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Abstract 

The southeastern portion of Wyoming 

is an agriculture-dependent area that 

relies heavily on groundwater from the 

High Plains Aquifer to grow crops. Like 

other states across the High Plains region, 

withdrawal rates in this area are higher 

than recharge rates, causing groundwater 

levels to decline. This study uses annual 

and intra-seasonal farm-level dynamic 

optimization models to determine whether 

water-use efficiency (WUE) technologies—

specifically soil moisture sensors—can be 

beneficial to producers if water availability 

became more limited in the future. Results 

indicate that WUE technologies can help 

producers minimize financial losses that 

might otherwise occur from reduced water 

availability.  

INTRODUCTION

Aquifer depletion has been a growing challenge across 
the United States due to changes in climate and 
irrigation pumping rates that exceed annual recharge. 
This can have negative impacts on agricultural 
producers in areas dependent on groundwater 
irrigation (Lansford et al., 1983). The Ogallala Aquifer, 
also known as the High Plains Aquifer, is the most 
intensively used aquifer in the United States (Maupin 
and Barber, 2005). In 2000, 23% of total groundwater 
withdrawals in the United States and 30% of total 
irrigation withdrawals were from the High Plains 
Aquifer (Maupin and Barber, 2005). The High Plains 
Aquifer provides groundwater for drinking water, 
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livestock production, agricultural production, and 
mining in the region, which includes Colorado, 
Kansas, Nebraska, New Mexico, Oklahoma, South 
Dakota, Texas, and Wyoming (Figure 1). Agricultural 
production, specifically irrigation use, is responsible 
for 94% of the total withdrawal from the High Plains 
Aquifer (Dennehy, 2000). About 19.9 billion gallons of 
water are pumped from the aquifer per day (Dennehy, 
2000). Pumping at these high rates exceeds the 
annual recharge rate in many parts of the aquifer, 
which is not sustainable and could lead to a decrease 
in groundwater availability and thus agricultural 
production in this region in the future.

Our study area is eastern Laramie County, Wyoming, 
which includes the towns of Albin, Pine Bluffs, and 
Carpenter. Though considerable research on aquifer 
depletion exists, few studies have been done in 
southeastern Wyoming (Willis, 2019), an agriculture-
dependent area that relies on groundwater from 
the High Plains Aquifer for crop production. Laramie 
County uses groundwater to irrigate 81% of its total 
irrigated acres. (Dahlgreen, 2018). In 2015, total 
groundwater withdrawals for irrigation across the 
entire state of Wyoming were 602,000 acre-feet, 
120,000 acre-feet of which (20%) were withdrawn in 
Laramie County (Dieter, 2018). Use of irrigation has 
made Laramie County a top agricultural producer in 
Wyoming, where it ranks first out of 23 counties in the 
state for production of wheat for grain, third in corn 
for grain, and fourth in dry edible beans (USDA, 2012). 
The economies of Albin, Pine Bluffs, and Carpenter 
rely almost exclusively on agricultural production, 
which depends in part on groundwater resources. Area 
producers have expressed concern about groundwater 
table declines in the area, which have increased energy 
costs and reduced available groundwater supplies for 
some producers. 

Producers are interested in understanding the 
potential economic benefits of adopting water-use 
efficiency (WUE) technologies compared to using 
current “rule of thumb” irrigation practices in the 
area. WUE technologies are instruments that could 
improve irrigation scheduling throughout the growing 
season (e.g., soil moisture sensors and variable 
frequency drives). We analyze the potential for WUE 
technologies—specifically soil moisture sensors—to 
decrease energy costs, whether electric, propane, 
or diesel, and groundwater use while maintaining or 
improving producers’ net returns. Soil moisture sensors 
can help producers with irrigation management by 
measuring how much moisture is in the soil, thus 
potentially reducing irrigation and improving field-
level WUE. Reducing irrigation can decrease electricity 
costs of production associated with pumping, and can 

reduce fertilizer loss to runoff and leaching, potentially 
without reducing physical or economic production 
(Sharma, 2018). Past research regarding water 
conservation and adoption of irrigation technologies 
suggests that the benefits, costs, and economic 
feasibility of adopting measures such as WUE are 
likely to be highly variable across regions and crops 
(Guerrero et al., 2016; Young et al., 2004; Lansford et al., 
1984).

Given past literature, this research seeks to answer 
whether implementing WUE technologies can 
potentially improve returns, compared to traditional 
irrigation practices in the area, particularly in the 
presence of limited water availability. We accomplish 
this objective by comparing a farm-level model 
using Discrete Stochastic Sequential Programming 
(DSSP) that allows for decisions to be made within the 
growing season in response to changing precipitation 
conditions versus an annual DSSP model. The annual 
model version does not allow for changes in irrigation 
in response to precipitation throughout the growing 
season, i.e., the model continues to irrigate the same 
amount throughout the season once a mix of crops 
has been chosen. The model does not incorporate soil 
moisture sensors directly—instead, results indicate a 
range of expected net revenue from adjusting irrigation 
use in response to changing precipitation, which 
represents the potential benefits from the adoption of 
soil moisture sensors or other WUE technologies for the 
representative farm modeled here.

Groundwater regulators, stakeholders, and producers 
in the study area recently held discussions to consider 
policy options to reduce pressure on the aquifer (Willis, 
2019). One such policy option is allocation, which would 
limit the quantity of irrigation water applied on a per-
acre basis. Producers in the study area are familiar 
with the concept of allocation because groundwater 
withdrawals in adjacent western Nebraska counties 
are limited by allocation (Willis, 2019), and although 
discussions in the study area ultimately did not result 
in adoption of allocation, it could still be adopted in the 
future. We consequently estimate these models under 
the full irrigation currently practiced in the region 
as well as under irrigation constrained by allocation 
to compare the relative economic benefits of WUE 
technologies under the two irrigation regimes. 

DATA AND METHODS

This study models a representative farm (650 acres 
under 5 pivots) in eastern Laramie County at both the 
annual and intra-seasonal time scales. Crops included 
in the model are irrigated and dryland corn for grain, 
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irrigated and dryland alfalfa, irrigated and dryland 
winter wheat, irrigated dry edible beans, and a dryland 
crop rotation. The model has three components: 
economic, agronomic, and hydrologic. 

Economic Component of Model
Our study allows the representative farm to adjust 
irrigation at several points during the growing season 
in response to precipitation. It is flexible enough to 
reveal how intra-seasonal decision-making affects 
a hypothetical producer’s expected profit, yield, 
groundwater use, and energy costs. DSSP was used 
for this intra-seasonal model, which allowed our intra-
seasonal model to choose deficit irrigation strategies 
that optimize producers’ expected profit, similar to the 
approach taken by Peck and Adams (2010).

Expected profit (Eπ) was determined by using the 
probability of precipitation occurring at above, near 
normal, or below levels in each stage (S1, S2, and S3) of 
the growing season: 

where PS1� is a vector of precipitation probabilities for 
the first stage (S1) representing above, near normal, 
and below precipitation levels. The parameters PS2� 
and PS3�  were similarly constructed for the second 
and third stages (S2 and S3). We assumed precipitation 
in a given stage is independent of precipitation in 
the other stages, therefore, the joint probability of a 
sequence of precipitation events across the season is 
simply the product of their independent probabilities. 
The use of sequential decision variables within the 
growing season was informed by Houk, Taylor, and 
Frasier (2000). Our decision variables were as follows: 1) 
X1, the producer’s cropping decisions at the beginning 
of the season; 2) W2, the first decision on how much 
to irrigate after stage 1 (S1) precipitation is revealed; 3) 
W3, the second decision on how much to irrigate after 
stage 2 (S2) precipitation is revealed; and 4) W4, the 
third decision on how much to irrigate after stage 3 
(S3) precipitation is revealed (Figure 2). 

Eπ is a function of net revenue under the three 
possible precipitation realizations in each stage, where 
net revenue is the revenue (price multiplied by yield) 
minus the variable costs (net revenue is also known 
as Returns Over Variable Costs (ROVC)). In this model, 
the producer’s variable costs were broken into five 
components: 1) total electricity costs, 2) seed costs, 
3) water costs, 4) all other variable costs (including 
wage labor), and 5) irrigation technology costs. Land 
and management costs were not included in the 
model. Profit is expected to vary with net revenue, 

assuming constant fixed costs. Net revenue varies by 
precipitation realization (R) in each season due to costs 
(e.g., total electricity costs) that vary with irrigation 
decisions, so the model includes four equations 
that ensure irrigation decisions are consistent with 
decisions that have been made at previous stages, 
such that the model cannot switch mid-season from 
one crop to another on a pivot-section. Six additional 
equations served as water balance equations to ensure 
that more water was not used than allowed on each 
pivot and for the whole farm. There were also four 
rotational constraints in the model to ensure that 
a single crop (i.e., monoculture) was not grown on 
every pivot section and instead reflect crop rotations 
common for the study area. 

It should be noted that while crop insurance could 
be used to mitigate short-term risk associated with 
yield loss from drought for these crops, we did not 
include crop insurance payments in this model. To 
include crop insurance, we would have to decide on 
and use appropriate coverage levels for the area and 
related insurance costs, then calculate trigger levels 
and payouts across all scenarios. It was also expected 
that if long-term depletion and related allocation from 
the aquifer occurred, crop insurance rates and payoffs 
for the region would be adjusted as well, but we have 
no way of knowing what that insurance response 
might be. Overall, for these reasons, it was felt that 
addressing crop insurance in the model would detract 
from the primary objective of this research, which is 
to understand how potential changes in WUE could 
affect irrigation decisions and ultimately returns from 
crop production.

Crop and Price Data
We used data from Willis (2019), who constructed 
individual enterprise budgets for each crop, in each 
community, to estimate the costs associated with 
production. Willis used budgets developed by Klein et 
al. (2018) as a starting point. Albin, Carpenter, and Pine 
Bluffs producers confirmed that the modified budgets 
used by Willis (2019) were comparable enough to use 
as a foundation for the analysis. In our current study, 
we used the crop data collected by Willis (2019) for the 
Pine Bluffs community. Output prices in our model 
were assumed to be the 15-year (2002-2016) average 
price for each crop in Wyoming deflated to the same 
year as the crop budgets used by Willis (2019), as 
reported by USDA NASS (2017).

Agronomic Component of Model
In the intra-seasonal version of the model, crop yields 
are a function of precipitation and water applied 
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at different points during the growing season. 
Precipitation occurring in each stage informs how 
much a producer chooses to irrigate at W2, W3, and 
W4, respectively. S1 includes precipitation from May 7 
through June 30, S2 includes precipitation from July 1 
through August 23, and S3 includes precipitation from 
August 24 through October 1. Alfalfa has a different 
planting date (04/01) to account for the precipitation 
that occurs between 04/01 and 05/07.  These dates 
were chosen based on corn and dry beans planting 
and harvesting dates and when their growth stages 
start and end. The USDA has a field crops handbook 
(USDA, 2010) that outlines the planting and harvesting 
dates for crops grown in all 50 states, which we used to 
decide the planting and harvesting dates for corn and 
dry beans. 

Precipitation data are from area weather stations and 
span the years 1902-2015. However, we used the most 
recent 30 years of this historical precipitation data 
(1986-2015), which is standard for this type of research. 
From this data, we developed a set of precipitation 
probabilities for each stage, where an individual 
set reports the probability of each state of nature 
occurring within each stage. Each stage had three 
probabilities: the probability that precipitation was 
above normal (PA), near normal (PN), or below normal 
(PB). For S1, PA = 0.36, PN = 0.27, and PB = 0.37. For S2, 
PA = 0.34, PN = 0.39, and PB = 0.28. For S3, PA = 0.40, 
PN = 0.32, and PB = 0.28. These probabilities inform the 
calculation of Eπ in Equation 1. 

We used AquaCrop to determine the yield responses 
for our irrigated row crops (corn and dry beans) 
because of its ability to simulate yield responses in 
situations of deficit irrigation (Steduto et al., 2009; 
Steduto et al., 2012). The required inputs for AquaCrop 
include weather data, crop characteristics, soil profile 
characteristics, characteristics of the groundwater 
table, and irrigation and field management practices 
(Steduto et al., 2012). AquaCrop has default files 
provided for some crops, soil profiles, groundwater 
table levels, and irrigation and field management 
practices. Thus, the minimum observed data needed 
to parameterize AquaCrop for southeastern Wyoming 
is climate data.

Climate data came from area weather stations and 
spanned the years 1957-2015. We used 30 years of this 
climate data to match the 30 years of precipitation 
data described earlier. The climate data included 
maximum temperature, minimum temperature, 
precipitation, relative humidity (RH), wind speed, and 
solar radiation. These data were used to calculate 
reference evapotranspiration (ETo), using the Penman-

Monteith conversion equation. The weather data 
helped to calibrate the AquaCrop model to reflect the 
climate of Laramie County, Wyoming. 

We initially assumed the default crop characteristics 
provided in AquaCrop for corn and dry beans. The 
output from running these default parameters 
showed, however, that some of the crop parameters 
for both crops needed to be adjusted to reflect typical 
southeastern Wyoming yields and water application 
amounts. 

Several corn parameters were changed to reflect the 
High Plains region, including the response to water 
stress parameters and days between growth stages. 
These parameters were changed based on parameter 
values provided in Araya et al. (2017) and Abedinpour 
et al. (2012). Several dry bean parameters were also 
changed to reflect the High Plains region. Crop-stage 
length and growing-season length were provided 
based on field trials conducted at the University of 
Wyoming agricultural research station in Powell, WY. 
Other parameters (e.g., crop response factors) were 
informed by Espadafor et al. (2017). These region-
specific parameters improved AquaCrop’s ability to 
replicate yield and water application levels known to 
exist in Wyoming, which provided greater assurance 
that the generated functions give reasonable 
estimates of the yield-water application relationship 
for water application levels not generally observed in 
Wyoming.

The soil profile characteristics for eastern Laramie 
County were retrieved from the NRCS SSURGO 
database. The majority of southeastern Laramie 
County has sandy loam soil, which helped develop 
specific soil-type characteristics such as soil hydraulic 
properties, total thickness of soil compartments, total 
number of soil layers, readily evaporable water, percent 
sand, percent clay, organic matter, penetrability, 
saturation, field capacity, wilting point, and saturated 
hydraulic conductivity (Ksat). The default soil file 
for sandy loam in AquaCrop was used for the 
simulations.

AquaCrop was not used to estimate the yield-water 
relationship for alfalfa because, at the time of this 
research, AquaCrop did not yet have default files 
available for alfalfa. AquaCrop was also not used to 
estimate the yield-water relationship for winter wheat 
due to time constraints. Instead, we used an equation 
from FAO 33 (Doorenbos and Kassam, 1979) and 
Bernardo et al. (1987) to simulate the yield response 
to intra-seasonal irrigation decision-making for alfalfa 
and winter wheat. This equation indicated that yield 
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(Ya is actual yield, and Ym is maximum yield expressed 
in units per area of land such as kg/ha) is a function 
of crop coefficients, Kyi, actual evapotranspiration, Etai, 
and potential evapotranspiration, Etpi. The i subscript 
indicates different stages within the growing season. 
The equation is as follows:

Initial Kyi values came from FAO 56 and were adjusted 
to reflect local crop stress conditions in Wyoming. 
The Etpi values came from the observed weather data 
collected in Cheyenne, WY. Etai was calculated by 
summing precipitation, irrigation, and soil moisture 
contributions. In this study, we assumed that soil 
moisture contribution is the same throughout the 
growing season. For the equation to be intra-seasonal, 
Kyi, Eta, and Etp varied throughout the growing season.

Hydrologic Component of Model
The hydrologic component of our intra-seasonal model 
consisted of equations governing lift and pumping 
costs. Lift is the depth to water, in feet, and helps 
determine how much pumping water from the aquifer 
will cost a producer. It was calculated by:

where WatUseDepth represents the irrigation water 
applied converted to feet, and CalRatio and Recharge 
are used to calibrate the aquifer to status quo. Status 
quo represents the aquifer if no changes are made to 
reduce groundwater use.

Pumping costs were calculated by using the four-step 
approach from Black and Rogers (1993), who used 
lift, well pressure, pumping capacity, and pumping 
hours to determine total electricity costs per pivot 
section. (Please see Willis (2019) and Grahmann (2020) 
for details.) Irrigation in the study area is primarily 
powered by electricity, which we therefore assumed 
in our model. If other, more costly, energy options 
had to be employed, the benefits of implementing 
WUE technologies would be even greater than our 
estimates indicate.

Annual versus Intra-Seasonal Versions 
of the Model
The annual version of the model was identical to the 
intra-seasonal version described above except that the 
producer no longer had the option of making mid-
season changes to irrigation management in response 
to precipitation. Thus, the only decision variable was 
the decision of what crops to plant on each pivot 
section at the start of each season. Crops planted 
were either fully irrigated throughout the season (D1) 
or dryland (D3). The producer has no ability to switch 
to deficit irrigation (D2) at later stages of the season 
in response to precipitation. This annual version of the 
model is similar to most studies that have been done 
on water use in groundwater-dependent agricultural 
areas (Golden and Johnson, 2013; Brozovic and Islam, 
2010; Golden and Guerrero, 2017). The only exceptions 
of which we are aware are Foster, Brozovic, and Butler 
(2015) and Hrozencik et al. (2017).

These changes simplify equation (1) by removing the 
expectation operator and the indices representing 
mid-season precipitation realizations and decisions:

Everything else about the economic component of 
the model remained the same as it was in the intra-
seasonal version. The only impact of the annual version 
of the model on the agronomic component was 
that any permutations of precipitation and yield that 
involved deficit irrigation (D2) were not considered. This 
reduced the number of permutations from 216 to 81. 

The hydrology component of the model was 
unchanged from the intra-seasonal version described 
above. Regardless of model version, the hydrology 
component was annual in the sense that depth to 
water did not increase over the course of the season 
in response to pumping. If depth to water were to 
increase over the course of the season in response to 
pumping, the additional pumping cost associated with 
increased depth to water could influence producers to 
pump less water, depending on aquifer conditions and 
pumping costs.  

Baseline versus Allocation Scenarios
In the Baseline scenario, the farm had 12,000 ac-in of 
water available (2,400 ac-in per pivot, or approximately 
18 ac-in per acre on average), which is more than 
enough to grow any fully irrigated crop. For example, 
fully irrigated alfalfa is the thirstiest crop, and 18 ac-in 
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per acre is more than sufficient to grow fully irrigated 
alfalfa on all pivot sections. In the Allocation scenario, 
the farm had 7,800 ac-in of water available (1,560 
ac-in per pivot, or approximately 12 ac-in per acre on 
average). 

RESULTS

Figure 3 indicates crop mix and irrigation levels by 
model version and scenario. The annual version of 
the model, Baseline, replicated the typical crop mix 
observed in the study area: four half-pivots of alfalfa, 
two each of corn, dry edible beans, and winter wheat, 
all fully irrigated (Figure 3, column a). In the annual 
version, Allocation, two half-pivots of alfalfa were 
converted to the dryland crop rotation; the other half-
pivots remained fully irrigated (Figure 3, column b). 
We assumed that a producer would never choose to 
deficit irrigate throughout the whole season, based 
on conversations with area producers and yield results 
for the area from AquaCrop. Thus deficit irrigation 
was not included as an option in the annual version 
of the model. Expected profit in the annual model 
decreased by 20.98% ($50,798) between the Baseline 
and Allocation scenarios, and water use decreased by 
26.82% (3.46 ac-in/ac) (Table 1).  

In the intra-seasonal model version, deficit irrigation 
can be used in any season, and the model allows for 
irrigation adjustments in response to within-season 
precipitation. In the intra-seasonal model, Baseline, 
the crop mix is the same as it was in the annual model 
(Figure 3, column c). However, deficit irrigation was 
used for irrigated alfalfa, corn, dry edible beans, and 
winter wheat. (A crop appears as deficit-irrigated 
in Figure 3 if deficit irrigation was used on the crop 
in at least one stage, under at least one type of 
precipitation.) In the Allocation scenario, the crop mix 
is the same as it was in the annual model except that 
now, one half-pivot is planted to the dryland crop 
rotation instead of two (Figure 3, column d). Deficit 
irrigation is once again used for irrigated alfalfa, corn, 
dry edible beans, and winter wheat in at least one 
stage, under at least one type of precipitation.

When intra-seasonal Allocation is compared to 
intra-seasonal Baseline, there is a 9.79% ($23,995) 
decrease in expected profits and a 19.44% (1,551.72 
ac-in) decrease in water use. Table 1 shows the 
differences between the two scenarios. There is a 
larger drop in water use than there is in expected 
profits on a percentage basis, which is useful 
information for policy makers. Producers would need 
to receive approximately $15.69 per ac-in. to consider 
participating in water use reduction programs. 

In the Baseline scenario, expected profits increased 
by 1.27% ($3,069) in the intra-seasonal model relative 
to the annual model. Water use declined by 4.81% 
(0.62 ac-in/ac) in the intra-seasonal model relative to 
the annual model. This was because the producer 
found it optimal to deficit irrigate even when water 
was plentiful (i.e., in the Baseline scenario) to avoid 
pumping costs. Although there was an increase in 
expected profits and a decrease in water use in the 
intra-seasonal version relative to the annual version, 
this was not a large difference, suggesting that the 
choice of adopting water saving technology is less 
impactful when water is plentiful.

The difference in results between the annual and intra-
seasonal versions of the model were more substantial 
for the Allocation scenario. Under the constraint of 
allocation, expected profits in the intra-seasonal model 
were 15.62% ($29,872) higher relative to the annual 
model. Water use in the intra-seasonal allocation 
scenario was 4.77% (0.45 ac-in/acre) higher relative 
to the annual allocation scenario. To clarify, allocation 
reduced expected profit in both models, by $50,798 
in the annual model, and by $23,995 in the intra-
seasonal model. But the reduction in expected profit 
was smaller in the intra-seasonal model, thanks to 
the added flexibility of intra-seasonal deficit irrigation 
decisions informed by precipitation in each stage. 

The difference in profitability between the annual 
and intra-seasonal models under allocation can help 
inform producers trying to decide whether it would 
be feasible to include WUE technologies to help 
manage irrigation scheduling. Given the crops grown 
and climate conditions prevalent in eastern Laramie 
County, expected profits were almost $30,000 (16%) 
higher for a five-pivot farm when irrigation decisions 
were updated throughout the season based on 
precipitation amounts rather than just one decision 
at the beginning of the year when groundwater was 
limited. These results suggest that a producer whose 
operation’s characteristics are similar to those modeled 
here would find it beneficial to spend up to $30,000 on 
soil moisture sensors or other WUE technologies that 
could help them adjust irrigation decisions in response 
to within-season precipitation.

CONCLUSION

This study compared the expected profit and water 
use between annual and intra-seasonal versions of 
a farm-level dynamic optimization model. We used 
the two model versions to simulate whether WUE 
technologies could be economically beneficial to 
producers. To do this, we ran two scenarios: a Baseline 
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scenario (i.e., assuming plentiful irrigation water) and 
an Allocation scenario in which irrigation water is 
limited. The results of those two scenarios (Baseline 
versus Allocation) were then compared between the 
two model versions (annual versus intra-seasonal). 

The intra-seasonal Baseline scenario increased 
expected profits by $3,069 (1.27%) and decreased 
water use by 0.62 ac-in (4.81%) relative to the annual 
Baseline scenario. Incorporating intra-seasonal 
decision-making into the model had minimal impact 
on expected profits and water use when water was 
sufficiently available (i.e., in the Baseline scenario). 
However, incorporating intra-seasonal decision-
making had a greater impact on expected profits and 
water use when water availability was restricted (i.e., in 
the Allocation scenario). The intra-seasonal Allocation 
scenario increased expected profits by $29,872 (15.62%) 
but also increased water use by 0.45 ac-in (4.77%), 
relative to the annual Allocation scenario. 

If we focus on the more realistic intra-seasonal model 
alone, we see that allocation decreased expected 
profits by $23,995 (9.79%) and water use by 2.39 ac-in 
(19.46%) relative to the baseline. These changes in 
expected profits and water use were impactful for a 
producer, yet smaller than what was observed when 
allocation was implemented in the annual model. 
In the annual model, allocation decreased expected 
profits by $50,798 (20.98%) and water use by 3.46 
ac-in (26.82%). This suggests that implementing 
WUE technologies (i.e., adjusting irrigation within 
the growing season in response to precipitation 
events) can help producers mitigate the negative 
economic impacts associated with a reduction in 
available water supplies. If water availability becomes 
limited or restricted in the future, our results suggest 
that producers might consider turning to WUE 
technologies. Soil moisture sensors and other WUE 
technologies do not explicitly enter the model, but 
incorporating mid-season irrigation adjustments could 
generate increases in expected profits, some of which 
could be used to implement the soil moisture sensors 
or other WUE technology that could facilitate these 
profit increases in the first place. If the net benefits 
of WUE technologies are positive, as our estimates 
indicate for the representative farm modeled here, 
WUE technologies could help producers determine 
whether a crop needs to be irrigated during different 
parts of the growing season and reduce (but not 
eliminate) the economic pain of reduced water 
availability.  

We recognize that producers likely already make 
some adjustments to their irrigation plans following 
precipitation events, for example, they likely 
reduce irrigation after a heavy rainstorm, but we 
have no data to quantify whether this is a general 
practice in the area. The question is how close to 
the hypothetical outcomes of the intra-seasonal 
model might real-world producers be able to get 
using WUE technologies? Their actual changes in 
decisions and outcomes would reveal the true value 
of WUE technologies, as opposed to the full difference 
between the results of the hypothetical annual and 
intra-seasonal models presented in this study.
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Figure 1. High Plains Aquifer region (Source: USGS, 2013)

Figure 2. Visual representation of decision points throughout the irrigation season
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Figure 3. Crop mix and irrigation levels by model version and scenario (each bar represents one half-pivot)

Table 1. Comparison of Average Returns Over Variable Costs and Water Use by Model Version 
and Scenario

Scenario
Average ROVC Water Use

$ Average ac-in/ac Total ac-in

Annual Model - Baseline $242,090 12.90 8,384

Annual Model - Allocation $191,292 9.44 6,135

Intra-Season Model - Baseline $245,160 12.28 7,981

Intra-Season Model - Allocation $221,165 9.89 6,430
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does have some choice about how much price risk 
the farm is exposed to with various market-based and 
government-backed risk management tools, including 
forward contracting, futures hedging, crop insurance, 
and commodity programs. This is especially true after 
harvest: post-harvest price risk is assumed voluntarily 
since the farm manager can transfer this risk to others 
by selling the crop at harvest or contracting for sale 
later in the marketing year. Farm managers may want 
to store to take advantage of seasonal price patterns—
higher prices later in the marketing period compared 
to the harvest-time price—but doing so may be risky. 

How much post-harvest price risk do farmers bear? 
This study assesses the post-harvest marketing 
performance of individual farms and quantifies the risk 
borne by farm managers who hold grain in storage 
after harvest. The analysis suggests post-harvest 
marketing and storage is a major component of the 
overall marketing strategy for corn and soybean farms 
in Illinois and throughout the US corn belt. I quantify 
the range of marketing outcomes experienced by 
individual farms that hold grain after harvest and 
compare it to realized prices received for grain sales 
made near to harvest. This assumes these farm-level 
distributions are informative about the range of returns 
to post-harvest marketing that farm managers may 
realize in the future. 

Quantifying the realized range of potential post-
harvest grain marketing outcomes is the major 
contribution of this study relative to prior research. 
Most previous analyses of farm marketing 
performance, including analyses of post-harvest 
marketing, use market-level data. In these studies, the 
returns to an assumed set of post-harvest marketing 
strategies are measured against a benchmark that 
is typically the cash price level observed during the 
harvest period. For instance, Edwards, et al. (2020) 
compare the net returns to unhedged and hedged 
post-harvest sales at varying storage horizons, with 
gains from these strategies assessed against the 
harvest-time cash price. Dietz, et al. (2009) conduct a 
similar analysis and show that different price baselines 
against which to compare the post-harvest price 
achieved by storage lead to significant differences 
in results. Because these studies rely on a limited 
set of market-level outcomes, they tend to be more 
prescriptive; it is unclear how they compare to actual 
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Abstract

Commodity price variability is a major 

component of fluctuations in net farm 

income. Farm managers assume some of 

this price risk by choice when they store 

grain after harvest. This study estimates 

the realized returns from these post-harvest 

grain storage and marketing activities and 

shows that they are small on a risk-adjusted 

basis, particularly relative to the downside 

risk of negative returns. One explanation is 

that farm managers’ use of post-harvest 

forward contracting is limited so they are 

subject to considerable flat price risk.

INTRODUCTION

Farm managers express consistent concern about 
grain market price risk. Surveys of farmer risk 
perceptions routinely rate commodity marketing as 
one of the most important risks faced in farm business 
management (Thompson, Bir, and Widmar, 2019; Atta 
and Micheels, 2020). In the aggregate, grain price 
variability is a major determinant of changes in farm 
profitability: elevated grain prices in 2007-2012 and 
2020-2022 coincided with periods of record net farm 
income (USDA Economic Research Service, 2023). 
While these commodity price gyrations are certainly 
beyond the control of the farm manager, he or she 
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behavior, which is the result of a more complex set of 
marketing strategies. In reality, farm managers can 
choose to sell on any day (including all those days 
before harvest) for delivery on any day post-harvest. 
Other analyses of grain marketing performance do 
study farm-level marketing decisions (e.g., Anderson 
and Brorsen, 2005; Jacobs, Li, and Hayes, 2018) using 
grain purchaser records, but these data only record the 
interactions between farms and a single buyer. 

This study differs by using farm-level data that covers 
the entirety of the farm manager’s marketing decisions 
within a marketing year. Previous studies showed 
there are positive profits to post-harvest marketing 
that vary significantly across years. I show that realized 
marketing outcomes’ returns vary more: there is 
substantial variation across farms even within the 
same year. This suggests both that farms employ more 
complex marketing strategies than accounted for in 
previous studies and that farmers may be assuming 
more price risk than previously thought. 

This study proceeds as follows. First, I describe the 
typical seasonal pattern in local cash prices for corn 
and soybeans. I show prices typically rise about 20% 
between the harvest-time low and the post-harvest 
high. However, markets may deviate dramatically from 
this pattern in any given year, so holding commodity 
inventories after harvest does not guarantee the farm 
will receive higher prices. Next, using farm-level data, I 
show that farms generally hold significant proportions 
of their own production in inventory at calendar year 
end, which closely follows the harvest period. Only 
limited corn and soybean sales are realized in the 
near-to-harvest period between September 1 and 
December 31. 

My main analysis calculates realized gross returns to 
grain storage for corn and soybeans on farms in Illinois 
as the difference between the price received by farm 
managers for deferred sales realized after January 1 
and prices received for near-to-harvest sales. I show 
these returns are on average small and positive, which 
is roughly consistent with the average difference in 
cash prices between deferred and near-to-harvest 
periods of the marketing year. However, gross returns 
vary widely across farms in nearly all years. Observed 
variation across farms within each marketing year 
quantifies the risk to grain marketing. Using these 
volatility measures, I calculate risk-adjusted returns 
to post-harvest marketing, finding that the realized 
risk-adjusted returns are small and the downside 
risk is significant. As a group, farm managers are 
not choosing to capture seasonal price appreciation 

through risk-minimizing marketing strategies such as 
forward contracting or storage hedges considered in 
earlier studies.

BACKGROUND

Seasonal Price Patterns
Seasonal price patterns provide incentives for farm 
managers and other decision-makers in the grain 
supply chain to store grain and make sales for delivery 
after harvest. Broadly, this pattern involves relatively 
low prices at harvest and relatively high prices later in 
the marketing period prior to the next harvest. Figure 
1 illustrates the seasonal pattern for corn and soybeans 
using USDA Agricultural Marketing Service cash 
market price data for Central Illinois from the 2004-
05 to 2019-20 marketing years. Note the marketing 
year for corn and soybeans runs from September 1 to 
August 31 of the following calendar year. The values 
shown in Figure 1 are deviations in a given week from 
the simple marketing year average price, which is the 
unweighted mean of daily price observations from that 
marketing year. These deviations remove differences 
in price levels across marketing years to focus on 
seasonal price changes within each year. The mean 
price series represents the typical difference between 
the price in a given week and the marketing year 
average price. 

Figure 1 shows both corn and soybean prices hit 
seasonal lows at the beginning of October. The 
mean weekly deviation from the season average 
price (the thick line in Figure 1) is lowest at this 
point, coinciding with the typical harvest period in 
Central Illinois. Seasonal highs occur in the months 
of June and July, with prices tending to rise steadily 
between October and June. Based on the mean price 
pattern in Figure 1, both corn and soybean prices 
appreciate approximately 20% between the seasonal 
low and high. It is this seasonal price pattern that 
farm managers may seek to exploit by holding grain 
inventory after harvest. Note the seasonal high prices 
observed in June apply only to old-crop supplies and 
not to new-crop production that is typically planted 
before June and harvested in the fall; this seasonal 
pattern does not apply to pre-harvest marketing. 

In any given year, there may be substantial differences 
between observed prices and the typical seasonal 
pattern. Figure 1 shows variation across years in 
prices at each week of the marketing year using the 
minimum and maximum deviations from the season 
average price observed between 2004/05 and 2019/20 
and the standard deviation of these values across years 
for each week. The minimum values show that actual 
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price levels may be below the season average price at 
any point in the marketing year, so positive returns to 
storage are never guaranteed.

To evaluate marketing performance, note seasonal 
price patterns typically break even or equal the season 
average price near January 1 at the end of one calendar 
year and beginning of the next. (For soybeans, the 
mean seasonal price pattern reaches a point just 
below zero around January 1 and remains slightly 
below zero for several weeks.) Thus, farm managers 
would typically need to wait to sell grain until the new 
calendar year to receive prices above the marketing 
year average (assuming only cash sales are made). This 
calendar year end cut-off point is important for my 
farm-level analysis below. 

Measuring Returns to Storage
Assessing profitability of farm commodity storage 
relies on some comparison of nearby and deferred 
prices. The nearby price represents in part the 
opportunity cost of storage, i.e., the value the farm 
would have received had it not stored. A common 
benchmark for the nearby price in many storage 
analyses is the cash price at harvest time. The deferred 
price represents the value the farm receives or 
expects to receive when the commodity is removed 
from inventory. The deferred price is typically the 
cash price later in the marketing year or the forward 
contract price offered at harvest for delivery later in the 
marketing year. In percentage terms, the gross return 
to storage is therefore

where PD is the deferred price and PN is the nearby 
price. This price comparison is grounded in the 
economic theory of commodity storage (Williams 
and Wright, 1991), which explains how a theoretical 
commodity-storing firm evaluates current and 
expected future prices. It is a gross return because it 
does not account for physical storage costs such as 
the handling, maintenance, and deterioration of grain 
inventories. It also ignores the time value of money 
associated with the foregone revenue from selling at 
the nearby price.  

Accounting for storage costs at the farm level is 
more complex than in market-level analyses such as 
Edwards, et al. (2020). Market-level analysis typically 
assumes a physical storage cost that is a single fixed 
rate per month. Physical storage costs are likely to vary 
across farms and to vary with length of the storage 

period in ways not encapsulated by a single per-
month rate. In the same way, firms may have different 
opportunity costs of storage that depart from the time 
value of money given by benchmark interest rates. 
For example, recent research suggests grain storage 
decisions may be a function of working capital and the 
farm’s financial position, not just market-level interest 
rates (Janzen, Swearingen, and Yu, 2023). Given these 
complications, I consider gross returns only. 

DATA

To measure post-harvest marketing performance 
at the farm level, I use data on corn and soybean 
production, sales, and inventories from Illinois Farm 
Business Farm Management (FBFM). Illinois FBFM 
is a cooperative association of more than 5,000 
farmer cooperators who work with association 
field staff to collect financial and agronomic data 
for tax filing, financial statement preparation, and 
business benchmarking. FBFM partners with the 
Department of Agricultural and Consumer Economics 
at the University of Illinois, Urbana-Champaign, and 
its farmdoc extension project team to make data 
available for use in extension and research activities. 

Illinois FBFM cooperators cover all regions of the state 
and represent approximately 25% of Illinois farmland 
acreage. FBFM data are used to develop University of 
Illinois crop budgets, which are based on audit-quality 
financial records from more than 1,000 farms each 
year. Note that an FBFM farm may include multiple 
farmer cooperators whose farm operations are joint. 
Since FBFM is a voluntary association, its records by 
design do not constitute a statistically representative 
sample of Illinois farms. However, recent comparisons 
of summary statistics and demographic measures 
for FBFM and those from the USDA’s Agricultural 
Resource Management Survey (ARMS) indicate good 
representation of commercial-scale Illinois crop farms 
in the FBFM data (Kuethe et al., 2014).

Observing farms for multiple years (and thus across 
varied market and agronomic conditions) is one 
major advantage of the FBFM data. For this analysis, 
the data include records for all member farms in 
the period 2004 to 2020. I compile a sample of farm 
financial records certified as useable for research and 
benchmarking purposes by FBFM field staff, including 
only grain farms that grew corn or soybeans each 
year and excluding farms with zero operated acres 
and zero tillable acres. Most farms record production 
of both corn and soybeans each year. However, since 
farms participate in FBFM voluntarily, I do not observe 
all farms or commodities every year. For this analysis, 
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the data are an unbalanced panel of 31,111 farm-
commodity-year observations from 17 calendar years. 
Each observation is specific to a farm, commodity 
(corn or soybeans), and calendar year. While farms 
almost always report both corn and soybean 
production and sales in a given year, farms generally 
are not observed in the data for all 17 years; the mean 
length of time a farm remains in the data is just less 
than six years. 

I quantify the importance of post-harvest storage and 
marketing to these Illinois grain farms by extracting 
relevant quantities from farm financial statements. The 
balance sheet shows the level of key state variables, 
principally the quantity of inventories, at the end 
of each calendar year, and the income statement 
includes measures of important commodity flows 
during the calendar year. The basic accounting identity 
that describes inventory quantity dynamics is

That is, inventory for the current year (t) must equal 
inventory for the previous year (t – 1) plus current year 
production less current year sales. I observe both the 
quantity in bushels and value in nominal dollars for 
both inventory and sales, then infer an implicit average 
price by dividing value by quantity. For example, I can 
calculate the farm-specific price received for all sales 
made within a calendar year by dividing the value of 
sales recorded on the farm income statement by the 
quantity of sales for a given commodity. 

Observing calendar year sales quantity and value 
alone would be insufficient to evaluate post-harvest 
marketing performance because the inferred average 
sales price includes sales of both old-crop inventory 
carried into the calendar year (Inventoryt–1)and new-crop 
production (Productiont). However, Illinois FBFM records 
the quantity and value of what it calls old-crop and 
new-crop sales. New-crop sales are sales of current 
calendar year production realized prior to the end of 
the calendar year; I call these near-to-harvest sales and 
denote them as . Near-to-harvest sales are realized 
in the sense that delivery is made and revenues 
are received before January 1. Commodities held in 
on-farm storage and unsold, those delivered into 
commercial storage where ownership is retained, and 
those held in any location but forward contracted for 
delivery and transfer of ownership on or after January 
1 are old-crop sales for the next calendar year. I refer to 
these old-crop sales as deferred sales and denote them 
as  to make clear these sales are realized in 
calendar year and accounting period (t + 1). 

The quantities  and  allow us to 
assess the importance of near-to-harvest sales to 
each farm. Figure 2 describes the distribution across 
farms of near-to-harvest sales realized prior to January 
1 as a proportion of calendar year crop production by 
crop for FBFM farms in the period 2004 to 2019, i.e., 

. Farms with a zero share of near-
to-harvest sales have realized no sales of new-crop 
production before January 1. These farms may have 
made forward sales of current production, but such 
sales are not yet realized prior to the new calendar 
year; new-crop production remains in inventory. Farms 
with 100% near-to-harvest sales have sold their entire 
calendar year production by January 1 and hold no 
commodity inventories as of year-end. 

Figure 2 shows that although I observe farms at all 
points in the distribution, small shares of new-crop 
production sold before January 1 are much more 
common. Most notable is the share of farms that have 
realized zero or near-zero sales of crops produced in a 
given calendar year. For both corn and soybeans, more 
than 40% of farms have no sales of near-to-harvest 
sales. This holds across all years, and it is also true in 
specific years. While the specific share of farms with 
zero near-to-harvest sales fluctuates from year to year, 
it typically ranges between 30% and 50%. 

The large proportion of farms that have little or no 
grain sold by January 1 of a given marketing year 
suggests these farms may face substantial price risk 
on the inventories they hold into the new calendar 
year. As noted above, these farms do have access to 
a wide array of price risk management tools. If these 
farms are proactively using these tools, then farms 
face less price risk, and marketing outcomes may not 
vary across farms or vary with post-January 1 market-
level price changes. I use data on realized marketing 
performance on Illinois FBFM farms to assess these 
conditions.

RESULTS

To describe the post-harvest marketing performance 
of farms in my data, I estimate annual gross returns to 
storage for both corn and soybean farms in the Illinois 
FBFM. I use the panel structure of the data to calculate 
the prices received by farms for both near-to-harvest 
and deferred sales in each year. The average price 
received for each type of sales i in dollars per bushel, 

, is the value of sales in dollars divided by the sales 
quantity in bushels. Near-to-harvest sales realized prior 
to January 1 represent the opportunity cost incurred by 
holding the commodity in storage and realizing sales 
later in the marketing year. Gross returns from deferred 
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sales relative to this near-to-harvest benchmark 
assume sales made after January 1 could have been 
sold at the price realized for the farm’s earlier near-to-
harvest sales. The near-to-harvest price benchmark 
is the amalgam of all pre-harvest marketing actions, 
which include the harvest cash sales used as a 
benchmark in previous studies as well as forward 
contracts delivered at harvest and other pre-harvest 
marketing strategies. 

The gross return to storage is a summary measure 
of the profitability of post-harvest marketing that 
requires data from separate calendar years, i.e., the 
near-to-harvest price at year t and the deferred price 
from year t + 1. I calculate the gross percentage return 
for the marketing year that spans calendar years t and 
t + 1 as

This calculation limits the number of observations 
available for two reasons. First, many farms in my 
sample have no near-to-harvest sales ,, 
so I cannot calculate  for these farms. As shown in 
Figure 2, this is more than 40% of the sample. Second, 
I can only calculate gross returns for farms for which 
I have data in consecutive calendar years. I therefore 
lose at least one observation per farm and commodity, 
including all those near-to-harvest sales observed in 
calendar year 2020. These limitations reduce sample 
size to 11,874 farm-commodity-year observations. 

The gross return measure is particularly informative 
because it represents an individual-adjusted measure 
of marketing performance. It is specific to the farm’s 
location and the set of local markets to which it can 
deliver, which do not change substantially between 
the pre-January 1 and post-January 1 periods. It is also 
specific to the quality of grain produced by the farm 
in that calendar period. In general, this comparison 
adjusts for many farm-specific factors that affect 
marketing performance and do not vary over time. 
These include farm manager ability, education, and 
risk preferences as well as other relevant aspects of the 
farm’s business operations and financial capacity.

Variation Across Farms in Returns  
to Storage
I plot the distribution of gross returns from commodity 
storage and marketing for each commodity and 
marketing year in my sample period in Figure 3. Note 
these distributions weight each farm-level observation 

equally; outcomes for large farms (which market more 
bushels) are treated as equally likely as outcomes for 
small farms. These distributions also do not account 
for the proportion of near-to-harvest and deferred 
sales on each farm. Gross returns only represent the 
raw price difference between realized near-to-harvest 
and deferred sales. Extreme values are also replaced 
(winsorized) at the top and bottom 0.5% of the entire 
distribution to reduce the impact of outliers. 

Figure 3 shows that gross returns to commodity 
storage vary widely across farms producing corn 
and soybeans in Illinois. The range across all years 
runs from roughly -40% to +50%. For individual 
marketing years, the range of returns for the bulk of 
the distribution is at least 10 percentage points, but 
it is often much greater, and in some extreme cases, 
significant numbers of farms are receiving returns to 
storage that are 20 to 30 percentage points below the 
top performing farms. Both crops experience similar 
levels of cross-farm variation in returns.

Negative gross returns to storage are surprisingly 
common. A gross return of zero indicates the price 
received for near-to-harvest and deferred sales is 
equal, so there was no realized benefit to holding 
grain in storage. The marker below each distribution 
in Figure 3 indicates the median value in that year. 
Median returns are below zero in 6 of 16 marketing 
years for both corn and soybeans. Substantial portions 
of the mass of the distribution of returns are below 
zero every year, even in years like 2006/07 and 2007/08 
when deferred marketing was exceptionally profitable. 
The common presence of negative returns suggests 
that farm managers realize more downside risk 
from storage than one might think, given the typical 
seasonal price pattern observed in Figure 1. 

Marketing years with strongly positive returns tend 
to be those where cash prices rose a lot after harvest, 
such as 2006/07, 2007/08, and 2010/11. Farm managers 
realize that much of this upside price movement 
is suggestive (but not definitive) evidence that 
significant portions of the stored corn and soybean 
crops are uncontracted and/or unpriced until late in 
the marketing year. The converse, that farm managers 
realize negative returns when prices fall after harvest, is 
less clear. Years with negative returns such as 2008/09, 
2014/15, and 2019/20 featured periods of modest price 
declines below the marketing year average during the 
deferred January 1 to August 31 marketing period. A full 
assessment of the relationship between market-level 
price outcomes and farm-level marketing outcomes 
is beyond the scope of this analysis and left for future 
study. 
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Estimating Aggregate Risk-Adjusted 
Returns
To summarize findings on the realized returns to 
commodity storage for Illinois farms, summary 
statistics for the gross returns data visualized in Figure 
3 are presented in Table 1. First, I calculate the mean 
and median returns across all farms and years for each 
crop. I find the average gross return is 6.5% for corn 
and 5.0% for soybeans, with the median gross return 
3.4% for corn and 2.6% for soybeans. Mean values 
above the median indicate a slight right skew in the 
distribution of returns across all years driven in part by 
those high return years where price appreciation led 
nearly all farms to experience positive gross returns.

Mean gross returns are remarkably similar to the 
seasonal market-level price changes found in Figure 1. 
Recall the low-to-high average seasonal price increase 
is roughly 20%, but it is unreasonable to expect 
farms to time their sales on these exact dates. The 
difference between the average weekly price between 
January 1 and August 31 (the deferred period of the 
marketing year) and the average weekly price between 
September 1 and December 31 (the near-to-harvest 
sales period) is 7.2% for corn and 7.0% for soybeans. 
This level of price appreciation between the two 
periods of the marketing year is similar in magnitude 
to the mean gross returns to post-harvest storage and 
marketing of 6.5% and 5.0%, respectively, suggesting 
that cash price variability and the timing of cash 
market sales may drive much of the variation in farm 
marketing performance. 

To assess the variability of storage returns, I 
calculate two standard deviations in Table 1. The first 
unconditional standard deviation includes variation 
across all farms and years for each crop. The second 
standard deviation assesses variability across farms 
within years by subtracting the year-specific mean 
return from each gross return observation prior to 
calculating the standard deviation. The within-year 
standard deviation is slightly smaller since it does not 
include variability in returns across years.; the second 
measure is the preferred estimate of the realized 
risk borne by farm managers in post-harvest grain 
marketing. Supposing a given farm manager is not 
predisposed to overperform or underperform his or 
her peers, he or she can expect the distribution of 
gross return outcomes in any given year to reflect 
the expected probability of his or her own returns. 
Then the within-year standard deviation accurately 
describes the risk he or she should expect to face. 

I find the volatility or standard deviation of within-
year gross returns is 14.9% for corn and 12.9% for 
soybeans. To place this risk measure in context, I 
employ a standard measure of risk-adjusted return, 
i.e., the Sharpe Ratio, a unitless measure of reward 
relative to variability. The Sharpe Ratio is calculated 
as the expected excess return relative to a risk-free 
asset divided by the standard deviation of the excess 
return (Sharpe, 1994). In this case, gross returns to 
storage are a form of excess return since the price of 
near-to-harvest sales represents foregone revenue 
from potential sales that would not be subject to post-
harvest price variability (and thus could be considered 
“risk free” relative to the option to retain ownership and 
market grain after harvest).  

In Table 1, I calculate the Sharpe Ratio as the mean 
gross return divided by the within-year standard 
deviation. I find Sharpe Ratios of approximately 0.43 
for corn and 0.38 for soybeans, suggesting both crops 
exhibit similar returns to storage on a risk-adjusted 
basis. These levels would be considered low in the 
context of most investment/portfolio analysis. They 
are similar to Sharpe Ratios calculated for farm-level 
returns from all farm operations, not just storage 
(Langemeier and Yeager, 2021). More generally, my 
results suggest the risk-adjusted returns for post-
harvest grain marketing are not large. Grain storage 
returns are unlikely to feature returns much larger 
than other aspects of the farm operation. These risk-
adjusted returns are also likely smaller than the returns 
from readily available off-farm investments in public 
equity and bond markets. However, this does not 
necessarily imply grain storage is a “bad” investment 
as there may be other returns to holding commodity 
inventories. I discuss this possibility in the conclusion. 

One limitation of the Sharpe Ratio is that it views 
upside and downside risk equally. In the context of 
post-harvest grain marketing, upside risk may be 
viewed as a benefit of holding unpriced inventory 
rather than selling. Farms may instead assess risk-
adjusted returns relative only to downside risk or the 
probability that returns fall below some minimum 
acceptable level. While this level is unobservable, 
I consider gross returns below zero as exhibiting 
considerable downside for the farm. There are a 
significant number of instances of negative gross 
returns to storage, i.e., 39.6% of farm-year observations 
for corn and 38.4% of farm-year observations for 
soybeans. 

To calculate a measure of returns adjusted for 
downside risk only, I calculate the Sortino Ratio, which 
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replaces the standard deviation term in the Sharpe 
Ratio with the target semi-deviation, i.e., the standard 
deviation of excess returns below a target (Sortino and 
Price, 1994). In this case, the target is positive gross 
returns. Table 1 shows that the Sortino Ratio in my 
sample period is 0.73 for corn and 0.64 for soybeans. 
While there is no objective threshold below which the 
Sortino Ratio is too low, these levels are concerning as 
they are well below the levels observed in Langemeier 
and Yeager (2021) for farm-level returns from all 
operations. The Sortino Ratio suggests the downside 
risk from post-harvest grain marketing is economically 
significant. 

CONCLUSIONS

This study uses farm-level data to estimate the price 
risk assumed by farm managers who store grain after 
harvest. Post-harvest grain marketing is a strategy 
designed to profit from seasonal price appreciation 
typical in many agricultural commodity markets. 
I show that many farms employ this strategy, but 
near-to-harvest sales are typically a small share of 
production, and many farms realize no sales of new-
crop corn or soybeans before January 1 following a fall 
harvest. I show the returns to post-harvest marketing 
are on average small and positive, approximately 
equivalent to the average difference in cash prices 
between deferred and near-to-harvest periods of the 
marketing year. However, farm-specific gross returns 
differ dramatically. I use observed variation across 
farms within each marketing year to quantify the 
risk to grain marketing and calculate risk-adjusted 
measures of the returns to post-harvest marketing. I 
find realized risk-adjusted returns are small and the 
downside risk is significant. 

There are at least two caveats to the analysis of 
gross returns to post-harvest storage and marketing 
presented above. First, my gross return measure does 
not account for all benefits and costs of commodity 
storage incurred by deferred sales. Waiting to realize 
sales until after calendar year end entails additional 

physical and opportunity costs of storage. If these are 
the only excluded benefits or costs to post-harvest 
marketing, then realized farm-level returns from 
storage are even poorer than indicated here. However, 
there may be additional unobserved benefits to 
storage beyond the price improvement realized on 
deferred sales. First, storage may be used to facilitate 
other aspects of farm operations that may provide 
significant benefits to farm managers. For example, 
on-farm storage may be used to speed harvest 
progress when local grain elevators or processing 
plants experience harvest-time congestion. Second, 
deferring grain sales until a new calendar year may 
provide income tax benefits to farm businesses that 
are difficult to quantify. By smoothing revenue across 
tax periods, deferred grain sales can reduce income 
tax liabilities for farms (Davenport, Boehlje, and Martin, 
1982; McNew and Gardner, 1999). A second caveat is 
that this analysis ignores quantities when calculating 
the gross returns to storage. Farm managers who defer 
a large portion of sales to a subsequent calendar year 
assume more risk than those who realize large sales 
near to harvest. If farms that have a small share of near-
to-harvest sales (those to the left of the distributions in 
Figure 2) are systematically able to realize better prices 
on deferred sales, then my results understate the risk-
adjusted returns to post-harvest marketing. However, I 
have no evidence to indicate this is the case. 

This study suggests that farm managers should 
carefully weigh the risks of deferring grain sales until 
later in the marketing year, especially unhedged sales. 
Although farmers do realize profits in the aggregate 
from selling later, the wide variety of outcomes from 
deferred sales shows that the downside risk of losing 
money on stored grain is substantial. Farmers can 
manage this risk and secure gains from deferred 
sales through forward contracting. Seasonal price 
appreciation is real but cannot be realized with 
certainty unless farmers use forward sales to capture 
those gains. 
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Figure 1. Typical and extreme seasonal variation in corn and soybean prices in Central Illinois, 2004–2020 (Mean 
(thick) lines indicate the average across all years of the weekly deviation from the marketing year average price, 
shaded areas indicate the range given by one standard deviation above and below the mean value (colored) and 
the maximum and minimum deviations observed (gray))

Figure 2. Distribution across farms and years of the proportion of corn and soybean sales made near to harvest 
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Figure 3. Distribution of gross returns from deferred (post-January 1) crop sales by commodity and marketing year, 
2004/05 to 2019/20 (Markers below each distribution function indicate the median gross return in that marketing 
year)

Table 1. Summary Statistics for Gross Returns to Post-harvest 
Storage and Marketing by Crop*

Gross Return Corn Soybeans

Mean 6.5% 5.0%

Median 3.4% 2.6%

Standard Deviation (Unconditional) 19.2% 15.1%

Standard Deviation (Within-Year) 14.9% 12.9%

Prob() 39.6% 38.4%

Target Semi-Deviation 8.8% 7.8%

Sharpe Ratio 0.43 0.38

Sortino Ratio 0.73 0.64

*Summary statistics are calculated from 11,874 farm-commodity-year  
observations for 17 marketing years from 2004–05 to 2019–20




