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Tests Required and Appropriate?
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Abstract

Complementing more specific “p-value discussions”,
this paper presents fundamental arguments for when
null hypothesis statistical significance tests (NHST)
are required and appropriate. The arguments, which
are paradigmatic rather than technical, are opera-
tionalised and broken down to the extent that their
logic can be mapped into a decision tree for the use of
NHST. We derive a perspective that does not ban
p-values but proposes to minimize their use. P-values
will become rather rare in (agricultural) economics if
they are not applied in any cases, where the condi-
tions for their proper use are violated or where their
use is not appropriate or required in order to answer
the questions asked of the data. The accompanying
shift from prioritising inferential statistics to recognis-
ing the value of descriptive statistics requires not only
a change in entrenched habits of thought. This shift
also has the potential to trigger changes in the re-
search processes and in the evaluation of new ap-
proaches within the disciplines.

Keywords

p-value discussion; statistical inference, null hypothe-
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causal inference

1 Introduction

The perspective on what counts as rigorous scientific
analysis has changed in agricultural economics as
in many other disciplines in the last three decades or
so. In the assessment, empirical evidence is given in-
creasingly more weight over theoretical arguments
(COLANDER, 2019). This explains also the high
weight attributed nowadays to statistical inference. Its
purpose is to assess, on a primarily empirical basis
and in the face of probabilistic data characterised by
random variations, whether the information we obtain
from random samples may substantially challenge
certain reasonable expectations we hold for the popu-
lation. The interest that the so called p-value discus-
sion has evoked in agricultural economics lately (see

for example HECKELEI et al., 2022, or HIRSCHAUER et
al., 2021a) has to be seen against this background
because (frequentist) statistical inference, NHST and
p-values are intimately linked to each other. This syn-
thesizing review intends to complement the discussion
by summarising basic issues of NHST beyond tech-
nical details and putting them into perspective.

The controversial discussion of NHST has a long
history among statisticians; it started, in fact, with
disputes among their modern “founding fathers”:
FISHER (1992) on the one side and NEYMAN and
PEARSON (1928) on the other side. Even though these
founding fathers have felt that their two approaches
lack compatibility, NHST theory has been shown to
represent a “mix-up” of both (SCHNEIDER, 2015; HIR-
SCHAUER et al., 2021a) and the critical discussion of
the approach has never ceased. The “p-value discus-
sion” has started to gain more recognition outside
from the profession of statisticians when the “ASA
Statement on Statistical Significance and P-Values”
was published (WASSERSTEIN and LAZAR, 2016).! It
was then increasingly discussed that the strict condi-
tions for the use of p-values might often not apply in
socio-economic fields of research like agricultural
economics. These fields rely heavily on observational
data, where the required random variance cannot be
guaranteed. However, not only are the requirements
for the use of p-values rarely met; possibly even more
consequential is the fact that p-values are rarely inter-
preted correctly. GOODMAN (2008) discusses twelve
common ‘“P-Value misconceptions” and deplores the
concomitant tendency to undervalue external evidence
and “the plausibility of the underlying mechanism”.

Together with the specific incentive systems of
the scientific and publication sectors, these p-value
misconceptions have encouraged the proliferation of
problematic uses of NHST. For example, where only
results with small p-values (below a certain threshold)
are judged to be of relevance, only these results tend
to be published (HIRSCHAUER et al., 2018). Such
“p-hacking” and other malpractices can have severe

I For a brief review of this most recent discussion see

HIRSCHAUER (2022).
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consequences because with “selective dissemination
of findings”, public knowledge will be “based on a
biased sample of the studies conducted” (MARKS-
ANGLIN and CHEN, 2020: 725). Against this back-
ground, a working group of the German agricultural
economics association (GEWISOLA) was attributed
“the task to assess how 'p-hacking' and the misuse
of statistical hypothesis tests in our scientific publica-
tions can be best avoided” (HECKELEI et al., 2022: 2).
This assignment, however, might not do full justice
to the problem. While it is extremely important to
discuss how p-values are (mis)used, it is also im-

portant to discuss the alternatives to NHST and to
understand its value and limitations in the process
of scientific progress. The obsession with p-values
may indicate that some researchers confuse statistical
inference with scientific inference, even though the
actual contribution of the former to the latter is ra-
ther small (HUBBARD et al., 2019). A principal alter-
native or indispensable complement to empirical gen-
eralisation using statistical inference is theoretical
generalisation, which requires the development of
strong hypotheses in the preparation of empirical
analyses.

Figure 1. Decision tree on use of statistical hypothesis tests with p-values
Do you want to generalize your empirical results and find out whether they have the potential to challenge No
some reasonable general expectations the scientific community holds (with respect to the whole population)? 1
Yes%
Do you adhere to the frequentist paradigm that probability is a limiting frequency, i.e., that uncertainty, which 'No
is relevant for statistical inference, is due to (objective) randomness rather than to (subjective) ignorance? 2
v Yes
Can you formulate a rigorously derived null hypothesis for the analysis that most No 1l 3
scientists in the field would agree with?
v Yes
Can you express this null-hypothesis in terms of one precise number? o 4q
VvV Yes
Can you derive a distinct and surprising alternative hypothesis for this null-hypothesis? Yes L, <5
'y No
Yes| Do you have access to / can you generate a suitable random sample? ]| 6
v No A
Do you have complete knowledge of the process of data generation or sample No 7
selection?
v Yes
Can you formulate ex ante a theoretically well justified and empirically supported & ' No ® 3
identified model for complete control of this well-known data generation process?
v VYes
|Yes | With a small p-value, i.e., highly improbable data, is your conclusion that the whole 9
estimation model and all underlying assumptions might stand in question? \ 4
v No
If you conclude from a small p-value that only the null hypothesis stands in question,
can you provide a solid justification for the strong and now untestable assumptions < 10
that this implies?
Yes
\Y}
——— Can you clearly define the population for which you test the implications of your observations? No 11
— Yes
@ Can the analysis be repeated with comparable samples from the same population? No 12
Yes v
—> Do you plan to draw conclusions on not yet existing future observations via NHST? it 13
No ¥
Do your observations cover a very large / small share of the population? Yes 14
v— No
e Does your null hypothesis directly relate to a causal effect and do you aim at causal inference? \ 15
Yesy
Yes Do the conditions in your (quasi-)experimental design reflect the conditions in a larger population? ‘No | 16

Source: own figure
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We arrive at this insight in the course of the sys-
tematic discussion of the fundamental and not the
technical tasks and conditions of NHST. We summa-
rise the results of this systematisation of arguments in
a decision tree (Figure 1). Our overview is necessarily
brief and cursory. HIRSCHAUER et al. (2022) provide a
more complete accessible up-to-date discussion of
statistical inference itself. With respect to more con-
crete and practical suggestions, e.g. for a suitable al-
ternative representation of regression results, we refer
readers to WASSERSTEIN et al. (2019a) for a first
summary of important points in this regard. An inten-
sive discussion of many of the critical points summa-
rised in our paper can be found in the 44 articles in the
special issue of “The American Statistician” edited by
WASSERSTEIN et al. (2019b). Our arguments are close
to those summarised in BERNER and AMRHEIN (2022)
and much of the literature cited there.

The decision tree also serves as a guide through
the article, in which the guiding questions are dis-
cussed one after the other. The guiding questions are
divided into five blocks that appear as chapters in the
article. The first block (Chapter 2) discusses aim and
scope of NHST, the second (Chapter 3) elaborates on
the fundamental role of different kinds of hypotheses
for a proper understanding of NHST. The third block
explains the relevance of random samples as in con-
trast to observational data for NHST (Chapter 4). The
fourth block hints at the specific relevance of well-
defined populations and of acceptable sample sizes
(Chapter 5). The fifth and last block (Chapter 6) brief-
ly touches upon the additional challenge of causal
inference as far as it is of direct relevance for empiri-
cal generalization and NHST. Chapter 7 concludes.

2 Aim and Scope of NHST ()

NHST and p-values belong to the field of inferential
statistics. Statistical inference is applied to assess
whether the results obtained from a sample might
have an impact on existing knowledge about the popu-
lation. Descriptive statistics, in contrast, summarize
reliably the available information if observations cov-
er the entire population of interest and do not suffer
from systematic measurement errors. Descriptive sta-
tistics of observed parameter values then describe
“true effects”. NHST, in contrast, rests on many as-
sumptions and the preconditions in terms of prior
knowledge, data quality, and mastery of the research
environment are high: “In descriptive statistics the

modeler begins with a set of data in search of a model
that conveniently summarizes the information in these
data. [...] Statistical inference reverses the order by
postulating a statistical model a priori and interpreting
the data in its context” (SPANOS, 2000: 562).

Statistical inference does not put into question
what has been observed within a given sample (LUD-
WIG, 2005) and “a non-significant effect is not the
same thing as a non-existent effect” (HERRERA-
BENNETT, 2019: 134). Statistical inference only helps
us to assess in how far we could expect to observe this
effect within other samples from the same population
as well; making additional assumptions to derive test
statistics for statistical inference is pointless if interest
concentrates on conditions and relationships within a
given sample. In that case, NHST should not be ap-
plied.

— Guiding Question No. 1

NHST serves the generalization from sample to popu-
lation in the context of the frequentist paradigm. The
frequentist paradigm generally assumes that probabil-
ity is an objective “property of the external world”,
which describes “the limiting relative frequency of the
occurrence of an event as the number of suitably de-
fined trials goes to infinity” (POIRIER, 1988: 122).
Given the implied objective existence of random de-
viations, researchers cannot know without additional
tests or information whether deviations from expected
values observed in samples are random, i.e. within the
range of the “normal”, or whether they really chal-
lenge expectations. Fortunately, the random devia-
tions follow certain regular patterns as described by
the central limit theorem: When the data generation or
sampling process is repeated many times, the sam-
pling distribution converges to a normal distribution
where the mean is equal to the population mean. This
enables statistical hypothesis testing and the calcula-
tion of the p-value (see Box 1).

Exploitation of knowledge “on the sampling
distribution of the test (or other) statistic (i.e., its dis-
tribution in hypothetical repetition)” is characteristic
for the frequentist approach (CoxX and MAYO, 2010:
281). Uncertainty that is due to ignorance, in contrast,
is not considered in frequentist statistical inference
(WAGENMAKERS et al., 2008). Quite to the contrary,
in NHST, ignorance has to be ruled out as it could
lead to model-misspecifications and biased estimates.
With bias, deviations from expected mean values are
not any more purely random in nature (see Box 1) and
the central limit theorem does not hold any more.
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Box 1: Standard errors, p-values and their derivation

Given their random distribution, observations are usually statistically described by a minimum of two mo-
ments: the mean and the variance or standard deviation; in the context of regression models, the two mo-
ments are the point estimator and the standard error. The standard error is the standard deviation of the sam-
pling distribution of means and equals the standard deviation of a parameter divided by the square-root of
the number of observations (BIAU, 2011). Since the standard deviation of the estimated parameter is not
known, the standard error is estimated on the basis of the observed estimation error, taking into account vari-
ances and covariances of all exogenous data in the analysis (see for example CLARKE, 2005). If the condition
of randomness of the error terms is violated, i.e., if the estimation is biased, the estimated standard error of a
parameter is not any more consistent with the parameter's true standard deviation. Consequently, “[t]he esti-
mated standard errors of coefficients tell us something about the observed fit of the regression to the data,
but they do not reflect uncertainty about the ‘true parameters’” (WARD et al., 2010: 372).

The p-value is derived from a test statistic, which is the ratio of the point estimate (“signal”) to its
standard error (“noise”). This (random) test statistic provides a direct link to the p-value if it follows the
standard normal distribution when sampling is repeated a sufficient number of times in accordance with the
central limit theorem. The p-value describes a conditional probability for the case if the whole statistical
model with all its assumptions, including random data generation and the null hypothesis, is true. Under
these conditions, the p-value expresses the probability that a signal to noise ratio (the test statistic) of the size
in the original sample or larger could be observed in the population mean, i.e., if a sufficiently high number
of repeated random samples were drawn from the population (HIRSCHAUER et al., 2021a), while repetition is
required since p-values are random variables themselves (WANG et al., 2019).

Formally, this can be expressed as

P(t(X) > t(x);H) is valid)=p

where T (x) denotes the value of the test statistic T (X), given the particular sample realization X = x
(SPANOS, 2000: 691).

The p-value depends on the validity of the central limit theorem; it therefore loses its validity and all
meaning if non-random influences are not reliably controlled. Standard errors, in contrast, can then still be
interpreted as indicators of the general uncertainty of estimates. Consequently, it means a massive loss of
information if the presentation of the results is limited to the point estimator and the p-value (HIRSCHAUER et
al., 2021b).

Consequently, NHST does not provide the an-
swer to “interesting questions” (COHEN, 1994) like
that on the probability of HO given the data (D) be-
cause “[t]he probability p(D|HO) is not the same as
p(HO|D)” (GIGERENZER, 2004: 595). If (and only if)
the estimation model and all accompanying assump-
tion are true, a small p-value (in the mean of suffi-
ciently many samples from the same population) tells
us that the observed data are unlikely if the null hy-
pothesis is true (KENNEDY-SHAFFER, 2019). If the
estimation model, HO or any accompanying assump-
tion are false, the p-value is invalid irrespective of its
size. Small p-values can therefore be considered as
reliable evidence against a model (including the hy-
pothesis expressed by it). High p-values, on the other
hand, do not tell us much: the p-value could be high
because the assumptions and therefore the p-value and

the null hypothesis are invalid; or the p-value is high
because the data are consistent with the model and the
null hypothesis (and, potentially, with many other
hypotheses). From the appropriate (in the context of
NHST) frequentist perspective, high p-values are
therefore not very informative.

The alternative Bayesian paradigm, in contrast,
deals with ignorance. In Bayesian approaches, the
(subjective) probability of hypotheses is explicitly
considered in so called priors. ABADIE (2020) applies
(subjective) prior probabilities from the Bayesian
paradigm to argue for an interpretation of high p-
values as support for the null hypothesis. This irre-
solvable contradiction with the argument against an
interpretation of high p-values developed from the
frequentist internal view illustrates how erroneous
conclusions can occur when concepts from different
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paradigmatic approaches are mixed. Since NHST
follows the frequentist paradigm, it should not be
applied in the context of analyses that follow other
paradigms such as Bayesian (“subjectivist”, POIRIER,
1988) statistics. Even if this could be justified from a
pragmatic “tool-kit” perspective (BANDYOPADHYAY
and FORSTER, 2011), it would require intensive and
careful reflection and interpretation.

— Guiding Question No. 2

3 Hypotheses (ll)

In the context of NHST, “the null [hypothesis] must
be specified as to represent the most established prior
scientific belief” (HIRSCHAUER, 2022: 43). In science
in general, in contrast, hypotheses are rather under-
stood as “happy guesses” that “organize our thinking
about what might be true, based on what we’ve ob-
served so far” (MILNER, 2018, emphasis added).
These “happy guesses” are not null- but rather alterna-
tive hypotheses. Progressive science is characterised
by the establishment of these potentially surprising
hypotheses and by the frequently creative empirical
analyses that put them to a rigorous test. These tests of
hypotheses are not null hypothesis tests in the sense of
NHST, which cannot assess evidence for any specific
alternative given the condition of the true null hypoth-
esis (WILKINSON, 2013). We cannot test alternative
hypotheses with NHST because the sampling distribu-
tion of the test statistic is only known for HO (HAGEN,
1997: 17), while the alternative model's validity has
still to be proven. NHST tests established knowledge
and in the best case creates a more or less comprehen-
sive negative model of what is not (any longer) valid,
which leaves much room for a large variety of possi-
ble alternative models and hypotheses. Consequently,
“the delusive terminology of NHST, which speaks of
hypothesis testing [...] has apparently led to much
confusion” (HIRSCHAUER et al., 2021a: 130). (Null-
)Hypotheses for NHST have to reflect a generally
agreed upon state of knowledge and have to be de-
rived from models that reflect a generally agreed upon
state of knowledge.

— Guiding Question No. 3

For NHST, the null hypothesis must be expressed in
terms of a precise value against which the data can be
tested. In the vast majority of all applications of
NHST in (agricultural) economics and other social

sciences, this supposedly expected, precise value is
zero. However, the hypothesis that a coefficient has
exactly the value “zero” is in many cases arbitrary and
often theoretically difficult to justify. The problem is
therefore not so much, as often stated, that with in-
creasing sample size even the smallest deviations “at-
tain significance” (The “p-value problem”; see for
example LIN et al., 2013). The problem is rather that
an exact value rarely corresponds to our real, often
much less precise, expectation. If we have to expect
the rejection of a null hypothesis with sufficiently
large samples, then the sharp null hypothesis must be
questioned from the outset (IMBENS, 2021).

The case is even worse when the null hypothesis
is deliberately chosen contrary to actual expectations;
it then represents a straw man that can be torn down
with demonstrative simplicity (GELMAN, 2016). The
statistical test is then not only of little informative
value. Moreover, for a given sample size, the proba-
bility that the null hypothesis of a zero effect is true
decreases with increasing actually expected effect size
(SULLIVAN and FEINN, 2012), so that the p-value los-
es validity. High p-values can then also not, as sug-
gested by ABADIE (2020), be evaluated as (unex-
pected) support for a straw man hypothesis and as
evidence against the alternative hypothesis. Therefore,
if a null hypothesis, as expressed in one precise num-
ber, does not express our true expectation given all
model assumptions, NHST will not deliver informa-
tive results.

— Guiding Question No. 4

In many applications of NHST, the alternative hy-
pothesis is not explicitly stated. The alternative hy-
pothesis is then simply the “non-null”, which merely
expects an unspecified deviation from the null hy-
pothesis. In order to test it, statistical hypothesis tests
are indispensable in the presence of random devia-
tions if no full sample is available. In contrast to the
weak “non-null”, strong (alternative) hypotheses devi-
ate considerably from the “normal” expectation ex-
pressed in the null hypothesis. They are, in other
words, surprising. P-values by themselves do not have
much to say about the consistency of the data at hand
with the alternative hypothesis as observed data are
principally consistent with a large number of imagi-
nable hypotheses (BERNER and AMRHEIN, 2022).
Strong hypotheses, however, can increase the statisti-
cal power of NHST in a given case and can eventually
render it irrelevant.
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Statistical power determines the probability of re-
jecting the null hypothesis if it is false. Power increas-
es with sample size but also with decreasing expected
precision of a null hypothesis, respectively, of an es-
timator (see equations in SERDAR et al., 2021): With
decreasing expected precision, HO is only declared
false if the observed deviation from the expected val-
ue is strong. As the bandwidth for a “true” HO be-
comes larger, statistical power, i.e., the probability to
correctly identify cases, where HO should be declared
false according to the chosen precision increases.

The required precision could be determined at
hand of the alternative hypothesis. As the effect size
expected by the alternative hypothesis increases, an
increasingly smaller precision of the estimator is re-
quired in order to correctly identify non-null results
that are relevant in the light of the alternative hypoth-
esis. With power analyses, one can additionally de-
termine, how many observations would be required
for a reliable assessment of HO (SERDAR et al., 2021).
If the effect expected by the alternative hypothesis is
sufficiently large, i.e. if the required precision of the
estimate is sufficiently low, a single observation is
eventually sufficient to reject the null hypothesis of a
zero effect rightly and with almost 100 per cent cer-
tainty, irrespective of the standard error.

Then, the alternative hypothesis itself still needs
to be confirmed. What is important here is that with
clear-cut differences in effects, formal assessment of
errors becomes relatively unimportant (COX and
MAYO, 2010: 278) and NHST turns ultimately obso-
lete. Their ability to formulate very clear and discrim-
inating null- and alternative hypotheses explains, why
in the context of modern physics and chemistry “[t]he
data from experiments [...] do not usually require
statistical analysis” (SPANOS, 2000: 571). Instead, a
scientifically convincing theoretical explanation pre-
dicts under which conditions certain surprising obser-
vations can be expected to (re)occur. The prediction
can then be assessed at hand of few observations with
an adequate experimental or observational design and
without NHST, at hand of descriptive statistics alone
(GIGERENZER, 2004).

— Guiding Question No. 5

Since theoretical justifications always play a major
role in validating surprising alternative hypotheses,
this process could be called “theoretical generali-
sation” in contrast to empirical generalisation via
NHST.

4 Random Samples and
Observational Data (lll)

Despite this high potential relevance of descriptive
statistics in the appropriate research setup, NHST is
given a very high weight in (agricultural) economics.
However, given the conditionality of the probability
expressed by the p-value (see Chapter 2), NHST can
only develop informative power if the analyst is fully
aware of the data generation process and controls it.
As long as the estimators are not further (causally)
interpreted (see Chapter 6), it is sufficient that the
sample selection mechanism is fully known and con-
trolled; control of what happens within the sample is
then not required in order to apply NHST.

The sample selection mechanism determines how
one happens to observe certain observations rather
than some other observations, respectively, if certain
data are missing within the sample (HECKMAN, 1979).
In a linear regression model, for example, uncontrolled
selection yields “biased and inconsistent estimates of
the effects of the independent variables [...] when data
on the dependent variable are missing nonrandomly
conditional on the independent variables” (WINSHIP
and MARE, 1992: 328). In order to ensure that a suffi-
cient number of samples reflects in its mean the char-
acteristics of the population, it must be ensured that the
samples have not been selected in a biased way, either
consciously or unconsciously. This explains the de-
mand for random samples (see for example HIR-
SCHAUER et al., 2020b, or WHITE and GORARD, 2021),
which guarantee that sample observations only differ
by random deviations from the observations in the
population (HIRSCHAUER et al., 2021b).

Random samples can be generated by the means
of probability sampling. With probability sampling,
each member of the population must have a known,
non-zero chance of selection set by the sampling pro-
cedure (GOODMAN and KISH, 1950: 350). Probability
sampling not only generates a sample. It also gener-
ates knowledge about the sampling mechanism. It
thereby blocks or helps to block uncontrolled envi-
ronmental influences from affecting sample selection.
Random sampling is a special case in probability
sampling; it permits every single population member
to have an equal chance of presence in the sample.
This is obviously not always easy to secure.

In many cases, certain sampling designs will
have to be applied in order to ensure, for example, that
inaccessible members of a population have the same
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selection probability like easily accessible members, or
that extremely rare traits from a large population be
represented adequately in relatively small samples. If
the differences in selection probabilities are known as
for example in stratified sampling (HIRSCHAUER et al.,
2021b), adequate ex post corrections can still preclude
systematic deviations of the sample from the popula-
tion (for a more detailed discussion see HIRSCHAUER
et al., 2020b). However, each attempt to “control”
random sampling brings with it the thread of introduc-
ing unnoticed bias (GOODMAN and KisH, 1950). Un-
corrected differences in selection probabilities create a
selection bias in subsequent analyses with NHST.

— Guiding Question No. 6

While controlled (probability) sampling provides
at least in principal perfect control of sample selec-
tion, it occurs to be rather rare in scientific practice
(GIGERENZER, 2004; HAGER, 2013). In (agricultural)
economics, analyses are regularly based on observa-
tional data, i.e., on data that have not been chosen for
the analysis in a deliberate, controlled process. Then,
both observable and non-observable non-random in-
fluences (VELLA, 1998) on data generation must be
controlled ex post to ensure that the total variance in
the observed data is reduced to its irreducible random
core (GREENLAND, 1990). However, in socio-economic
analyses with observational data, models necessarily
describe only a small subset of the potentially influen-
tial environment of an observation. The need to con-
trol sample selection then challenges any system
boundary of models. Failure in the effective control of
sample selection, however, “will invalidate any statis-
tical inference results built upon the premises of the
postulated model” (SPANOS, 2000: 190) since p-values
then become meaningless (HIRSCHAUER et al., 2020b;
BERK et al., 2010).

That has inconvenient consequences: “Statistical
tests in designed studies attempt to answer the ques-
tion, 'Given random sampling, what are the chances of
this result?' In an observational study we can only ask,
'Given the data (acquired without randomization),
what are the chances that it is random?"” (LUDWIG,
2005: 678). In order to draw any further conclusions
from NHST, the analyst needs complete knowledge
and effective controls for the sampling mechanism
from the outset, even though in socio-economic stud-
ies, “[s]electivity is not only a source of bias in re-
search, but also the subject of substantive research”
(WINSHIP and MARE, 1992: 328).

— Guiding Question No. 7

This knowledge must then be translated into an esti-
mable model to control ex post for structural influ-
ences on data generation or sample selection. Over-
views over modelling approaches like that by VELLA
(1998) or WINSHIP and MARE (1992) show that ex
post control of sample selection is always technically
demanding, loaded with many assumptions and re-
quires good subject knowledge of the field of study as
well as complete data (see also HIRSCHAUER et al.,
2021b: 23).

There are no technical panaceas to compensate
for a lack of complete knowledge or data. Taking all
available control variables into account in the estima-
tion model in order to avoid an omitted variable bias,
for example, does not necessarily lead to a minimisa-
tion of the risk of sample selection bias. PEARL (2010)
shows in his seminal work on causal graphs that with
incomplete control, controlling the wrong variables
might open new “back-door paths” for confounding
influences (see also LUCA et al., 2015, and CLARKE,
2005).

Empirical model optimisation or selection
cannot compensate for a lack of knowledge either.
In models designed by data driven adjustments, we
often observe an inflation of “significant” results,
which is a sign of “overfitting” (TONG, 2019). Over-
fitting means that a model is fitted to the existing data
to such an extent that the target population (to be
discussed in Chapter 5) becomes identical with
the sample. The model thereby loses external validity
and NHST, whose aim it is to generalise results, be-
comes invalid or meaningless as demonstrated empiri-
cally by WARD et al. (2010). Model specification test-
ing can contribute to the development of models to
some extent, but it is a separate step in the research
process and must be done independently from the
generalisation of results through NHST (SPANOS and
MCGUIRK, 2001; TONG, 2019; BERK et al., 2010). In
summary, validity of NHSTs with observational data
requires complete knowledge about sample selection,
which must be transferred into reliable estimable
models.

— Guiding Question No. 8

Understanding the sample selection process with ob-
servational data is often itself essential for understand-
ing the field of enquiry (WINSHIP and MARE, 1992).
Models that control sample selection may therefore
reflect accumulated knowledge of a discipline on the
subject in question. Within them, however, the null
hypothesis alone serves to test the expectations, and
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among potentially numerous estimates “[i]t must be
made unequivocally clear which of these p-values are
used as a basis for making significance statements,
and which were computed only as descriptive sum-
mary measures of parts of the data” (WELLEK, 2017:
859). Then, if this one p-value is sufficiently small, it
indicates nothing less and nothing more than that the
null-hypotheses, the model or both could be flawed.
The single p-value puts the whole knowledge embod-
ied in the model into question.

— Guiding Question No. 9

In order to interpret the p-value as indicator of the fit
between data and null hypothesis, researchers have to
be completely sure that their model on data generation
respectively sample selection is valid (KENNEDY-
SHAFFER, 2019). Only then could a small p-value be
interpreted as an indication of a misfit of the data spe-
cifically to the null hypothesis. In this way, the model
itself, which reproduces how the data in the analysis
came to be, is excluded from empirical scrutiny. Justi-
fication of the model and its assumptions must come
from sources other than the estimation itself.

— Guiding Question No. 10

5 Populations and Sample Size (IV)

Samples are only one side of the coin. For inferential
statistics to be meaningful, it must also be clearly
defined for which population generalised conclusions
can be drawn (HIRSCHAUER et al.,, 2020b: 72;
GIGERENZER, 2004: 599). Only with regard to this
population can the analysis claim “external validity”
(see also HIRSCHAUER et al., 2022: 11-13). The ad-
equate population for generalization is the (parent)
population from that a sample is drawn, while the
maximum extent of the relevant population (the “target
population”, BRACHT and GLASS, 1968; THACKER,
2020) depends on the generality and scope that a re-
searcher can defend credibly for a model and a hy-
pothesis (FINDLEY et al., 2021). Practically, the popu-
lation for inference via NHST is restricted to the “ac-
cessible population” (THACKER, 2020) that can serve
as parent populations from which samples can actual-
ly be drawn (BRACHT and GLASS, 1968).What then
really constitutes the parent population of a sample for
an analysis additionally depends on “design” deci-
sions (FINDLEY et al., 2021) that might among other
things be guided by pragmatic cost-benefit considera-
tions (SERDAR et al., 2021). According to HUBBARD

et al. (2019: 93) “assessing the external validity (gen-
eralizability) of an investigation's results demands the
sampling of settings, treatments, and observations as
well as people.” Therefore, it might be wise to strive
for inference to a rather small, homogenous popula-
tion initially in order to avoid, for example, the need
to sample on settings.

With observational data, determining the corre-
sponding population to which the results can be gen-
eralised using NHST is far more difficult if not im-
possible. Sometimes it is claimed that one should de-
termine ex post whether a sample is “representative”
of a population (see for example SEDDON and
SCHEEPERS, 2012). However, it remains unclear when
“representativeness” is achieved, since random devia-
tions prevent us from expecting the mean values of
the variables in any sample to be truly identical to
those of the population.

— Guiding Question No. 11

That statistical correspondence between a single (ran-
dom) sample and a population is never guaranteed
(DEATON and CARTWRIGHT, 2018) is in fact another
reason for why NHST demands clearly defined popu-
lations. Only from clearly defined populations can
comparable samples be drawn repeatedly, and repeti-
tion of the analysis with comparable samples from the
identical population is required in order to make relia-
ble statements on effect sizes and other estimates. One
problem that might prevent researchers from drawing
comparable samples repeatedly from identical popula-
tions is that populations are dynamic themselves or
are affected by changing environmental conditions.

— Guiding Question No. 12

A related problem arises when NHST is used to make
statements about future conditions. Unspoken, this is
very often the case. Without further information and
assumptions, however, it is inadmissible in most con-
texts. In processes of non-evolving systems that are
situated in completely controlled environments the
well-defined process of data generation alone deter-
mines the population characteristics. Here, we may
conclude through NHST from present observations on
still unobservable future observations as the very
same process can be expected to generate more data
with identical characteristics and distributions in the
future. This idea has also inspired the notion of ab-
stract “super-populations”, which could be described
at hand of data that are generated in simulation runs of
a model. In the social sciences, however, population
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characteristics usually depend largely on exogenous
influences that are not under model control. Then,
NHST “provides no guide to the length of time over
which the initial observations remain valid” (SUM-
MERFIELD, 1983: 145) for further inference and invok-
ing hypothetical populations would resemble pulling
out “a 'get out of jail free card' on external validity”,
which unfortunately does not exist (FINDLEY et al.,
2021: 379).

From a slightly different perspective, the wish to
generalize results into the future reflects an attempt
for generalizing results beyond the population that has
served as reference for an analysis. This attempt is
covered by the idea of “transportability” (FINDLEY et
al., 2021). Transportability, however cannot be as-
sessed by means of NHST because it can never be
guaranteed that a (random) sample from one popula-
tion differs from another population only by random
deviations. To put it the other way around, to “be con-
fident in making broad generalizations necessitates
sampling from a 'super-population' composed of every
circumstance imaginable which may impact the re-
sult” (HUBBARD et al., 2019: 94). This demand is
insurmountable, and statistical inference from the
current sample on a future population or generally on
other populations than that from which the sample has
been drawn is invalid.

— Guiding Question No. 13

The notion of a super-population is sometimes also
invoked to justify the use of NHST under the condi-
tions of a full-sample analysis. However, in full sam-
ples, estimates describe only what can be observed in
the population under the assumptions of the estima-
tion model. There is no larger population in which
estimates could deviate at random from the current
estimates and from which further samples could be
drawn. Thus, if an estimate from the full sample devi-
ates from the expectation expressed in the null hy-
pothesis allowing for the expected precision, the mod-
el and/or the null hypothesis must be rejected without
the need for further test statistics. NHST is pointless if
analyses are conducted with data on the complete
population of interest (HIRSCHAUER et al., 2020a;
LAKENS, 2022).

In order to generalize the discussion on full sam-
ples to the question of sample size, we can refer to the
concept of statistical power again (see also Chapter 3).
Since standard errors decrease with sample size, large
random samples provide us with high statistical pow-
er, i.e., the difference between random and systematic
deviations can be identified reliably even for small
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effects and high noise. The “finite population correc-
tion factor” (fpc) has been developed in order to cor-
rect for the fact that the confidence interval width
depends on relative rather than on absolute sample
size (LAKENS, 2022: 3). There is only a minor source
of random variance left in the close to full-sample
case and none in the full-sample case. The fcp and
with it the corrected standard error thereby approach
zero with an increase of the relative sample size
(LAKENS, 2022; HIRSCHAUER et al., 2020a). So, it is
precisely in situations of high statistical power that the
relevance of NHST is low (SCHNEIDER, 2015).

In contrast, “a small sample taken from a popula-
tion is unlikely to reliably reflect the features of that
population” (HALSEY et al., 2015: 180). Consequent-
ly, random variability is high and the statistical power
of inference is low in this case. Resulting problems
with Type I and Type II Errors (see for example SER-
DAR et al., 2021) could (and should) of course be mit-
igated if sampling and the analysis were sufficiently
often repeated. From a practical viewpoint, however,
this often proves specifically difficult exactly in those
situations, where researchers find themselves restrict-
ed to small sample sizes. Consequently, NHST can
mainly be of potential value if samples are neither
very small nor very large.

— Guiding Question No. 14

6 Causal Inference and
its Empirical Generalization (V)

Causal inference is concerned with the empirical iden-
tification of causal relationships. There seems to be
some confusion (GREENLAND, 1990), but for empiri-
cal causal effect identification, what is applied is ran-
dom assignment into a treatment group (COHEN,
2011) but not random sampling (DEATON and CART-
WRIGHT, 2018). NHST and p-values have no role to
play in causal effect identification itself (HIRSCHAUER
et al.,, 2020a).2 An empirical assessment of popula-
tion-wide implications of identified causal effects via
NHST requires the combined use of random sampling
and steps for causal effect identification (THOMAS et

2 This does not necessarily also apply to the reverse case.

With observational data, causal knowledge is often re-
quired to develop a model that reliably controls sample
selection (see Chapter 4). If structural models are then
used to control sample selection, causal determinants
should be identified. This need not be the case with re-
duced form models.
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al., 2017; ACKERMAN et al., 2019). Results from
causal inference may not generalize to the population
if it is conducted on non-representative samples.

The identification of causal effects itself general-
ly requires certain far-reaching assumptions, which
cannot be tested statistically but are a pre-condition
for the statistical identification of causal effects
(PEARL, 2009). Consequently, and in contrast to pure-
ly descriptive statistics, identified causal effects could
be false. If we identify a causal effect with a model
that lacks internal validity (see HIRSCHAUER et al.,
2022) and then generalize the result with respect to
(an adequately defined) population, we might thereby
generalize what we only mistakenly believe to be a
causal relationship (HIRSCHAUER et al., 2020a).

— Guiding Question No. 15

Moreover, the very specific conditions that serve the
identification of causal effects can make empirical
generalisations of causal effects untenable. The causal
effect is identified by an implicit or explicit compari-
son of a situation with intervention with the contra-
factual, necessarily hypothetical, identical situation
without intervention (HECKMAN, 2005). Just as ran-
dom sampling is the “gold standard” in order to con-
trol sample selection, randomized control trials
(RCTs) are the gold standard for the control of treat-
ment assignment (RUBIN, 2008). However, exactly the
specificity of the conditions in RCTs that allows for
causal inference is also the ultimate reason for why
RCTs' external validity is often questioned (BRACHT
and GLASS, 1968; PETERS et al., 2018). DEATON and
CARTWRIGHT (2018: 2) go as far as to conclude that
“[d]emanding ‘external validity’ is unhelpful because
it expects too much of an RCT while undervaluing its
potential contribution”.

With observational data, it is notoriously difficult
to conduct RCTs for a multitude of reasons (RUBIN,
2008; PETERS et al., 2018). Generally, “without ran-
domization, it is assumptions that will identify the
causal effects. These assumptions will be untestable in
general and require subject-matter knowledge to justi-
fy” (BLACKWELL, 2013; see also GRIER, 2022). RU-
BIN (2008) proposes to “design” models such that they
resemble experiments. These ‘“quasi-experimental”
designs identify regions of overlap between compara-
ble observations in the groups of the treated and in the
group of the untreated (KUANG et al., 2020). All ex-
perimental and quasi-experimental approaches repre-
sent so-called “black-box models” (PEARL, 2009).
They control the specific individual, historical and

spatial conditions of the observed effect but they do
not illuminate them (GRIER, 2022). With black-box
models, results hold only under the very specific con-
ditions of overlapping observations within one histori-
cal situation, but under which conditions the identified
effect applies to whom to what extent stays in the
dark, and the target population (compare Chapter 5), if
any, remains unknown.

In fact, just like certain RCTs, black-box models
might not be very “useful” in so far as their results
may not apply to “broader population dimensions” or
to “a broader set of cases” (FINDLEY et al., 2021: 377)
and the pre-conditions for using NHST might not be
fulfilled due to a lack in external validity (GREEN-
LAND, 1990).

— Guiding Question No. 16

Structural models represent the alternative to experi-
mental and quasi-experimental causal effect identifi-
cation. As they are unreliable from a purely empirical
perspective, they are not considered in the decision
tree. The advantage of structural models is that they
support a true understanding of causal relationships
(SIGNORINO and YILMAZ, 2003; DEATON and CART-
WRIGHT, 2018): knowledge of treatment selection
mechanisms makes us understand in which environ-
ments or populations causes are (how) effective
(HONG and RAUDENBUSH, 2013) and knowledge of
causal mechanisms explains the different affectedness
of heterogeneous observations by a treatment (BRAND
and THOMAS, 2013). The models themselves thus give
us an idea of the populations to which the results can
be generalised.

Structural models for causal inference, like those
for sample selection control (see Chapter 4), reflect
accumulated knowledge of a scientific field. Causal
effect identification then requires an extension of
valid and comprehensive existing models. It has
consequently to be assumed that the new causal pa-
rameter complements the “old” model only in an addi-
tive sense, i.e., that “the functional relationship be-
tween the regressors and the dependent variable is
unconditionally monotonic” (SIGNORINO and YILMAZ,
2003: 563). Otherwise, its earlier exclusion could have
contributed to omitted variable bias. This structural
approach to the generation of scientific knowl-
edge with its manifold strong and untestable assump-
tions therefore reflects the piecemeal puzzle-solving
process that is characteristic for “normal science”
(KUHN, 2009). According to KUHN (2009), it is going
to go on until the inner contradictions of the model
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become so disturbing that somebody proposes an al-
ternative.

An accumulation of inner contradiction is to be
expected, for example, because “[u]nfortunately, in
many areas unconditional monotonicity may be the
exception, rather than the rule” (SIGNORINO and YIL-
MAZ, 2003: 564). The violation of additivity assump-
tions and other internal contradictions of the model
are not going to be discovered by NHST, however,
because “[i]t does not include devising or modifying
the model” (MURPHY et al., 1986: 334). The accumu-
lated contradictions could instead be revealed, for
example, within the separate analytical step of model
specification, which tries to identify via “a thorough
probing of the probabilistic assumptions” potential
“misspecification vis-a-vis the information contained
in the data” (SPANOS and MCGUIRK, 2001).

7 Conclusions

Today, “normal science” (KUHN, 2009) seems to bind
itself to the direct statistical identification of causal
effects and to their generalization via inferential statis-
tics. Given all the requirements for a proper conduct
of NHST this process does not serve large scientific
break-throughs or “scientific revolutions” (KUHN,
2009). At the same time, NHST is so presuppositional
that it rarely delivers trustable and robust results with
observational data. In agricultural economics and
most other disciplines, an honest assessment of anal-
yses at hand of the requirements that are summarized
in the decision tree would probably confirm that
NHST should not be applied in many studies.

The second big problem in the use of p-values,
next to a lack in validity, is their common misinterpre-
tation (LUDWIG, 2005) and their frequent application
to questions that they cannot answer (IMBENS, 2021).
Since “[p]-values can [only] indicate how incompati-
ble the data are with a specified statistical model”
(WASSERSTEIN and LAZAR, 2016: 131), WHITE and
GORARD (2021: 58) conclude that “when these out-
puts are interpreted correctly, they produce infor-
mation that is at best irrelevant and at worst mislead-
ing.” We will principally have to recognize that “sci-
entific generalization from a single study is unwar-
ranted” (AMRHEIN et al., 2019: 266). Even the so-
called “replication crisis” may be at least partly due to
the undervalued fact that estimation results always
depend on case-specific conditions and assumptions
(AMRHEIN et al., 2019) and that results, including the
p-value, vary between samples.
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The solution to the problems associated with the
use of NHST is simple: avoidance of the use of infer-
ential statistics as far as possible and reasonable. This
implies a shift from prioritising inferential statistics to
recognising the value of descriptive statistics. Even
p-values can be used in descriptive contexts (AM-
RHEIN et al., 2019). The p-value would then be inter-
preted “as a statistical summary of the compatibility
between the observed data and what we would predict
or expect to see if we knew the entire statistical model
(all the assumptions used to compute the P value)
were correct” (GREENLAND et al., 2016: 339). We,
thereby, come to similar conclusions with respect to
econometric models like DEATON and CARTWRIGHT
(2018: 3) with respect to RCTs: econometric models
might be “oversold” because extrapolating or general-
izing their results “requires a great deal of additional
information”, but “under-sold”, because they ‘“can
serve many more purposes than predicting that results
obtained in a trial population will hold elsewhere.”

Putting much stronger emphasis on descriptive
statistics not only demands a change in routines and in
entrenched habits of thought (GIGERENZER, 2004).
The shift also has the potential to trigger changes in
the research process and in the evaluation of ap-
proaches within the disciplines. There could be a re-
newed awareness that the general validity of hypothe-
ses, even within a carefully defined environment, can
never be confirmed on the basis of data alone. More
attention in the conception and review of research
could then again be paid to how convincingly a theory
answers open questions and how informative (“sur-
prising”) hypotheses derived from it are, given the
current state of knowledge. As a consequence, it could
be recognised that case studies, descriptive analyses
and the documentation of a few, remarkable observa-
tions can potentially make at least as great a contribu-
tion to scientific progress as inferential statistics.
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