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I Introduction

In recent years, there has been growing interest in the use of external information to identify

the parameters of econometric models. This external information, derived from features of

the data or from proxies designed to capture specific structural shocks, is often combined with

restrictions on the parameter space suggested by economic theory. A case in point is the lit-

erature that exploits heteroskedasticity to identify simultaneous equations systems (Rigobon,

2003) and structural vector autoregressive (SVARs) models (Lanne and Lütkepohl, 2008).

When the data exhibit volatility clusters that can be attributed to shifts in the variance of

structural innovations – while holding the parameters of the conditional mean constant – there

are important gains in terms of identification of the structural parameters (see, for example,

Kilian and Lütkepohl, 2017, Chapter 14, or the recent empirical work of Brunnermeier, Palia,

Sastry, and Sims, 2021).

While heteroskedastic SVAR models have become a standard tool in macroeconometrics, it

is important to recognize that two caveats apply when using them. First, identification through

heteroskedasticity is a purely statistical identification strategy. In other words, shocks have a

structural interpretation only if they give rise to impulse responses with a credible economic

interpretation. Second, the size of the shifts in the variance of different shocks must be

sufficiently heterogeneous for the identification to be valid.1

On the contrary, if some of the shifts in the variances are not distinct, heteroskedasticity

cannot be used to identify structural shocks. In this case, the literature does not provide

a specific solution for continuing to use HSVAR models, and other identification schemes -

provided they are credible - must be considered to solve the identification problem. Inter-

estingly, Carriero et al. (2023) propose a blended approach, where heteroskedasticity can be

combined with sign restrictions, narrative restrictions, and external instruments.

This paper presents a new strategy that allows researchers to keep using HSVAR mod-

els even in the absence of information to identify the shocks of interest. Our approach starts

where statistical tests would suggest stopping: namely, when some shifts in the variances of the

structural shocks are suspected to be statistically indistinguishable from each other. Although

1Lütkepohl et al. (2020) developed a formal test for identification by heteroskedasticity. Lewis (2022)
proposes an alternative test of weak identification in the context of heteroskedastic SVARs (HSVARs). This
test, based on the IV literature, can be applied in very specific specifications.
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in a rather different setup, based on simultaneous equation models for cross-sectional data,

Lütkepohl, Milunovich, and Yang (2020) also investigate the situation where (conditional)

heteroskedasticity involves only a subset of equations. They propose tests for the heteroske-

dasticity rank and a way for estimating and doing classical inference on the parameters of the

equations associated with conditional heteroskedasticity.

Instead, our idea is to combine the presence of heteroskedasticity with some zero and/or

sign restrictions on parameters or functions of them. This strategy allows us to deal with

HSVAR models that are not point, but only set identified. The paper makes three main

contributions. The first concerns the development of analytical results on identification. We

show that, apart from normalisation constraints, a combination of heteroskedasticity and zero

restrictions allows point identification in HSVAR models even in the absence of heterogeneous

variance shifts. Importantly, the number of zero restrictions in this case is much smaller than

that generally used for point identification in traditional SVAR models.

Our second contribution, closely related to the first, is to extend the topological analysis of

the identified set offered in Giacomini and Kitagawa (2021) for SVAR models to the HSVAR

literature, and to derive analytical results for point identification and for set identification

with convex identified sets. The mapping between the reduced and structural form parameters

facilitates the extension of the literature on set identification, largely used in standard SVAR

models, to the HSVAR framework.

Finally, another contribution concerns estimation and inference on the identified set. In

this respect, we adapt the robust Bayesian approach of Giacomini and Kitagawa (2021) to

our setup. In fact, this approach is perfectly suited to the peculiarities of HSVARs, where

the identifying assumptions are violated due to heterogeneous variance shifts in the structural

shocks. We provide a useful algorithm to implement our strategy for estimation and inference

of the identified set. This provides applied economists and econometricians with a new tool

for their empirical analyses when clusters of volatility provide a useful but insufficient source

of information for the identification of structural shocks.

An empirical example about the identification of structural shocks driving the real price

of crude oil illustrates our methodology. In this example, we show how to set or point identify

structural shocks when the standard HSVAR approach fails.
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The rest of the paper is organized as follows. The next section briefly surveys the literature;

Section II introduces the econometric framework and provides some preliminary results on the

identification of HSVARs. Section III is dedicated to the theory of identification in HSVARs.

Section IV focuses on the inferential analysis of identified sets through a Robust Bayesian

approach. Section V presents the empirical example and Section VI concludes. An appendix

with the proofs and many other results completes the paper.

I.1 Related literature

This paper is strongly related to the identification through heteroskedasticity literature both

for simultaneous equations systems (Rigobon, 2003; Klein and Vella, 2010; Lewbel, 2012;

Lütkepohl, Milunovich, and Yang, 2020) and SVARs (see e.g. Lanne and Lütkepohl, 2008;

Bacchiocchi, 2017; Kilian and Lütkepohl, 2017; Lütkepohl and Netšunajev, 2017). However,

to the best of our knowledge, the idea that heteroskedasticity can be helpful in identifying

econometric models has been firstly proposed by Sentana and Fiorentini (2001) in a context

of factor models, nesting SVAR models as well. Our contribution builds on the results of the

statistical tests for heterogeneous variance shifts by Lütkepohl et al. (2020) and Lewis (2022),

in the sense that our approach can be implemented when any statistical tests suggest a failure

of the identifying information from heteroskedasticity to point identify the structural shocks.2

As previously mentioned, a paper that relates to our research is Carriero et al. (2023),

where the authors combine different identification strategies, each of which can contribute

resolving the critical issues of the others. Specifically, they propose different algorithms that

combine sign restrictions, heteroskedasticity and external instruments. In our approach we

focus on weak identification due to lack of (or, better, not enough) heterogeneity in the vari-

ances, where zero and sign restrictions are tools for recovering the identification issue. In their

approach, instead, heteroskedasticity is mainly intended as a tool to reduce the identified set

obtained by sign restrictions, narrative restrictions, and external instruments approaches.

While in our contribution the main assumption is that only the variances of the shocks

2Different approaches exploiting heteroskedasticity for the identification of structural shocks are the recent
contribution by Lewis (2021), that does not require volatility clusters, but simply needs for time-varying
volatility of unknown form, as well as Lütkepohl and Schlaak (2021), who analyse identification through
heteroskedasticity in the context of proxy SVAR models. See also Sims, 2020, for a recent contribution on
heteroskedastic SVARs with misspecified regimes.
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are subject to breaks, other authors find evidence of structural shifts among the structural

parameters of the model, too (see, among others Sims and Zha, 2006; Inoue and Rossi, 2011;

Boivin and Giannoni, 2006). This literature, that does not focus solely on SVAR models,

allows for impulse responses to be different in the different regimes, while they are the same

when only the variances do change.3

This paper contributes also to the literature on point and set identified SVARs. For

point identification, we exploit the general criteria in Rubio-Ramı́rez et al. (2010), with sub-

sequent modifications proposed by Bacchiocchi and Kitagawa (2021), for global identification

on SVARs. As for set identification, we use sign restrictions to set identify the structural im-

pulse response functions of interest (Rubio-Ramı́rez, Waggoner, and Zha, 2010; Uhlig, 2005).

Strictly connected to this last point is the literature on how to do inference on set identified

models. As stated in the introduction, our approach builds on Giacomini and Kitagawa (2021),

but other approaches have been proposed in the literature to pursue this purpose.4

II SVARs and HSVARs: some definitions

II.1 Econometric framework

Consider the following Structural Vector Autoregressive (SVAR) model

A0yt = a+
l∑

i=1

Aiyt−i + εt (1)

where yt is a n-dimensional vector of observable variables, εt is a vector of mutually ortho-

gonal white noise processes, normally distributed with mean zero and time-varying covariance

matrix. Specifically, let the covariance matrix of the structural shocks εt be as follows

E(εtε
′
t) =

 In if 1 ≤ t ≤ TB

Λ if TB < t ≤ T
(2)

3However, only few papers constructively use the presence of regime shifts to solve the identification issue
(Magnusson and Mavroeidis, 2014; Bacchiocchi and Fanelli, 2015; Bacchiocchi and Kitagawa, 2023).

4Gafarov et al. (2018) and Granziera et al. (2018) provide results based on a frequentist setting, while,
among others, Baumeister and Hamilton (2015) and Arias et al. (2018) adopt Bayesian inference.
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where 1 < TB < T is the break date, In is the (n × n) identity matrix, and Λ is a (n × n)

diagonal matrix made of strictly positive numbers.5 The n×1 vector a contains the intercepts

and the n×n matrices Ai, with i = 0, . . . , l, collect the structural parameters. The structural

parameters can be indicated as θ = (A0, A+, Λ) ∈ Θ ⊂ R(n+m)n+n, with m = nl + 1, and

where the n×m matrix A+ = (a,A1, . . . , Al). We denote the open dense set of all structural

parameters by PS ⊂ R(n+m)n+n. The model in Eq.s (1)-(2) is a standard SVAR model with

structural shocks characterized by different volatility regimes. As shown in Eq. (2), structural

innovations have unit variance before the break, and variance equal to the diagonal elements

of Λ, denoted as λi after the break. Hereafter, this model is referred to as heteroskedastic

SVAR (HSVAR).

The reduced-form VAR model can be written as

yt = b+
l∑

i=1

Biyt−i + ut (3)

where b = A−1
0 a, Bi = A−1

0 Ai. Furthermore, for both the regimes, the vector of error terms is

defined as ut = A−1
0 εt, with

E(utu
′
t) =

 Ω1 = A−1
0 A−1′

0 if 1 ≤ t ≤ TB

Ω2 = A−1
0 ΛA−1′

0 if TB < t ≤ T.
(4)

The VAR model, thus, presents different covariance matrices of the error terms Ω1 and Ω2,

and thus heteroskedasticity, as in, among others, Rigobon (2003), Lanne and Lütkepohl

(2008), and Bacchiocchi and Fanelli (2015). The reduced-form parameters are denoted by

ϕ = (B,Ω1, Ω2) ∈ Φ ⊂ Rn+n2l ×Ωn ×Ωn, where the n×m matrix B = (b, B1, . . . , Bl) and Ωn

is the space of positive-semidefinite matrices of dimension n× n. The set of all reduced-form

parameters is denoted by PR ⊂ Rnm+n(n+1). The reduced form will be denoted HVAR.

Conditional on the restrictions of the domain Φ such that all the roots of the characteristic

polynomial lie outside the unit circle, there exists an equivalent VMA(∞) representation for

5We consider the initial conditions for the first regime, y0, . . . , y1−l, as given, while for the second regime
they are fixed as the last l observations of the former, in order to guarantee the contiguity of the regimes on
the whole sample.
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the HVAR in Eq. (3), assuming the form6

yt = c+
∞∑
j=0

CjA
−1
0 εt−j (5)

where Cj is the j -th coefficient matrix of

(
In −

∑l
i=1 BiL

i

)−1

. Based on the VMA represent-

ation, the long-run impulse response, IR∞, and the one at any h, IRh, are, respectively

IR∞ = lim
h→∞

IRh =

(
In −

l∑
j=1

Bj

)
A−1

0 and IRh = ChA
−1
0 , (6)

whose (i, j)-element represents the response of the i -th variable of yt+h to a unit shock on the

j -th element of εt, independently of the regime considered.

II.2 Preliminary results on the identification of HSVARs

As is well known in the SVAR literature, without any restriction it is impossible to uniquely

pin down the structural parameters based on the reduced form of the model. If, instead, we

suppose the parameters of the conditional mean in the HSVAR in Eq. (1) to remain stable

across the two regimes, then Rigobon (2003), for a bivariate case, and Lanne and Lütkepohl

(2008), for the general case, proved there is some gain in terms of identification. In this section

we introduce some general theoretical results for the HSVAR in Eq. (1). All the results will

be formally presented in Appendix A.

Consider an n-variable HSVAR model as in Eq.s (1)-(2). Following the parametrization

and notations we have been using so far, we analyze identification of the n× n matrix C that

represents the inverse of structural coefficient matrix A0, i.e. C ≡ A−1
0 , and Λ, n×n diagonal

matrix with strictly positive elements. Given the reduced-form covariance matrix at regime 1

6The HVAR in Eq.s (3)-(4) is characterized by the same parameters for the conditional mean over the
two regimes, therefore breaks are confined to second moments parameters. As a consequence, the absence of
unit roots is a characteristic of the model in the whole sample, and not within each regime. Furthermore, as
shown in Eq. (5), the VMA representation is unique and not regime-specific. It follows that, if shocks have
the same magnitude, impulse response functions in the two regimes are equivalent. If instead one considers
a one standard deviation structural shock, impulse responses will be of different magnitude, but have exactly
the same shape in different regimes.
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and 2, denoted by Ω1 and Ω2, respectively, C and Λ solve

Ω1 = CC ′ and Ω2 = CΛC ′. (7)

The first important result on the identification of the HSVAR is about the set of solutions,

in terms of (C,Λ), of the system of equations in (7). In Theorem 4 in Appendix A we show

that the solution is not unique, but any permutations and change of signs of the column

vectors in C, as far as the same permutations are applied to the diagonal elements of Λ,

remain observationally equivalent. In order to solve this indeterminacy, one possibility is to

fix a specific ordering for the equations, that corresponds to fixing a specific ordering for the

variances of the structural shocks in the second regime, i.e. the diagonal elements in Λ. Of

course, this becomes problematic when some of the variances are equivalent.

In this direction, the second important result, reported in Theorem 5 in Appendix A, states

how point identification is possible only once the solution for Λ is characterized by all distinct

elements on the main diagonal. In this case, fixing a specific ordering of the structural shocks,

as well as the standard sign normalization, leads the solution (C,Λ) to be unique, and thus

point identified.

Finally, the third important result concerns the representation of the system in (7) as an

eigen-decomposition problem. To see this, let Ω1,tr be a lower triangular Cholesky decomposi-

tion of Ω1. Following Proposition A.1 of Uhlig (2005), the set of non-singular matrices solving

Eq. (20) can be expressed as C = Ω1,trQ, Q ∈ O(n), where O(n) is the set of n×n orthogonal

matrices. Plugging this representation of C into Eq. (7), leads to

C = Ω1,trQ

Ω−1
1,trΩ2Ω

−1′
1,tr = QΛQ′.

(8)

Symmetry of Ω−1
1,trΩ2Ω

−1′
1,tr and orthogonality of Q implies that solving Eq. (8) is precisely

the eigen-decomposition problem. Identification of (C,Λ) can be therefore cast as uniqueness

of the eigen-decomposition of Ω−1
1,trΩ2Ω

−1′
1,tr into the diagonal matrix of eigenvalues and the

corresponding eigenvectors collected in Q. According to the previous result, an HSVAR can

be point identified, up to permutations and sign changes, if the eigenvalues of Ω−1
1,trΩ2Ω

−1′
1,tr are
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all distinct. A nice geometric interpretation for this result, for the simple bivariate case, is

discussed in Appendix B.

III Set-identification due to proportional volatility shifts

In this section we extend the preliminary results reported in Section II.2 where, conditional on

the reduced-form parameters, the identification issue was addressed as an eigen-decomposition

problem. Specifically, let Λ = (λ1, λ2, . . . , λn) be the eigenvalues of the eigen-decomposition

problem in Eq. (8), where C = A−1
0 collects impact responses, Q is the orthogonal matrix

containing the eigenvectors, and Ωi, i = {1, 2}, are the reduced-form covariance matrices

with Ωi,tr the related Cholesky lower triangular matrices. Theorem 6 shows that a necessary

condition for point identification of the structural parameters is the absence of multiplicity

in eigenvalues in Λ. In the case of multiple eigenvalues, in fact, the identification of C fails.

In particular, if two (or more) eigenvalues are equal, say λj = λj+1, then the corresponding

columns of Q – i.e. the eigenvectors associated to λj and λj+1 – denoted by qj and qj+1, are

not unique. In fact they represent a basis for the two-dimensional vector space in Rn, but any

other couple of orthogonal unitary vector belonging to such a space could be an acceptable

candidate to enter in the Q matrix. The matrix Q, thus, will not be a singleton in O(n)

anymore, but will be a set of admissible orthogonal matrices solving the eigen-decomposition

problem in Eq. (8).

More suitable notations and formalization are thus necessary. We start by formalizing the

eigen-decomposition problem, with the possibility of multiple eigenvalues.

Definition 1 (Eigenspace of multiple eigenvalues). Let the eigen-decomposition problem in

Eq. (8) be characterized by the following eigenvalues

λ1 ̸= . . . ̸= λk

where the generic i -th distinct eigenvalue has algebraic multiplicity equal to mi, i.e. g(λi) =

mi, i = 1, . . . , k, with
∑k

i=1mi = n. Let Q(λi) be the eigenspace associated to the i -th

9



eigenvalue λi, i.e.

Q(λi) =

(
span

(
qi1, . . . , q

i
mi

)
∩ Sn−1

)
⊂ Rn (9)

where qi1, . . . , q
i
mi

are linearly independent (not unique) eigenvectors associated to λi with

Sn−1 being the unit sphere in Rn. Moreover, given the result in Lemma 3 in Appendix C,

dim
(
Q(λi)

)
= mi.

According to Definition 1, let Qλ = Q(λ1)×· · ·×Q(λk). It is possible to introduce the set

of all admissible matrices Q as follows

Q(ϕ) =
{(

q1, q2, . . . , qn
)
∈ Qλ

}
. (10)

As in the case of multiplicities Q(ϕ) is not a singleton in O (n), one could think of imposing

restrictions, likewise it is traditionally done in SVARs. This will be the topic of the next

section.

III.1 Normalization, equality and sign restrictions

One of the characteristics of HSVARs is that the identification is obtained from a statistical

point of view, without imposing restrictions on the parameters. However, we have seen in

Section II.2 that normalization restrictions are important and play a relevant role. Moreover,

we will see that in some cases, imposing equality or sign restrictions can be interesting to

improve the results obtained through HSVARs, especially when some of the assumptions in

Theorems 5 to 7 are no longer valid, as the presence of multiplicities. In this section we discuss

normalization restrictions first, then we move to the equality restrictions before concluding

with sign restrictions.

Normalization restrictions

The normalization issue has been largely debated in econometrics. Specifically for SVAR

models, we refer to Waggoner and Zha (2003) and, more recently, to Hamilton, Waggoner,

and Zha (2007). They show that a poor normalization rule can invalidate statistical inference

on the parameters. In our setup, the first normalization restriction consists in imposing the
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covariance matrix of the structural shocks to be the identity matrix in the first regime, i.e.

E(εtε
′
t) = In, and, as a consequence, the Λ matrix in the second regime, i.e. E(εtε

′
t) = Λ, as

already introduced in Eq. (2). However, as discussed in Section II.2, indeterminacy of the

solutions also arises in terms of the sign of the columns of C and the particular ranking of the

variaces in Λ. The normalization rule used in this paper is summarized here below.

Definition 2. (Normalization) A normalization rule can be characterized by a set N ⊂ PS

such that for any structural parameter point θ = (A0, A+, Λ) ∈ PS, there exists a unique

permutation matrix P ∈ P(n) and a unique diagonal matrix S ∈ D(n), with +1 and -1 along

the diagonal, such that (PSA0, PSA+, PΛP ′) ∈ N .

For the sake of simplicity, concerning the ordering of the elements in the diagonal matrix

Λ, we assume

λ1 ≥ λ2 ≥ . . . ≥ λn. (11)

It is important to stress that all the results developed in the paper can be rephrased in terms

of different normalization rules coherent with Definition 2.

Equality restrictions

The classical approach to address the identification issue in SVARs is to impose equality

restrictions on the structural parameters or on particular linear and non-linear functions of

them. Although not common in the literature of heteroskedastic SVARs, we do not preclude

this possibility and allow for possible equality and sign restrictions. We first consider the

former, while the latter will be presented in the next section.

Giacomini and Kitagawa (2021) and Arias et al. (2018), in the context of SVARs, stress

that imposing constraints on the structural parameters, or on suitable functions of them, such

as on the impulse responses, corresponds to restrict the columns of the orthogonal matrix

Q ∈ Q(ϕ). Here below, we show that it also happens in the context of HSVARs. In fact,

as shown in Eq. (8), the structural-form parameters can be defined as the product of the

orthogonal matrix Q and quantities coming from the reduced form. As these latter elements

are unrestricted, imposing restrictions is equivalent to constrain the columns of Q. The set of
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equality restrictions we consider, in compact notation, are as follows:

F(ϕ,Q) ≡
((

F1(ϕ)q1
)′
,
(
F2(ϕ)q2

)′
, . . . ,

(
Fn(ϕ)qn

)′)′
= 0 (12)

where Fi(ϕ), of dimension fi × n, depends on the reduced-form parameters ϕ = (B,Ω1, Ω2)

only, while qi is the i -th column of Q. The total number of restrictions characterizing the

HSVAR is given by f = f1 + · · ·+ fn.

Focusing our attention on the i -th eigenspace as in the eigen-decomposition in Definition 1,

let the set of restrictions on the vectors
(
qi1, . . . , , q

i
mi

)
∈ Q(λi) be contained in the f i×nmatrix

Fi(ϕ,Q), with f i denoting the total number of restrictions on the vectors
(
qi1, . . . , , q

i
mi

)
.

Moreover, let the f i
j restrictions on the j -th vector qij be defined as F i

j (ϕ)q
i
j = 0. This allows

us to introduce the following definition:

Definition 3 (Non redundant restrictions). Given reduced-form parameter ϕ = (B,Ω1, Ω2),

let the HSVAR be characterized by the eigen-decomposition in Definition 1. Moreover, let the

mi vectors
(
qi1, . . . , , q

i
mi

)
∈ Q(λi), i = 1, . . . , k, be characterized by zero restrictions of the

form F i
j (ϕ)q

i
j = 0. Such identifying restrictions are non redundant if, for j = 1, . . . ,mi, the

orthogonal vectors
(
qi1, . . . , , q

i
j−1

)
are linearly independent of the row vectors of F i

j (ϕ).

Bacchiocchi and Kitagawa (2021) introduced first this definition of non redundant restric-

tions to complement the result in Theorem 7 in Rubio-Ramı́rez, Waggoner, and Zha (2010)

on the identification of SVARs. In the same way, we will use it for developing conditions for

point identification in our HSVARs.

Sign restrictions

Uhlig (2005), among others, proposes sign restrictions to impulse responses in order to obtain

identified sets rather than point identification. Giacomini and Kitagawa (2021) and Arias et

al. (2018) combine sign and zero restrictions to tighten the impulse response identified sets.

As for the equality restrictions, sign restrictions can be seen as constraints on the columns

of the Q matrix. Suppose to impose a set of sh,i restrictions on the impulse responses to the

i -th shock at the h-th horizon. We can write the sign restrictions as Sh,i(ϕ)qi ≥ 0, where,

given the definition of the impulse response provided in Eq. (6), Sh,i ≡ Dh,i Ch(B)Ω1,tr is a
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sh,i×n matrix with Dh,i, of dimension sh,1×n, a selection matrix made of 1 and −1 elements

indicating the restricted impulse responses. A compact notation for all the sign restrictions

can be defined by

S(ϕ,Q) ≥ 0. (13)

Admissible structural parameters and identified set

Based on the parametrization of the model and the set of all possible restrictions considered

above, it is now possible to formally define when a point in the parametric space can be

indicated as admissible.

Definition 4 (Admissible parameters). A structural parameter point (A0, A+, Λ) is said ad-

missible if it satisfies the normalization restrictions of Definition 2, the equality restrictions

in Eq. (12) and the sign restrictions in Eq. (13). Given the set of reduced-form parameters

ϕ ∈ Φ, the set of admissible parameters can be defined as

Ar(ϕ) ≡
{(

A0, A+, Λ
)
=
(
Q′Ω−1

1,tr, Q
′Ω−1

1,trB,Λ
)
∈ N

∣∣∣Q ∈ Q(ϕ), F(ϕ,Q) = 0, S(ϕ,Q) ≥ 0
}
.

At the same time, it is interesting to focus on the set of all the admissible matrices Q. We

thus provide the following definition.

Definition 5 (Admissible Q matrices). An orthogonal matrix Q is said admissible if, condi-

tional on the reduced-form parameters, it satisfies the normalization restrictions of Definition

2, the equality restrictions in Eq. (12) and the sign restrictions in Eq. (13). The set of all

admissible Q matrices is defined as

Q(ϕ |F, S) ≡
{
Q ∈ Q(ϕ)

∣∣∣ (A0, A+, Λ
)
∈ Ar(ϕ)

}
.

Finally, given that the attention could not be limited to the structural parameters but on

transformations of them, like impulse response functions, it is also important to define the so

called identified set.

Definition 6 (Identified set). Given the set of admissible Q matrices Q(ϕ |F, S) according to
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Definition 5, an identified set is defined as

IS(ϕ |F, S) ≡
{
η
(
ϕ,Q

) ∣∣∣Q ∈ Q(ϕ |F, S)
}
.

with η(ϕ,Q) being the transformation of the structural parameters of interest, defined as

η(ϕ,Q) = IRh
gj = e′gCh(B)Ω1,trQej ≡ c′gh(ϕ) qj

where IRh
gj is the (g,j )-th element of IRh and c′gh(ϕ) is the g-th row of Ch(B)Ω1,tr.

III.2 Point-identification in HSVARs with proportional volatility

shifts

As discussed in the previous sections, point identification in HSVAR can be achieved only if

the eigen-decomposition problem in Eq. (8) is characterized by n distinct eigenvalues. This

feature does correspond to non proportional shifts in the variances of the structural shocks

among the two regimes.

If this is not the case, or, practically speaking, we do not have credible evidence on struc-

tural breaks on the second moments of some of the variables in our HSVAR, point identification

can still be reached by combining heteroskedasticity with zero restrictions. The next theorem

formalizes this intuition.

Theorem 1. Consider an HSVAR characterized by the eigenvalues and eigenspaces as in

Definition 1 and by the admissible parameters as in Definition 4. The structural parameter

(A0, A+, Λ) ∈ Ar(ϕ) is point identified if and only if, for each λi, i = 1, . . . , k, Q(λi) =(
qi1, . . . , q

i
mi

)
, the unit-length vector qij is subject to f i

j = mi−j non-redundant zero restrictions,

for j = 1, . . . ,mi.

Proof. See the Appendix C.

Remark 1. The previous theorem generalizes two important results in the literature of SVAR

models. Firstly, when all the eigenvalues are distinct, then k = n and the algebraic multiplicity
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mi = 1, i = 1, . . . , n. As a consequence, Q(λi) = (qi), and no zero restriction is needed for

point identification, being f i = 1 − 1 = 0, as originally introduced by Lanne and Lütkepohl

(2008), and restated in the previous Theorems 5 and 6. Secondly, if one has no credible

believes about structural breaks on the second moments of the observable variables, or the

shift produces perfectly proportional covariance matrices in the two regimes, i.e. Ω2 = λΩ1

for any positive scalar λ (specifically, λ = 1 in the case of no breaks), then Ω = Ω−1
1,trΩ2Ω

−1′
1,tr =

Ω−1
1,tr

√
λΩ1,tr

√
λΩ′

1,trΩ
−1′
1,tr = λIn; there is just an eigenvalue whose associated eigenspace is the

whole Sn−1, i.e the unit sphere in Rn. The condition in Theorem 1 reduces to the identification

condition for global identification in Rubio-Ramı́rez et al. (2010) (Theorem 7).

Remark 2. Identification in HSVARs is essentially a statistical issue, in the sense that, once

the information contained in the data in terms of the two volatility regimes allows to point

identify all the structural parameters, the path of the impulse responses allows the researcher

to identify a posteriori the shocks of interest. In this respect, if the eigenvalues do not present

multiplicity, the only task will be to see which shocks produce impulse responses coherent

with the economic theory and label these shocks accordingly. The same happens if, even in

the case of multiplicity, the shocks of interest are those corresponding to the eigenvalues with

no multiplicity, whose eigenvectors (uniquely identified) will constitute the columns of Q one

is interested in. A problem could arise when, in the case of multiplicity, none of the already

identified impulse responses are consistent with what expected from economic theory for the

shocks of interest. In this case, the results of Theorem 1 can be of extreme interest as including

zero restrictions allows to point identify such shocks that, thus, will be identified based on

economic restrictions rather than on statistical basis. Importantly, the number of restrictions

is much less than what is required for traditional SVARs, as some of the columns of the Q

matrix have been already identified by the heteroskedasticity. In our view, this can be an

important added value of Theorem 1.

Example 1 (Distinct eigenvalues). Consider an HSVAR with three variables, (n = 3), and

k = 3 distinct eigenvalues, λ1 ̸= λ2 ̸= λ3. In this case, mi = 1 for all i = 1, .., 3. Theorem

1 states that the HSVAR is point identified if and only if the unit vector qij is subject to
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f i
j = mi − j zero restrictions for j = 1 and i = 1, ..., 3. It follows that no restrictions are

needed because each λi is associated with a unique eigenvector qi.

Example 2 (Eigenvalue multiplicity). Consider a HSVAR with three variables (n = 3) and

k = 2 distinct eigenvalues, λ1 > λ2, λ2 = λ3. In this case, the first eigenvalue is distinct from

the others, hence m1 = 1, while the second eigenvalue has multiplicity m2 = 2. Theorem

1 implies that, as far as the first unique eigenvalue λ1 is concerned, we do not need any

restriction on q11 (i.e. f 1
1 = 1 − 1 = 0). The second eigenvalue, λ2, is associated with m2 = 2

linearly independent, not unique, eigenvectors (i.e. q21 and q22). Writing Q as [q11 q21 q22] point

identification is achieved with f 2
1 = 2 − 1 = 1 zero restriction on q21 and f 2

2 = 2 − 2 = 0

restriction on q22.

III.3 Set-identification in HSVARs with proportional volatility shifts

The results obtained in Section II.2 allow to point identify all the columns of Q ∈ O (n)

associated with eigenvalues without multiplicity. For all the other columns, they can be point

identified according to the particular pattern of zero restrictions suggested by Theorem 1.

Let λi be an eigenvalue with algebraic multiplicity g(λi) = mi, in this section we consider

restrictions that make the (qi1, . . . , q
i
mi
) columns of Q only set identified, being

f i
j ≤ mi − j, j = 1, . . . ,mi (14)

with strict inequality for at least one j = {1, . . . ,mi}.

Example 3 (Set identification of an HSVAR with multiple eigenvalues). Consider an HSVAR

model with three variables yt = (y1,t, y2,t, y2,t)
′. Let us assume that there are k = 2 distinct

eigenvalues: λ1 > λ2 and λ2 = λ3. Suppose that plotting the impulse responses to the first

shock, we observe a pattern that is consistent with an economically meaningful structural

shock. Given that the second eigenvalue, λ2, has multiplicity m2 = 2, we can write the matrix

Q as [q11 q21 q22]. Without any zero restriction, f 2
1 < 1, and the second and third column of Q

are only set identified.

As in many empirical applications, suppose we are interested in one single shock, i.e. one

column of Q. Moreover, according to Remark 2, it is crucial to understand whether the
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point identified impulse responses obtained through the eigenvalues without multiplicity can

be compatible with the shock of interest. If this is not the case, it is likely to suppose this

latter to be associated with the eigenspace generated by λi, with multiplicity mi. We first

introduce a specific ordering of the shocks according to the identifying restrictions in Eq. (14),

and then provide the conditions for the identified set to be convex.

Definition 7 (Ordering of variables). The variables associated with the eigenvalue λi, with al-

gebraic multiplicitymi, are ordered according to the number of zero restrictions on (qi1, . . . , q
i
mi
),

and specifically, such that they follow the relation

f i
1 ≥ f i

2 ≥ . . . ≥ f i
mi

≥ 0. (15)

In case of ties, the shock of interest, represented by the j∗-th column of (qi1, . . . , q
i
mi
), is ordered

first. In other words, let j∗ = 1 if no other column has a larger number of restrictions than

q1j∗ . If j
∗ ≥ 2, then let the variables be ordered such that f i

j∗−1 > f i
j∗ .

The next theorems, based on Proposition 3 in Giacomini and Kitagawa (2021), provides

sufficient conditions for the impulse response identified set IS(ϕ |F, S) to be convex. Precisely,

we first consider the case of zero restrictions only, and then extend to the case of zero and

sign restrictions.

Theorem 2 (Convexity of identified set under zero restrictions). Consider an HSVAR charac-

terized by the eigenvaules and eigenspaces as in Definition 1 and by the admissible parameters

as in Definition 4. Let λi be an eigenvalue of algebraic multiplicity g(λi) = mi, with associated

eigenspace Q(λi) as in Eq. (9), containing qij∗, the column of Q associated with the j∗-th

structural shock (shock of interest). Moreover, let r = η(ϕ,Q) = c′lh(ϕ)q
i
j∗ ∈ IS(ϕ |F, S) be the

impulse responses to the shock of interest. Finally, let the variables be ordered as in Definition

7.

Then, the identified set for r is non empty and bounded for any l ∈ {1, . . . , n} and h =

1, 2, . . ., ϕ-a.s. Moreover, a sufficient condition for the identified set to be convex is that any

of the following exclusive conditions holds:

1. j∗ = 1 and f i
1 < mi − 1;
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2. j∗ ≥ 2 and f i
j < mi − j, for j = 1, . . . , (j∗ − 1);

3. j∗ ≥ 2 and there exists 1 ≤ k < (j∗ − 1) such that (qi1, . . . , q
i
k) is exactly identified as in

Theorem 1 and f i
j < mi − j, for j = k + 1, . . . , j∗.

Proof. See Appendix C.

The previous theorem just consider zero restrictions on the vectors of Q(λi). The following

one, instead, also allows for sign restrictions, although these last can be imposed on the vector

qij∗ associated with the shock of interest.

Theorem 3 (Convexity of identified set under zero and sign restrictions). Consider an HSVAR

as in Theorem 2, where, as before, qij∗ is the column vector corresponding to the shock of

interest, and let qij∗ ∈ Q(λi), the eigenspace associated with the eigenvalue λi, of algebraic

multiplicity g(λi) = mi. Moreover, let the sign restrictions be imposed on the shock of interest,

only.

1. Let the zero restrictions F i(ϕ,Q) = 0 satisfy one of the conditions (1) and (2) of Theorem

2. If there exists a unit length vector q ∈ Rn such that

F i
j∗(ϕ) q = 0 and

 Sj∗(ϕ)

σj∗′

 q > 0 (16)

then the identified set is non empty and convex for every l ∈ {1, . . . , n} and h = 0, 1, 2, . . .

2. Let the zero restrictions F i(ϕ,Q) = 0 satisfy condition (3) of Theorem 2, and let(
qi1(ϕ), . . . , q

i
k(ϕ)

)
be the first k vectors that are exactly identified. If there exists a unit

vector q ∈ Rn such that

(
F i
j∗(ϕ)

′ , vi1 , . . . , v
i
(n−mi)

, qi1(ϕ) , . . . , q
i
k(ϕ)

)′
q = 0 and

 Sj∗(ϕ)

σj∗′

 q > 0 (17)

where (vi1, . . . , v
i
(n−mi)

) is a basis for the space Q⊥(λi), then the identified set is non

empty and convex for every l ∈ {1, . . . , n} and h = 0, 1, 2, . . .

Proof. See Appendix C.
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Taken jointly, the results of Theorems 2 and 3 generalize Proposition 3 in Giacomini and

Kitagawa (2021) to the case of a structural break on the variances of the shocks, with potential

eigenvalue multiplicity.

On the other side, the two theorems provide important insights on the possibility to apply

the standard identification-through-heteroskedasticity approach to the case in which some of

the switches in the variances are the same. As we will see in the next section, these new results

represent the foundations for developing an estimator for the bounds of the identified set and

produce the related inference.

IV Inference in Set-identified HSVARs: a Robust Bayes

Approach

In this section we present a completely brand new approach to conduct inference on set-

identified HSVARs, where the set identification comes from the fact that not all the shifts in

the variances of the shocks are statistically different. Details on how to estimate the reduced-

form parameters and on how to check for proportional variance shifts are reported in Appendix

E and Appendix F, respectively. In this section, instead, we deal with all situations in which

some of such variances are not significantly different each other, and we introduce our Robust

Bayes approach to conduct inference on the identified set of interest.

IV.1 Inference on the identified set

Now suppose some of the eigenvalues obtained by the eigen-decomposition in Eq. (8) present

potential multiplicity. This evidence, for example, could be statistically checked by the Lütke-

pohl et al. (2020) or Lewis (2022) tests. Once this evidence is “statistically confirmed”, a

natural way of proceeding is to impose such eigenvalues to be effectively equal. This choice,

however, imposes implicitly restrictions on the covariance matrices of the reduced form. While

ML estimator subject to constraints on the parameters is generally implementable, it is rather

problematic in the specific case of imposing equality restrictions among the eigenvalues. In

such particular case, in fact, firstly, imposing the restrictions makes the model no longer

identified, and thus creating convergence problems of the algorithm maximizing the likelihood
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function and, secondly, it is technically difficult to impose restrictions on some parameters that

are observationally equivalent to permutations, as highlighted in Theorem 4 in the Appendix.

Our strategy, instead, is based on the following lemma, that, according to evidence of

potential eigenvalue multiplicity, suggests imposing the multiplicities as the result of a min-

imization problem about the unrestricted and restricted covariance matrices of the HVAR.

Lemma 1 (Similarities of positive-definite symmetric real matrices). Let Ω be a n× n sym-

metric and positive definite real matrix characterized by the eigen-decomposition Ω = QΛQ′,

with the eigenvalues contained in the diagonal matrix Λ = diag(λ1, λ2, . . . , λn), and the associ-

ated eigenvectors contained in the n×n orthogonal matrix Q. Moreover, let Ω̃ = QΛ̃Q′, where

the diagonal matrix Λ̃ contains the first m elements fixed to a scalar λ̃, while the remaining

n−m are the corresponding eigenvalues in Λ.

Then, according to the Frobenius metric, min
λ̃

∥∥∥Ω − Ω̃
∥∥∥2
F
is reached when

λ̃ =
1

m

m∑
h=1

λh. (18)

Proof. See Appendix C.

The previous lemma provides a theoretical ground for fixing the common eigenvalues,

when they are not statistically distinct, such that the unrestricted and restricted reduced-form

covariance matrices are as close as possible, according to a specific metric. The assumption

considered in the previous lemma is that the matrixQ, containing the eigen-vectors, is common

in the two matrices Ω and Ω̃. This assumption is completely reasonable for our problem in

that it states that for the eigenvalues without multiplicity the eigenvectors are common in Ω

and Ω̃. Those associated to the eigenvalue with multiplicity, say λi, being not identified, must

simply lay on the sub-space Q(λi), orthogonal to Q⊥(λi). In this respect, the eigenvectors

(qi1, . . . , q
i
m) obtained through the eigen-decomposition of Ω share this feature and can be used

also as eigenvectors of Ω̃. This explains the common Q matrix used in Lemma 1 both for Ω

and Ω̃.

Let π̃ϕ be a probability measure on the space Φ of reduced-form parameters. In order to

obtain a prior distribution for ϕ we need to restrict the support of π̃ϕ such that its elements

satisfy the sign, normalization and equality restrictions, as well as the fact that they show

20



eigenvalue multiplicities as in Eq. (10). In this respect, we define the prior distribution for

the reduced-form parameters as follows

πϕ =
π̃ϕ 1

{
Q(ϕ |F, S) ̸= ∅

}
π̃ϕ

({
Q(ϕ |F, S) ̸= ∅

})
that, by construction, assigns probability one to the distribution of data that admits eigenvalue

multiplicity and is consistent with the identifying restrictions. As the structural parameters

are a function of
(
ϕ,Q

)
∈ Φ × O (n), we define a joint prior for the two sets of parameters(

ϕ,Q
)
as πϕ,Q = πQ|ϕ πϕ, where πQ|ϕ is supported on Q(ϕ |F, S) ∈ O (n).

In the case of no multiplicity, sign and permutation normalizations allow to pin down

just one admissible Q, and πQ|ϕ becomes a degenerate distribution centered on such Q. In

the case of multiplicity and zero restrictions satisfying the pattern in Eq. (14), instead, the

HSVAR will be only set identified and the prior πQ|ϕ has to be specified in order to obtain

a posterior distribution for the structural parameters and impulse responses, as desired in

standard Bayesian approach. Other than being a challenging task for applied economists to

specify πQ|ϕ, it has been shown that the choice of such a prior, being never updated by the data,

can have non-negligible impact on the posterior inference even asymptotically (Baumeister and

Hamilton, 2015).

In order to fix this unpleasant issue, we use the robust Bayes inference proposed by Gi-

acomini and Kitagawa (2021). This approach consists in fixing a single prior πϕ for the

reduced-form parameters, but a set of priors for πQ|ϕ. This strategy allows to obtain a class of

posteriors for (ϕ,Q) and, as a consequence, for the impulse response of interest r = r(ϕ,Q).

According to Giacomini and Kitagawa (2021), the results of this procedure can be sum-

marized by reporting the posterior mean bounds interval, that can be seen as an estimator

for the identified set, and an associated robustified credible region measuring the uncertainty

related to the former. In particular, if we define ℓ(ϕ) = inf
{
r(ϕ,Q) : Q ∈ Q(ϕ |F, S)

}
and

u(ϕ) = sup
{
r(ϕ,Q) : Q ∈ Q(ϕ |F, S)

}
, the posterior mean bounds interval can be written as[ ∫

Φ
ℓ(ϕ)dϕϕ ;

∫
Φ
u(ϕ)dϕϕ

]
. The robustified credible region, instead, consists in an interval Cα

for which the posterior probability is greater than or equal to α uniformly, i.e. πr|Y (Cα) ≥ α.
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IV.2 Computing posterior bounds

In this subsection we present an algorithm to be used in the case of two volatility regimes in the

data with known break date. This last assumption is rather standard in the literature, being

the break dates associated to well documented changes in the policy conduct or to financial

crises.7

Algorithm 1. Let y−l+1, . . . , y0, y1, . . . , yT be a sample of observations characterized by a

break in the volatility occurred at time TB, that is known or exogenously determined. Fix a

normalization rule N .

(Step 1) Estimate the HSVAR model through the ML estimator as in Eq. (67),8 obtain the

estimated Q̂ and Λ̂ and check for eigenvalue multiplicity (e.g. Lütkepohl, Meitz,

Neťsunajev, and Saikkonen, 2021, or Lewis, 2021). If there is no multiplicity, or

the shock of interest can be attributed to a particular qj∗ that comes out from an

eigenvalue without multiplicity, then such shock is point identified (apart from sign)

and the inference on the IRFs is standard. Then STOP.

If there are multiplicities and the shock of interest cannot be attributed to the already

identified columns of Q, then consider equality and sign restrictions, F(ϕ,Q) and

S(ϕ,Q), respectively, to identify the shock of interest associated to qij∗ ∈ Q(λi); then

move to Step 2.

(Step 2) Specify a prior for the reduced-form parameters π̃ϕ and estimate a Bayesian HVAR

as suggested in Appendix E and obtain draws from the posterior distribution of π̃ϕ|Y ,

the parameters of the reduced form of the HVAR.

(Step 3) Take one draw ϕ = (B,Ω1, Ω2) from the posterior distribution of π̃ϕ|Y . From this draw

obtain the covariance matrices Ω1 and Ω2. Solve the eigen-decomposition in Eq. (8)

and collect the eigenvalues in the matrix Λ and the eigenvectors in the matrix Q.

(Step 4) Extract from Q the basis of the space Q(λi), whose columns are associated with the

possible multiple eigenvalues, and define the matrix Q̄λi
containing the n − mi ei-

7See, among many others, Lanne and Lütkepohl (2008), Boivin and Giannoni (2006), Angelini, Bacchiocchi,
Caggiano, and Fanelli (2019), Rigobon (2003), Bacchiocchi (2017), Carriero, Marcellino, and Tornese (2023).
Moreover, Rigobon (2003) also shows consistency of the estimated parameters in the case of break date miss-
specification.

8Or through the feasible GLS as in Eq. (66).
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genvectors orthogonal to Q(λi). If the zero restrictions meet the rank condition in

Theorem 1, then Q(ϕ |F, S) is non-empty and the point identified columns of Q(λi),

for the draw of ϕ, can be easily determined through Algorithm 1 in RWZ; then move

to Step 5. If, instead, the zero restrictions do not meet the rank condition in The-

orem 1, then the model is only set identified and, given the draw of ϕ, check whether

Q(ϕ |F, S) is empty or not by following the sub-routines below:

(Step 4.1) Let z1 ∼ N(0, In) be a draw of an n-variate standard normal random variable.

Let q̃1i = M1z1 be the n×1 residual vector in the linear projection of z1 onto an

n× f i
1 regressor matrix F i

1(ϕ)
′. For k = 2, . . .mi, run the following procedure

sequentially: draw zk ∼ N(0, In) and compute q̃ik = Mkzk, where Mkzk is

the residual vector in the linear projection of zk onto the n× (f i
k + n−mi +

k− 1) matrix
(
F i
k(ϕ)

′, Q̄λi
, q̃i1, . . . , q̃

i
k−1

)
. The vectors q̃i1, . . . , q̃

i
mi

are mutually

orthogonal, orthogonal to Q̄λi
, and satisfy the equality restrictions.

(Step 4.2) Given q̃i1, . . . , q̃
i
mi

obtained in the previous step, define

Qλi
=

[
± q̃i1

∥q̃i1∥
, . . . ,±

q̃imi

∥q̃imi
∥

]
,

where ∥ ·∥ is the Euclidean metric in R, then arrange the sign of each column

of Qλi
according to the sign normalization as defined by S ∈ D(n). Based

on the obtained Qλi
with appropriate sign normalization, form the Q matrix

by collecting the columns in Q̄λi
and Qλi

according to the correct ordering

determined by the permutation matrix P ∈ P(n).

(Step 4.3) Check whether Q obtained in (Step 4.2) is such that

(A0, A+) =
(
PSQ′Σ−1

1,tr, PSQ′Σ−1
1,trB

)
, for appropriate S ∈ D(n) and P ∈

P(n), satisfies the sign restrictions S(ϕ,Q) ≥ 0. If so, retain this Q and

proceed to (Step 5). Otherwise, repeat (Step 4.1) and (Step 4.2) a maximum

of L times (e.g. L = 3000) or until Q is obtained satisfying S(ϕ,Q) ≥ 0. If

none of the L draws of Q satisfies S(ϕ,Q) ≥ 0, approximate Q(ϕ |F, S) as

being empty and return to (Step 3) with the following draw of ϕ.

(Step 5) Given ϕ and Q =
(
Q̄λi

, Qλi

)
, with the correct ordering determined by P ∈ P(n), and
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correct sign normalization determined by S ∈ D(n), obtained in (Step 4), compute the

lower and upper bounds of IS(ϕ |F, S) by solving the following constrained nonlinear

optimization problem:

ℓ(ϕ) = arg min
Qλi

c′gh(ϕ)q
i
j∗ ,

s.t. Q′Q = In, F(ϕ,Q) = 0(
PSQ′Σ−1

1,tr, PSQ′Σ−1
1,trB

)
∈ N, and S(ϕ,Q) ≥ 0

and u(ϕ) = argmax
Qλi

c′gh(ϕ)q
i
j∗ under the same set of constraints. If the zero restrictions

meet the rank condition in Theorem 1, then Q =
(
Q̄λi

, Qλi

)
is a singleton and ℓ(ϕ) =

u(ϕ).

(Step 6) Repeat (Step 3) - (Step 5) M times to obtain
[
ℓ(ϕm), u(ϕm)

]
, m = 1, . . . ,M . Approx-

imate the set of posterior means by the sample averages of
(
ℓ(ϕm), m = 1, . . . ,M

)
and

(
u(ϕm), m = 1, . . . ,M

)
.

(Step 7) To obtain an approximation of the smallest robust credible region with credibility

α ∈ (0, 1), define d(η, ϕ) = max {|η − ℓ(ϕ)|, |η − u(ϕ)|}, and let z̃α(η) be the sample

α-th quantile of
(
d(η, ϕm) : m = 1, . . .M

)
. An approximated smallest robust credible

region for η is an interval centered at arg minη z̃α(η) with radius minη z̃α(η).

Some remarks about the algorithm are in order. The first one is about the prior for the

two covariance matrices Ω1 and Ω2. As the aim of the analysis is to highlight the possible

eigenvalue multiplicity, it would be preferable to use diffuse priors, like diagonal matrices with

equal values on the main diagonal, that from one side are non-informative and on the other

side consider all the eigenvalues to be equal and let the likelihood function to play the relevant

role in this respect.

Second, the way the draws from the posterior distribution are obtained depends on the

theoretical results of Appendix E. Using independent priors for Ω1, Ω2 and ϕB allows to

develop a Gibbs sampler that is rather simple and permits to explore the joint posterior

distribution in a very convenient way. Step 3 of our algorithm is based on this approach for

generating the draws ϕ from the distribution π̃ϕ|Y . Any alternative way, however, can be

performed without altering the other steps of the algorithm.
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Third, checking for the emptiness of the identified set in the case of sign restrictions is per-

formed in Step 4 by using linear projections starting from normal draws, as in Giacomini and

Kitagawa (2021) and many other contributions in the Bayesian literature. As an alternative,

we could use the QR decomposition as proposed by Arias et al. (2018).

Fourth, for each of the draws consistent with the zero and sign restrictions, we consider

it as if there were eigenvalue multiplicities, regardless of whether it is effectively so from a

statistical point of view, for the draw ϕ. In this respect, the eigenvectors associated to the

potential multiple eigenvalues act as a basis for the space of the not identified columns of Q.

From one side, this way of proceeding is extremely conservative as it completely ignores the

amount of information contained in all those draws where all the eigenvalues are substantially

distinguished. From the other side, however, it avoids the consequences of a pre-testing step to

be applied to each draw to statistically check for eigenvalue multiplicity. Our inference, thus,

is robust to eigenvalue multiplicity in the sense that we apply the robust Bayesian approach

to the set identified columns of Q associated to the suspected multiple eigenvalues.

Fifth, the constrained nonlinear optimization problem in Step 5 is less demanding than the

one in Algorithm 1 by Giacomini and Kitagawa (2021), as the argument is not the entire matrix

Q but just a subset of its columns. Even if the HVAR model is relatively large, the number

of eigenvectors generating the subspace Q(λi) is in general relatively small and we do not

expect concerns about the convergence properties of the numerical optimization step. On the

contrary, we could replace Step 5 by a new algorithm in the spirit of Algorithm 2 in Giacomini

and Kitagawa (2021), where the constrained nonlinear optimization problem is substituted by

iterating many times Step 4.1-Step 4.3 and approximate the interval
[
ℓ(ϕm), u(ϕm)

]
with the

minimum and maximum values obtained in such iterations. If the number of iterations goes

to infinity, such alternative bounds still provide a consistent estimator of the identified set.

Sixth, the algorithm works even in the case the zero restrictions allow to point identify the

matrix Q. In this case, the set Q(ϕ |F, S) is always non-empty, and the constrained nonlinear

optimization problem simply returns ℓ(ϕ) = u(ϕ). The inference, then, becomes standard.

From a theoretical point of view, Giacomini and Kitagawa (2021) discuss the importance

of convexity, continuity and differentiability of the identified set IS(ϕ |F, S) for the posterior

means to have a valid frequentist interpretation. Obviously, the same has to be verified in our
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setup. If this is the case, they show that the set of posterior means is a consistent estimator

of the true identified set and the robust credible region is an asymptotically valid confidence

set for the true identified set.

Concerning convexity, we have already proved it in the previous Theorems 2 and 3. About

continuity and differentiability, since we use the same set of zero and sign restrictions as in

Giacomini and Kitagawa (2021), extending their Proposition 4 and Proposition 5 to our setup

is straightforward. Definitely, appropriate choice of zero and sign restrictions associated with

mild regularity conditions on the coefficient matrices of such restrictions guarantee our results

on HSVARs to have a valid frequentist interpretation, as for traditional SVARs.

V Empirical Application

We apply our methodology to the SVAR model for the global crude oil market of Kilian (2009)

that includes three variables: the percent change in global crude oil production (∆prodt), an

index of global real economic activity (reat) and the logarithm of the real price of crude oil

(rpot). Data are monthly and the sample period runs from January 1973 through December

2007.9 While Kilian (2009) identifies three structural shocks that drive the real price of

crude oil using a simple recursive scheme, Lütkepohl et al. (2020), Lütkepohl and Netšunajev

(2014) and Lütkepohl (2013) show that the same structural innovations can also be recovered

by exploiting the existence of distinct volatility regimes.10 We set the lag order of the VAR

equal to 12 and follow Lütkepohl et al. (2020) that distinguish between two volatility regimes

with – an exogenously determined – change point in October 1987.11

Table 2 in Appendix G reports the estimated λs and the results of the test by Lütkepohl

et al. (2020) for eigenvalue multiplicity. From the test it clearly emerges that H0 : λ2 = λ3

cannot be rejected by the data, implying that standard identification through heteroskedasti-

city fails. In fact, only one structural shock can be statistically identified relying on changes

in volatility. If the identified shock cannot be given an interpretation that is consistent with

9We rely on exactly the same dataset as Kilian (2009). See Appendix G for details and additional results.
10Identification through heteroskedasticity has found other applications in studies of the crude oil market.

See e.g. Bruns and Lütkepohl (2023) and Känzig (2021).
11Note that Lütkepohl et al. (2020), Lütkepohl and Netšunajev (2014) and Lütkepohl (2013) rely on a VAR

of order 3, while Kilian (2009) stresses that a VAR of order 24 is necessary to capture long price cycles of
crude oil and hence for accurately estimating the impulse responses in global oil market models. The selected
lag order is thus a compromise between these two approaches.

26



Table 1: Sign Restrictions on impact responses (C ≡ A−1
0 ) in model M2

Oil supply
disruption

Positive aggregate
demand shock

Positive oil-specific
demand shock

∆prodt (-) + *

reat - (+) *

rpot + + (+)

Notes: “ * ” denotes that the sign of the impact response is unrestricted. Signs along the main diagonal are in brackets to
highlight that these are not actual sign restrictions, but sign normalizations placed on C ≡ A−1

0 .

economic theory, or if one wishes to identify other structural shocks, additional sign or exclu-

sion restrictions are needed. In this case, Theorem 1 and its implementation in Algorithm 1

become extremely useful.

V.1 Point and set identification of oil supply and demand shocks

We write the relationship between structural innovations, εt and reduced-form errors, ut = Cεt

as follows: 
u∆prod
t

urea
t

urpo
t

 =


c11 c12 c13

c21 c22 c23

c31 c32 c33




εoil supply shock
t

εaggregate demand shock
t

εoil−specific demand shock
t

 (19)

where C corresponds to the impact response matrix (A−1
0 ). We consider four SVARs based

on different identifying restrictions:

• M0, a recursively identified SVAR model with c12 = c13 = c23 = 0;

• M1, a standard HSVAR model identified exploiting changes in volatility and assuming

distinct eigenvalues;

• M2, an HSVAR model that imposes eigenvalue multiplicity and exploits static and

dynamic sign restrictions;

• M3, an HSVAR model that allows for eigenvalue multiplicity and imposes one exclusion

restriction (c21 = 0).

Model M0 is the recursively identified SVAR model of Kilian (2009) used as a benchmark

against which we compare results from HSVAR models. Three exclusion restrictions – c12 =

c13 = c23 = 0 – allow to point identify an oil supply shock and two demand shocks (i.e. aggreg-

ate and oil-specific demand shocks). Oil supply shocks represent innovations to the current

27



physical availability of crude oil. Aggregate demand shocks capture unexpected changes of

the demand for all industrial commodities driven by fluctuations in the global business cycle,

while oil-specific demand shocks represent shifts in the precautionary demand for crude oil

triggered by concerns about the future availability of supplies.

The HSVAR model M1 exploits changes in volatility for identifying structural shocks,

without imposing additional exclusion or sign restrictions. We assume the eigenvalues to be

all distinct, although results in Table 2(b) in the Appendix highlight the existence of eigenvalue

multiplicity.

For this reason, in model M2 we impose the constraint λ2 = λ3 in Step 3 of Algorithm 1.

With two distinct eigenvalues, we can point identify only one structural shock that, as will be

shown in Section V.2, yields impulse responses consistent with those associated with an oil-

specific demand shock. The remaining structural shocks are set identified combining static and

dynamic sign restrictions. See Table 1 in Appendix G. We postulate that a negative oil supply

shock increases the real price of crude oil and depresses global real economic activity on impact.

A positive aggregate demand shock is expected to raise oil price and production on impact.

Notice that we also place sign normalizations on the main diagonal of C ≡ A−1
0 . Furthermore,

we constrain the sign of the response of real crude oil price to oil supply disruptions to be

positive for twelve months, starting from the impact response. These additional restrictions

rule out models with the real price of crude oil decreasing below its starting level after a

negative oil supply shock.

While specification M2 allows to point identify a single structural shock, because of eigen-

value multiplicity the HSVAR model remains set identified. In this case, Theorem 1 shows

that point identification of the HSVAR model can be achieved with a single exclusion restric-

tion. In model M3, we add one exclusion restriction on the impact response matrix: c21 = 0.

This restriction implies that the first shock does not affect real economic activity within the

same month. Compared to the recursively identified model, M0, when a volatility shift is ex-

ploited the identification scheme is less demanding. In fact in model M3 point identification

is achieved – at least in statistical sense – combining the shift in the volatility of one of the

structural shocks with a single zero restriction.
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V.2 Impulse response analysis

All specifications are estimated with Bayesian techniques drawing from the posterior of reduced-

form parameters until we obtain 1000 realizations of the non-empty identified set. We estimate

the whole set of structural impulse response functions over an horizon of 24 months. Notice

that we report the implied response of world crude oil production obtained by cumulating

that for ∆prodt. We focus on shocks that are expected to raise the real price of crude oil.

Therefore, in the case of supply shocks we plot the responses to a negative shock representing

a disruption of crude oil supply.

Impulse responses for M0 and M1, as not informative for the implementation of our meth-

odology, are reported in Appendix G to save space (Figures G.8 and G.9, respectively). Not

surprisingly, the impulse responses for M0 are totally in line with the original ones in Kilian

(2009).12 Model M1, instead, builds on the standard identification through heteroskedasticity

approach assuming implicitly that all eigenvalues are distinct. However, as the test by Lütke-

pohl et al. (2020) shows, changes in volatility alone here might not convey enough information

to point identify all the structural shocks. We overcome this issue by imposing restrictions in

M2 and M3. Impulse responses from HSVAR models M2-M3 are displayed in Figures 1-2.13

Static and dynamic sign restrictions in model M2 allow to set identify supply and demand

shocks that are expected to drive the real price of crude oil. Since the only distinct eigenvalue

is associated with the oil-specific demand shock, sign restrictions are imposed on the remaining

columns of Q. The impulse responses appearing in the first two columns of Figure 1 specifically

refer to those columns of Q and, as such, we also present the set of posterior means (blue

vertical bars) and the bounds of the robust credible region with credibility 68% obtained with

Algorithm 1.14

Imposing sign restrictions we recover oil supply and aggregated demand shock whose effects

on the endogenous variables of the VAR are consistent with expectations from economic theory

and previous analyses (see e.g. Kilian and Murphy, 2012). The shape of impulse responses in

12As for the estimation, we rely on a noninformative improper Jeffreys’ prior that allows to draw reduced-
form parameters from a normal-inverse-Wishart posterior.

13Since HSVAR models normalize structural residuals to have identity covariance matrix in the first regime,
the scaling of these figures is not the same as that of Figure G.8.

14Our implementation is based on the constrained nonlinear optimization problem highlighted in Step 5 of
Algorithm 1. We follow Giacomini and Kitagawa (2021) that mitigate possible convergence problems using
five different starting values for the optimization problem in Step 5.

29



Figure 1: Impulse response functions M2
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Notes: the blue line with dots represents the standard Bayesian posterior mean response, the dashed red lines identify upper and
lower bounds of the highest posterior density region with credibility 68%. Plots in first and second columns of the figure also
report the set of posterior means (blue vertical bars) and the bounds of the robust credible region with credibility 68% (solid
black curves). Identification via heteroskedasticity with multiple eigenvalues (i.e. only one shock is point identified), static and
dynamic sign restrictions.

Figure 2: Impulse response functions M3
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Notes: the blue line with dots represents the posterior mean response, the dashed red lines identify upper and lower bounds of
the highest posterior density region with credibility 68%. Identification through heteroskedasticity exploiting the fact that one
eigenvalue is distinct from the others; moreover, we impose c21 = 0.
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the first two columns of Figure 1 are in line with those implied by the recursively identified

model,M0. Also notice that the combination of volatility changes and sign restrictions delivers

reasonable impulse responses even in the presence of multiple eigenvalues and using less sign

restrictions than what is usually done in the literature.15 In fact, we leave one of the columns of

Q completely unrestricted and exploit changes in volatility to point identify the corresponding

shock. Contrary to the standard HSVAR, M1, oil supply shocks implied by M2 are associated

with impulse responses that reasonably summarize the expected effects of such shocks on real

economic activity and the real price of crude oil. Here we observe a positive response of the

price of crude oil with a peak after 6 months.

The width of the HPD and of the robust credible regions for both oil supply and aggregate

demand shocks are similar. We can thus draw essentially the same conclusions using any

of them.16 Giacomini and Kitagawa (2021) propose a measure of the informativeness of the

choice of an unrevisable prior for Q that compares the width of such regions. The fact that

in our case such measure is generally small (at any horizon), indicates that the fraction of the

credible region tightened by choosing a particular unrevisable prior is very modest.17

Model M3 illustrates that our methodology allows to point identify HSVAR models in the

presence of multiple eigenvalues and that this can be achieved with less zero restrictions than

in the case of recursive identification. In M3 we impose that the first shock does not affect

real economic activity within the same month. Interestingly, this restriction is consistent with

the evidence in Figures 1 and G.8 where we see that the impact response of real economic

activity to an oil supply shock is close to zero.

Results for M3 are reported in Figure 2. Here, the zero restriction has the effect of tightening

the width of the HPD regions, when compared to the standard HSVAR model M1. Focusing

15In Appendix E we show results based on the implementation of Algorithm 1 while performing the Lütkepohl
et al. (2020) test for heteroskedasticity on each draw of ϕ in the context of set identified impulse response
functions. Figure G.11 shows how performing the test for identification thorugh heteroskedasticity does not
affect the results.

16Results based on an alternative implementation of Algorithm 1 are almost identical. In such implementa-
tion, we follow Giacomini and Kitagawa (2021) and substitute Step 5 with 10000 iterations of Step 4.1-Step 4.3.
The interval

[
ℓ(ϕm), u(ϕm)

]
is then approximated by the minimum and maximum values over such iterations.

This also confirms the convergence of the numerical algorithm in Step 5. See Appendix G.
17The informativeness of the prior with credibility α is defined as

{1− [width highest posterior density(α)/width robust credible region(α)]}. Such fraction is in the range
0.05-0.52 for the impact response to an oil supply shock (i.e. the largest fraction is that associated with the
response of real economic activity) and in the range 0.03-0.37 for the impact response to an aggregate demand
shock (i.e. the largest fraction is that associated with the response of world crude oil production). At horizon
12 such intervals become 0.03-0.21 and 0.06-0.22.
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on the response of real price of oil to an oil disruption, we see that in this case the response is

slightly more significant, as the HPD region does not always contain the zero. One difference

with the benchmark, M0, concerns the response of world crude oil production to an aggregate

demand shock that here is positive, with highest posterior density region that does not contain

the zero up to horizon 20.

VI Conclusion

This paper deals with SVAR models with structural breaks on the second moments of the

structural shocks, offering some new contributions. We first study the identification theory

and propose a set of results for easily checking whether the model is globally identified. Second,

we study the consequences on the impulse response functions of HSVARs that do not satisfy

such identifying conditions. We deal with a SVAR model with heteroskedasticity, where non

distinct changes in the variance shifts raise an identification issue. We solve the identification

problem by imposing equality and sign restrictions and provide a methodology that helps

giving a structural economic interpretation to the set or point identified shocks, by requiring

fewer restrictions to be imposed. A way to do inference on the model both in case of point and

set-identification is also proposed, as well as an empirical application of our approach to the

global crude oil market model. Some issues remain to be addressed by future research, such

as extending the model to more than two volatility regimes and analysing the consequences

of having an unknown break date.
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Appendix A Preliminary results on the identification of

HSVARs

Some of the theoretical results we present in this section are not completely new in the liter-

ature, although they have been derived independently from other authors. However, we have

decided to report them as prerequisites for a better understanding of the main results provided

in the paper. Detailed references will be reported accordingly.

Consider an n-variable SVAR model with two regimes in structural shock variances, but

maintaining the homogeneity of the structural coefficients. We normalize the covariance matrix

of the structural shocks to n×n identity matrix in the first regime. Following the parametriz-

ation and notations we have been using so far, we analyze identification of the n × n matrix

C that represents the inverse of structural coefficient matrix A0, i.e. C ≡ A−1
0 , and Λ, n× n

diagonal matrix with strictly positive elements. Given the reduced-form covariance matrix at

regime 1 and 2, denoted by Ω1 and Ω2, respectively, C and Λ solve

Ω1 = CC ′, (20)

Ω2 = CΛC ′ (21)

The next theorem characterizes the set of (C,Λ) solving this equation system. To state it,

we define P(n) as the set of n×n permutation matrices, such that pre-multiplying P ∈ P(n) to

any matrix M performs a row-permutation of M , and post-multiplying it performs a column-

permutation. Moreover, in the case of a diagonal matrix D of size n, P ′DP performs a

permutation of the diagonal elements of D. Let D(n) be the set of n × n diagonal matrices

whose diagonal entries are either +1 or −1. That is, if the i-th diagonal entry of S ∈ D(n) is

−1, pre-multiplying (post-multiplying) S to any matrix M flips the sign of the i-th row (resp.

column) vector of M .

Theorem 4 (Sign normalization and column-permutation). Assume Ω1 and Ω2 are non-

singular. Suppose (C∗, Λ∗) is a solution of the equation system (20)-(21). Then, the set of
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solutions solving (20)-(21) is represented as

{
(C,Λ) = (C∗SP ′, PΛ∗P ′) : P ∈ P(n), S ∈ D(n)

}
. (22)

Proof. See the appendix.

This theorem clarifies the fundamental indeterminacy of the solutions in the equation sys-

tem (20)-(21). Specifically, the representation of the solutions in Eq. (22) shows that (C,Λ)

remains observationally equivalent with respect to any permutation and change of signs of the

column vectors in C as far as the same permutation is applied to the diagonal elements of Λ.

The observational equivalence with respect to S ∈ D(n) corresponds to the indeterminacy of

the signs of structural shocks common in any SVAR modelling (see Lanne, Lütkepohl, and

Maciejowska, 2010, for an equivalent result on HSVARs). We often control such sign inde-

terminacy by imposing the sign normalization restrictions that pin down S, e.g., restricting

the diagonal elements of A0 = C−1 to be non-negative. The observational equivalence with re-

spect to the permutations corresponds to the indeterminacy of the structural parameters with

respect to the reordering of the structural equations. Rigobon (2003) noted this indeterminacy

of the ordering of the structural equations in bivariate HSVAR models and argued that sign

restrictions placed on the off-diagonal elements of A0 = C−1 resolve such indeterminacy.

Theorem 4 implies that with sign normalization restrictions imposed, point-identification of

(C,Λ) requires an assumption that pins down the ordering of the equations (i.e., permutation

matrix P ). One way to constrain the ordering of the equations is to exploit available knowledge

on the ratios of the structural shock variances of regime 1 to regime 2. In particular, assuming

a complete ordering of the structural shocks according to their variance ratios can fix the order

of the structural equations based on the diagonal entries of the true Λ. Hence, if a solution of

Λ is such that all of its diagonal elements are distinct, a complete ordering of such elements

reduces the set of solutions in Eq. (22) to a singleton. The following theorem hence follows

as a corollary of Theorem 4.

Theorem 5 (Point identification). In addition to the assumptions of Theorem 4, assume that

a solution of Λ has the diagonal terms all distinct. Then, with sign normalization restrictions
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and complete ordering of the structural shocks according to the variance ratios imposed, (C,Λ)

is point-identified.

Proof. The theorem, apart from the potential indeterminacy due to the column permutation,

corresponds to Proposition 1 in Lanne, Lütkepohl, and Maciejowska (2010), and can be proved

in exactly the same way. However, according to Theorem 4 here before, fixing the ordering of

the shocks is also necessary in order to have point identified (C,Λ).

If a solution of Λ has some of the diagonal elements identical, then invariance of Λ with

respect to a permutation that permutes only these elements fails to uniquely pin down C

within the set of solutions in Eq. (22). Partial identification of C matrix in this case is to be

considered below.

The identification result of Theorem 5 is not constructive and it does not provide an explicit

analytical expression of (C,Λ) as a function of (Ω1, Ω2). A more constructive identification

result for (C,Λ) can be obtained by representing the equation systems (20) and (21) as a

certain eigen-decomposition problem, as already presented in Eq. (8). This perspective yields

the following succinct analytical characterization of the solutions of the equation system.

Theorem 6 (Identification and eigen-decomposition). The set of solutions solving system

(20)-(21) can be represented by (Ω1,trQ,Λ), where Λ is a diagonal matrix of eigenvalues of

Ω−1
1,trΩ2Ω

−1′
1,tr and Q is an orthogonal matrix of the corresponding eigenvectors. Hence, if the

eigenvalues of Ω−1
1,trΩ2Ω

−1′
1,tr are all distinct, (C,Λ) is identified up to permutations and sign

changes of the structural equations.

Proof. The result immediately follows from Theorem A9.9, and the related proof, in Muirhead

(1982).

The claim of this theorem simplifies computation of an estimator of (C,Λ); the maximum

likelihood estimator for (C,Λ) can be computed by performing an eigen-decomposition on the

maximum likelihood estimator of Ω−1
1,trΩ2Ω

−1′
1,tr subject to the sign normalization. If a complete

ordering assumption on Λ is available (e.g., the diagonal elements of Λ is decreasing), we

can obtain a point-estimator for (C,Λ) by ordering the eigenvalues accordingly through the
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decomposition. If the ordering assumption is not available, then permutations of the diagonal

elements in Λ and the corresponding eigenvectors in Q span the identified set of (C,Λ). The

idea of treating identification and estimation of HSVARs as an eigen-decomposition issue has

been also pursued by Lütkepohl, Meitz, Netšunajev, and Saikkonen (2021), that developed

their test for identification via heteroskedasticity as a test on equivalent eigenvalues.

An alternative way to see and address the identification problem of (C,Λ) is to look at

system (20)-(21) in a slightly different way. In fact, given that Λ is made of positive elements,

it is possible to rewrite Eq. (21) as Ω2 = CΛ1/2Λ1/2C ′. The quantity CΛ1/2 could not be

unique because of the presence of an orthogonal matrix Q2 such that Ω2 = CΛ1/2Q2Q
′
2Λ

1/2C ′.

Using the result in Proposition A.1 of Uhlig (2005) for the decomposition of Ω1 and Ω2 yields

the following system

C = Ω1,trQ1

Ω2,tr = CΛ1/2Q2

and plugging the definition of C into the second equation we obtain

Ω−1
1,trΩ2,tr = Q1Λ

1/2Q2. (23)

The next theorem discusses the identification issue of the structural parameters (C,Λ) in terms

of the uniqueness of Q1 and Q2.

Theorem 7 (Identification and Single Value Decomposition). The set of solutions of sys-

tem (20)-(21) can be represented by (Ω1,trQ1, Λ), where Λ is a diagonal matrix made of

positive elements and Q1 is an orthogonal matrix solving the Single Value Decomposition

of Ω−1
1,trΩ2,tr = Q1Λ

1/2Q2. If the entries in Λ are all distinct, then Q1 and Q2 are unique

apart from simultaneous sign changes and permutation of their corresponding columns. Hence,

(C,Λ) is identified up to permutations and sign changes of the structural equations.

Proof. See the Appendix C.
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Appendix B Geometry of identification in bivariate SVARs

and HSVARs

This appendix is dedicated to the identification issue in bivariate SVAR models. We first

introduce the notion of set identification in standard SVARs as in Giacomini and Kitagawa

(2021), and derive point identification as a particular case. Second, we move to the core of the

paper and extend the set and point identification notions to SVARs characterized by structural

breaks, that, as shown in Bacchiocchi and Fanelli (2015), is more general than the separate

analysis of each single regime.

Consider the following bivariate model, where, for simplicity, the dynamics is omitted, as

not directly involved in the identification issue:

 1 −β

−α 1


 pt

qt

 =

 εt

ηt

 (24)

or, more compactly,

AYt = ϵt. (25)

In order to ease the explanation, we introduce a theoretical foundation to the model and

interpret the first equation as a demand equation while the latter as a supply equation. The

vector Yt = (pt , qt)
′ collects the two observable variables and ϵt = (εt , ηt)

′ the two structural

shocks. Furthermore, let the structural shocks be characterized by null expected values and

by the following covariance matrix:

Σ ≡ Cov

 εt

ηt

 =

 σ2
ε 0

0 σ2
η

 .

The A matrix, containing the parameters of the simultaneous relationships among the observ-

able variables, α and β, can also be rescaled by dividing for the standard deviations of the
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shocks and obtain

A0 ≡ Σ−1/2A =


1/σε −β/σε

−α/ση 1/ση

 .

Actually, from the observation of pt and qt, the amount of information is contained in the

estimable covariance matrix

Ω ≡ Cov

 pt

qt

 =

 ω2
p ωpq

ωpq ω2
q


that is connected to the structural parameters through the non-linear system of equations

Ω = A−1ΣA−1′

= A−1
0 A−1′

0 (26)

for which, when the solution with respect to the structural parameters is unique, the identific-

ation problem is clearly solved. As is well known, however, without imposing any restriction

on the structural parameters, the solution cannot be unique as the three (estimable) empir-

ical moments contained in Ω are not sufficient to consistently estimate the four structural

parameters in A0. In fact, the amount of information contained in Ω is the same as the one

contained in the three elements of its lower triangular Cholesky factorization, that can be

given by

Ω1,tr =

 ωp 0

ωpq/ωp

(
ω2
q − ω2

pq/ω
2
p

)1/2


whose inverse is given by

Ω−1
1,tr =

 1
ωp

0

−ωpq

ω2
p

(
ω2
q −

ω2
pq

ω2
p

)−1/2 (
ω2
q −

ω2
pq

ω2
p

)−1/2

 = (ω1 , ω2) (27)

where the two (2× 1) vectors ω1 and ω2 are the two columns of Ω−1
1,tr.

According to Uhlig (2005), the identification issue can be seen in terms of the non-

uniqueness of an orthogonal matrix Q ∈ O (2), where O (2) is the set of (2× 2) orthonormal
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matrices, such that A0 = Q′Ω−1
1,tr for which Ω = (A′

0A0)
−1. In other words, a unique Q guar-

antees a unique A0 through a suitable rotation of Ω−1
1,tr, containing all the information coming

from the reduced form parameters (or, better, the information coming from the data).

Denoting with Q ≡ (q1 , q2), with q1 and q2 being the columns of Q, the A0 matrix can be

given by

A0 = Q′Ω−1
1,tr =

 q′1

q′2

 (ω1 , ω2) . (28)

Moreover, we consider the following assumptions:

Assumption 1. (Sign normalization) Coherently with the sign normalization presented in

Section III.1, among all the possible rotations of Ω−1
1,tr through the orthogonal matrix Q ∈

O (2), we consider only those guaranteeing the elements on the main diagonal of A0 = Q′Ω−1
1,tr

to be positive. In different words, we consider only q1 and q2 such that q′1ω1 > 0 and q′2ω2 > 0.

Assumption 2. (Sign restriction on α and β) Coherently with the demand and supply curves

in Eq. (24), we assume α ≥ 0 and β ≤ 0.

The first assumption, that is standard in the SVAR literature, asserts that, as the product

of A−1
0 A−1′

0 is invariant to sign changes on the columns of A−1
0 , we select only A0 = Q′Ω−1

1,tr

such that the elements on the main diagonal are strictly positive. Equivalently, we assume

the shock to have a positive on impact effect on the corresponding observable variable. The

second assumption, instead, refers to the economic interpretation of the two equations of the

bivariate model in Eq. (24) as a demand and a supply equation, respectively.

B.1 Set identification in bivariate SVARs

Given the bivariate SVAR model discussed before, the following proposition provides the

identification set for the two structural parameters α and β, according to the two potential

cases of ωpq ≥ 0 or ωpq < 0.

Theorem 8 (Set identification in bivariate SVARs). Given the bivariate model in Eq. (24),

under Assumption 1, then:

(Case I): if ωpq ≥ 0, then α ∈
(
−∞ ;

ω2
q

ωpq

]
and β ∈ (−∞ ; ∞);

(Case II): if ωpq < 0, then α ∈ (−∞ ; ∞) and β ∈ (−∞ ; ∞);

42



Figure B.3: Identification of α and β. Case I: ωpq ≥ 0

ω2

ω1

β = −∞

q1

q1

β = +∞

β = 0
q1

Sign restriction: β ≤ 0

ω2

ω1

α = 0

q2

q2

α = +∞ α = −∞
q2

feasible q1

Sign restrictions: β ≤ 0 and α ≥ 0

feasible
q2

Notes: Set identification of the parameter β (left panel) and joint set identification of α and β (right panel). The identified set,
under the sign restriction consistent with a demand curve, i.e. β < 0, is represented by the red arc in both panels. In the right
panel, the set identification of α under the further sign restriction consistent with a supply curve, i.e. α ≥ 0, is represented by
the green arc. In both cases, the standard assumption of positive diagonal terms on A0 is considered (σε > 0 and ση > 0): in
light red for the first equation and in light green for the second equation.

under Assumption 1 and Assumption 2, then:

(Case I): if ωpq ≥ 0, then α ∈
[
ωpq

ω2
p
;

ω2
q

ωpq

]
and β ∈ (−∞ ; 0];

(Case II): if ωpq < 0, then α ∈ [0 ; ∞) and β ∈
[

ω2
p

ωpq
; ωpq

ω2
q

]
.

Proof. See the Appendix D.

As is well known, unless we impose at least one equality restriction on one of the structural

parameters, the bivariate model cannot be point identified. More specifically, according to the

recent contribution by Rubio-Ramı́rez, Waggoner, and Zha (2010), if either α = 0 or β = 0

(homogeneous restrictions) are imposed, the model will be globally identified, otherwise, if

any other non-homogeneous restriction is imposed, the model will be simply locally identified,

see Bacchiocchi and Kitagawa (2020). If no point restriction is imposed, the structural model

remains unidentified, but focusing on the sign restrictions coherent with the theoretical inter-

pretation of the model, together with the sign and magnitude of the elements in the reduced

form covariance matrix among the observable variables, it is possible to obtain an identified

set for α and β. This is what Theorem 8 reports.

Although the formal proof is confined in the appendix, the intuition of the results can be

obtained from the graphical representations reported in Figure B.3 and Figure B.4, depending
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Figure B.4: Identification of α and β. Case II: ωpq < 0
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Sign restrictions: β ≤ 0 and α ≥ 0

feasible
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Notes: Set identification of the parameter β (left panel) and joint set identification of α and β (right panel). The identified set,
under the sign restriction consistent with a demand curve, i.e. β < 0, is represented by the red arc in both panels. In the right
panel, the set identification of α under the further sign restriction consistent with a supply curve, i.e. α ≥ 0, is represented by
the green arc. In both cases, the standard assumption of positive diagonal terms on A0 is considered (σε > 0 and ση > 0): in
light red for the first equation and in light green for the second equation.

on the two potential values of ωpq ≥ 0 (Case I) and ωpq < 0 (Case II), respectively, under the

sign normalization restriction discussed in Assumption 1 and sign restrictions of Assumption

2.

In Figure B.3, left panel, we report the ω1 and ω2 vectors when the estimated ωpq ≥ 0

(Case I), as well as all the possible q1 vectors generating strictly negative values for the β

parameter, as in an hypothetical demand curve. In the right panel, we also include the further

restriction of positive values for the parameter α, consistent with a supply curve. The two sign

restrictions, jointly, given the orthogonality condition regarding q1 and q2, implicitly impose

a set restriction for α, in terms of the feasible q2 vectors highlighted with the green arc in the

right panel of Figure B.3. The width of the set, as discussed in Proposition 8, depends on the

estimable elements on the covariance matrix of the observable variables Ω, or equivalently, on

the inverse of its Cholesky decomposition Ω−1
1,tr.

Similarly, in Figure B.4, we discuss the set identification of α and β when ωpq < 0 (Case

II). In this latter case, a joint analysis of the sign restrictions on α and β (as well as the sign

normalization), provides an identified set for β, leaving instead α to be unrestricted (though

positive). The identified set for β, in the right panel, is highlighted by the red arrow indicating

all feasible values for the q1 vector.
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Corollary 1 (Point identification and OLS estimation of α and β). Given the bivariate model

in Eq. (24), under Assumption 1:

(Case I): if ωpq ≥ 0 and we restrict β = 0, then α = ωpq

ω2
p

(Case II): if ωpq < 0 and we restrict α = 0, then β = ωpq

ω2
q
.

Proof. See the Appendix D.

The previous Corollary 1 simply restates a standard result in econometrics. In fact, if we

introduce a zero restriction on one of the two structural parameters, then the identified set,

depending on the observed ωpq, reduces to a single point (point identification of the other

parameter), that can be consistently obtained through the OLS estimator, as stated in the

corollary.

B.2 Point and set identification in bivariate HSVARs

Consider the model in Eq.s (24)-(25), but with a clear evidence of a shift in the variances of

the observable variables. According to the HSVAR model introduced in Section II, such shift

is simply due to a structural change involving the variances of the structural shocks, leaving

unaffected the structural relationships among the variables, captured by the two parameters

α and β, i.e.

Σi ≡

 σ2
ε,i 0

0 σ2
η,i

 , i = {1, 2} ,

where i = 1 denotes the first regime (before the break), i = 2 indicates the second regime

(after the break), while the A matrix remains as defined in Eq. (25). Similarly as before,

we standardize with respect to the standard deviations of the structural shocks in the first

regime, and define

A0 ≡ Σ
−1/2
1 A =


1/σε,1 −β/σε,1

−α/ση,1 1/ση,1

 and Λ ≡ Σ−1
1 Σ2 =


σ2
ε,2/σ

2
ε,1 0

0 σ2
η,2/σ

2
η,1

,

and, coherently with the definitions in Sections II and II.2, let C ≡ A−1
0 .

45



From a different perspective, we consider that the change involves only the second moments

of the distribution of the observable variables in Yt = (pt , qt)
′, showing the two covariance

matrices

Ωi ≡

 ω2
p,i ωpq,i

ωpq,i ω2
q,i

 , i = {1, 2} , (29)

that are connected to the structural parameters through the non-linear system of equations

(20)-(21). When the solution of the system with respect to the structural parameters is unique,

the identification problem is clearly solved. As before, we define the lower triangular Cholesky

factorization of Ωi as Ωtr,i, i = {1, 2}, whose inverses are given by

Ω−1
i,tr =


1

ωp,i
0

−ωpq,i

ω2
p,i

γi γi

 = (ω1,i , ω2,i) , i = {1, 2} , (30)

where the two (2× 1) vectors ω1,i and ω2,i are the two columns of Ω−1
tr,i, and where

γi =

(
ω2
q,i −

ω2
pq,i

ω2
p,i

)−1/2

, i = {1, 2} . (31)

Based on the connections between the reduced-form and the structural-form parameters

highlighted in Eq.s (20)-(21), the identification issue can be addressed by studying the solutions

of the system of equations reported in Eq. (8). Theorem 6 shows that it can be addressed

as an eigen-decomposition problem that, under the condition of distinct eigenvalues, proves

the structural parameters contained in (C,Λ) (or, equivalently in A, Σ1 and Σ2) to be point

identified, up to permutations and sign changes of the structural equations. However, as a

matter of comparison, we first report the Rigobon’s condition for identification in bivariate

HSVARs.

Theorem 9 (Rigobon (2003) condition for point identification in bivariate HSVAR). Given

the HSVAR model described in Eq. (24) with the two covariance matrices reported in Eq. (29),

under Assumption 1, a necessary and sufficient condition for the uniqueness of the structural

parameters (C,Λ) is that

Ω1 ̸= aΩ2 (32)
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for any scalar a > 0.

Proof. See the proof of Theorem 1 in Rigobon (2003) and the proof of our Theorem 10 in the

Appendix D.

The following theorem, instead, restates the Rigobon’s condition (Proposition 1, page 780,

or our Theorem 9) as the solution of the eigen-decomposition problem based on the observed

covariance matrices in Eq. (29). Moreover, it extends the results to the case of lack of

identification due to equivalent eigenvalues.

Theorem 10 (Point and set identification in bivariate HSVAR). Given the HSVAR model

described in Eq. (24) with the two covariance matrices reported in Eq. (29), the structural

parameters (C,Λ) are obtained through the eigen-decomposition problem discussed in Theorem

6. In particular, the two variances of the structural shocks contained in Λ are given by the two

eigenvalues of Ω−1
i,trΩ2Ω

−1′
i,tr , i.e.

λ1,2 =
ω2
p,1ω

2
q,2 + ω2

p,2ω
2
q,1 − 2ωpq,1ωpq,2 ±∆

2
(
ω2
p,1ω

2
q,1 − ω2

pq,1

) (33)

with

∆ =

[ (
ω2
p,1ω

2
q,2 − ω2

p,2ω
2
q,1

)2
+ 4

(
ω2
p,1ωpq,2 − ω2

p,2ωpq,1

) (
ω2
q,1ωpq,2 − ω2

q,2ωpq,1

) ]1/2
.

The associated unit eigenvectors q1 and q2 form the columns of the orthogonal matrix Q =

(q1 , q2) such that C = Ω1,trQ. Under Assumption 1, the necessary and sufficient condition

for the uniqueness of the structural parameters (C,Λ) is that ∆ ̸= 0. If, instead, ∆ = 0, then

Rigobon’s condition fails and the HSVAR will only be set identified according to the results of

the previous Theorem 8.

Proof. See the Appendix D.

Theorem 10 provides analytical formula to calculate the structural parameters as a function

of the eigenvalues and eigenvectors of observable matrices, i.e. the covariance matrices of the

reduced form in the two regimes, Ω1 and Ω2. Furthermore, in proving the theorem, in the
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Appendix, we also show that the necessary and sufficient condition in Eq. (32), as expected,

is equivalent to say that the two eigenvalues in Eq. (33) must be distinct (as postulated in

Theorem 6) or, put differently, the shift in the variances of the structural shocks must be

different.

However, when the quantity ∆ = 0, from Eq. (33) we have that the two eigenvalues λ1 and

λ2 coincide and, according to Theorem 6, there will be infinite (not parallel) eigenvectors q1

and q2 and, as a consequence, the orthogonal Q = (q1 , q2) is not unique. The model, thus, is

not point identified though we are in the presence of a structural break with distinct covariance

matrices Ω1 and Ω2. Put differently, the information coming from the two different covariance

matrices is not sufficient for point-identifying the structural parameters of the bivariate model.

We now move to the geometric interpretation of this result. Starting from Eq. (8), we

easily obtain that Q′Ω−1
1,trΩ2,trΩ

′
2,trΩ

−1′
1,trQ = Λ. Fixing the quantity Υ ≡ Ω′

2,trΩ
−1′
1,trQ, then

we have that Υ ′Υ = Λ, or, equivalently, ΥΛ−1Υ ′ = In, with In the (n × n) identity matrix.

Interestingly, the columns of Υ , obtained as a linear transformation of the columns of Q,

maintain the orthogonality condition, although their length is no longer unity, but given by

the elements on the main diagonal of Λ. Coming back to the bivariate case, it is easy to

remark that the equation ΥΛ−1Υ ′ = In is the representation of two orthogonal vectors, of

length ∥υ1∥ = λ1 and ∥υ2∥ = λ2, belonging to an ellipse of equation x2

λ1
+ y2

λ2
= 1, as shown in

Figure B.5.

Once we know λ1 and λ2, being the two eigenvalues of the eigen-decomposition highlighted

in Theorem 6, there will be just two pairs of orthogonal vectors (other than their opposite),

(υ1 , υ2) and (υ̃1 , υ̃2), having λ1 and λ2 as their length, shown in blue and in red, respectively,

in Figure B.5. Starting from these four pairs of vectors, using the definition of Υ , it is possible

to obtain four values of Q simply by linearly transforming the columns of Υ by the known

quantities Ω1,tr and Ω2,tr, i.e. Q = Ω′
1,trΩ

−1′
2,trΥ . Based on Assumption 1 (sign normalization),

just two of the four Q matrices will be retained (upper-half or lower-half of the ellipse). Fixing

a specific ordering of the eigenvalues, or, equivalently, fixing the permutation matrix P ∈ P(n),

helps reducing to one single admissible Q, making the HSVAR point identified. The problem

arises when λ1 = λ2. The ellipse will collapse into a circle and infinite orthogonal vectors will

be potentially admissible. In this case, of course, the HSVAR will be no longer identified.
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Figure B.5: Identification of a bivariate HSVAR
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Notes: Representation of the ellipse of equation x2

λ1
+ y2

λ2
= 1, where λ1 and λ2 are the eigenvalues of Ω−1

1,trΩ2(Ω
−1
1,tr)

′. In blue the

pairs of orthogonal vectors (υ1 , υ2) and (−υ1 , −υ2). In red the other two pairs of orthogonal vectors (υ̃1 , υ̃2) and (−υ̃1 , −υ̃2).
The vectors υ1, υ̃1,−υ1,−υ̃1 have length exactly equal to λ1, and υ2, υ̃2,−υ2,−υ̃2 have length exactly equal to λ2. The following
orthogonality conditions hold: (υ1 ⊥ υ2), (υ̃1 ⊥ υ̃2), (−υ1 ⊥ −υ2), (−υ̃1 ⊥ −υ̃2).

Appendix C Proofs

We first introduce some notation that will be used in the following proofs. For any reduced-

form parameter ϕ ∈ Φ, let λi be an eigenvalue of the eigenproblem as in Definition 1 with

algebraic multiplicity g(λi) = mi, with associated eigenspace Q(λi) as in Eq. (9), containing

qij∗ , the column of Q associated with the j∗-th structural shock (shock of interest). We have

defined the zero restrictions on the vectors
(
qi1, . . . , q

i
mi

)
∈ Q(λi) in terms of the matrix F i

j (ϕ),

with ϕ-a.s. full row rank equal to f i
j . Let Q⊥(λi), instead, be the linear space in Rn, of

dimension (n −mi), whose elements are orthogonal to Q(λi). A basis for this linear space is

given by
(
vi1, . . . , v(n−mi)

)
. We define F i⊥

j (ϕ) the linear subspace of Rn that is orthogonal to

the row vectors of F i
j (ϕ) and to Q⊥(λi). We let Hj(ϕ) be the half-space in Rn defined by the

sign-normalization constraint
{
x ∈ Rn

∣∣(σj)′x ≥ 0
}
, with σi being the j-th column of Ω−1

1,tr.

As before, Sn−1 indicates the unit sphere in Rn. Finally, given k linearly independent vectors

in Rn, V =
(
v1, . . . , vk

)
∈ Rn×k, let P(V ) be the linear subspace in Rn, of dimension (n− k)

that is orthogonal to the column vectors of V .

Lemma 2 (Diagonalization of symmetric matrices). Let Ω be a symmetric matrix in Rn×n,

then it is diagonalizable, i.e. there exists an orthogonal matrix Q ∈ O (n), made of the (unit)

eigenvectors of Ω, such that ΩQ = QD, or equivalently, Q′ΩQ = D, where D is diagonal.

Moreover, the matrix D contains the (real) eigenvalues of Ω, corresponding to the eigenvectors

in Q.
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Proof of Lemma 2. See Magnus and Neudecker (2007), Chapter 1, Theorem 13 (page 17).

Lemma 3. In real symmetric matrices the algebraic multiplicity does correspond to the geo-

metric multiplicity.

Proof of Lemma 3. Let A be and n×n symmetric matrix whose i -th eigenvalue is represented

by λi, with algebraic multiplicity equal to 1 < mi ≤ n. Then, there exists some unit-length

eigenvector pi1. Let B =
(
pi1 C

)
be an orthogonal matrix. Then we have

B′AB =

 λi 0

0 C ′AC

 .

As the algebraic multiplicity mi is greater than one, from the characteristic polynomial we

have that
∣∣C ′AC − λiIn−1

∣∣ = 0, that implies there will be some non-null vector q such that(
C ′AC − λiIn−1

)
q = 0. Let pi2 = Cq. It is easy to show that pi2 is an eigenvector of A. In

fact, from the previous relation
(
C ′AC − λiIn−1

)
q = 0 we have AC q = λiC q, that implies

Api2 = λipi2. Moreover, by construction, pi1 will be orthogonal to pi2. It will be possible,

thus, to define a new B of the form B =
(
pi1 pi2 C

)
such that

B′AB =


λi 0 0

0 λi 0

0 0 C ′AC

 .

and proceed as before for all the algebraic multiplicity of λi. The matrix E =
(
pi1, . . . , pimi

)
will be a basis for the eigenspace of A associated with λi, and the dimension of such space will

be clearly mi, being all the columns of E orthogonal.

Proof of Theorem 4. Let (C,Λ) be a solution of the equation system different from (C∗, Λ∗)

with non singular C. Then, there exists a n × n matrix A such that C∗ = CA holds. Note

that A has to be an orthogonal matrix AA′ = I as otherwise Ω1 = C∗C∗′ = CC ′ violates. In

order for (21) to hold for both (C∗, Λ∗) and (C,Λ),

Ω2 = C∗Λ∗C∗′ = CAΛ∗A′C ′ (34)
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must hold and, hence, Λ = AΛ∗A′ holds. We therefore investigate the conditions on orthogonal

matrix A such that AΛ∗A′ yields a diagonal matrix with non negative entries.

Let (λ∗
1, . . . , λ

∗
n) be the diagonal elements of Λ∗ and aij be (i, j)-element of A. Note that

non-singularity of Ω2 implies λ∗
k > 0 for all k = 1, . . . , n. Noting that the (i, j)-element of

AΛ∗A′ can be expressed as
∑n

k=1 λ
∗
kaikajk, A has to satisfy


∑n

k=1 λ
∗
kaikajk = 0, ∀i ̸= j∑n

k=1 λ
∗
kaikajk ≥ 0, ∀i = j.

The second set of conditions does not at all constrain A, while the first set of conditions

constrains A to those such that every row vector in A has only one nonzero element and

none of the row vectors in A shares the column-index for the non-zero entry. Combined with

orthogonality of A, feasible A’s can be therefore represented by A = PS.

Proof of Theorem 7. The proof of the theorem is trivial and completely based on the proof

of the Single Value Decomposition for square matrices, see among many others Magnus and

Neudecker (2007), pages 19-20. The first point to remark is that, if we call Ωtr = Ω−1
1,trΩ2,tr,

then Λ1/2 contains the positive square root of the eigenvalues of Ω = Ω−1
1,trΩ2,trΩ

′
2,trΩ

−1′
1,tr =

Ω−1
1,trΩ2Ω

−1′
1,tr, as described in Theorem 6. However, for symmetric and non-singular real

matrices like Ω, the number of identical eigenvalues (real and different from zero) corresponds

to the number of degenerate singular values in Ωtr. As a consequence, if all the elements

in Λ1/2 are distinct, then all the singular values are non-degenerate, and the singular value

decomposition is unique (Q and Q2 are unique), up to multiplication of a specific column of

Q and Q2 by -1, or changing the ordering of the elements in Λ1/2 (or Λ).

Proof of Theorem 1. The proof of the theorem takes inspiration from Rubio-Ramı́rez, Wag-

goner, and Zha (2010) (proof of their Theorem 7). When the two covariance matrices are

perfectly proportional, or even equal, then the condition in the theorem collapses to the well

known condition in Rubio-Ramı́rez, Waggoner, and Zha (2010) and Bacchiocchi and Kitagawa
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(2021), and the proof is thus immediate. On the other side, if all eigenvalues are distinct, i.e.

k = n, then the results of Theorem 6 apply. Similar results apply for all eigenvalues with

algebraic multiplicity equal to one, i.e. mi = 1. According to Lemma 3, the geometric mul-

tiplicity is equal to the algebraic one, and thus, if mi = 1 the eigenspace associated to such

eigenvalues will generate spaces of dimension one, each. Imposing unit length and sign normal-

ization allows to uniquely identify such vectors. Moreover, given Lemma 2, such vectors will

be mutually orthogonal. They will constitute the columns of Q associated with the eigenvalues

of multiplicity one.

We will now turn to the case when λ has multiplicity greater than 1. Let λi be characterized

by algebraic multiplicity mi ≤ 2. Given Lemma 3, the mi associated eigenvectors, although

not unique, represent an orthonormal basis for the subspace Q(λi), of dimension mi in Rn. For

the condition in Theorem 1 to be sufficient, we need to prove that imposing such particular

pattern of zero restrictions allows to uniquely pin down orthonormal vectors lying in Q(λi).

Let V (λi) =
(
vi1, . . . , v

i
mi

)
be a basis for the eigenspace associated to λi. The identified vectors(

qi1, . . . , q
i
mi

)
must satisfy the following conditions:

- they must be a linear combination of the orthonormal basis identified through the eigen-

problem;

- they must be orthogonal each other;

- they must satisfy the zero and normalization restrictions;

- they must have unit length.

We can think of writing a system of equations. The number of unknowns is mi for each

vector qij, j = 1, . . . ,mi. Let the ordering of the vectors be fixed according to the number of

restrictions, from the more the less constrained. We start from the first and most constrained

vector

qi1 = vi1x1 + · · · + vimi
xmi

that is subjected to the mi − 1 zero restrictions F i
1(ϕ)q

i
1 = 0. Substituting the definition of qi
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according to the previous relation, we simply obtain:

[
F i
1(ϕ)v

i
1 · · · F i

1(ϕ)v
i
mi

]
x1

...

xmi

 = 0. (35)

As rank
(
F i
1(ϕ)

)
= mi − 1, ϕ-almost surely (a.s.), then the matrix

[
F i
1(ϕ)v

i
1 · · · F i

1(ϕ)v
i
mi

]
projecting mi orthogonal vectors in Rn onto an mi−1 dimensional space, will generate mi−1

linearly independent vectors in Rmi . As a consequence, there will be just a uni-dimensional

space in Rmi that is orthogonal to F i
1(ϕ). Let x̃ = (x̃1, . . . , x̃mi

)′ be a unit vector representing

a basis for this vector space, then

qi = vi1αx̃1 + · · · + vimi
αx̃mi

.

However, qi must have unit length, thus

q′1q1 = 1 =⇒ α2
(
vi1x̃1 + · · · + vimi

x̃mi

)′(
vi1x̃1 + · · · + vimi

x̃mi

)
= 1

=⇒ α2
(
x̃2
1 + · · · + x̃2

mi

)
= 1

=⇒ α2 = 1 =⇒ α = ±1,

indicating that there will be two opposite vectors candidates for qi1, one of which, however,

is ruled out by the normality sign restrictions. The following step consists in determining

qi2 ∈ Q(λi), orthogonal to qi1 and satisfying the (mi − 2) restrictions F i
2(ϕ)q

i
2 = 0. We can

think of a system of equations of the form

 F i
2(ϕ)q

i
2 = 0

qi′1 q
i
2 = 0

where qi1 is known from the previous step. Substituting for the definition of qi2 in terms of

the basis of the vector space it belongs, i.e. V (λi) =
(
vi1, . . . , v

i
mi

)
, with simple algebra, the
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system can also be written as


 F i

2(ϕ)

qi1

 vi1 · · ·+

 F i
2(ϕ)

qi1

 vimi




x1

...

xmi

 = 0.

According to the assumed non-redundancy of the restrictions, as in Definition 3, the quantity F i
2(ϕ)

qi1

 has full row rank mi − 1, we are exactly in the same situation as in Eq. (35).

We can thus proceed as before and obtain two potential opposite unit-length vectors qi2, one

of which, however, is ruled out by the sign normalization restrictions. This strategy allows to

prove the point identification of all the
(
qi1, . . . , q

i
mi

)
vectors associated with the i -th multiple

eigenvalue λi. The sufficient direction of the condition is thus proved.

The necessary part of the condition can be proved as follows. Let the parameter (A0, A+, Λ) ∈

Ar(ϕ) be point identified. As a consequence, the set of admissible orthogonal matrices

Q(ϕ |F, S) will be a singleton, say Q. If the i -th column of Q is the eigenvector associ-

ated to an eigenvalue with no multiplicity (mi = 1), then it is unique and no zero restriction

is needed, thus f i
j = mi − j = 1− 1 = 0 as predicted by the theorem. For those columns of Q

associated with an eigenvalue with multiplicity mi > 1 the condition can be directly proved by

using Lemma 4 in Bacchiocchi and Kitagawa (2021), that extends Lemma 9 in Rubio-Ramı́rez,

Waggoner, and Zha (2010) to the case of non-redundant restrictions.

Proof of Theorem 2. Let j∗ the shock of interest, that is associated with qij∗ ∈ Q(λi), the

eigenspace related to λi, with multiplicity mi. According to Definition 1, the space Q(λi) is

orthogonal to the linear space generated by all the other eigenvectors of the eigenproblem, that

we denote by Q⊥(λi). The dimension of Q⊥(λi) is (n−mi) and let the vectors (vi1, . . . , v
i
(n−mi)

)

be a possible basis. Moreover, let the vectors (qi1, . . . , qmi
) ∈ Q(λi) be defined in the following
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recursive way:

qi1 ∈ V i
1 (ϕ) ≡ F i⊥

1 (ϕ) ∩H1(ϕ) ∩ Sn−1

qi2 ∈ V i
2 (ϕ, q

i
1) ≡ F i⊥

2 (ϕ) ∩H2(ϕ) ∩ P(qi1) ∩ Sn−1

qi3 ∈ V i
3 (ϕ,Q

i
1:2) ≡ F i⊥

3 (ϕ) ∩H3(ϕ) ∩ P(Qi
1:2) ∩ Sn−1

...

qimi
∈ V i

mi
(ϕ,Qi

1:mi−1) ≡ F i⊥
mi
(ϕ) ∩Hmi

(ϕ) ∩ P(Qi
1:mi−1) ∩ Sn−1

(36)

where the generic F i⊥
j (ϕ) is the linear subspace of Rn that is orthogonal to the row vectors of

F i
j (ϕ) and to Q⊥(λi). The dimension of F i⊥

j (ϕ) is dim
(
F i⊥

j (ϕ)
)
= n− (n−mi)−f i

j = mi−f i
j .

If j∗ = 1, then we know that f i
1 ≤ mi − 1, and F i⊥

1 (ϕ) ∩ H1(ϕ) is the half-space of the

linear subspace of R2 with dimension mi − f i
1 ≥ 1. As a consequence, V i

1 (ϕ, q
i
i) is non empty

for every ϕ ∈ Φ. Similarly, if j∗ = 2, . . . ,mi, F i⊥
j∗ (ϕ) ∩ Hj∗(ϕ) ∩ P(Q1:j∗) is the half-space of

the linear subspace of Rn of dimension at least mi − f i
j∗ − (j∗ − 1) ≥ 1, being f i

j∗ ≤ mi − j∗.

For j∗ = 1, . . . ,mi, thus, V
i
j∗(ϕ,Q

i
1:j∗−1) is non empty and, as a consequence, Q(ϕ, F ) will be

non empty, too. Non emptiness of the impulse responses is a direct consequence. Concerning

the boundedness, it immediately follows from the fact that |rhlj∗| ≤ ∥clh(ϕ)∥ ≤ ∞ for any

l ∈ {1, . . . , n}, j∗ ∈ {1, . . . ,mi} and h = 0, 1, 2, . . ., where ∥clh(ϕ)∥ ≤ ∞ is guaranteed by the

invertibility of the VAR characteristic polynomial. The first part of the proof is thus complete.

We can move to prove the convexity of the identified set.

Let j∗ = 1 and f i
1 ≤ mi − 1 (condition 1). Being V i

1 (ϕ) the intersection of an half-space of

dimension at least 2 and an unit sphere it is path connected for all values of the reduced-form

parameters ϕ. Hence, the identified set rhl1 = clh(ϕ)q
i
1 will be an interval, being the impulse

response a continuous function with a path connected domain always an interval. Concerning

condition (2) of the Theorem, we can prove the result by applying Lemma A.1 in Giacomini

and Kitagawa (2014). According to the definition of F i⊥
j (ϕ), that collects not simply vectors

orthogonal to the row vectors of F i
j (ϕ), but also orthogonal to all other vectors belonging to

Q⊥(λi), Lemma A.1 in Giacomini and Kitagawa (2014) allows to simplify the set of admissible

qij∗ . In fact, if we define E i
j∗(ϕ) the set of admissible qij∗ , then using Lemma A.1 we derive that

E i
j∗(ϕ) = F i⊥

j∗ (ϕ) ∩ Hj∗(ϕ) ∩ Sn−1. Hence, being E i
j∗(ϕ) the intersection of a half-space of a

linear subspace with dimension mi − f i
j∗ ≥ j∗ ≥ 2 with the unit sphere, it is a path connected
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set on Sn−1, and the convexity of the identified set immediately follows.

In a similar way we can prove the result for condition (3) of the theorem. In this respect

we can use Lemma A.2 in Giacomini and Kitagawa (2014), that, based on our definition

of F i⊥
j (ϕ), allows to derive the set of potential qij∗ subject to condition (3), i.e. E i

j∗(ϕ) =

F i⊥
j∗ (ϕ) ∩ Hj∗(ϕ) ∩ P(Qi

1:k) ∩ Sn−1. According to this definition, E i
j∗(ϕ) is the intersection of

a half-space of a linear subspace of dimension n − (n − mi) − f i
j∗ − k > j∗ − k ≥ 2 and a

unit sphere, and, thus, it is a path connected set on Sn−1. The convexity of the identified set,

hence, clearly holds.

In all cases, the convexity of the identified set depends on ϕ ∈ Φ, being the multiplicity of

λi equal to mi only ϕ-a.s. Thus, convexity of the identified set holds ϕ-a.s.

Proof of Theorem 3. The proof builds on Lemma A.2 in Giacomini and Kitagawa (2014). Let

first j∗ = 1 and f i
1 < mi − 1. According to the notation introduced in Eq. (36), the set of

admissible qi1 becomes V i
1 (ϕ)∩

{
x ∈ Rn : Si

1(ϕ)x ≥ 0
}
. Moreover, let q̃i11 be another arbitrary

unit length vector satisfying the zero, sign normalization and sign restrictions. Clearly, ac-

cording to the sign restrictions, it must hold that qi1 ̸= q̃i11. The intuition for proving the result

consists in observing that any weighted average of the two admissible vectors, with positive

weights summing to one, continues to belong to the set. Then, if we define

qii(δ) =
δqi1 + (1− δ)q̃i11

∥δqi1 + (1− δ)q̃i11∥
, δ ∈ [0 , 1] (37)

it represents a connected path in V i
1 (ϕ)∩

{
x ∈ Rn : Si

1(ϕ)x ≥ 0
}
, as the denominator is always

different then zero, given that qi1 ̸= q̃i11. Any generic couple of admissible vectors, thus, can

be connected by a connected path. The convexity of the impulse response, thus, immediately

follows. We now assume that condition (2) in Theorem 2 holds. Now, let E i
j∗(ϕ) be the set

of admissible qij∗ satisfying zero, sign normalization and sign restrictions. Let qij∗ and q̃ij∗ be

two arbitrary vectors belonging to E i
j∗(ϕ). Clearly, due to the sign restrictions, qij∗ ̸= q̃ij∗ . As

before, we consider a path between these two vectors as follows

qij∗(δ) =
δqij∗ + (1− δ)q̃ij∗∥∥δqij∗ + (1− δ)q̃ij∗

∥∥ , δ ∈ [0 , 1] (38)
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which is a continuous path on the unit sphere as the denominator is always different than

zero, being qij∗ ̸= q̃ij∗ . Now, the path connectedness of E i
j∗(ϕ) depends on whether it is possible

to obtain an admissible set of vectors Qi(δ) =
(
qi1(δ), . . . , q

i
mi
(δ)
)
whose j∗-th element is

represented by the qij∗(δ) vector. Conditional on a basis
(
vi1, . . . , v

i
(n−mi)

)
for the space Q⊥(λi),

the first k vectors in Qi(δ), k = 1, . . . , j∗ − 1 can be obtained through the solutions of the

recursive system of equations



F i
s(ϕ)

vi1
...

vn−mi

qi1(δ)

...

qik−1(δ)

qij∗(δ)



qik(δ) = 0, δ ∈ [0 , 1] (39)

satisfying the further sign normalization restriction. As the rank of the matrix in the system

is at most n−mi + k + f i
k, that is always less then n because f i

k < mi − k, a solution always

exists. The remaining vectors for j∗ + 1, . . . ,mi can be obtained recursively by extending the

system in Eq. (39). The set E i
j∗(ϕ), thus, is non empty and path connected. The convexity of

the impulse response identified set immediately follows.

Concerning point (2) of the theorem, let the zero restriction satisfy condition (3) of The-

orem 2, and let
(
qi1, . . . , q

i
k

)
be the exactly identified vectors, common to all admissible Q(λ)

matrices. As before, we chose two arbitrary vectors qij∗ and q̃ij∗ , both satisfying the zero, sign

normalization and sign restrictions, and obtain the further vector q̃ij∗(δ) as in Eq. (38). We

can thus construct the set Qi(δ), whose first k columns are given by
(
qi1, . . . , q

i
k

)
. Conditional
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on the choice of δ, for s = k + 1, . . . , j∗ − 1, we can recursively derive qis(δ) by solving



F i
s(ϕ)

vi1
...

vn−mi

qi1
...

qik

qik+1(δ)

...

qis−1(δ)

qij∗(δ)



qis(δ) = 0, δ ∈ [0 , 1] (40)

where qis(δ) satisfies the sign normalization restriction, and where
(
vi1, . . . , v

i
(n−mi)

)
is a basis for

the space Q⊥(λi). The system always admits a solution, being the rank of the matrix less than

n by the assumption on the number of zero restrictions on qk+1, . . . , q
i
j∗−1, being f i

s < mi − s,

for s = 1, . . . , j∗ − 1. The remaining qij∗+1(δ), . . . , q
i
mi
(δ) vectors can be recursively derived

by extending the system in Eq. (40). Once proved on how to derive Qi(δ) as a function of

δ ∈ [0 , 1], the set E i
j∗(ϕ) is path connected, and the associated impulse response identified set

is convex for every variable at any horizon.

Proof of Lemma 1. The (squared of the) Frobenius norm states that

∥∥∥Ω − Ω̃
∥∥∥2
F
=

n∑
i,j

(
Ωij − Ω̃ij

)2
= tr

[(
Ω − Ω̃

)′(
Ω − Ω̃

)]
.

However, given the definition of Ω and Ω̃

Ω = QΛQ′ and Ω̃ = QΛ̃Q′,
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we have that

∥∥∥Ω − Ω̃
∥∥∥2
F

= tr
[(
QΛQ′ −QΛ̃Q′)′(QΛQ′ −QΛ̃Q′)]

= tr
[(
Q(Λ− Λ̃)Q′)′(Q(Λ− Λ̃)Q′)]

= tr
[
Q(Λ− Λ̃)(Λ− Λ̃)Q′

]
= tr

[
QQ′(Λ− Λ̃)2

]
= tr

[
(Λ− Λ̃)2

]
=

m∑
h=1

(λh − λ̃)2.

Clearly, this is minimized when λ̃ = 1
m

∑m
h=1 λh, i.e. the mean of the eigenvalues corresponding

to those restricted to be equal.

Appendix D Proofs of Theorems on bivariate SVARs

and HSVARs

Proof of Theorem 8. Given the decomposition of A0 as in Eq. (26), then

β = − [A0](1,2) / [A0](1,1) = − (q′1ω2) / (q
′
1ω1) (41)

α = − [A0](2,1) / [A0](2,2) = − (q′2ω1) / (q
′
2ω2) (42)

where ω1 and ω2 are defined as in Eq. (27) while q1 and q2 are the two columns of the

orthogonal matrix Q. The proof of the theorem is extremely intuitive when observing the two

graphs in Figure B.3 and Figure B.4. Consider the situation of ωpq ≥ 0 (Case I, Figure B.3),

first. In both panels we report the observable ω1 and ω2 vectors, compatible with ωpq ≥ 0. In

the left panel we focus on all the admissible β. First of all, if we look at the definition of β

in Eq. (41), it is very simple to obtain the two values of q1 featuring the extreme values of

β = −∞ and β = ∞. In both cases, q1 must be orthogonal to ω1; however, in one case the

numerator of β is negative (solid line), while in the other the numerator is positive (dotted

line). The vector q1 featuring β = 0 has to be orthogonal to ω2. This generates two potential

q1 vectors, i.e. q1 = (0, 1) and q1 = (0,−1). The latter, however, has to be discarded given
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Assumption 1. It can be deduced, thus, that the admissible β are those generated by the q1

vectors lying on the right half of the unit circle (light red area) and, without any restriction,

β ∈ (−∞ , ∞). The arc in red, instead, highlight the feasible q1 vectors consistent with the

sign restriction β ≤ 0, as reported in Assumption 2. In the right panel, instead, we focus on

the coefficient α. Even in this case we report the two observable vectors ω1 and ω2. Following

the same strategy as before, we determine all the admissible vectors q2 compatible with the α

coefficient. However, keeping in mind that q1 and q2 must be orthogonal by construction, it

can be remarked that, when q1 reaches the two extreme values β = −∞ and β = ∞, it can

no longer rotate counterclockwise, as it is at odds with Assumption 1. This implies that q2

can not reach the limit case of α = ∞. Without any further restriction, α ∈ (−∞ , ω2
q/ωpq),

where this upper bound of the interval is obtained by substituting in the definition of α in

Eq. (42) the value of q2 that is orthogonal to q1 featuring β = −∞ (or, equivalently, the one

featuring β = ∞), i.e. q2 = − ω1

∥ω1∥ , being ∥ω1∥ the Euclidean norm of ω1. Thus, with simple

algebra, we obtain

α = − (q′2ω1) / (q
′
2ω2) = −

(
1

∥ω1∥
(ω′

1ω1)

)/(
1

∥ω1∥
(ω′

1ω2)

)
=

ω2
q

ωpq

. (43)

If, instead, we consider the sign restrictions in Assumption 2, then the admissible vectors for

q1 and q2 are indicated in red and green, respectively. Specifically, being q2 orthogonal to q1,

it must be in between ω2 and −ω1 (green arc), providing thus a ‘natural’ restriction on the set

of possible α’s consistent with the two sign restrictions. In particular, the lower bound of the

identified set can be obtained through the definition of α in Eq. (42) when q2 is the unitary

vector parallel to ω2, i.e. q2 = (0 1)′. This leads to

α = − (q′2ω1) / (q
′
2ω2) = −

(
(0 1)′ ω1

)/(
(0 1)′ ω2

)
=

ωpq

ω2
p

. (44)

The second case, when ωpq < 0, can be addressed in the same way, but now the two sign

restrictions in Assumption 2 induce an identified set for β. In particular, the upper bound

of the identified set for β can be obtained by using the definition in Eq. (41), when q1 is

a unitary vector parallel to ω1, while the lower bound can be obtained when q1 is a unitary

vector parallel to ω2. Simple algebra provides the result for Case II in the theorem.
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Proof of Corollary 1. We know that when ωpq ≥ 0 and β = 0, from Eq. (41), q′1 ω2 = 0. As a

consequence, from Figure B.3 (left panel), this implies q2 = (0 1)′. Thus, substituting for q2

in Eq. (eq:alpha) and using the definition of ω1 and ω2 in Eq. (27) leads to the same result

as in Eq. (44), proving thus the first part of the corollary.

When ωpq < 0 and α = 0, then q′2 ω1 = 0. This implies that q1 will be the unit vector

parallel to ω1, i.e. q1 =
ω1

∥ω1∥ . Substituting in the definition of β in Eq. (41), leads to

β = − (q′1ω2) / (q
′
1ω1) = −

(
1

∥ω1∥
(ω′

1ω2)

)/(
1

∥ω1∥
(ω′

1ω1)

)
=

ωpq

ω2
q

. (45)

which proves the second part of the corollary.

Proof of Theorem 10. Based on the definition of Ω1 and Ω2, the first step is to calculate the

analytical expression for Ω−1
i,trΩ2Ω

−1′
i,tr , i.e.

Ω−1
i,trΩ2Ω

−1′
i,tr =

 1
ωp,1

0

−ωpq,1

ω2
p,1

γ1 γ1


 ω2

p,2 ωpq,2

ωpq,2 ω2
p,2


 1

ωp,1
−ωpq,1

ω2
p,1

γ1

0 γ1


=

 ω2
p,2

ωp,1

−ω2
p,2ωpq,1+ωpq,2ω2

p,1

ω3
p,1

γ1

−ω2
p,2ωpq,1+ωpq,2ω2

p,1

ω3
p,1

γ1
ω2
pq,1ω

2
p,2−2ωpq,1ωpq,2ω2

p,1+ω4
p,1ω

2
p,2

ω4
p,1

γ2
1


with γ1 defined as in Eq. (31). The following step is to calculate the eigenvalues of the previous

matrix, that, after some algebra, corresponds to find the solutions of the following quadratic

equation of the standard form aλ2 + bλ+ c = 0:

λ2 +

(−ω2
p,1ω

2
q,2 − ω2

p,2ω
2
q,1 + 2ωpq,1ωpq,2

ω2
p,1ω

2
q,1 − ω2

pq,1

)
λ+

(
ω2
p,2ω

2
q,2 − ω2

pq,2

ω2
p,1ω

2
q,1 − ω2

pq,1

)
= 0. (46)

In solving the quadratic equation it is crucial to focus on the discriminant ∆ = b2− 4ac of the

equation

∆ =

(
ω2
p,1ω

2
q,2 − ω2

p,2ω
2
q,1

)2
+ 4

(
ω2
p,1ωpq,2 − ω2

p,2ωpq,1

) (
ω2
q,1ωpq,2 − ω2

q,2ωpq,1

)(
ω2
p,1ω

2
q,1 − ω2

pq,1

)2 . (47)

Given that the original matrix Ω−1
i,trΩ2Ω

−1′
i,tr is symmetric, then the two eigenvalues are clearly

real, and this implies that the discriminant will be not negative. However, if we want the

61



solutions to be distinct (distinct eigenvalues), then we need to find the conditions for ∆ to

be strictly positive. Firstly, the denominator in Eq. (47) is clearly a real positive number

beign the square of the determinant of Ω1, that is clearly different from zero. The condition

of distinct eigenvalues, thus, has to be find on the positiveness of the numerator of Eq. (47).

The first term of the sum is clearly non-negative, and, if we show that the second one cannot

be negative, too, then the eigenvalues will be clearly distinct as ∆ > 0. The non-negativeness

of the second term of Eq. (47), with simple algebra, can be seen as:

(
ω2
p,1ωpq,2 − ω2

p,2ωpq,1

) (
ω2
q,1ωpq,2 − ω2

q,2ωpq,1

)
≥ 0. (48)

It immediately emerges that if ωpq,1 and ωpq,2 are of different sign, the previous quantity

becomes negative. If, instead, they maintain the same sign, we need to consider the two terms

separately

ω2
p,1ωpq,2 − ω2

p,2ωpq,1 ≥ 0 ⇐⇒ ωpq,2

ωpq,1

≥
ω2
p,2

ω2
p,1

(49)

ω2
q,1ωpq,2 − ω2

q,2ωpq,1 ≥ 0 ⇐⇒ ωpq,2

ωpq,1

≥
ω2
q,2

ω2
q,1

. (50)

In order to prove when these quantities are positive, it can be useful to consider the definition

of ω1 and ω2 as a function of the structural parameters contained in C = A−1
0 , i.e.

Ω1 = CC ′ =

 c211 + c212 c11c21 + c12c22

c11c21 + c12c22 c221 + c222

 (51)

Ω2 = CΛC ′ =

 c211Λ11 + c212λ22 c11c21Λ11 + c12c22Λ22

c11c21Λ11 + c12c22Λ22 c221Λ11 + c222Λ22

 (52)

where

Λ =

 λ11 0

0 λ22

 =

 σ2
ε2
/σ2

ε1
0

0 σ2
η2
/σ2

η1


and collects the relative shifts in the variances of the structural shocks across the two regimes.
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From these relationships we obtain

ωpq,2

ωpq,1

=
c11c21Λ11 + c12c22Λ22

c11c21 + c12c22

ω2
p,2

ω2
p,1

=
c211Λ11 + c212λ22

c211 + c212

ω2
q,2

ω2
q,1

=
c221Λ11 + c222Λ22

c221 + c222

that allow to investigate the previous inequalities in Eq.s (49)-(50) as follows

ωpq,2

ωpq,1

≥
ω2
p,2

ω2
p,1

⇐⇒ c11c21Λ11 + c12c22Λ22

c11c21 + c12c22
≥ c211Λ11 + c212λ22

c211 + c212

⇐⇒ c12c11 (c12c21 − c11c22) (λ11 − λ22) ≥ 0 (53)

ωpq,2

ωpq,1

≥
ω2
q,2

ω2
q,1

⇐⇒ c11c21Λ11 + c12c22Λ22

c11c21 + c12c22
≥ c221Λ11 + c222Λ22

c221 + c222

⇐⇒ c21c22 (c11c22 − c12c21) (λ11 − λ22) ≥ 0. (54)

Given that c11 and c22 are positive by construction, the system of inequalities becomes

c12 (c12c21 − c11c22) (λ11 − λ22) ≥ 0 (55)

c21 (c11c22 − c12c21) (λ11 − λ22) ≥ 0. (56)

At this point it is important to remember that, from the definition of C = A−1
0 , c12 ≥ 0 and

c21 ≤ 0, due to the sign restrictions on α and β. The previous inequalities, thus, are either

always jointly satisfied or jointly never, depending on the sign of (λ11 − λ22). This result

shows that the inequality in Eq. (48) is always satisfied and thus, being the two addends of

the discriminant in Eq. (47) both non-negative, the only possibility we have to exclude for

having distinct eigenvalues is when both of them are null, i.e. we have the following system

of equations:

ω2
p,1ω

2
q,2 − ω2

p,2ω
2
q,1 = 0 (57)(

ω2
p,1ωpq,2 − ω2

p,2ωpq,1

) (
ω2
q,1ωpq,2 − ω2

q,2ωpq,1

)
= 0. (58)
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for which the solutions are:

ω2
p,1

ω2
p,2

=
ω2
q,1

ω2
q,2

,
ω2
p,1

ω2
p,2

=
ωpq,1

ωpq,2

,
ωpq,1

ωpq,2

=
ω2
q,1

ω2
q,2

(59)

that corresponds to the case Ω1 = aΩ2, that has been excluded in the theorem.

The eigenvectors, instead, can be calculated from the two systems

(
Ω−1

i,trΩ2Ω
−1′
i,tr − I2λi

)
qi =

 0

0

 , i = {1, 2} (60)

where λi is the i -th eigenvalue and qi is the i -th eigenvector. Tedious algebra, not reported

here to save space, but available from the authors upon request, proves the following result:

q1 =


∆ω2

p,1+D1

2D2

[
(∆ω2

p,1+D1)
2
/(2D2

3∆
2)+1

]1/2
D3

1[
(∆ω2

p,1+D1)
2
/(2D2

3∆
2)+1

]1/2

 , q2 =


−∆ω2

p,1+D1

2D2

[
(∆ω2

p,1−D1)
2
/(2D2

3∆
2)+1

]1/2
D3

1[
(∆ω2

p,1−D1)
2
/(2D2

3∆
2)+1

]1/2

. (61)

where

∆ =

[ (
ω2
p,1ω

2
q,2 − ω2

p,2ω
2
q,1

)2
+ 4

(
ω2
p,1ωpq,2 − ω2

p,2ωpq,1

) (
ω2
q,1ωpq,2 − ω2

q,2ωpq,1

) ]1/2
D1 = −2ω2

p,2ωpq,1 − ω4
p,1ω

2
q,2 + 2ω2

p,1ωpq,1ωpq,2 + ω2
p,1ω

2
p,2ω

2
q,1

D2 =
(
ω2
p,1ω

2
q,1 − ω2

pq,1

)1/2
D3 =

(
ω2
p,1ωpq,2 − ω2

p,2ωpq,1

)
.

The q1 and q2 unit vectors form the columns of the orthogonal matrix Q = (q1 , q2) such that

C = Ω1,trQ.

If all the λs are equal, the relation Q′Ω−1
1trω2trΩ

′
2trΩ

−1′
1tr Q = Λ will become

Ω−1
1trΩ2trΩ

′
2trΩ

−1′
1tr = λQQ′

⇒ Ω−1
1trΩ2trΩ

′
2trΩ

−1′
1tr = λIn

⇒ Ω2trΩ
′
2tr = λΩ1trΩ

′
1tr

⇒ Ω2 = λΩ1,
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which implies that the condition for identification fails. In other words, the two covariance

matrices, once rescaled for the factor λ, contain the same amount of information. While λ can

be used for estimating the variance of the structural shocks, the remaining part of information

will be used for estimating the parameters of the conditional expected value of the structural

form, i.e. A0. However, this amount of information is the same as in standard bivariate SVARs,

indicating that the results of Theorem 8 can be applied. This completes the proof.

Appendix E Frequentist and Bayesian estimators for reduced-

form HVAR

We present three estimators for the parameters of the HVAR: two frequentist ones and a

Bayesian one. This last is at the heart of our procedure for making inference in the case of

set identification.

E.1 GLS and ML estimators

Let the nm×1 vector of parameters ϕB = vec (B) and the n×T matrices Y = [y1, y2 . . . , yT ]

containing the data, and U = [u1 u1 . . . , ut] containing the error terms. We can define y =

vec (Y ) and u = vec (U). Now, the presence of volatility clusters allows to write

V (U) =

 IT1 ⊗Ω1 0

0 IT2 ⊗Ω2

 (62)

where T1 = TB and T2 = T − TB. Given the initial observations y−l+1, . . . , y0, the m × T

matrix X = [x1, . . . , xt . . . , xT ], with xt = (1, y′t−1, . . . y
′
t−l)

′.

Given these definitions, the reduced-form HVAR in Eq. (3) can be written as

y = (X ′ ⊗ In)ϕB + u or Y = BX + U. (63)
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These compact notations, as well as a suitable partitioning of y and X as follows

y =

 y1
nT1×1

y2
nT2×1

 and X =

(
X1

m×T1

X2
m×T2

)
(64)

allow to define a feasible generalized least squares (GLS) estimator. In particular, using the

well known formula for the GLS estimator

ϕ̂B,GLS =

(X ′ ⊗ In
)′ IT1 ⊗Ω1 0

0 IT2 ⊗Ω2


−1 (

X ′ ⊗ In
)

−1

(
X ′ ⊗ In

)′ IT1 ⊗Ω1 0

0 IT2 ⊗Ω2


−1

y. (65)

and according to the partitioning of y and X as given in Eq. (64), the formula for the GLS

estimator becomes:

ϕ̂B,GLS =
[(
X1X

′
1 ⊗ Ω̂−1

1

)
+
(
X2X

′
2 ⊗ Ω̂−1

2

)]−1 [(
X1 ⊗ Ω̂−1

1

)
y1 +

(
X2 ⊗ Ω̂−1

2

)
y2

]
(66)

where Ω̂i, i = {1, 2}, is the covariance matrix of the residuals when Eq. (63) is estimated

with equation-wise ordinary least squares in a first step.

Moreover, apart from a constant term, and conditional on the initial observations y−l+1, . . . , y0,

the reduced-form Gaussian likelihood function can be written as

L(Y |ϕB, Ω1, Ω2)∝ |Ω1|−
T1
2 |Ω2|−

T2
2 exp

{
− 1

2

[
y − (X ′ ⊗ In)ϕB

]′
. . .

. . .

 IT1 ⊗Ω1 0

0 IT2 ⊗Ω2

−1 [
y − (X ′ ⊗ In)ϕB

]}
(67)

If the data generating process is Gaussian, maximizing L(Y |ϕB, Ω1, Ω2) with respect to the

parameters (ϕB, Ω1, Ω2) gives the maximum likelihood (ML) estimators. Instead, if departures

from gaussianity do arise, the resulting estimators are quasi-ML estimators.

The Gaussian likelihood function reported in Eq. (67) can be transformed in a more

66



convenient way to derive the posterior distributions discussed in the next section. The term

in the exponent can be written as

y′

 IT1 ⊗Ω1 0

0 IT2 ⊗Ω2


−1

y − 2ϕ′
B(X

′ ⊗ In)
′

 IT1 ⊗Ω1 0

0 IT2 ⊗Ω2


−1

y+

ϕ′
B(X

′ ⊗ In)
′

 IT1 ⊗Ω1 0

0 IT2 ⊗Ω2


−1

(X ′ ⊗ In)ϕB.

Using the mentionend partitioning of the X and y allows to write the addends as follows

y′

 IT1 ⊗Ω1 0

0 IT2 ⊗Ω2


−1

y = y1(IT1 ⊗Ω1)
−1y1 + y2(IT2 ⊗Ω2)

−1y2

ϕ′
B(X

′ ⊗ In)
′

 IT1 ⊗Ω1 0

0 IT2 ⊗Ω2


−1

y = ϕ′
B(X

′
1 ⊗Ω−1

1 )′y1 + ϕ′
B(X

′
2 ⊗Ω−1

2 )′y2

ϕ′
B(X

′ ⊗ In)
′

 IT1 ⊗Ω1 0

0 IT2 ⊗Ω2


−1

(X ′ ⊗ In)ϕB = ϕ′
B(X1X

′
1 ⊗Ω−1

1 )ϕB + ϕ′
B(X2X

′
2 ⊗Ω−1

2 )ϕB.

Thus, an alternative expression for the likelihood function becomes

L(Y |ϕB, Ω1, Ω2) ∝ |Ω1|−
T1
2 |Ω2|−

T2
2 exp

{
− 1

2

[
y′1(IT1 ⊗Ω1)

−1y1 + y′2(IT2 ⊗Ω2)
−1y2 +

−2ϕ′
B(X

′
1 ⊗Ω−1

1 )′y1 − 2ϕ′
B(X

′
2 ⊗Ω−1

2 )′y2 +

+ ϕ′
B(X1X

′
1 ⊗Ω−1

1 )ϕB + ϕ′
B(X2X

′
2 ⊗Ω−1

2 )ϕB

]}
.(68)

E.2 Bayesian estimators

Combining the likelihood function in Eq. (68) with the following Normal and inverse Wishart

priors for ϕB, Ω1 and Ω2

ϕB ∼ N
(
µϕ, Vϕ

)
Ω1 ∼ iW

(
S1, d1

)
Ω2 ∼ iW

(
S2, d2

)
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allows to obtain the following posterior distributions for ϕB, Ω1 and Ω2

P (ϕB, Ω1, Ω2|Y )∝ |Ω1|−
T1
2 |Ω2|−

T2
2 |Ω1|−

d1+n+1
2 |Ω2|−

d2+n+1
2

exp
{
− 1

2
[y − (X ′ ⊗ In)ϕB

]′ ( IT1
⊗ Ω1 0

0 IT2
⊗ Ω2

)−1 [y − (X ′ ⊗ In)ϕB
]}

exp
{ − 1

2
tr [Ω−1

1 S1
]} exp { − 1

2
tr [Ω−1

2 S2
]}. (69)

This joint distribution is not of a known form and drawing directly from it is very hard.

However, given the conditional distributions for ϕB given Ω1 and Ω2, and those of Ω1 and Ω2

given ϕB, derived in the following subsections, we can explore the posterior joint distribution

by using a Gibbs sampler.

E.2.1 Case I) Inference on ϕB with Ω1 and Ω2 known

If Ω1 and Ω2 are known parameters, the kernel of the likelihood that is relevant for ϕB is

L(Y |ϕB) ∝ exp
{
− 1

2

[
− 2ϕ′

B(X
′
1 ⊗Ω−1

1 )′y1 − 2ϕ′
B(X

′
2 ⊗Ω−1

2 )′y2 +

+ ϕ′
B(X1X

′
1 ⊗Ω−1

1 )ϕB + ϕ′
B(X2X

′
2 ⊗Ω−1

2 )ϕB

]}
.

As a prior distribution for ϕB we can use

ϕB ∼ N
(
µϕ, Vϕ

)
,

where P (ϕB) ∝ exp
{
− 1

2

[
(ϕB − µϕ)

′V −1
ϕ (ϕB − µϕ)

]}
, with the argument of the exponential

function that can be written as

[
(ϕB − µϕ)

′V −1
ϕ (ϕB − µϕ)

]
= ϕ′

BV
−1
ϕ ϕB − 2ϕ′

BV
−1
ϕ µϕ + µ′

ϕV
−1
ϕ µϕ,

where the last addend of the sum is not informative about ϕB.
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The posterior distribution, thus, can be written as

P (ϕB|Y ) ∝ exp
{
− 1

2

[
− 2ϕ′

B(X
′
1 ⊗Ω−1

1 )′y1 − 2ϕ′
B(X

′
2 ⊗Ω−1

2 )′y2 +

+ ϕ′
B(X1X

′
1 ⊗Ω−1

1 )ϕB + ϕ′
B(X2X

′
2 ⊗Ω−1

2 )ϕB +

+ϕ′
BV

−1
ϕ ϕB − 2ϕ′

BV
−1
ϕ µϕ

]}
.

However, it is possible to show that:

ϕ′
B(X1X

′
1 ⊗Ω−1

1 )ϕB + ϕ′
B(X2X

′
2 ⊗Ω−1

2 )ϕB + ϕ′
BV

−1
ϕ ϕB = ϕ′

B

[
(X1X

′
1 ⊗Ω−1

1 ) + (X2X
′
2 ⊗Ω−1

2 ) + V −1
ϕ

]︸ ︷︷ ︸
V ∗−1
ϕ

ϕB

= ϕ′
BV

∗−1
ϕ ϕB.

Moreover:

−2ϕ′
B(X

′
1 ⊗Ω−1

1 )′y1 − 2ϕ′
B(X

′
2 ⊗Ω−1

2 )′y2 − 2ϕ′
BV

−1
ϕ µϕ

= −2ϕ′
B

[
(X ′

1 ⊗Ω−1
1 )′y1 + (X ′

2 ⊗Ω−1
2 )′y2 + V −1

ϕ µϕ

]
= −2ϕ′

BV
∗−1
ϕ V ∗

ϕ

[
(X ′

1 ⊗Ω−1
1 )′y1 + (X ′

2 ⊗Ω−1
2 )′y2 + V −1

ϕ µϕ

]︸ ︷︷ ︸
µ∗
ϕ

= −2ϕ′
BV

∗−1
ϕ

[
(X1X

′
1 ⊗Ω−1

1 ) + (X2X
′
2 ⊗Ω−1

2 ) + V −1
ϕ

]−1[
(X ′

1 ⊗Ω−1
1 )′y1 + (X ′

2 ⊗Ω−1
2 )′y2 + V −1

ϕ µϕ

]︸ ︷︷ ︸
µ∗

= −2ϕ′
BV

∗−1
ϕ µ∗

ϕ.

If we add the term µ∗′
ϕV

∗−1
ϕ µ∗

ϕ, that is however not informative for the parameter ϕ, the

posterior is proportional to a Normal distribution

ϕB|Y ∼ N
(
µ∗
ϕ, V

∗
ϕ

)
where

V ∗
ϕ =

[(
X1X

′
1 ⊗Ω−1

1

)
+
(
X2X

′
2 ⊗Ω−1

2

)
+ V −1

ϕ

]−1

µ∗
ϕ = V ∗

ϕ

(
V −1
ϕ µϕ + (X ′

1 ⊗Ω1)
′y1 + (X ′

2 ⊗Ω2)
′y2
)
.

E.2.2 Case II) Inference on Ω1 and Ω2 with ϕB known

In the literature it is quite common to use inverse Wishart priors for covariance matrices. In

our case we follow this approach and proceed in the same way for each of the two covariance
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matrices Ω1 and Ω2:

Ω1 ∼ iW
(
S1, d1

)
Ω2 ∼ iW

(
S2, d2

) (70)

with P (Ωi) ∝ |Ωi|−
di+n+1

2 exp
{
− 1

2
tr
[
Ω−1

i Si

]
, for i = 1, 2, and where E(Ωi) =

Si

di−n−1
.

The first step consists in re-writing the likelihood function in a more convenient way. If

the underlying model is written as

y = (X ′ ⊗ In)ϕB + u

the likelihood function is as in Eq. (67) before. The exponent can be re-written as

[
y1(IT1 ⊗Ω−1

1 )y1 + ϕ′
B(X1X

′
1)⊗Ω−1

1 )ϕB − y1(X
′
1 ⊗Ω−1

1 )ϕB − ϕ′
B(X1 ⊗Ω−1

1 )y1
]

[
y2(IT2 ⊗Ω−1

2 )y2 + ϕ′
B(X2X

′
2)⊗Ω−1

2 )ϕB − y2(X
′
2 ⊗Ω−1

2 )ϕB − ϕ′
B(X2 ⊗Ω−1

2 )y2
]
.

(71)

Using simple properties of the trace and vec operators, the first part under brackets can be

written as

y1(IT1 ⊗Ω−1
1 )y1 = tr {Y ′Ω−1

1 Y1} = tr {Ω−1
1 Y1Y

′
1}

ϕ′
B(X1X

′
1 ⊗Ω−1

1 )ϕB = tr {B′Ω−1
1 BX1X

′
1} = tr {Ω−1

1 BX1X
′
1B

′}

y1(X
′
1 ⊗Ω−1

1 )y1 = tr {Y ′Ω−1
1 BX1} = tr {Ω−1

1 BX1Y
′
1}

ϕ′
B(X1Ω

−1
1 )y1 = tr {B′Ω−1

1 Y1X
′
1} = tr {Ω−1

1 Y1X
′
1B}

where we have used the decomposition

Y
n×T

=
[
Y1

n×T1

Y2
n×T2

]
and the fact that ϕB = vec (B). Obviously, these transformations can be replicated for the

second part under the brackets of the exponent of the likelihood function. Definitely, the two

exponents in Eq. (71) become

tr
[
Ω−1

1 (Y1Y
′
1 +BX1X

′
1B

′ −BX1Y
′
1 − Y1X

′
1B)
]
+ tr

[
Ω−1

2 (Y2Y
′
2 +BX2X

′
2B

′ −BX2Y
′
2 − Y2X

′
2B)
]

= tr
[
Ω−1

1 (Y1 −BX1)(Y1 −BX1)
′]+ tr

[
Ω−1

2 (Y2 −BX2)(Y2 −BX2)
′].
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Now, if we combine the likelihood function with the two priors in Eq. (70) it becomes rather

simple to derive the posterior distributions for the two variables Ω1 and Ω2. Overall, the joint

posterior distribution for Ω1 and Ω2 can be written as

P (Ω1, Ω2|Y ) ∝ P (Ω1) P (Ω1) P (Y |Ω1, Ω2)

= |Ω1|−
d1+n+1

2 |Ω2|−
d2+n+1

2 |Ω1|−
T1
2 |Ω2|−

T2
2

exp
{
− 1

2
tr (Ω−1

1 S1)
}
exp

{
− 1

2
tr (Ω−1

2 S2)
}

exp
{
− 1

2
tr
[
Ω−1

1 (Y1 −BX1)(Y1 −BX1)
′]}

exp
{
− 1

2
tr
[
Ω−1

2 (Y2 −BX2)(Y2 −BX2)
′]}. (72)

However, focusing on the posterior distribution of each of the two covariance matrices, we

obtain that

P (Ω1|Y ) ∝ |Ω1|−
T1+d1+n+1

2 exp
{
− 1

2
tr
[
Ω−1

1

(
S1 + (Y1 −BX1)(Y1 −BX1)

′)]}
P (Ω2|Y ) ∝ |Ω2|−

T2+d2+n+1
2 exp

{
− 1

2
tr
[
Ω−1

2

(
S2 + (Y2 −BX2)(Y2 −BX2)

′)]},
or, more compactly

Ω1 ∼ iW
(
S∗
1 , d

∗
1

)
Ω2 ∼ iW

(
S∗
2 , d

∗
2

)
,

where

S∗
1 = S1 + (Y1 −BX1)(Y1 −BX1)

′ = S1 + Ω̂1,OLS(T1 − nm)

S∗
2 = S2 + (Y2 −BX2)(Y2 −BX2)

′ = S2 + Ω̂2,OLS(T2 − nm)

d∗1 = T1 + d1

d∗2 = T2 + d2

and where

Ω̂i,OLS = (Yi −BXi)(Yi −BXi)
′/(Ti − nm), with i = {1, 2}. (73)
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Appendix F The test for identification via heteroske-

dasticity of Lütkepohl et al. (2020)

Lütkepohl et al. (2020) develop their test for identification via heteroskedasticity under the

assumption that reduced-form error terms ut have an elliptically symmetric distribution with

density
(√

det Ωm

)−1
g(u′

tΩ
−1
m ut) where Ωm is the covariance matrix in regime m = 1, 2,

g(.) is positive function such that the density integrates to one and the fourth moments of

the distribution exist. A characteristic of elliptical distributions is that to impose the same

kurtosis parameter for all the n elements of ut. Formally, if we denote with ω2
im the i-th

diagonal element of Ωm, the kurtosis parameter κm = [E(u4
it)/3ω

4
im] − 1 is the same for all

i = 1, . . . , n but can be different for different volatility regimes, m.

To implement the test of Lütkepohl et al. (2020), estimates of the kurtosis parameters are

obtained as follows:

κ̂m =
1

3n

n∑
i=1

zmi
wm

i

− 1, m = 1, 2

with

zmi =

∑
t∈Tm

(ûit − ūm
i )

4 − 6ω̂4
i

Tm − 4
and wm

i =
Tm

Tm − 1

(
ω̂4
i −

zmi
Tm

)
m = 1, 2

where ūi = T−1
m

∑
t∈Tm

ûit is the sample average of reduced-form residuals, ûm
it , for the m-th

regime, T1 = 1, . . . , TB and T2 = TB + 1, . . . , T .

Denoting the estimated eigenvalues – ordered from largest to smallest – as λ̂i for i = 1, ..., n

we write the test statistic as:

Hr (κ̂1, κ̂2) = −c (τ, κ̂1, κ̂2)
2 Tr log

(∏s+r
k=s+1 λ̂

1/r
k

1
r

∑s+r
k=s+1 λ̂k

)

= −c (τ, κ̂1, κ̂2)
2

[
T

s+r∑
k=s+1

log λ̂k − Tr log

(
1

r

s+r∑
k=s+1

λ̂k

)]

with s = 0, . . . , n− 1 and r = 2, . . . , n− s. Note that the first line of the equation highlights

that the statistic is based on the ratio of the geometric mean to the arithmetic mean of the

estimators of the eigenvalues assumed to be identical under the null. The term c (τ, κ̂1, κ̂2)
2 is
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defined as follows:

c (τ, κ̂1, κ̂2)
2 =

(
1 + κ̂1

τ
+

1 + κ̂2

1− τ

)−1

with τ ≡ TB/T

Note that the fraction τ is assumed to be known and fixed. The test statistic converges in

distribution to a χ2((r + 2)(r − 1)/2) and involves the following pair of hypotheses:

H0 : λs+1 = λs+2 = . . . = λs+r against H1 : ¬H0

where “¬” denotes negation.

Let us consider the case of testing identification via heteroskedasticity with n = 3 variables.

Then we rely on H3(κ̂1, κ̂2) with a χ2(5) distribution to test: H0 : λ1 = λ2 = λ3. If the null is

rejected we test H0 : λ1 = λ2 and H0 : λ2 = λ3 using H2(κ̂1, κ̂2) with a χ2(2) distribution. If

also these hypotheses are rejected, the SVAR model is fully identified via heteroskedasticity.

Appendix G Empirical application – Further details and

results

G.1 Data

The data entering the VAR model in Section V are the following:

• ∆prodt is percent change in world crude oil production and is defined as 100×ln(prodt/prodt−1).

World oil production, prodt, is sourced from the Monthly Energy Review maintained by

the U.S. Energy Information Administration.

• The index of real economic activity, reat, is based on dry cargo ocean shipping rates and

is available on the website of Lutz Kilian. It is used to proxy monthly changes in the

world demand for industrial commodities, including crude oil.

• The real price of crude oil, rpot, is the refiner’s acquisition cost of imported crude oil and

it is available from the U.S. EIA. Deflation is carried out using the CPI for All Urban

Consumers, as reported by the Bureau of Labor Statistics.
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The time series included in the VAR and the reduced-form residuals of the VAR(6) are

shown in Figures G.6 and G.7 that also displays a vertical bar in correspondence of the break

date, October 1987.

Figure G.6: Data used in the SVAR model for the global market of crude oil (January 1973-
December 2007)
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Table 2(a) shows the estimated eigenvalues and their standard errors. Recall that the

variances of structural shocks are normalized to unity before the break and hence estimates

in Table 2(a) represent the change in variances from the first to the second volatility regime.

We see that the volatility of the structural shock associated with the first eigenvalue is larger

after the break, while the remaining structural shocks have relative variances lower than unity

in the second regime.

Table 2(b) illustrates that the test for identification through heteroskedasticity of Lütkepohl

et al. (2020) does not allow to reject the null hypothesis H0 : λ2 = λ3. Eigenvalue multiplicity

implies that standard identification through heteroskedasticity, presented in Theorem 5, fails.

Figure G.8 shows impulse responses18 for the recursively identified model of Kilian (2009),

M0, along with the highest posterior density (HPD) region with credibility 68%. An oil supply

18As for the estimation, we rely on a noninformative improper Jeffreys’ prior that allows to draw reduced-
form parameters from a normal-inverse-Wishart posterior.
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Figure G.7: Reduced form residuals and break date
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Notes: Reduced form residuals and time of the break (1st October 1987). Monthly data.

shock causes an immediate and long-lasting decline in global oil production, a decrease in real

economic activity and a transitory increase in the real price of crude oil that peaks six months

after the shock. Notice that the 68% HPD region of the price response does not include zero

only for the first eight months. A shock boosting aggregate demand causes a small temporary

increase in global oil production and large and persistent increase in the index of real economic

activity and in the price of crude oil. For the latter two responses the 68% HPD region never

contains zero. An unexpected rise in oil-specific demand generates a long-lasting increase in

the real price of crude oil and a temporary jump in the index of real economic activity. Lastly,

an oil market demand shock causes a small and only transitory positive effect on global oil

production. Notice that in this case the 68% HPD always includes zero.

Model M1 assumes that all eigenvalues are distinct and hence we estimate the reduced

form of the model with the Gibbs sampler discussed in Appendix E. The last column of Fig-

ure G.9 shows the responses to the shock that is associated with the only distinct eigenvalue.

Comparing the shape of these responses to the one in Figure G.8, we see that they are consist-

ent with those following an oil-specific demand shock. Impulse responses in the second and
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Table 2: Estimated eigenvalues and tests for identification through heteroskedasticity

Panel (a). Estimated eigenvalues

λ̂1 3.712 (1.032)

λ̂2 0.341 (0.095)

λ̂3 0.159 (0.046)

Panel (b). Tests for identification through heteroskedasticity

H0 Hr(κ̂1, κ̂2) Degrees of freedom (r) p-value

λ1 = λ2 = λ3 79.166 5 0.0000

λ1 = λ2 35.569 2 0.0000

λ2 = λ3 4.2758 2 0.1179

Notes: Panel (a) shows the estimated eigenvalues, λ̂j for j = 1, 2, 3 and their standard errors in brackets.
Panel (b) shows the test for identification through heteroskedasticity of Lütkepohl, Meitz, Netšunajev, and Saikkonen (2021).
Hr(κ̂1, κ̂2) is the test statistics with r−1 degrees of freedom, where κ̂m for m = 1, 2 is an estimate of the kurtosis of reduced-form
residuals in the m-th volatility regime. See Appendix F.

Figure G.8: Impulse response functions M0
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Notes: the blue line with dots represents the posterior mean response, the dashed red lines identify upper and lower bounds of
the highest posterior density region with credibility 68%. Recursive identification imposing c12 = c13 = c23 = 0. The model is
point-identified

third column of Figure G.9 are consistent with those induced by an aggregate demand shock

and an oil supply shock respectively. Focusing on the response of the real price of crude oil

to an oil supply shock, we see that the 68% HPD region always contains zero. Similarly, the

response of real economic activity to an oil supply disruption is very modest. All in all, these

results highlight how heteroskedasticity conveys information that is useful to the purpose of
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Figure G.9: Impulse response functions M1
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Notes: the blue line with dots represents the standard Bayesian posterior mean response, the dashed red lines identify upper
and lower bounds of the highest posterior density region with credibility 68%. Identification is obtained via heteroskedasticity
assuming distinct eigenvalues

identifying structural shocks.
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Figure G.10: Impulse response functions M2 – Alternative implementation of Algorithm 1
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Notes: the blue line with dots represents the standard Bayesian posterior mean response, the dashed red lines identify upper and
lower bounds of the highest posterior density region with credibility 68%. Plots in first and second columns of the figure also
report the set of posterior means (blue vertical bars) and the bounds of the robust credible region with credibility 68% (solid black
curves). Identification via heteroskedasticity with multiple eigenvalues (i.e. only one shock is point identified), static and dynamic
sign restrictions. We substitute Step 5 of Algorithm 1 with 10000 iterations of Step 4.1-Step 4.3. The interval

[
ℓ(ϕm), u(ϕm)

]
is

then approximated by the minimum and maximum values over such iterations.
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Figure G.11: Impulse response functions M2 - Testing the eigenvalues
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Notes: the blue line with dots represents the standard Bayesian posterior mean response, the dashed red lines identify upper and
lower bounds of the highest posterior density region with credibility 68%. Plots in first and second columns of the figure also
report the set of posterior means (blue vertical bars) and the bounds of the robust credible region with credibility 68% (solid
black curves). Identification via heteroskedasticity with multiple eigenvalues (i.e. only one shock is point identified), static and
dynamic sign restrictions.
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