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Abstract 
Data Envelopment Analysis (DEA) is a popular tool to 
determine technical efficiency of agricultural produc-
tion. One issue that arises in some nonparametric 
frameworks is the heterogenous endowment with de-
terminate factors, such as agroclimatic conditions. 
Environmental factors clearly lie outside of the sphere 
of influence of the decision-maker and pose natural 
limits to increasing efficiency and productivity of ag-
ricultural production. Calls for rationalization or 
better allocation of production inputs might thus  
not be adequate if concerned studies do not properly 
account for exogeneous factors of efficiency. The pre-
sented paper addresses the existing attempts to deal 
with the issue and analyzes the effect of soil  
quality on technical efficiency, calculated for crop 
producers of 122 European regions (FADN), using a 
regularly employed two-stage DEA framework. The 
effect of soil quality is then accounted for by adjusting 
the input factor land by a land quality factor. First, 
results show that environmental factors, e.g., soil  
quality, have a significant positive effect on technical 
efficiency. Further, the proposed land adjustment 
reveals structurally different results for some individ-
ual efficiency estimates, which indicates that neglect-
ing the effect of environmental factors on efficiency 
might yield misleading policy implications.  

Keywords 
technical efficiency; environmental factors; exogenous 
factors; nonparametric efficiency analysis; two-stage 
approach; land heterogeneity; crop production 

1 Introduction 
In FARRELL’s (1957) pioneering work that paved the 
way for today’s nonparametric efficiency and produc-
tivity methods (e.g., Data Envelopment Analysis 
(DEA), Malmquist Productivity-Index), US Agricul-
tural sector data served as illustrative example for the 
efficiency calculation. Both author and reviewers em-
phatically emphasized the mere illustrative character 
of the results. Farrell argued that any attempt to draw  

more than the roughest inferences about American 
agricultural efficiency (FARELL, 1957: 266), would 
require for a detailed attempt to account for input het-
erogeneity caused by different climatic or fertility 
conditions of the analyzed regions (FARRELL, 1957). 

Quite surprisingly, in the agricultural economics 
literature, plenty of studies on efficiency or productiv-
ity have since been published that do not account for 
input heterogeneity. Partially, this can be explained by 
differing application cases. Efficiency in analyses 
conducted on farm-level limited to specific, largely 
climate independent, farm types, e.g., dairy farming 
(PIERALLI et al., 2017), might as well be subject to 
input heterogeneity, yet the heterogeneity is caused by 
managerial differences and the resulting degree of (in-) 
efficiency is fully attributable to the decision-maker 
(KAISER et al., 2020). In application cases though, 
where nonparametric studies are conducted with either 
a regional, international, or worldwide scope, input 
heterogeneity may arise due to exogenous factors 
outside of the sphere of influence of the decision-
making units (DMU), e.g., environmental conditions 
as suggested by FARRELL (1957). 

One crucial motivation for analyzing agricultural 
production efficiency and productivity on a broader 
scale, lies in determining the potential for global out-
put expansion and input savings (VON HOBE et al., 
2021). The former is often motivated by the rising 
demand for food caused by continuing population 
growth (DAGAR et al., 2021). The latter acknowledges 
the need for a more cautious use of natural resources 
in the future (CZYŻEWSKI and GUTH, 2021). Both 
issues concern a broader picture and cannot adequate-
ly be assessed with a local scope, e.g., on farm-level. 
Consequently, giving up on agricultural efficiency 
analysis, that is subject to heterogenous environmental 
characteristics, is not satisfying.  

On the other hand, if input heterogeneity is not 
accounted for, the regularly formulated calls (e.g., 
GUESMI and SERRA, 2015; RUNGSURIYAWIBOON and 
WANG, 2009; TOMA et al., 2017) for better allocation 
of production inputs, specialization, modernization, or 
rationalization might not contribute towards expand-
ing outputs and saving resources but much rather lead 
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towards ignoring the naturally imposed limits on agri-
cultural productivity, e.g., intensification of practices 
on already degraded soils.  

This paper seeks to contribute to the literature by 
providing proof that existing approaches do not suffi-
ciently cover the effect of input heterogeneity on agri-
cultural efficiency caused by environmental factors. 
To achieve this goal, a regularly employed two-stage 
DEA framework is used to assess the effect of envi-
ronmental conditions on crop production efficiency of 
122 European (EU) regions. In a second step we ac-
count for the effect of significant environmental fac-
tors by adjusting the input factor land by an agricul-
tural land quality factor. One considered environmen-
tal factor, soil quality, is found to have a robust and 
significant positive effect on technical efficiency. 
Also, the proposed land quality adjustment causes 
structural changes in the distributions of individual 
efficiency estimates. Since policy implications of non-
parametric efficiency analysis are based on judgments 
of individual DMUs’ potential for saving inputs or 
expanding outputs, our results suggest that they might 
be unreliable whenever exogenous factors are not 
accounted for. 

The remainder of the paper is organized as fol-
lows. Section 2 briefly reviews existing approaches to 
consider environmental factors in nonparametric effi-
ciency analysis. This is followed by methodological 
remarks on the two-stage nonparametric approach and 
the model description in Section 3. In Section four 
empirical findings are discussed. Finally, the paper 
closes with concluding remarks in Section 5. 

2 Literature Review 
The importance of considering heterogenous environ-
mental conditions in agricultural production, produc-
tivity and efficiency analysis is well documented 
(BURKE and EMERICK, 2016; NJUKI et al., 2018; 
ZHAO et al., 2017). In fact, GARCIA-VERDU et al. 
(2019) just recently emphasized that agricultural pro-
duction and thus the future development of agricultur-
al productivity is among the most climate-sensitive 
areas within economics. In the context of crop produc-
tion, the complex relationship of production efficiency 
with climate-related growing conditions and agricul-
tural practices is manifested in the quality of the agri-
cultural land employed (BHALLA, 1988; JAENICKE 
and LENGNICK, 1999; TÓTH et al., 2013). Various 
studies on agricultural productivity or efficiency (not 
using nonparametric techniques) thus account for 

input heterogeneity and integrate land quality related 
factors into their analysis (e.g., FUSCO and VIDOLI, 
2013; LIANG et al., 2017; LOBELL et al., 2011).   

It is thus surprising that the majority of nonpara-
metric efficiency and productivity analysis conducted 
on a regional (e.g., ALDAZ and MILLÁN 2003; 
BŁAŻEJCZYK-MAJKA et al. 2012; BAGCHI et al. 2019), 
inter-country (e.g., BUREAU et al. 1995; FULGINITI 
and PERRIN 1997; TRUEBLOOD and COGGINS 2003) 
or global scope (e.g., ATICI et al. 2018; BALL et al. 
2001; COELLI and RAO 2005) for which the above-
mentioned exposure to environmental factors applies, 
do not incorporate the effect of land quality into their 
frameworks.  

MILLÁN and ALDAZ (1998) argued that the issue 
is likely to be resolved when improved measurement 
methods are available.1 One notable example for such 
an improvement is the analysis of CHAMBERS et al. 
(2020). They performed a nonparametric productivity 
analysis for the period 1961 to 2004 and chose to con-
struct different subsets of years to guarantee for what 
they define as a climatological normal in the analysis. 
They found weather-related shifts of the frontier to be 
an important determinant of productivity development 
in particular regions. While this approach is well-
suited for accounting for weather-specific events, its 
applicability is limited to productivity analysis over 
extended time periods and land quality related effects 
cannot be considered. Also, in efficiency analysis 
(using cross-sectional data of one exclusive period) 
subsampling or clustering of DMUs with homogenous 
environmental conditions might not be compatible 
with the researcher’s interest and will significantly 
reduce sample size. 

A second notable example is the paper of BĂDIN 
et al. (2014), who introduced a nonparametric condi- 
tional methodology that could solve the problem as 
described above. The idea is to calculate two sets of 
                                                           
1  Indeed, since then, a lot of useful methodological ad-

vances were made in nonparametric efficiency and 
productivity analysis. See RUGGIERO (1998) for a dis-
cussion of options to consider non-discretionary inputs 
with a two-stage framework. CAZALS et al. (2002), e.g., 
introduced outlier robust estimation techniques. SIMAR 
and WILSON (1999), e.g., proposed bootstrapping pro-
cedures to enable the calculation of bias-corrected effi-
ciency scores and allow to construct confidence inter-
vals for efficiency estimates. While those models and 
methods help to eliminate extreme observations and ac-
count for measurement errors or random effects, they 
cannot sufficiently account for structural effects on the 
level of the individual efficiency estimates (BĂDIN et 
al., 2014; GADANAKIS and AREAL, 2020).  
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efficiency estimates, a conditional set containing an 
exogenous factor and an unconditional one. In a sec-
ond step a flexible location scale model is employed 
to regress the ratio of conditional to unconditional 
measure on external factors. Even though the method-
ology allows for the calculation of pure managerial 
efficiency (the residual of efficiency variation not 
attributable to external factors), the approach has not 
been adopted by researchers performing efficiency 
and productivity analysis of agricultural production.2 
One possible explanation could be that implementa-
tion and interpretation of the conditional methodology 
is complex for both researcher and reader, which 
might not be justified in cases where the research goal 
is to simply provide reliable judgments on efficiency, 
as opposed to analyzing in detail the quality of the 
impact of a specific exogenous factor. Also, up until 
now the methodology has not been adopted in a 
productivity analysis context. Another possible expla-
nation could be that the importance of exogenous 
factors in explaining the inefficiency distribution is 
still not ubiquitously established among researchers 
dealing with either productivity or efficiency of agri-
cultural production.  

The most popular approach to partly consider en-
vironmental factors in nonparametric efficiency anal-
ysis is the so-called two-stage approach, which may 
be summarized as conducting either a censored or 
truncated regression analysis employing the calculated 
efficiency estimates as dependent variable (ZHOU et 
al., 2018). But providing statistical evidence that envi-
ronmental factors have an impact on the mean effi-
ciency of a sample does not improve the quality of the 
addressed policy implications, since they are not de-
rived based on the mean efficiency of the sample but 
of the relative comparison of the actual individual 
efficiency estimates (e.g., NIAVIS et al., 2021; NOWAK 
et al., 2015; TOMA et al., 2017). Indeed, mean sample 
efficiency might only be of interest in very seldom 
cases, in particular meta-analysis (e.g., BRAVO-

                                                           
2  Of the 147 citations of the paper documented on google 

scholar, only two articles treat of agricultural production 
in a broader context. Most applications concern efficien-
cy in the public sector (water industry, public health, 
higher education institutions). The study of MINVIEL 
and DE WITTE (2017) is the only study to adopt the 
methodology in an agricultural efficiency context, but 
without considering environmental factors, which is 
reasonable given their analysis’ interest lies in examin-
ing the effect of public subsidies and is based on farm 
level data. 

URETA et al., 2007; MINVIEL and LATRUFFE, 2017). 
Consequently, we argue that for most research inter-
ests finding determinate exogenous factors to have a 
significant effect on the efficiency estimates, renders 
an interpretation and formulation of policy implica-
tions difficult. A nonparametric two-stage approach 
can thus not sufficiently account for the effect of land 
heterogeneity in analysis of agricultural production 
efficiency and productivity. A meaningful interpreta-
tion could only be guaranteed if the effect were to be 
distributed evenly across all DMUs. The latter is veri-
fiable by the methodology employed in this paper, 
which will be outlined in the upcoming section.  

3 Model Setup 

3.1 Nonparametric Efficiency Analysis  
Traditional DEA has emerged as one of the most pop-
ular instruments to identify efficiency boundaries of 
farms or regional agricultural systems. The mathemat-
ical formulations below reflect a reduced version of 
this approach that is described in full detail by 
DARAIO and SIMAR (2007). Presuming that farms 
improve their efficiency more likely by growing out-
puts rather than decreasing inputs, we calculate out-
put-based radial efficiency scores. Equations (1) to (3) 
set up the traditional model which serves as a starting 
point for our analysis.  

The productive organization of farms (or in our 
case average farms of the considered regions) can be 
denoted by a production set Ψ as:  

Ψ = �(𝑥𝑥,𝑦𝑦) | 𝑥𝑥 𝜖𝜖 𝑅𝑅+
𝑝𝑝 ,𝑦𝑦 𝜖𝜖 𝑅𝑅+

𝑞𝑞 , (𝑥𝑥,𝑦𝑦) is feasible� (1) 

where x is the input vector consisting of a set of inputs 
p, and y is the output vector consisting of a set of out-
puts q. If a DMU is capable of obtaining outputs q 
from the employed inputs p the production set is con-
sidered feasible. In radial terms the efficient boundary 
in the output space of the sections of Ψ can be defined 
as:  

𝛿𝛿𝛿𝛿(𝑥𝑥) = {𝑦𝑦|𝑦𝑦 𝜖𝜖 𝛿𝛿(𝑥𝑥),𝜆𝜆𝑦𝑦 ∉ 𝛿𝛿(𝑥𝑥),∀𝜆𝜆 > 1} (2) 

where 𝛿𝛿(𝑥𝑥) refers to the output correspondence  
set (for all 𝑥𝑥 𝜖𝜖 Ψ). In our framework the efficiency 
measure bases on the Shepard distance function (in-
stead of the Debreu-Farrell measure of efficiency 
(DEBREU, 1951; FARRELL, 1957)), which provides a 
normalized measure of Euclidean distance from a 
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point (𝑥𝑥,𝑦𝑦) 𝜖𝜖 𝑅𝑅+
𝑝𝑝+𝑞𝑞 to the boundary of Ψ in a direc-

tional orthogonal to x: 

𝜗𝜗𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥,𝑦𝑦) = inf{𝜆𝜆 > 0|(𝑥𝑥, 𝜆𝜆−1𝑦𝑦) 𝜖𝜖 Ψ}  
≡  (𝜆𝜆(𝑥𝑥,𝑦𝑦))−1 

(3) 

where for all (𝑥𝑥,𝑦𝑦) 𝜖𝜖 Ψ,𝜗𝜗𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥,𝑦𝑦)  ≤ 1. For the case 
that 𝜗𝜗𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥,𝑦𝑦) = 1, then a region to which the input-
output combination (𝑥𝑥,𝑦𝑦) belongs is technically effi-
cient and constitutes the efficiency frontier (DARAIO 
and SIMAR, 2007). 

In our framework the analysis is limited to the 
crop farming sector, which is regularly incorporated in 
inter-country analyses (COELLI and RAO, 2005). Also, 
we assume the effect of environmental variables on 
efficiency to be more pronounced here than for farms 
predominantly obtaining its gross output, e.g., from 
livestock farming. The input-output system is repro-
duced by variables commonly employed in the litera-
ture to describe the agricultural production process. 
The latter is constituted by agricultural land 𝑥𝑥𝑙𝑙 and 
other manageable inputs 𝑥𝑥𝑖𝑖, such as labor, capital, and 
an intermediate input on the input- and gross produc-
tion (in €) on the output-side (model 1). 

In a second model, we consider that efficiency  
estimates also depend on the impact of exogenous 
factors on the production process. If those factors 
were manageable, it would be reasonable to include 
them as inputs, outputs, or detrimental outputs directly 
into the input-output system. However, as FARRELL 
suggested, for the case of agricultural production, 
determinate exogenous factors might above all be 
environmental conditions a farmer (or region) is fac-
ing that cause input heterogeneity unalterable by the 
decision-makers. 

Along this line of though some authors (outside 
of the nonparametric efficiency analysis literature) 
propose to adjust agricultural land by means of the 
physical conditions, for example by introducing the 
concept of effective land (BHALLA, 1988). A land 
quality index could be used to reflect the endowment 
of a considered region with production-related envi-
ronmental conditions. In this case the calculation of 
crop production efficiency 𝜗𝜗 is based on effective land 
𝑥𝑥𝑙𝑙𝑒𝑒 (rather than 𝑥𝑥𝑙𝑙) and other manageable inputs 𝑥𝑥𝑖𝑖 
(model 2), where effective land 𝑥𝑥𝑙𝑙𝑒𝑒 can be considered 
a function of utilized cropland 𝑥𝑥𝑙𝑙 and land quality s: 

𝑥𝑥𝑙𝑙𝑒𝑒 = 𝐹𝐹(𝑥𝑥𝑙𝑙 , 𝑠𝑠) (4) 

3.2 Truncated Regression Analysis 
Clearly, the consideration of land quality must be 
implemented carefully. As outlined above, the two-
stage framework is the most popular tool to assess the 
effects of exogenous or environmental variables on 
the efficiency of a considered sample. We will follow 
this procedure to examine the effect of a bunch of 
potentially relevant environmental variables and apply 
a truncated regression model (5) based on a bootstrap 
technique as proposed by SIMAR and WILSON (2007)3:  

𝜗𝜗𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑠𝑠𝑖𝑖𝛼𝛼 + 𝑧𝑧𝑖𝑖𝛽𝛽 +  𝜀𝜀𝑖𝑖 (5) 

where 𝜗𝜗𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 is the efficiency of DMU (region) i, 𝑠𝑠𝑖𝑖 the 
soil quality in region i, 𝑧𝑧𝑖𝑖 a set of control parameters 
(other determinate factors such as precipitation, cli-
mate or topography), 𝛼𝛼,𝛽𝛽 the regression coefficient 
reflecting the impact of the determinate factors on 
efficiency and 𝜀𝜀 the error term. The error term 𝜀𝜀 is 
now assumed to be statistically independent across 
DMUs and to be normally distributed with a two-
sided truncation (for our case of the Shepard efficien-
cy measure). 

3.3 Adjustment of Agricultural Land  
If regional differences in technical efficiency are in-
deed driven by environmental factors, results of con-
ventional analyses could be misleading. In particular it 
might not be in the scope of farmers’ decisions to 
increase efficiency sustainably. Instead, lower effi-
ciency could be explained by comparatively unfavor-
able physical conditions of agricultural land. For this 
reason, we suggest to account for land heterogeneity 
by adjusting agricultural land accordingly and to re-
calculate efficiency with modified inputs in a second 
step (Model 2). 

Weighting agricultural land, in order to, e.g., dif-
ferentiate regional soil fertility and allow for better 
comparability, is quite common. Consider, for exam-
ple, the application of yield and equivalence factors 
on (crop-)land within the frame of ecological footprint 

                                                           
3  SIMAR and WILSON (2007) convincingly argue that 

statistical inference of analysis based on simple OLS or 
censored (Tobit like) regression procedures is question-
able because of the lack of a clear theory on the under-
lying data generating process and neglecting that the  
efficiency scores are not naturally independent obser- 
vations but much rather serially correlated. The estima-
tion was conducted using the STATA package by 
BADUNENKO and TAUCHMANN (2019) employing algo-
rithm 1 calculating regular Shepard efficiency scores.  
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analysis or the transfer of land (in ha) into so-called 
yield index units (Ertragsmesszahlen) by accounting 
for soil and agro-climate conditions in order to ensure 
a fair land tax distribution in Germany. BHALLA 
(1988) introduced an approach which constructs a 
land quality index based on regression results. How-
ever, those or similar procedures have not yet been 
applied in the context of non-parametric efficiency 
analysis. Following this line of thought, we weight  
the factor land on the basis of region i’s land quality 
in relation to the average land quality of the full  
sample (6):  

𝑥𝑥𝑙𝑙𝑒𝑒,𝑖𝑖 = 𝑥𝑥𝑙𝑙,𝑖𝑖
𝑠𝑠𝑖𝑖
�̅�𝑠

 (6) 

with 𝑥𝑥𝑙𝑙𝑒𝑒,𝑖𝑖 being the effective land of an average farm 
in region i, 𝑥𝑥𝑙𝑙,𝑖𝑖 the utilized agricultural area, 𝑠𝑠𝑖𝑖the land 
quality in region i and �̅�𝑠 the average land quality of 
the whole sample. This means effective land just 
equals utilized agricultural area for regions with aver-
age land quality and it is higher (lower) for regions 
with soil quality above (below) average. 

Clearly, this is a very rudimentary adjustment 
approach, where the relationship of agricultural area 
and land quality is described in a much more simpli-
fied manner compared to the above-mentioned calcu-
lation of global hectares within the frame of ecologi-
cal footprint analysis or the calculation of the German 
yield index units. However, the consideration of effec-
tive land here is primarily considered to test whether 
technical efficiency analysis that accounts for soil 
quality or other determinate factors yields structurally 
different efficiency estimates for our empirical appli-
cation in the context of regional agricultural produc-
tion of the EU. 

4 Empirical Application 
4.1 Data 
In line with most empirical studies in this field, con-
sidered inputs of the conventional technical efficiency 
analysis (Model 1) comprise utilized agricultural area, 
average labor input expressed in annual working units 
(TLU), capital in form of total assets and crop specific 
costs reflecting intermediate inputs such as seeds, 
plants, fertilizers, crop protection and other crop pro-
duction related costs. Agricultural outputs are given as 
(regional average of the) total output (see Table 1 for 
details).  

All data originate from the farm accountancy data 
network (FADN) database (2020) and refer to the year 
2018. In total the analysis includes average farms of 
122 regions (according to FADN regional classifica-
tion) classified as fieldcrops farms (for representation 
of farms within sample, see Appendix S1.). The focus 
on cropping farms is due to the farms’ stronger exposi-
tion to environmental factors and a better comparabil-
ity of the production processes and applied technology. 

Furthermore, in order to account for the effect of 
exogenous factors on efficiency estimates and replace 
the factor land by effective land in Model 2, we also 
consider three environmental variables, which pre-
sumably have a significant impact (not only on crop 
yields, but also) on the efficiency estimates of the 
regional crop production agricultural sectors.  

Previous nonparametric studies employing a 
(two-stage procedure) have found that productivity of 
the manageable inputs and therefore technological 
efficiency (DAI, 2013; NOWAK et al., 2015; TÓTH et 
al., 2013; ZAMBRANO et al., 2018; ZHAO et al., 2017)  
is influenced by soil quality. The soil biomass produc-

Table 1.  Descriptive statistics 
Obs. = 122 Name Mean Std. Dev. Min Max 
Input UAA [ha] 87.62 90.60 3.22 484.19 

TLU [AWU] 1.70 1.00 0.46 7.18 
Total Assets [€] 577,816 679,116 47,455 3,650,151 
Specific Crop Costs [€] 33,897 33,642 3,776 191,629 

Output Gross Output [€] 122,947 116,956 14,252 660,196 
Exogenous Factors Temperature [°C] 12.63 3.17 1.69 20.73 

Precipitation [l/mm] 1.82 0.57 0.44 3.16 
Soil Quality [Index] 5.92 0.94 3.79 8.10 

Source: own calculations 
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tivity index of croplands provided by the EUROPEAN 
SOIL DATA CENTRE (2022) and TÓTH et al. (2013) 
accounts for the geographic location (climatic, hydro-
logical and terrain conditions), soil physical proper-
ties, chemical properties and soil depth. Further, the 
index contains crop production specific information 
on the capacity of soil to supply nutrients, for water-
storing and as a rooting medium for plants. The Index 
values range from 0 (low productivity potential) to 10 
(high). If environmental factors have a substantial 
impact on overall efficiency of a region this should be 
reflected by its mean soil quality index value. Fur-
thermore, we’d argue that a soil quality index is a 
good fit with our proposal to adjust for land heteroge-
neity with a land quality factor in Model 2.  

Since environmental factors apart from land qual-
ity might also explain efficiency variation, e.g., due to 
weather-related events like local or temporal drought, 
heat or frost periods, we further control for robustness 
by considering two more agroclimate factors, precipi-
tation and climate conditions, which are known to 
have an impact on crop yields productivity and varia-
bility. (DAI, 2013; NOWAK et al., 2015; TOTH et al., 
2013; ZAMBRANO et al., 2018; ZHAO et al., 2017). 
Indeed, for European regions a favorable combination 
of rainfall and temperature can explain a large quanti-
ty of crop yield variability (e.g., about 72% for maize 
yield). Since we believe the latter to also potentially 
have an impact of efficiency of crop producers, we 
consider precipitation as annual mean of rainfall (in 
mm) and climate represented by the mean annual 
temperature of each region (in degrees Celsius) as 
covariates. Both agroclimate variables stem from the 
EU Agri4cast Resources Portal (EUROPEAN COMMIS-
SION, 2020). Of course, annual means might not be 
sensitive enough to represent the complex and local 
relationship of the growing season of each individual 
crop, region and rainfall or temperature data in detail 
(MERONI et al., 2017). We suppose though it might 
constitute a good indicator to account for extreme 
weather-related events that part from the general en-
dowment with climatic conditions reflected by the soil 
quality index. 

All three determinate variables are given as high-
resolution point (precipitation, mean temperature)  
or raster layer data (soil quality) and were extracted  
using a shape layer with the FADN classification  
of European regions. Afterwards continuous annual 
means were calculated for each region individually.4 
                                                           
4  Please note that the environmental factors thus refer to 

the mean of the total area of each region, not the specific 

Extraction, cutting, and field statistics were performed 
using QGIS 3.14.  

Descriptive statistics of all variables introduced 
in the sections above are given in Table 1. 

4.2 Model Results 

Technical Efficiency Results (Model 1) 
Starting with the familiar Model 1, we calculate tech-
nical efficiency scores under variable returns to scale 
for the 122 regions (or more precisely the average 
regional farms) without consideration of land quality. 
Efficiency scores range between 0.44 and 1 with a 
mean of 0.82 and a standard deviation of 0.15. Results 
for the regions individual efficiency scores are listed 
in Table S1 and plotted in Figure 1. 

Not surprisingly and in line with former empiri-
cal studies, the findings indicate relatively high tech-
nical efficiency scores for the Western and Central 
European countries. This is particularly true for re-
gions characterized by highly intensive agricultural 
systems along the Coastline of the English Channel 
and the North Sea (e.g., Hauts de France, Vlaanderen, 
Netherlands, Lower Saxony, Denmark), but also holds 
for other regions in France, Belgium, Germany, Aus-
tria or Northern Italy. In contrast, comparatively low 
technical efficiency scores can be observed for North-
eastern and Southern countries such as Poland, Lithu-
ania, Scandinavia, Italy, the Baltic States or large 
parts of Spain. Thus, to some extent we can confirm 
the often-cited core-periphery divide in terms of effi-
ciency among the EU member states with a general 
divide between Northern or Western countries on the 
one side and Southern or Eastern countries on the 
other (BARÁTH and FERTŐ, 2017; BŁAŻEJCZYK-
MAJKA et al., 2012; NOWAK et al., 2015).  

However, there are notable exceptions from this 
rule. In particular we find rather high efficiency scores 
for peripheral regions in Poland, Slovakia and the 
South-East (Romania, Bulgaria, Greece). This can 
partly be explained by the expansion of intensive 
farming practices towards peripheral regions (e.g. in 
Slovakia) but it also relates to the calculation of tech-
nical efficiency under variable returns to scale. Fol-
lowing this approach, some (South-Eastern) regions 
could constitute the efficiency frontier, even if they 
might be absolutely less productive than other (West-
ern) regions (for example if lower yields per hectare 

                                                                                                 
area employed for agricultural production. Potentially, 
weather events occurring on areas subject to different 
land use could deter the environmental variables.  
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are produced with comparatively smaller use of input 
factors), yet relatively productive given the scale sec-
tion they are occupying. 

The broad range of agricultural systems in Eu-
rope, from very intensive production systems to low-
intensity, traditional or organic farming has a long 
history and certainly reflects different institutional 
settings, farm characteristics and ideas about agricul-
tural production. In addition, and maybe most im-
portant, yield productivity and farming practices rely 
on soil quality, topography and agroclimate condi-
tions. While highly intensive farming practices can 
generally be observed on more fertile land, organic 
and other low-intensity farming are more common on 
land with poorer soil quality. 

Technical Efficiency Results considering Land 
Quality (Model 2) 
However, differences in soil quality and other deter-
minate factors might not only affect yield productivity 
and farming practices but, following the discussion in 
Section 2 and 3.2, also technical efficiency. More 
(less) fertile land, for example, can be expected to 
increase (decrease) productivity of other inputs and 
therefore affect technical efficiency in a positive (neg-
ative) way. For this reason, the conventional efficien-
cy scores (Model 1) are regressed on soil quality ac-
cording Equation (5) in a next step. To avoid that soil 
quality reflects the effect of various determinate or 
unobserved factors, we further control for precipita-
tion and climate, which are regularly considered to 

Figure 1.  Distribution of technical efficiency scores (Model 1) across European regions 

 
Source: own illustration 
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explain crop yield variability and could thus have  
an impact on farm gross output results (DAI, 2013; 
MERONI et al., 2017; ZAMBRANO et al., 2018).  

First results confirm the proposed robust, signifi-
cant and positive impact of soil quality on technical 
efficiency.5 This is in contrast to precipitation and 
mean temperature, which have no robust significant 
impact on technical efficiency (Table 2). As outlined 
above, the variables calculated based on annual means 
could indeed be too insensitive to get a grasp around 
the relationship of crop growing conditions, climate 
and precipitation. On the other hand, the efficiency 
estimate cannot be assumed to have an identical rela-
tionship with environmental factors like crop yields. 
In fact, their effect on a composite efficiency indicator 
might just be negligible. Against this background, the 
next step is to calculate the adjusted land variable 
according to Equation (6), incorporating the soil quali-
ty index as sole determinant of land quality, in order 
to recalculate technical efficiency with modified in-
puts. Following this approach efficiency scores in-
crease, if crop production is limited by comparatively 
low soil quality and they decrease for regions en-
dowed with high soil quality. In both cases, the ad-
justment process (partly) compensates for the more 
difficult or favorable biophysical conditions. Of 
course, efficiency could remain unchanged despite the 

                                                           
5  We checked for robustness by testing the effect on dif-

ferent model configurations, e.g., calculating the model 
under constant returns to scale and or substituting crop 
specific costs with crop protection costs as alternative 
plausible intermediate input. While in some cases, effect 
and significance of the control variates changed, soil 
quality remained positive and significant. 

land adjustment procedure. For example, if soil quali-
ty is close to average and fertility of land no major 
issue (neither in a positive nor negative way). Also, 
the efficiency measure is bounded at one for all re-
gions that are found efficient in Model 1. Though 
many of these efficient regions dispose of highly fer-
tile land, they could still define the efficiency frontier 
and remain efficient after the adjustment. After all soil 
quality might not be the decisive factor for those high-
ly efficient regions, often characterized by rather in-
tensive farming practices. 

For efficiency estimates calculated according to 
Model 2, changes in mean technical efficiency are 
close to zero (0.004). Of 122 observations only 27 effi-
ciency scores were affected by the consideration of soil 
quality. Figure 2 illustrates the differences between 
the revised technical efficiency scores (with adjusted 
land) and the conventional analysis of Model 1. 

Even though mean efficiency and the majority of 
regions are barely affected by the recalculation, the 
plot reveals some interesting differences in the struc-
tural pattern of technical efficiency with single in- or 
decreases of efficiency scores in the range of -0.06 
and 0.14. 

Most regions performing better than before are 
located in Mediterranean areas (in particular in Spain, 
but also in regions of France, Italy and Greece). These 
regions turn out to be more efficient than they appear 
in the conventional analysis (Model 1). In contrast, 
decreasing scores can be found for regions with slight-
ly above average efficiency in Italy, Poland and Bel-
gium. Given the rudimentary adjustment approach we 
refrain from making detailed remarks about whether 
those regions could (in principle) be even more effi-
cient than in Model 1 given their good endowment 
with soil quality. But what our results are able to 
proof is that not accounting for exogenous factors 
could seriously deteriorate results and might provoke 
misleading policy implications. Consider the case of 
central Italian regions as an example. According to 
Model 1, the regions of Abruzzo and Campania are 
found to be substantially more efficient when com-
pared to neighboring regions. Analyses not accounting 
for environmental factors could conclude that below 
average efficient neighboring regions should make an 
effort to adapt or learn from policies or the sectoral 
structure of Abruzzo and Campania to guarantee for a 
better input allocation and thus increase their efficien-
cy.  

When land quality is taken into account, both re-
gions (and the ordinarily efficient region of Latium) 
are discriminated due to the inclusion of their com-

Table 2.  Impacts of exogenous factors on tech-
nical efficiency according to model 1 

VRS Observed  
Coefficient 

Percentile 95%  
Confidence Interval 

Soil Quality Index 0.048** 
(.0199) 

.0101 .0884 

Precipitation 0.018 
(.0332) 

-.0439 .0826 

Temperature -0.001 
(.0070) 

-.0146 .0121 

Constant 0.476*** 
(.1744) 

.1325 .8206 

Sigma 0.1356*** 
(.0139) 

.1074 .1625 

Wald chi2 (3) 9.15** 
Note: ***, ** and * denote significance at 1%, 5% and 10% level. 
Std. Bootstrap Errors in parenthesis 
Source: own calculations 
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paratively better endowment with land quality. By 
implementing the adjustment approach, the differ-
ences between the regions become more moderate (-
6% for Abruzzo and –5% for Campania) and we 
gained awareness that since land quality does play a 
role in explaining efficiency variation, it cannot be 
ruled out that a large part of the differences in effi-
ciency among those regions could be explained by 
other environmental factors as well. This prohibits the 
recommendation of policy adaptation of neighboring 
regions and casts doubts on the general demand for 
better input use or other managerial policies for im-
proving efficiency, e.g., rationalization or moderniza-
tion.  

The need for considering land quality is further 
confirmed by the shift in frequencies of efficiency 
scores depicted in Figure 3.  

The left histogram shows frequencies for effi-
ciency estimates of Model 1, the right histogram of 
Model 2, respectively. A comparison reveals that, 
even though the patterns seem to coincide on first 
sight, changes in efficiency estimates are not evenly 
distributed. Most changes seem to occur for low to 
average efficiency scores in the range of 0.6 to 0.85. 
Also, of the 27 regions affected by the inclusion of 
land quality, 7 regions were ‘punished’ for good soil 
quality and 20 regions benefited from the considera-
tion. Given that mean efficiency of the whole sample 
was barely affected, we would argue that the adjust-
ment approach mitigates extreme effects of exogenous 
factors rather than punish regions with high land qual-
ity.  

In both models the number of efficient DMUs 
amounts to 30 and remains unchanged by the inte-

Figure 2.  Difference between adjusted land technical efficiency scores (Model 2) and technical efficiency 
scores (Model 1) 

 
Source: own illustration 
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gration of land quality.6 This explains to some extent 
why mean efficiency barely changed and presumable 
changes in efficiency estimates are more likely to be 
pronounced in models calculated under constant re-
turns to scale and with a smaller input output space. 
The former is due to the lower probability for such a 
high share of efficient DMUs of the whole sample, the 
latter since the adjustment on one of four production 
inputs will provoke more moderate results than the 
adjustment of one of two inputs or outputs for that 
matter.  

5 Concluding Remarks and  
Policy Implications  

Comparing agricultural production efficiency and 
productivity of entities with heterogenous land charac-
teristics makes up a substantial part of the agricultural 
economics literature. Empirical findings of nonpara-
metric efficiency analysis have continuously empha-
sized the potential of DMUs to reduce technical inef-
ficiencies by ongoing modernization, rationalization 
and optimization of their input use (GUESMI and  
SERRA, 2015, TOMA et al., 2017).  

                                                           
6  This too validates the results of the truncated regression 

analysis. As DARAIO et al. (2018) suggested, results of a 
two-stage analysis could be invalid when the frontier is 
affected by the covariates. In our case the integration of 
the soil quality index by adjusting the input land did not 
provoke a ‘frontier-shift’ (all efficient DMUs in Model 
1 are also efficient in Model 2), which is why we as-
sume the separability condition to hold for our case.  

In this paper we have argued that the majority of 
empirical studies (e.g., employing a two-stage ap-
proach) do not sufficiently account for the potential 
impact of determinate factors on technical (in-
)efficiency. Our analysis confirms, for the selected 
sample of European regions, the findings of previous 
studies that land quality significantly influences tech-
nical efficiency. We extended the commonly em-
ployed nonparametric two-stage framework by con-
sidering the effect of exogenous environmental factors 
by adjusting the input land by a land quality factor. A 
comparison of regular and land quality adjusted effi-
ciency estimates reveals a shift in efficiency pattern 
that is neither random nor evenly distributed and helps 
explaining parts of the efficiency variation on the 
individual level. Since land quality lies outside the 
regions’ sphere of influence, regularly proposed strat-
egies to enhance the seemingly lower efficiency for 
regions with comparatively poor land quality (e.g., 
rationalization, intensification) may not have the de-
sired effect because they ignore the naturally imposed 
limits for productivity growth.  

Using the here discussed modified efficiency 
analysis based on adjusted land could ensure that poli-
cy measures are better oriented towards the needs of 
farmers in regions with comparatively poor land 
quality, unfavorable agroclimate or geographic condi-
tions. Rather than addressing seemingly lower effi-
ciency (for example by intensifying agriculture and 
maximizing outputs) policy could support extensive 
farming practices, on-farm energy production, etc. At 
the same time, regions with average or higher effi-
ciency might in fact benefit from high soil quality and 
could (in principle) achieve higher efficiency scores 
or become efficient.  

Figure 3.  Frequencies of efficiency scores in Model 1 and Model 2 under variable returns to scale 

 
Source: own calculations 
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Obviously, the importance of land quality and 
other environmental factors for crop production is not 
new but on the research agenda at least since Farrell’s 
pioneering work on efficiency analysis in 1957. Nev-
ertheless, until today, most empirical studies focus on 
manageable factors. If at all, regions or farms are clus-
tered beforehand, or efficiency scores are decomposed 
ex post. In contrast, the here proposed process inte-
grates land quality directly into the analysis and main-
tains the option of conducting an efficiency analysis 
between DMUs with heterogeneous land characteris-
tics without creating subsets or pooling DMUs ac-
cording to their land quality (e.g., BHALLA and 
PRANNOY, 1988; CHAMBERS et al., 2011; GADA-
NAKIS and AREAL, 2020).  

Furthermore, the procedure is applicable in near-
ly all use cases and may be adopted by anyone per-
forming a two-stage DEA framework. Since we iden-
tify determinate factors to be mainly geographical and 
meteorological, data is available for most applications 
in higher resolution (raster) than necessary to match 
input and output data.  

Also, the approach does not “punish” more ex-
tensive farming practices on less fertile land. Further-
more, and perhaps surprisingly, it does not automati-
cally punish regions with very fertile land and highly 
intensive agriculture either. In fact, most of these re-
gions remain very efficient in both setups. Future re-
search should therefore attempt to construct a pro-
nounced adjustment approach based on deriving the 
functional relationship of environmental factors and 
technical efficiency employing the conditional effi-
ciency framework as proposed by BĂDIN et al. (2014) 
to assess the effect of exogenous factors on agricultur-
al production in detail. This could help to identify 
pure managerial efficiency in nonparametric agricul-
tural efficiency analyses with a regional, inter-country 
or international scope and enhance the quality of poli-
cy implications, which is essential if saving resources 
and supplying the globally increasing demand for 
food shall be realized in the future.  
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Appendix 

S1. Technical efficiency results of fieldcrops farming in Europe 
FADN ID Name of Region SYS02  

(Tsd.) 
UAA VRS Soil  

Adjusted 
UAA 

Soil  
Adjusted 

VRS 
BEL0341 Vlaanderen 3.38 47.4 1.00 55.7 1.00 
BEL0343 Wallonie 3.12 69.2 0.94 89.1 0.91 
BGR0831 Severozapaden 3.65 227.8 0.80 201.6 0.80 
BGR0832 Severen tsentralen 4.27 157.3 0.83 146.3 0.83 
BGR0833 Severoiztochen 3.96 187.0 1.00 192.1 1.00 
BGR0834 Yugozapaden 3.69 49.2 1.00 48.1 1.00 
BGR0835 Yuzhen tsentralen 4.89 76.7 0.63 69.7 0.63 
BGR0836 Yugoiztochen 4.19 159.8 0.73 152.8 0.73 
CYP0740 Cyprus 2.61 . . . . 
CZE0745 Czech Republic 6.88 191.5 0.81 233.2 0.81 
DAN0370 Denmark 12.76 110.9 1.00 126.6 1.00 
DEU0015 Schleswig-Holstein / Hamburg 2.17 139.0 0.76 163.9 0.76 
DEU0030 Niedersachsen 7.89 100.8 0.89 117.9 0.89 
DEU0050 Nordrhein-Westfalen 5.2 69.8 0.95 75.3 0.97 
DEU0060 Hessen 3.14 83.9 0.79 90.3 0.79 
DEU0070 Rheinland-Pfalz 2.45 97.8 0.85 109.3 0.85 
DEU0080 Baden-Württemberg 5.48 66.2 0.82 70.3 0.82 
DEU0090 Bayern 12.83 60.1 0.88 65.9 0.88 
DEU0100 Saarland 0.15 124.1 0.76 144.4 0.76 
DEU0112 Brandenburg 1.08 453.1 0.97 458.0 0.97 
DEU0113 Mecklenburg-Vorpommern 1.46 484.2 1.00 497.2 1.00 
DEU0114 Sachsen 1.34 245.7 0.94 260.8 0.94 
DEU0115 Sachsen-Anhalt 1.84 418.5 0.90 432.3 0.90 
DEU0116 Thüringen 0.81 458.4 1.00 499.7 1.00 
ELL0450 Makedonia-Thraki 54.48 15.3 1.00 11.3 1.00 
ELL0460 Ipiros-Peloponissos-Nissi Ioniou 7.69 10.0 1.00 6.9 1.00 
ELL0470 Thessalia 17.39 12.9 1.00 8.3 1.00 
ELL0480 Sterea Ellas-Nissi Egaeou-Kriti 15.89 12.0 0.80 8.3 0.82 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.518.9512&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.518.9512&rep=rep1&type=pdf
mailto:alexander.kaiser@unibw.de
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FADN ID Name of Region SYS02  
(Tsd.) 

UAA VRS Soil  
Adjusted 

UAA 

Soil  
Adjusted 

VRS 
ESP0515 País Vasco 0.83 66.4 0.74 49.9 0.88 
ESP0520 Navarra 4.54 62.9 0.67 50.0 0.70 
ESP0525 La Rioja 1.38 45.3 0.73 39.8 0.76 
ESP0530 Aragón 15.23 84.4 0.66 57.6 0.66 
ESP0535 Cataluña 9.91 35.2 0.65 28.3 0.69 
ESP0540 Islas Baleares 0.94 34.8 0.55 25.6 0.57 
ESP0545 Castilla y León 36.57 71.5 0.54 56.1 0.54 
ESP0550 Madrid 1.56 71.2 0.68 60.1 0.68 
ESP0555 Castilla-La Mancha 21.53 85.4 0.68 62.3 0.68 
ESP0560 Comunidad Valenciana 3.41 27.2 0.65 20.8 0.68 
ESP0565 Murcia 1.28 68.9 0.98 48.1 0.98 
ESP0570 Extremadura 8.2 50.6 0.60 35.1 0.61 
ESP0575 Andalucía 17.06 53.4 0.79 40.4 0.81 
ESP0580 Canarias 0.97 . . . . 
EST0755 Estonia 3.35 167.1 0.63 168.7 0.63 
FRA0121 Île-de-France 3.43 167.0 0.93 186.4 0.97 
FRA0131 Champagne-Ardenne 6.99 151.8 0.89 146.8 0.93 
FRA0132 Picardie 6.96 143.4 0.90 179.7 0.91 
FRA0133 Haute-Normandie 3.11 143.0 1.00 185.6 1.00 
FRA0134 Centre 11.56 145.1 0.94 174.2 0.94 
FRA0135 Basse-Normandie 1.52 134.9 0.82 184.6 0.82 
FRA0136 Bourgogne 4.02 177.9 0.87 164.8 0.87 
FRA0141 Nord-Pas-de-Calais 4.95 83.9 1.00 102.3 1.00 
FRA0151 Lorraine 2.53 169.9 0.89 143.2 0.89 
FRA0152 Alsace 2.56 61.6 0.94 65.8 0.96 
FRA0153 Franche-Comté 0.75 143.8 0.87 127.1 0.87 
FRA0162 Pays de la Loire 3.38 95.9 0.90 127.6 0.90 
FRA0163 Bretagne 3.75 60.8 1.00 78.8 1.00 
FRA0164 Poitou-Charentes 6.92 127.1 0.85 158.4 0.85 
FRA0182 Aquitaine 5.21 77.5 0.76 93.8 0.76 
FRA0183 Midi-Pyrénées 8.24 96.4 0.65 117.9 0.65 
FRA0192 Rhône-Alpes 3.04 82.0 0.91 85.1 0.93 
FRA0193 Auvergne 1.34 116.6 0.79 128.6 0.79 
FRA0201 Languedoc-Roussillon 1.1 86.4 0.84 79.6 0.88 
FRA0203 Provence-Alpes-Côte d'Azur 1.66 67.1 1.00 58.1 1.00 
HRV0861 Jadranska Hrvatska 2.71 4.1 1.00 3.9 1.00 
HRV0862 Kontinentalna Hrvatska 18.7 33.1 0.60 34.8 0.60 
HUN0764 Észak-Magyarország 4.33 81.9 0.63 87.5 0.63 
HUN0767 Alföld 34.81 52.2 0.76 42.1 0.78 
HUN0768 Dunántúl 17.6 66.5 0.79 65.1 0.79 
IRE0380 Ireland 3.74 83.7 0.84 94.9 0.84 
ITA0222 Piemonte 13.78 30.4 0.66 32.5 0.65 
ITA0230 Lombardia 14.91 32.2 0.67 32.0 0.67 
ITA0241 Trentino 0.53 6.4 1.00 5.2 1.00 
ITA0242 Alto Adige 0.42 9.6 1.00 8.6 1.00 
ITA0243 Veneto 16.3 22.1 0.83 19.3 0.84 
ITA0244 Friuli-Venezia Giulia 4.84 21.9 0.81 19.3 0.82 
ITA0250 Liguria 0.94 7.0 1.00 7.3 1.00 
ITA0260 Emilia-Romagna 21.07 30.4 0.75 30.4 0.75 
ITA0270 Toscana 6.75 43.2 0.60 44.6 0.60 
ITA0281 Marche 13.12 25.7 0.66 23.6 0.66 
ITA0282 Umbria 6.66 29.8 0.63 30.1 0.63 
ITA0291 Lazio 11.18 24.9 0.70 24.3 0.69 
ITA0292 Abruzzo 5.93 14.7 0.87 14.3 0.81 
ITA0301 Molise 4.15 24.5 0.61 27.5 0.61 
ITA0302 Campania 14.57 14.6 0.80 15.9 0.75 
ITA0303 Calabria 7.31 17.6 1.00 16.5 1.00 
ITA0311 Puglia 20.95 25.4 0.63 20.5 0.65 
ITA0312 Basilicata 7.2 37.8 0.63 41.3 0.63 
ITA0320 Sicilia 16.75 23.7 1.00 18.5 1.00 
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FADN ID Name of Region SYS02  
(Tsd.) 

UAA VRS Soil  
Adjusted 

UAA 

Soil  
Adjusted 

VRS 
ITA0330 Sardegna 6.87 32.6 0.61 28.4 0.62 
LTU0775 Lithuania 21.56 77.0 0.48 68.5 0.48 
LUX0350 Luxembourg 0.08 76.5 0.81 83.1 0.81 
LVA0770 Latvia 8.44 94.7 0.51 83.7 0.51 
MLT0780 Malta 0.71 . . . . 
NED0360 The Netherlands 8.34 58.9 1.00 62.5 1.00 
OST0660 Austria 13.62 52.0 0.86 54.7 0.86 
POL0785 Pomorze i Mazury 44.83 44.3 0.44 47.6 0.44 
POL0790 Wielkopolska and Slask 86.68 27.9 0.48 31.7 0.47 
POL0795 Mazowsze i Podlasie 129.9 14.7 1.00 15.8 1.00 
POL0800 Malopolska i Pogórze 56.86 13.8 1.00 14.4 1.00 
POR0615 Norte e Centro 6.64 10.3 1.00 9.0 1.00 
POR0630 Ribatejo e Oeste 3.66 21.0 1.00 18.6 1.00 
POR0640 Alentejo e Algarve 3.08 41.9 0.75 32.4 0.78 
ROU0840 Nord-Est 11.28 60.7 1.00 62.8 1.00 
ROU0841 Sud-Est 18.21 79.3 0.69 79.7 0.69 
ROU0842 Sud-Muntenia 20.91 67.0 0.84 67.2 0.84 
ROU0843 Sud-Vest-Oltenia 26.1 26.7 0.75 27.4 0.75 
ROU0844 Vest 13.62 53.1 0.88 50.3 0.88 
ROU0845 Nord-Vest 17.1 29.6 0.74 30.3 0.74 
ROU0846 Centru 9.39 38.1 0.87 39.0 0.87 
ROU0847 Bucuresti-Ilfov 0.86 53.7 1.00 53.9 1.00 
SUO0670 Etelä-Suomi 11.91 67.5 0.80 76.4 0.80 
SUO0680 Sisä-Suomi  2.46 47.9 1.00 50.7 1.00 
SUO0690 Pohjanmaa 4.37 54.9 0.85 59.6 0.85 
SUO0700 Pohjois-Suomi 1.18 74.9 1.00 76.8 1.00 
SVE0710 Slättbyggdslän  8.15 119.9 0.73 142.0 0.73 
SVE0720 Skogs- och mellanbygdslän 0.75 127.6 0.68 145.0 0.68 
SVK0810 Slovakia 2.17 378.6 1.00 386.2 1.00 
SVN0820 Slovenia 8.45 9.2 1.00 8.4 1.00 
UKI0411 England - North Region 4.96 143.4 0.78 139.4 0.78 
UKI0412 England - East Region 12.61 209.7 0.84 236.1 0.84 
UKI0413 England - West Region 5.19 144.3 0.80 188.5 0.80 
UKI0431 Scotland 3.83 160.4 0.94 190.8 0.94 

Source: own calculations 




