood function. Definitely, the two

exponents in Eq. (71) become

tr [27' (V1Y) + BX1X{B' — BX1Y] — Y1X{B)] + tr [, (Y2Y] + BX, X} B' — BX,Y] — Y2X}B)]
= tr [271(Ys — BX))(Y: — BX,)'] + tr [25 (Y — BX5)(Ys — BXo)].
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Now, if we combine the likelihood function with the two priors in Eq. (70) it becomes rather
simple to derive the posterior distributions for the two variables 2, and (2. Overall, the joint

posterior distribution for {2, and {2, can be written as

P21 2IY) o P(2) P(2) P(Y|21, )
= 2 o |l
exp { 3t (25781 Jep { — 50 (037532)}
exp { — 5t [27' (Vi — BX)(Yi — BX)])

exp { %tr (2 (Ya — BX,)(Ys — BXa)]}. (72)

However, focusing on the posterior distribution of each of the two covariance matrices, we

obtain that

P(Ql‘Y) XX ’Ql‘—wexp{ — %tr [Ql—l(sl + (Yl . BXl)(Yl o BXl)/)}}
P(QQ|Y) X |Q2|—Mexp{ — étr [92—1(5«2+ (}/2 _BXQ)(Y2 _BX2>/):|}7

or, more compactly

2~ W(S], dy)

2y ~ (S5, dy),

where
S¥ = S+ (Y1 — BX))(Yi — BX)) = Sy + 21.01s(Ty — nm)
S; = 52 + (}/2 — BXQ)(YVQ — BXQ)/ = Sg —|— QQ,OLS(T2 — nm)
d; = T1 + dl
d; - T2 —|— d2
and where
Qiows = (Y; — BX;)(Y; — BX;)' /(T — nm), with i = {1, 2}. (73)
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Appendix F The test for identification via heteroske-
dasticity of Liitkepohl et al. (2020)

Liitkepohl et al. (2020) develop their test for identification via heteroskedasticity under the
assumption that reduced-form error terms wu; have an elliptically symmetric distribution with
density (\/M)_l g(u,2-1u;) where §2,, is the covariance matrix in regime m = 1,2,
g(.) is positive function such that the density integrates to one and the fourth moments of
the distribution exist. A characteristic of elliptical distributions is that to impose the same
kurtosis parameter for all the n elements of u;. Formally, if we denote with w?, the i-th
diagonal element of (2,,, the kurtosis parameter r,, = [F(u},)/3w,] — 1 is the same for all
1 =1,...,n but can be different for different volatility regimes, m.

To implement the test of Liitkepohl et al. (2020), estimates of the kurtosis parameters are

obtained as follows:

I‘%m:?)_ Zm— s m:1,2
n &= w;
with
5 =m\4 ~4
Z?:ZtGT’”(jim_él) andwT:Tm_l(wf—%ﬂ> m=1,2

where @; = T} ZteTm U;; is the sample average of reduced-form residuals, @}, for the m-th
regime, T' =1,... ., Tgand To =T+ 1,...,T.
Denoting the estimated eigenvalues — ordered from largest to smallest — as \; fori = 1,...,n

we write the test statistic as:

s+r 5\1/7‘
H, (k1,k2) = —c (7, Ry, i) Trlog (%)
k

T k=s+1
Ss+r ) 1 s+r )
= —c (1, ki, ko) | T Z log A\, — T'r log (— Z )\k>]
k=s-+1 )

with s =0,...,n—1and r =2,...,n — s. Note that the first line of the equation highlights
that the statistic is based on the ratio of the geometric mean to the arithmetic mean of the

estimators of the eigenvalues assumed to be identical under the null. The term ¢ (7, &y, /2;2)2 is
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defined as follows:

c (7—7 I%la /%2) =

9 <1+/2;1+1+/%2
T 1—7

-1
) with 7 = Tg/T

Note that the fraction 7 is assumed to be known and fixed. The test statistic converges in

distribution to a x?((r +2)(r — 1)/2) and involves the following pair of hypotheses:
HO . )\s—l—l = )\s—|—2 =...= )\s—l-'r against H1 . _|H0

where “=" denotes negation.

Let us consider the case of testing identification via heteroskedasticity with n = 3 variables.
Then we rely on H3 (&1, ko) with a x?(5) distribution to test: Hy: A = Ay = A3. If the null is
rejected we test Hy : Ay = Ay and Hy : Ay = A3 using Ho (&1, o) with a x?(2) distribution. If

also these hypotheses are rejected, the SVAR model is fully identified via heteroskedasticity.

Appendix G Empirical application — Further details and

results

G.1 Data

The data entering the VAR model in Section V are the following:

e Aprod, is percent change in world crude oil production and is defined as 100 x1n(prod; /prod, ).
World oil production, prod;, is sourced from the Monthly Energy Review maintained by

the U.S. Energy Information Administration.

e The index of real economic activity, rea,, is based on dry cargo ocean shipping rates and
is available on the website of Lutz Kilian. It is used to proxy monthly changes in the

world demand for industrial commodities, including crude oil.

e The real price of crude oil, rpoy, is the refiner’s acquisition cost of imported crude oil and
it is available from the U.S. EIA. Deflation is carried out using the CPI for All Urban

Consumers, as reported by the Bureau of Labor Statistics.
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The time series included in the VAR and the reduced-form residuals of the VAR(6) are
shown in Figures G.6 and G.7 that also displays a vertical bar in correspondence of the break
date, October 1987.

Figure G.6: Data used in the SVAR model for the global market of crude oil (January 1973-
December 2007)
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Table 2(a) shows the estimated eigenvalues and their standard errors. Recall that the
variances of structural shocks are normalized to unity before the break and hence estimates
in Table 2(a) represent the change in variances from the first to the second volatility regime.
We see that the volatility of the structural shock associated with the first eigenvalue is larger
after the break, while the remaining structural shocks have relative variances lower than unity
in the second regime.

Table 2(b) illustrates that the test for identification through heteroskedasticity of Liitkepohl
et al. (2020) does not allow to reject the null hypothesis Hy : Ay = A3. Eigenvalue multiplicity
implies that standard identification through heteroskedasticity, presented in Theorem 5, fails.

Figure G.8 shows impulse responses'® for the recursively identified model of Kilian (2009),

M, along with the highest posterior density (HPD) region with credibility 68%. An oil supply

18 As for the estimation, we rely on a noninformative improper Jeffreys’ prior that allows to draw reduced-
form parameters from a normal-inverse-Wishart posterior.
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Figure G.7: Reduced form residuals and break date
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Notes: Reduced form residuals and time of the break (1st October 1987). Monthly data.

shock causes an immediate and long-lasting decline in global oil production, a decrease in real
economic activity and a transitory increase in the real price of crude oil that peaks six months
after the shock. Notice that the 68% HPD region of the price response does not include zero
only for the first eight months. A shock boosting aggregate demand causes a small temporary
increase in global oil production and large and persistent increase in the index of real economic
activity and in the price of crude oil. For the latter two responses the 68% HPD region never
contains zero. An unexpected rise in oil-specific demand generates a long-lasting increase in
the real price of crude oil and a temporary jump in the index of real economic activity. Lastly,
an oil market demand shock causes a small and only transitory positive effect on global oil
production. Notice that in this case the 68% HPD always includes zero.

Model M assumes that all eigenvalues are distinct and hence we estimate the reduced
form of the model with the Gibbs sampler discussed in Appendix E. The last column of Fig-
ure G.9 shows the responses to the shock that is associated with the only distinct eigenvalue.
Comparing the shape of these responses to the one in Figure G.8, we see that they are consist-

ent with those following an oil-specific demand shock. Impulse responses in the second and
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Table 2: Estimated eigenvalues and tests for identification through heteroskedasticity

Panel (a). Estimated eigenvalues

A 3.712 (1.032)
Aa 0.341 (0.095)
As 0.159 (0.046)
Panel (b). Tests for identification through heteroskedasticity
H, H,.(R1,R2) Degrees of freedom () p-value
Al =X = A3 79.166 5 0.0000
A1 = A2 35.569 2 0.0000
A2 = A3 4.2758 2 0.1179

Notes: Panel (a) shows the estimated eigenvalues, j\j for j = 1, 2,3 and their standard errors in brackets.

Panel (b) shows the test for identification through heteroskedasticity of Liitkepohl, Meitz, NetSunajev, and Saikkonen (2021).
H,(R1, k2) is the test statistics with r» — 1 degrees of freedom, where &y, for m = 1,2 is an estimate of the kurtosis of reduced-form
residuals in the m-th volatility regime. See Appendix F.

Figure G.8: Impulse response functions M,
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Notes: the blue line with dots represents the posterior mean response, the dashed red lines identify upper and lower bounds of
the highest posterior density region with credibility 68%. Recursive identification imposing c12 = c13 = c23 = 0. The model is
point-identified

third column of Figure G.9 are consistent with those induced by an aggregate demand shock
and an oil supply shock respectively. Focusing on the response of the real price of crude oil
to an oil supply shock, we see that the 68% HPD region always contains zero. Similarly, the
response of real economic activity to an oil supply disruption is very modest. All in all, these

results highlight how heteroskedasticity conveys information that is useful to the purpose of
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Figure G.9: Impulse response functions M;
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Notes: the blue line with dots represents the standard Bayesian posterior mean response, the dashed red lines identify upper
and lower bounds of the highest posterior density region with credibility 68%. Identification is obtained via heteroskedasticity
assuming distinct eigenvalues

identifying structural shocks.
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Figure G.10: Impulse response functions My — Alternative implementation of Algorithm 1
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Notes: the blue line with dots represents the standard Bayesian posterior mean response, the dashed red lines identify upper and
lower bounds of the highest posterior density region with credibility 68%. Plots in first and second columns of the figure also
report the set of posterior means (blue vertical bars) and the bounds of the robust credible region with credibility 68% (solid black
curves). Identification via heteroskedasticity with multiple eigenvalues (i.e. only one shock is point identified), static and dynamic
sign restrictions. We substitute Step 5 of Algorithm 1 with 10000 iterations of Step 4.1-Step 4.3. The interval [K(qﬁm), u(¢m)] is
then approximated by the minimum and maximum values over such iterations.
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Figure G.11: Impulse response functions M, - Testing the eigenvalues
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Notes: the blue line with dots represents the standard Bayesian posterior mean response, the dashed red lines identify upper and
lower bounds of the highest posterior density region with credibility 68%. Plots in first and second columns of the figure also
report the set of posterior means (blue vertical bars) and the bounds of the robust credible region with credibility 68% (solid
black curves). Identification via heteroskedasticity with multiple eigenvalues (i.e. only one shock is point identified), static and

dynamic sign restrictions.
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