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Inducing the adoption of emerging technologies
for sustainable intensification of food and
renewable energy production: insights from
applied economics*

Madhu Khanna® and Ruiging Miao®

Emerging advances in sustainable intensification technologies have the potential to
transform land use and crop management approaches in ways that can increase
resource productivity and reduce adverse environmental impacts of agricultural
production. This paper describes emerging technologies that can sustainably intensify
food and renewable energy production. We apply the findings from studies examining
the adoption of technologies with similar stylized features to provide insights about
the incentives and barriers for the adoption of these emerging technologies. We also
present a landscape-based systems approach, based on welfare economics, to go
beyond relying on a positive approach to explain observed adoption decisions to
examining normative questions about the optimal mix, level, and location of adoption
of these technologies to achieve desired societal outcomes. We conclude with a
discussion of the insights from applied economics for the design of policy incentives to
achieve these outcomes.

Key words: advanced biofuels, agricultural systems, agrivoltaics, input-use efficiency,
policy design, precision agriculture, technology.

JEL classifications: Q01 Q55

1. Introduction

The agricultural sector faces significant challenges in the coming decades of
meeting the demands for food with a growing population, the looming
threat of a changing climate and increasing concerns about protecting open
spaces, air and water quality and biodiversity. While yields of food crops
have increased dramatically in the last five decades (FAOSTAT, 2020;

* Madhu Khanna would like to acknowledge support from NIFA, USDA and the USDOE
Center for Advanced Bioenergy and Bioproducts and Innovation, University of Illinois,
Urbana-Champaign. (US Department of Energy, Office of Science, Office of Biological and
Environmental Research under Award Number DE-SC0018420). This work is also supported
by Agriculture and Food Research Initiative (AFRI) grant no. 2020-67021-32799/project
accession n0.1024178 from the USDA National Institute of Food and Agriculture. Ruiqing
Miao would like to acknowledge the support from Alabama Agricultural Experiment Station.

" Madhu Khanna (khannal@illinois.edu) is the ACES Distinguished Professor of
Environmental Economics in the Department of Agricultural and Consumer Economics,
1301 W Gregory Drive, Urbana, 61801, University of Illinois, Urbana-Champaign, IL, USA.
Ruiqing Miao is Associate Professor in the Department of Agricultural Economics and Rural
Sociology, Comer Hall 204, Auburn University, Auburn, AL, 36849, USA.

© 2021 Australasian Agricultural and Resource Economics Society Inc.
doi: 10.1111/1467-8489.12461


https://orcid.org/0000-0003-4994-4451
https://orcid.org/0000-0003-4994-4451
https://orcid.org/0000-0003-4994-4451
mailto:
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1467-8489.12461&domain=pdf&date_stamp=2021-12-01

2 M. Khanna and R. Miao

Pretty, 2018), this increase in the intensity of agricultural production per
unit land has been accompanied by an increase in total nitrogen use and
nitrogen use per unit of land, growth in area under irrigation and in total
energy use in agriculture (FAOSTAT, 2020; Foley et al., 2011; Pretty, 2018).
As a result, this intensification is not sustainable because it is worsening
water quality and hypoxic zones and leading to growth in greenhouse gas
(GHG) emissions and loss of aquatic ecosystems and biodiversity (Foley
et al., 2011).

The incentives for intensification of land use are being further exacerbated
by growing demands for renewable energy production from biofuels for
transportation and utility-scale solar energy for electricity. Both biofuels
from food crops (as currently produced) and utility scale solar energy
(supplying electricity directly to the grid) are land intensive. In the US,
currently about 40 per cent of corn is diverted from use for food/feed to
produce ethanol. With declining costs of photovoltaic (PV) technology and
rising market and policy incentives, utility-scale solar is now the largest
growing source of solar energy in the US. Expanding production of these
sources of renewable energy can reduce GHG emissions but raises concern
about diversion of cropland to energy production, rising crop prices and
expansion of cropland (Khanna et al., 2021; Ong et al., 2013). Corn ethanol
and utility scale solar also have other adverse impacts on the environment
with corn contributing to water quality degradation (Ferin et al., 2021) while
PV panels on land adversely affect soil ecological and hydrological functions
and other ecosystem services compared to land with vegetation (Choi et al.,
2020).

The need to meet the increasing demands for land while reducing
environmental impacts has led to a call for “sustainable intensification”
which refers to technologies/practices that increase the productivity of
cropland while reducing environmental externalities. The concept of sustain-
able intensification was first proposed in 1983 but began to gain attention in
the late-1990s after its characteristics were defined more precisely by Pretty
(1997) (see review in Xie et al., 2019). Sustainable intensification has gained
popularity in the academic and policy literature as a strategy to produce more
valued products while improving environmental outcomes (see Pretty, 2018);
the U.S. Department of Agriculture has embraced it as a core strategy for
feeding a growing population sustainably while coping with a changing
climate (Clayton, 2019).

A key cause of the environmental degradation caused by agricultural
production is due to inefficiency in the way that variable inputs, such as
fertilizer and water, are converted to usable outputs. The effectiveness with
which these inputs are used for crop production (the proportion of applied
input that is converted to final output) is inversely related to the proportion
of inputs that are wasted and become pollution (Khanna & Zilberman, 1997).
Zhang et al. (2015) estimate that only 68 per cent of the applied nitrogen, in
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Sustainable intensification of agriculture 3

the United States, is absorbed by crops and the rest is released to the
environment as surplus. Similarly, about 40 per cent of irrigation water
applied using flood and furrow methods is not taken up by plants and is
drained away from the field (Brouwer et al., 1989). Additionally, technologies
differ in the productivity with which they use land. Inefficiency in input-use
combined with inefficiency in the use of land (productivity of land)
exacerbates the detrimental effects of agriculture on the environment.

Sustainable intensification has the potential to reduce the amount of
environmental degradation from cropland in two ways. First is by switching
to technologies that increase input-use efficiency of on-farm inputs and
increasing yield per unit input and reducing the wasted portion of input
(Caswell & Zilberman, 1986; Khanna et al., 2002). The second approach is by
switching to new crops and technologies that have the same functionality but
are higher yielding and more environmentally friendly than existing
technologies. This could lead to an increase in productivity (yield per unit
land) while reducing the amount of land under agricultural production to
meet given demands.

We focus here on emerging technological advances that can enable
sustainable intensification of food crop and renewable energy production
using these two approaches.! For example, digital technologies and
autonomous technologies offer the potential to increase the efficiency with
which inputs such as fertilizers, irrigation water, and pesticides are applied.
Renewable energy production technologies (e.g. advanced biofuels from
cellulosic feedstocks) and agrivoltaics (producing crops and solar energy on
the same land) can substitute for existing technologies (food crop—based
biofuels and solar energy alone, respectively), increase yield per unit land and
provide more ecosystem services. The emerging availability of these
technologies for sustainable intensification leads to several key questions.
What factors are likely to influence the adoption of these technologies by
landowners? What is the socially optimal level of adoption of these
technologies to achieve desired environmental outcomes? What type of
policy incentives would be most effective in inducing adoption to achieve
these desired outcomes?

In the absence of observed large-scale adoption, we turn to the existing
literature in applied economics to obtain insights about key factors likely to

! Sustainable intensification involves a wide range of technologies and practices that have
been available for many decades. These include soil and water conserving tillage, drip
irrigation, integrated pest management, diversified crop production, genetic improvement of
crops to resist pests and diseases, as well as precision farming to use nutrients more efficiently
(see Pretty, 2018 for a description of existing technologies). There is a considerable literature
examining the incentives and barriers to the adoption of these technologies (Pineiro et al.,
2020) as well as other conservation technologies (Knowler and Bradshaw, 2007). For a
comprehensive review of sustainable intensification technologies see Weltin et al. (2018).
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4 M. Khanna and R. Miao

influence the adoption of these technologies.> To develop these insights we
first discuss the stylized features of these technologies. The existing literature
has examined the determinants of observed adoption of similar or earlier
versions of these technologies (e.g. Khanna, 2001), used surveys to analyze
ex-ante decisions to adopt these technologies (such as Khanna et al., 2017;
Pascaris et al., 2020), and used simulation models to analyze the potential
drivers of adoption behavior for these technologies (Miao & Khanna, 2017a,
b). We discuss the effects of technology characteristics, site-specific charac-
teristics of the soil and growing conditions, behavioral and attitudinal
characteristics of farmers and institutional context for the adoption of these
types of technologies.

Although these technologies appear to promise ‘win-win’ outcomes for
agriculture and the environment because they potentially increase farm
profitability and improve environmental outcomes, win-win situations are
scarce (Khanna & Zilberman, 2012; Struik et al., 2014). Adoption of these
technologies is not costless, and there is heterogeneity in site-specific costs and
benefits (private and public) from adoption. Voluntary adoption of sustain-
able intensification technologies may not be sufficient to achieve desired social
outcomes. We discuss the effectiveness and design of policies for inducing
adoption of these technologies.

A key question in policy design is the extent to which it is socially optimal
to induce sustainable intensification. Universal adoption of these technologies
may be neither achievable nor desirable because its costs may exceed benefits.
It is, therefore, important to determine how much, where, and what mix of
technology should be induced to achieve a sustainable agricultural system
that achieves optimal economic and environmental outcomes at a landscape,
local, or regional level. We describe a framework for embedding information
about these technologies in a regional systems approach to examine the
optimal extent, mix and location of adoption to maximize net social benefits.
This framework allows considerations of the effects of sustainable intensi-
fication not only on environmental outcome but also on production levels,
market prices for food, fuel and fiber, and consequently the returns to all
landowners (whether they adopt the technology or not) as well as consumers
of agricultural products. We discuss key components of a landscape-based
systems approach to achieve desired environmental outcomes and identify
optimal land use decisions after considering all these costs and benefits.
Lastly, we discuss some insights from studies applying this landscape-based
approach to the technologies described here for the socially optimal patterns
of adoption and the corresponding design of policies.

2 We focus here on the literature examining the adoption of sustainable intensification
technologies in developed countries. We refer readers to other studies that have examined the
adoption of these technologies in a developing country context (e.g. Lee et al., 2006).
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Sustainable intensification of agriculture 5

2. Three emerging sustainable intensification technologies

We now describe three types of emerging technologies and their stylized
features.

2.1 Precision farming technologies

Precision farming includes an array of technologies that can discern and
address the heterogeneity in growing conditions at the sub-field level or even at
the plant-level. Earlier forms of precision farming technologies, such as
variable rate technology and global navigation satellite systems, have been
available for a few decades (see Lowenberg-DeBoer and Erickson (2019) for the
early timeline of the development of precision farming). Recent development in
low-cost sensors, wireless internet, mobile technologies, machine learning, big
data, and farm machinery automation is leading precision farming technolo-
gies into a new era (Rose & Chilvers, 2018). By collecting large amounts of geo-
referenced information about the heterogeneous growing conditions within the
field and coupling that with field-based precision agricultural technologies, it is
becoming increasingly possible to have automated implementation of spatially
varying input applications and an increase in the precision with which inputs
are applied. Combined with developments in Internet-of-Things technology
that facilitates data transfer among people, devices, and machines (see Ibarra-
Esquer et al., 2017 for an introduction), precision technologies can enable
farmers to manage crop production autonomously with real-time information
and limited need for labor. The adoption of the technologies is expected to
increase production efficiency, crop yields and perhaps profits as well as to
reduce over-application of inputs and nutrient run-off.

2.2 Second-generation biofuels from high-yielding dedicated energy crops

Unlike first-generation biofuels that are derived from food crops (e.g. corn and
soybeans), second-generation biofuels can be produced from corn residues and
high-yielding dedicated energy crops, such as miscanthus and switchgrass.
These energy crops have substantially higher fuel yield per unit of land and
lower requirement for inputs per unit of land than food crops (see Debnath
etal.,2019). They can be grown productively on low quality land and therefore
reduce the competition for land with food crops (Khannaetal.,2021). They also
provide several environmental benefits such as reducing nitrogen run-off,
increasing soil carbon sequestration relative to food crops and lower GHG
intensity than food crop—based biofuels (Dwivediet al., 2015; Ferinet al., 2021).

2.3 Agrivoltaics

Agrivoltaics is an emerging technology that co-locates agricultural crop
production and solar energy production on the same land. While shading
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6 M. Khanna and R. Miao

crops might be expected to lower yields, there is now evidence that low-
density panels may increase yield (due to reduced exposure to extreme heat,
excessive solar irradiance, wind and greater water conservation) compared to
conventional crop production (Miskin et al., 2019; Weselek et al., 2019).
Several studies report that moderate reductions in daily irradiance caused by
PVs can provide multiple synergistic benefits, including reduced plant water
stress, higher and more stable yields, reduced solar panel heat stress on the
land and an increase in water use efficiency by reducing evapotranspiration
from crops (Barron-Gafford et al., 2019; Sekiyama and Nagashima, 2019).
Agrivoltaics can increase the utilization of solar radiation compared to
conventional monocrop production and, therefore, have the potential to
increase the combined food and energy calorie output per unit of land
(Dupraz et al., 2011). It is also a climate-smart technology that enables
adaptation to climate change while enhancing ecosystems services from the
land as compared to crops alone or solar alone (Choi et al., 2020; Proctor
et al., 2021).

2.4 Stylized features of these technologies

Although quite different in their technological nature, these three types of
technologies share some common attributes that can affect their adoption by
farmers. First, these technologies increase the efficiency of input use (e.g.
water use efficiency and fertilizer efficiency) and the productivity of land
(yield per unit land). Second, they reduce environmental damages per unit of
land (such as nitrate run-off) and may even increase ecosystem services from
the land (e.g. soil carbon and pollinator habitat). Conditions under which
these features can lead to a reduction in input use and in pollution are
expected to vary spatially and temporally (see Caswell & Zilberman, 1986;
Khanna & Zilberman, 2012). Third, adoption of most of these technologies
requires upfront investment in capital equipment and can involve lags
between incurring those upfront costs and revenue-generating output. These
new technologies also likely require technology-specific investment in
learning and implementation. Fourth, there is uncertainty about the extent
to which these investment costs and learning costs may decline in the future as
these technologies become more widely adopted. There is also a risk of
obsolescence as improvements in the technology may make current versions
outdated. These technologies may increase or decrease the risk of crop
production relative to conventional practices (see Isik and Khanna (2003) for
the effects of precision technologies on production risks and Miao and
Khanna (2014) for the effects of energy crops on the riskiness of income for a
farmer). Bioenergy crops and agrivoltaics can also reduce the riskiness of
crop production by diversifying the sources of income (from crops and solar
energy). Lastly, these emerging technologies can be adopted gradually on
some portion of the field/farm or one component at a time; some technologies
such as precision farming and agrivoltaics have many different components
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Sustainable intensification of agriculture 7

and configurations that can be adopted sequentially; thus adoption decisions
may be partial and gradual (see Isik et al. (2001) and Khanna (2001) for
precision technology adoption and Khanna et al. (2017) for energy crop
adoption).

3. Economic theories explaining adoption by heterogeneous farmers

Early literature (Rogers, 1962) noted that technology diffusion follows an S-
shaped curve as a function of time. However, it did not identify the economic
drivers to explain diffusion. Economists have developed various theories to
explain technology adoption decisions that consider the profitability of the
technology as well as the riskiness and uncertainty of returns relative to
conventional technologies to explain adoption behavior. These theories also
consider the heterogeneity in these returns and risks across locations, farmers,
and time to explain why adoption of these technologies may not be universal.
Additionally, recent advances in behavioral economics are showing how
behavioral preferences and non-economic factors may affect adoption
decisions. Based on this literature, we briefly describe the economic drivers
of adoption in the context of these emerging technologies.

3.1 Profit maximization

According to models that explain adoption decisions by farmers motivated by
the objective of profit maximization, adoption of a new technology occurs if it
leads to higher profits than the status quo. A new technology with high
capital costs is likely to be adopted if it raises annual crop yields and/or
lowers input costs by more than the increase in annualized capital costs. The
extent to which a technology will increase yields and lower input costs is
expected to vary across characteristics that are heterogeneous across farmers,
such as soil quality and farm size. The reliance on profitability of new
technologies as a metric for adoption decisions has been extended, using real
option models, to incorporate the stochastic and dynamic nature of
technology adoption decision when there is uncertainty about returns and/
or costs of investment in a technology (Dixit & Pindyck, 1994). The real
option approach has been used to address not only whether to adopt a
technology but also when to adopt it. Khanna et al. (2000) apply this
approach to examine the effects of sunk costs and uncertainty about returns
on the decision of when to adopt precision technologies, such as variable rate
technology for fertilizer application. Dumortier et al. (2017), Miao et al.
(2012), and Song et al. (2011) have applied the real option approach to
studying decisions about investments in a cellulosic biorefinery and in
bioenergy crop establishment while Pascaris et al. (2020) examine the effects
of uncertainty about returns and of concerns about the irreversibility of the
establishment investments on adoption of agrivoltaics.
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8 M. Khanna and R. Miao

3.2 Utility maximization

The threshold model and the real option approach are designed to explain the
adoption decision by farmers that care only about net returns; they ignore
farmers’ attitude toward risk, loss, and ambiguity, and cannot be used to
model “how much to adopt on a farm” without further qualifications. The
emerging technologies discussed here often involve decisions on the extent to
which the technology is adopted (e.g. the portion of land on a farm to be
devoted to a new crop variety or agrivoltaics) and the sequence of technology
components or configurations to be adopted (e.g. upgrading a manual-
steering tractor to an auto-steering tractor). Therefore, various utility
maximization models have been widely used to explain continuous adoption
behavior when technologies differ in their risk and return profile. Several
studies have applied expected utility maximization models to explain
incentives and barriers to adoption of precision technologies (Isik & Khanna,
2003) and energy crops (Miao & Khanna, 2017a,b). Moreover, Khanna et al.
(2017) have conducted a survey to examine the role of risk aversion and the
discount rate in explaining motivations to adopt energy crops. A few studies
have applied prospect theory to predict adoption behavior by loss-averse
farmers who care more about down-side risks than about up-side gains from
adoption (Anand et al., 2019; Bocqucho et al., 2015).

3.3 Behavioral economic analysis

There has been growing recognition of the need to allow for departures from neo-
classical economic behavior that assumes that adoption decisions are based on
profit or utility maximization (Weersink & Fulton, 2020). Behavioral economic
models incorporate insights from psychology to examine the role of non-
economic factors, such as inertia, status quo bias, cognitive factors, peer effects,
social networks and social preferences in influencing technology adoption
decisions (see reviews by Dessart et al., 2019 and Streletskaya et al., 2020).

4. Insights on factors affecting adoption from economic models

We now review findings from the economics literature on the factors that
influence adoption decisions and apply them to the three types of emerging
sustainable intensification technologies. We group the factors that have been
shown to influence adoption in the following categories: characteristics of the
new technology, characteristics of farms and farmers, as well as social and
economic environments where the adoption may occur.

4.1 Technology characteristics

Montes de Oca Munguia and Llewellyn (2020) show that technology
characteristics are critical determinants of technology adoption decisions.
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Sustainable intensification of agriculture 9

The effects of a given characteristic of a technology on adoption behavior will
depend on market conditions, location, as well as farm and farmer
characteristics. Yield-increasing or input-conserving technologies are more
likely to be adopted when output price or input prices are high while the
capital and learning costs of adoption are low (Khanna & Zilberman, 2012).
Technologies such as energy crops and precision technologies with high
upfront capital costs are less likely to be adopted when output price
uncertainty is high or when farmers have higher discount rates or are more
risk averse (Isik & Khanna, 2003). High sunk costs and irreversibility of these
costs create incentive to delay adoption even if the net present value of
returns from adoption is positive. Higher-yielding energy crops are likely to
be adopted at a lower biomass price by risk-averse farmers if these crops are
also less risky (Miao & Khanna, 2014) and by loss-averse farmers if they have
lower probability of leading to a loss in income relative to the status quo
(Anand et al., 2019; Khanna et al., 2017). Song et al. (2011) show that the
adoption of switchgrass is sensitive to the underlying stochastic nature of
crop returns. Dumortier et al. (2017) find that when the option value of
delaying switching from conventional crops to bioenergy crops is considered,
then the biomass price required for such a switch is significantly increased.
Technological complexity can dis-incentivize and delay adoption. Technology
components that are simpler to adopt and can lead to learning that improves
the efficacy of more complex components are also likely to be adopted earlier
and to lead to sequential adoption of other components (Khanna, 2001).

4.2 Farm and location characteristics

Because heterogeneity across farms in soil quality, sub-field variability in soil
quality, water availability, size, access to terminal markets, and environmen-
tal sensitivity implies that the same technology or crop diversification
portfolio may generate different profits and environment impacts on different
farms, studies have shown that technology adoption is influenced by farm
and location characteristics. For instance, Khanna (2001) finds that the
adoption of soil testing technology is determined by soil quality whereas the
adoption of variable rate technology is more likely to be influenced by farm
size. Miao and Khanna (2017a) find that high-yielding energy crops can be
risk-reducing and are more likely to be adopted in locations where
conventional crop production is riskier.

4.3 Characteristics of farmers

Farmers’ attitudes toward risk, loss, ambiguity, and time have received much
attention in the agricultural technology adoption literature. Standard
expected utility theory predicts that risk-averse farmers are less likely to
adopt new technologies that involve risky returns (Chavas & Nauges, 2020).
Recent studies based on prospect theory show that farmers who are more
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10 M. Khanna and R. Miao

loss-averse are less likely to adopt perennial bioenergy crops (Anand et al.,
2019; Bocqueého et al., 2015). This literature shows that loss aversion and
overweighting of small probability events can explain lower than expected
adoption of profitable technologies with a small likelihood of loss. Since
adoption of the emerging technologies generally involve upfront costs and
have a long lifespan, a key factor shown to influence technology adoption
decisions is farmers’ discount rate. Studies have found that impatient farmers
tend to be less likely to adopt new technologies that require up-front
investment (e.g. Duquette et al., 2014), which is particularly the case for
perennial bioenergy crops. These crops require large establishment costs and
offer little returns during their establishment period (Miao & Khanna, 2017a,
b). Because precision farming technologies and agrivoltaics also involve
significant upfront investment in physical and human capital, similar to
bioenergy crops, we expect that these findings would apply to the adoption of
these technologies as well.

Credit constraint is another factor influencing adoption. Not only do
farmers in many developing countries face credit constraints, but also some
farmers, particularly new start-up farmers, in the developed countries such as
the United States are in a similar situation (Kirwan, 2014). Studies have
documented that credit constraints are correlated with low adoption of
capital-intensive technologies in developing countries (e.g. Gine & Klonner,
2005). The same conclusion holds for farmers in developed countries. Miao
and Khanna (2017a,b) show that establishment cost-share subsidies have
considerable impact on increasing perennial bioenergy crop adoption, with
the magnitude of the impact depending on farmers’ risk and time preferences.

Moreover, studies have shown that many other behavioral factors such as
dispositional factors (e.g. farmers’ personality, values, farming objective,
attitude toward changes) and social factors (e.g. willingness to abide to social
norms, pursuit of higher social status, and involvement in social comparison)
also affect farmers’ adoption decisions (see Dessart et al. (2019) for a
comprehensive review).

4.4 Social preferences and enabling environment

Social and economic environment is also expected to shape technology
adoption decisions in various ways. First, the viability of a new technology in
a region is influenced by the infrastructure and market development in the
region. For instance, to harness the benefit of advanced precision farming
technologies coupled with big data and machine learning, high-speed internet
connectivity and access to computers are indispensable. The availability of
biorefineries in proximity to biomass production areas is an important
determinant of the returns from energy crop production. Moreover, access to
the electric grid is a basic premise for adopting agrivoltaic systems. Legal
protection for ensuring privacy and security of farm data is required to adopt
precision technologies that require data sharing (Miao & Khanna, 2020;
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Sustainable intensification of agriculture 11

Weersink et al., 2018). In addition, the success of a new technology often
requires complementary supply chains of inputs and technology service
providers, extension agents, and other trusted information sources (Duflo
et al., 2011; Emerick et al., 2016).

Second, social norms, social acceptance, and peer effects have been shown
to affect the diffusion of new technologies. Non-pecuniary features of a new
technology, such as the effects of a new crop on the amenity value of the land
or the aesthetics of the landscape can affect adoption (Skevas et al., 2016;
Villamil et al., 2008). Schelly et al., (2021) emphasize that community
priorities, values, and concerns can be potential barriers for solar energy
adoption.

Third, existing policies such as crop insurance for conventional crops can
disincentivize adoption of new crops not covered by such policies (Khanna
et al., 2017); offering insurance for bioenergy crops may incentivize the
adoption of these crops (Anand et al., 2019; Miao & Khanna, 2017). Policies
that reward farmers for internalizing the environmental benefits of adoption
or the positive externality generated by enabling learning by doing and
lowering learning costs of these technologies for other farmers can also
incentivize adoption. Foster and Rosenzweig (2010) show that subsidies for
early adoption can enhance adoption while Khanna et al. (2002) show that
penalties for generating run-off can incentivize adoption of more efficient
irrigation technologies. Since the emerging technologies in this article can
reduce environmental damages, their adoption is likely to be incentivized by
imposing a price on those damages (Khanna et al., 2002). Khanna et al.
(2002) find that high output prices, high input prices, and a tax for pollution
can incentivize the adoption of water-efficient irrigation technologies that
increase yield, lower input use, and reduce pollution. In the case of second-
generation biofuels, studies have shown that policy uncertainty reduces the
incentive to invest in cellulosic biorefieneries and innovation (Clancy and
Moschini, 2018; Miao et al., 2012).

5. Optimal sustainable intensification of food and energy production

Sustainable intensification calls for a shift to new technologies that increase
the productivity of agricultural inputs with the potential to lower input costs
and environmental damages. While there is some potential for win-win
outcomes with their adoption, voluntary incentives for adoption are likely to
be limited for various reasons, including high fixed costs of adoption, large
learning costs and behavioral preferences, and the absence of any monetary
rewards (policy incentives) for providing environmental services. Existing
studies on incentives for adopting precision farming technologies indicate this
to be the case (Khanna, 2020). Moreover, voluntary adoption may not occur
in the right locations or to the extent needed to achieve desired environmental
outcomes.
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12 M. Khanna and R. Miao

We define the socially optimal level of adoption of sustainable intensifi-
cation technologies in a region or economy as the level that maximizes
aggregate social welfare that considers the net benefits to food and fuel
consumers and producers net of the value of environmental damages. In
determining the socially optimal level of adoption it is important to note that
inducing adoption of technologies for sustainable intensification is not the
end goal; rather it is a means to achieving desired social outcomes, such as
obtaining the benefits from food and renewable energy production from land
while improving environmental quality. It requires balancing the economic
costs to consumers and producers of switching from the status quo to new
technologies with the value of the environmental benefits obtained. In doing
this analysis it is important to recognize that improved environmental
outcomes can also be achieved by two other approaches: (i) reducing the use
of polluting inputs with existing technologies (referred to as an intensive
margin effect) and (ii) reducing land under crop production (extensive margin
effect) (see Khanna et al., 2002). The optimal mix of these three approaches
will depend on their relative costs and effectiveness in achieving desired
environmental outcomes. A normative approach is needed to examine the
optimal mix, extent, and spatial location of these three approaches to
maximize social net benefits.

To determine the socially optimal mix of these three approaches (i.e.
technology adoption, intensive margin effect, and extensive margin effect) to
reducing the environmental impact of agriculture, economists have developed
a social benefit—cost framework based on welfare-economic theory. This
framework aggregates the effect of individual decisions by heterogeneous
decision makers, in a region, about technology choice, input applications and
land use, and then examines their implications for input and output markets,
prices, consumer and producer net benefits and the environment. It
incorporates the trade-offs between the value of improvements in ecosystem
services and the costs of achieving them as well as the consequences of
technology adoption on input and output markets and land use. This
framework can be applied at a regional level to determine socially optimal
strategies for improving environmental quality. It can also be used to design
policy incentives that lead to the socially optimal level of sustainable
intensification and land use decisions by making them compatible with
privately optimal decisions of producers and consumers.

This framework consists of four key components: (i) ecosystem modeling
of the impacts of conventional and sustainable intensification technologies on
the ecosystem, (ii) site-specific monetary value of the benefits/damages from
these multiple environmental impacts, (iii) integrated economic-ecosystem
modeling of the effects of large scale adoption of sustainable agricultural
practices, and (iv) design of policy incentives to induce producers to
internalize the multiple externalities caused by their agricultural production
activities. This framework determines the optimal approach to maximize net
social benefits subject to various constraints on land availability,
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Sustainable intensification of agriculture 13

heterogeneous land quality and behavioral preferences in the region. A
regional approach incorporates the feedback effects of a large-scale switch
to sustainable intensification technologies in a region on crop prices, land
rents and other market variables as well as their welfare implications for food
and energy consumers and producers. We briefly discuss each of these
components:

5.1 Ecosystem modeling

Ecosystem models are key to quantifying the site-specific impacts of specific
technologies on crop yields, input requirements and the environment. This
information is critical to determine the potential economic incentives for
adopting them and for the system-wide impacts of adoption. For technologies
that are being adopted widely, this information could be obtained from
observed data, but for emerging technologies that are still at an experimental
stage, crop models provide a mechanism for extrapolating data from a few
fields to a larger regional scale. Quantifying environmental impacts, such as
those on water quality and soil carbon stocks, is difficult for both existing and
emerging technologies because they cannot be observed and monitored due to
their diffuse nature. These impacts are also difficult to directly relate to
observed information about input use and practices adoption due to the
spatial heterogeneity in the links between input use and polluting discharges
and the effects of stochastic climatic and biophysical factors on these links.
Spatially explicit biophysical models are, therefore, needed to predict the
multi-dimensional environmental outcomes of agricultural production in a
region with existing and new technologies.

There are many crop models that simulate crop yield responses to climate,
soil, plant species characteristics and management practices (see review in
Jones et al., 2017). These models can also simulate crop water use, nitrogen
uptake, nitrate leaching, soil erosion, soil carbon, greenhouse gas and nitrous
oxide emissions and residual soil nutrients at a point in time as well as carry-
over changes in soil nutrients and organic matter over time. Scenario analyses
can be conducted using these models to predict responses to various climate
and soil conditions, management practices and to analyze their implications
for economic and environmental trade-offs. Most models are designed to
model a single “point” in space that could be a field or a county, although
some models do simulate the transport of nutrients over space, from fields to
the water bodies (Cibin et al., 2016; VanLoocke et al., 2010). These models
are typically calibrated using field data which makes their accuracy reliant on
the availability of data under various management practices; this is likely to
be data from experimental fields in the case of technologies that are not yet
commercially viable. To couple these models with economic analysis, they
need to simulate the outcomes of interest under the full range of alternative
technologies or management practices that economic decision makers are
expected to choose from and at a fine spatial resolution in order to
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14 M. Khanna and R. Miao

incorporate spatial heterogeneity in climate and soil conditions.® In some
cases researchers have used comprehensive crop models to create reduced
form relationships between yield (or pollution) and a range of site-specific
conditions and management practices. These can be interpreted as “produc-
tion functions” and “pollution functions” and embedded in economic models
(see an example in Larson et al., 1996).

5.2 Non-market benefits of sustainable intensification

Sustainable intensification can lead to multiple environmental benefits that
range from local to global, including those to air and water quality, soil
health and carbon sequestration, and displacement of fossil fuels. These
benefits can be synergistic or involve trade-offs. Non-market valuation of the
multi-dimensional environmental consequences of these technologies is
critical to quantifying the net social benefits of sustainable intensification
and the optimal level that balances these net benefits with its economic costs.
Conducting primary non-market valuation studies at diverse sites in a
watershed or region for differing levels of environmental improvements with
the adoption of sustainable intensification technologies will be time-
consuming and expensive. Benefit transfer methods that apply monetary
value of environmental benefits from primary studies at one or more study
sites to predict willingness to pay at other (policy) sites is a promising and
pragmatic approach to determining the overall benefits of adoption and their
variation across spatial locations so that policies can be targeted to regions
where the net benefits are maximized. Benefit transfer methods for ecosystem
service valuation range from taking simple unit values or single-site benefit
functions and applying them to other sites to more complex meta-analysis
and Bayesian methods that can accommodate site and preference hetero-
geneity. Although the evidence to support the claim that sophisticated
methods for benefit transfer are more accurate than simpler methods is mixed
and context specific (Johnston et al., 2018), there is emerging consensus over
the advantages of using meta-regression models (Johnston & Bauer, 2020).
Chen, Debnath, et al. (2021) apply the unit value approach to quantify the
non-market benefits, in the form of greenhouse gas reduction and nitrogen
leakage reduction, of advanced biofuels using energy crops and crop residues.
Chen, Blanc-Betes, et al. (2021) apply the same approach to examine the

3 Examples of this approach can be found in Hudiburg et al. (2016) where the authors
couple the biogeochemical model DayCent with the economic model Biofuel and Environ-
mental Policy Analysis Model (BEPAM) to simulate spatially heterogeneous yields and soil
carbon effects of high yielding perennial energy crops and conventional crops to examine the
spatially varying incentives for switching from conventional crops to energy crops for cellulosic
biofuels. Another example is Ferin et al. (2021) where the Agro-IBIS-THMB model is coupled
with BEPAM to examine the effects of substituting energy crops on water quality to meet a
cellulosic biofuel mandate.
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Sustainable intensification of agriculture 15

value of economic and GHG savings from growing energy crops on
Conservation Reserve Program land in the US.

In the absence of monetary values of ecosystem services from sustainable
intensification, economists have conducted cost-effectiveness analysis of the
least cost approach to sustainable intensification that would achieve desired
environmental quality objectives at least cost. Khanna et al. (2002) analyze
the optimal level of adoption of more efficient irrigation technologies as well
as changes in water use at the intensive and extensive margins to achieve
targets for reducing polluting drainage at least cost. Housh, Khanna, et al.
(2015) analyze the optimal mix of high-yielding energy crops to displace
conventional crops to meet biofuel and water quality goals in a watershed.
Cost-effectiveness analysis is typically conducted to achieve a single environ-
mental goal at least cost. There are a few examples that analyze the
implications of cost-effectively achieving multiple environmental targets for
the design of environmental policy incentives (Egbendewe-Mondzozoet et al.,
2015; Housh, Yaeger, et al., 2015).

5.3 Economic modeling

Economic models that integrate biophysical information about outcomes of
alternative technologies with economic information about the costs and
benefits of various choices and the non-market impacts of these choices can
be applied to examine the optimal mix of intensive, extensive, and technology
switching choices. Examples of these integrated models applied to the
technologies being considered here range in scale from a small region (see Isik
& Khanna, 2003; Khanna et al., 2002) to national and global scales (see
review in Hudiburg et al., 2016; Khanna et al., 2014; Moore et al., 2020).
These models can vary in the preferences of the decision makers they analyze
(such as their risk and time preferences), their inclusion of various
uncertainties about technology performance and location specific character-
istics (e.g. Khanna et al., 2000; Miao & Khanna, 2017a,b).

While the socially optimal technology and land use decisions will vary
across spatially heterogeneous units, large-scale adoption in a region is
expected to impact total agricultural production which in turn could affect
crop prices, input prices, and land rents. This could affect the extent of
diffusion of these technologies, positively or negatively. It will also impact
consumer and producer benefits from agricultural production, the socially
optimal level of sustainable intensification and other changes at the intensive
and extensive margins. Some large-scale models examine these feedback
effects on the socially optimal choices (e.g. Hudiburg et al., 2016). These
models assume that land use decisions are being made by decentralized micro-
units (that may be grids, counties, aggregates of counties, or agro-ecological
zones) based on net economic returns taking input and output prices as given.
The aggregate production decisions of these micro-units determine aggregate
supply of various agricultural commodities that together with aggregate
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16 M. Khanna and R. Miao

demand for these commodities affects prices at national and global levels.
Thus, these models simultaneously determine land use and technology
choices at the micro-level and the economic consequences of those choices on
commodity prices, exports and imports, and the environment at the macro-
level. These models explicitly incorporate key technology features and their
effects on inputs and outputs from biophysical models as well as the spatial
heterogeneity in the effects of alternative technologies depending on local
production conditions across these micro-units (e.g. Ferin et al., 2021;
Hudiburg et al., 2016).

The systems-based framework described above can improve understanding
about the economy-wide impacts of various agri-environmental policies and
their implications for environmental quality. It can be used to determine
optimal policy parameters, either as shadow prices of constraints on
environmental outcomes by conducting a cost-effectiveness analysis or based
on the monetary value of ecosystem services. This framework is useful for
designing and analyzing the need for policy incentives to achieve a more
sustainable agricultural system and the design of policy incentives to induce
internalization of externalities of agricultural production.

A systems approach can be applied to examine the incentives that these
agri-environmental policies provide for sustainable intensification technology
adoption and other land use choices and their social welfare benefits. A recent
example of this can be seen in Chen, Debnath, et al. (2021) that apply this
approach to examine the mix of energy crops that will be incentivized by
biofuel policies in the US and compare their economic costs with the
monetary value of effects on GHG emissions and nitrogen leakage.

5.4 Key insights from systems models for inducing optimal sustainable
intensification

We now briefly discuss several insights about the optimal level, mix, and
location of sustainable intensification technologies from the landscape or
regional systems models. First, they show that spatial heterogeneity in the
costs and benefits of adopting sustainable intensification technologies implies
that it is not likely to be privately optimal to adopt these technologies at all
locations. The environmental benefits from adopting these technologies also
vary across a region based on a variety of location-specific characteristics; the
social optimality of adoption decision will be site-specific. More specifically,
Khanna et al. (2002) show that adoption of input-efficiency—enhancing
technologies, like drip irrigation, is more optimal in areas with lower quality
land and on high-valued crops. Similarly, studies examining the most
profitable locations for producing energy crops in the rainfed region of the
US show that these crops are more likely to be profitable in the southern
region of the US where the yields of these crops are high and the opportunity
cost of converting land from food crops to energy crops are low (Hudiburg
et al., 2016). Energy crops can be a source of risk diversification and Miao
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and Khanna (2017a,b) show that risk-averse farmers are more likely to adopt
them in regions where alternative conventional crops are riskier even though
the returns from adopting these energy crops in those regions may be
relatively lower than those with conventional crops. Anand et al. (2019) show
that if farmers are loss-averse then the type of energy crop they adopt and the
regions where it is optimal to grow these crops are substantially different
compared to the case where farmers are loss-neutral. High establishment cost
of adopting these crops also makes it profitable to adopt in regions that have
larger farms.

Second, the social benefits from adopting these technologies are likely to be
higher in areas that are more likely to experience adverse environmental
consequence from crop production, including areas where soils are more
erodible, prone to nutrient loss, and have high within-field spatial variability
in growing conditions. By valuing the environmental damages that can be
avoided by adopting sustainable intensification technologies and rewarding
(penalizing) landowners for the value of ecosystem services (disservices) they
provide.

Third, economic models also show that first-best approaches to achieving
sustainable outcomes in agriculture should be targeted to the source of the
externality (for example, a tax on nitrate run-off or a tax on carbon emissions).
A pollution tax is socially efficient because it achieves abatement through a
cost-effective mix of the three mechanisms discussed above: a negative
extensive margin effect (retirement of polluting and less productive land from
crop production), a negative intensive margin effect (a reduction in input use
with the existing technology) and a technology switching effect. In contrast,
cost-share subsidies and input-reduction subsidies are more restrictive in the
types of incentives they provide. For example, a cost-share subsidy has no
intensive margin effect and may induce entry of land that is highly polluting
while input reduction subsidies may induce changes at the intensive margin
but not induce a switch to a high-cost sustainable intensification technology.

Fourth, economic models also show that, to be efficient, cost-share
subsidies should be related to the environmental performance outcomes it
leads to and not be uniform across space and time. This is because the
environmental outcomes from the same technology can vary across locations
due to their biophysical features and over time due to climatic conditions.
Requiring all areas in a watershed to adopt the same practices would not be
the most efficient strategy because not all areas contribute equally to the
environmental outcome or have the same cost of abatement and because the
incentives needed may differ with farmer-specific behavioral characteristics
(Ancev et al., 2006). These efforts are likely to be inefficient and costly
because they do not recognize the differences in environmental impacts of the
same set of practices due to differences in location, topography, weather, and
soil conditions.

Lastly, adoption of these technologies alone may increase input use or
pollution rather than decreasing it due to unintended effects. Khanna et al.
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(2002) show conditions under which such technologies can increase input-use
and lead to adverse environmental outcomes. Large scale adoption of
renewable energy technologies can have unintended consequences because
they divert some land from food crops and affect their market prices. For
example, food-crop-based biofuels can lead to an increase in food crop prices
and indirectly cause expansion of cropland and loss of carbon stored in soils
and vegetation that can offset some of the GHG savings from using biofuels
to displace fossil fuels (see Khanna & Crago, 2012). These incentives are
much smaller with advanced biofuels from energy crops because they can be
grown on less productive marginal lands; additionally, the amount of land
needed to meet biofuel mandates is smaller because these crops are high
yielding compared to food crops (Hudiburg et al., 2016). Sustainable
intensification technologies, like drip irrigation, can make low-quality
marginal land more profitable and create incentives for expanding cropland
which would not have occurred otherwise. Policies to promote sustainable
intensification should consider these market-mediated effects and design
safeguards to prevent them.

6. Conclusions

Sustainable intensification of agriculture is appealing because of its emphasis
on increasing agricultural productivity while reducing environmental harm.
This article describes several promising technologies that can sustainably
intensify food and renewable energy production and have the potential to
provide private benefits to landowners and to the environment. It applies the
insights from the economic literature analyzing technology adoption
decisions to discuss the key factors likely to influence the adoption of these
technologies. We also argue for the need to go beyond a focus on examining
the incentives for adoption to a systems-based approach to understand the
extent to which adoption of these technologies is socially optimal. We
describe a landscape-based systems approach that links decisions at a micro-
scale with outcomes at a regional/global scale and vice-versa that can be
applied for a normative analysis of the extent, mix, and location of adoption
of these technologies to achieve sustainability goals.

We summarize key insights obtained from the economic research on these
issues. First, it shows that the characteristics of sustainable intensification
technologies will interact with the spatially heterogeneous soil quality, climate
factors, farm and farmer behavioral preferences, as well as other determi-
nants of agricultural productivity to lead to heterogeneity in technology
adoption decisions. Second, this research shows that a combination of
approaches is likely to be needed to achieve sustainable agricultural
production, including changes in input use at the intensive margin and
changes in land use at the extensive margin, in addition to the adoption of
sustainable intensification technologies. Third, while bringing out the role for
economics in promoting sustainability of agriculture, we also highlight the
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need for integrating economic and ecosystem modeling to determine the
optimal mix of these approaches as well as systems-level feedback effects of
these approaches. Lastly, economic analysis shows that optimal policies to
induce these approaches in a market-based agricultural sector should be
performance-based and not provide uniform practice-based incentives to
farmers. Overall, we conclude that the availability of sustainable intensifica-
tion technologies does not ensure their widespread adoption or that socially
optimal environmental outcomes will be achieved; policy incentives and
farmer behavioral preferences will play a key role in ensuring the optimal
level, mix, and location of adoption of these technologies to achieve
agricultural sustainability.

Data availability statement

Data sharing not applicable to this article as no datasets were generated or
analyzed during the current study.
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