

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Dealing with Messy Data

October 22 2019

Office of Risk Assessment and Cost-Benefit Analysis (ORACBA)
Office of Chief Economist (OCE)

Science Policy and Risk Forum

Jeff Bailey, Chief
Summary, Estimation, and Disclosure Methodology Branch
Methodology Division
USDA/NASS

National Agriculture Statistics Service (NASS)

The NASS Mission:

The NASS mission is to provide timely, accurate, and useful statistics in service to U. S. agriculture.

Messy Data Outline

- Survey Quality
- Finding Data Errors
 - Edit
 - Analysis
- Handling Nonresponse
 - Item Nonresponse
 - Unit Nonresponse

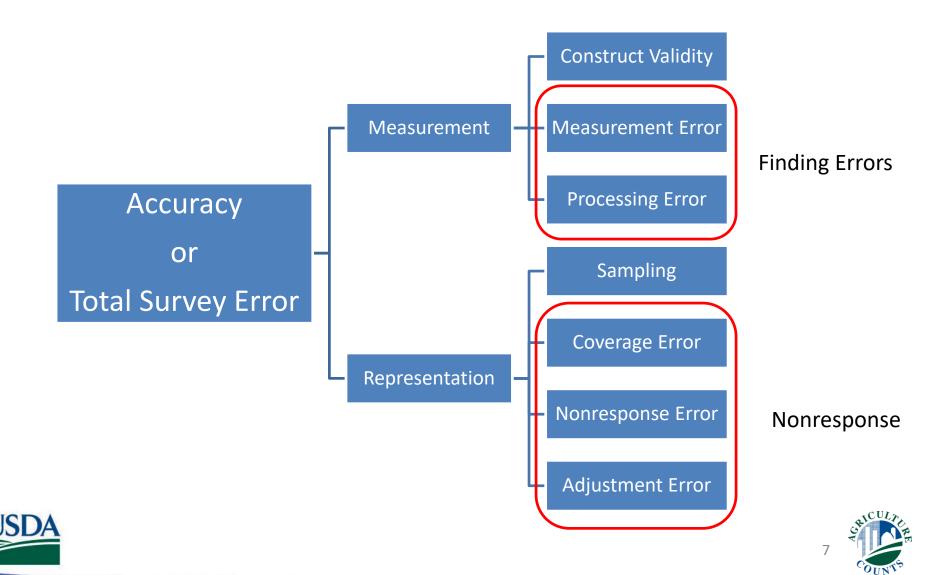
NASS Survey Process Flow

Data Edit/Analysis Survey Design **Data Collection** • Edit/Analyze Survey Frame survey responses Construction responses for reasonability. collected from Sampling • Impute item multiple modes nonresponse Summary Weighting Calibration Adjust weights • Unit Publish using nonresponse estimates: published Coverage nass.usda.gov commodity Misclassification targets

Survey Quality

Quality Dimension*	Description
Comparability	Are data source comparable to each other?
Coherence	Do the data form a coherent body of information that can be combined with other data?
Relevance	Do the data answer the questions you are asking?
Accuracy	Are the data describing what they were designed to measure?
Timeliness	How much time has elapsed since the data were collected?
Accessibility	Can user easily obtain and analyze the data?
Interpretability	Do the data make sense in terms of users' hypotheses?


*Survey Quality by Sue Ellen Hansen, Et.al.


Accuracy

Accuracy

Messy Data Outline

- Survey Quality
- Finding Data Errors
 - Edit
 - Analysis

- Handling Nonresponse
 - Item Nonresponse Imputation
 - Unit Nonresponse Reweighting

Importance of Editing and Analysis

"Garbage In, Garbage Out"

Editing and analysis of survey data are important components of generating high quality indications.

Editing is Critical for quality estimates

Must review the data

Provide information about data quality

Non-Sampling Errors

- Measurement Error
 - Respondent reports incorrectly
 - Hard to understand questions
 - Memory recall
 - Unit of measures errors
 - Reference period
 - Overlooked questions

Non-Sampling Errors

- Processing
 - Data capture (key entry or OCR)
 - Coding of responses
 - Editing
 - Programming errors

What is Editing?

- Rules or Logic: Edits for items on the questionnaire
 - Univariate or Range Restrictions $C_1 < Y < C_2$ (number of cows between 1 and 1,000)
 - Bivariate $C_1 < Y_1/Y_2 < C_2$ (calculated yield 10 and 100)
 - Balance Edits

$$Y_1 + Y_2 + Y_3 \le Y_4$$
 (Cows + Bulls + Calves = Total)

Statistical EditsY > 2(SE) from the mean

How to Edit?

- Iterative:
 - Computer flagged and Manual correction, data entry correction, re-edit
- Interactive:
 - Computer assisted (Blaise, CSPro etc.)
- Influential:
 - Selective Edit, editing of only Influential or Significant records
- Automatic:
 - Programmatic fixing of errors
- Macro Editing/Analysis:
 - Across records, aggregate or distributional

NASS Editing/Analysis

- Some simple edits incorporated into the computer interviews
- Work is distributed among Regional Field Offices (RFOs) and HQ
- Done by subject matter specialists
 - Know the commodity
 - Know the sample
 - Know the questionnaire and edit
 - Know the estimators and the indications produced

NASS Editing Systems

- Designed to generate a "clean" data file
- Primarily flag records for review
 - Warnings

Critical Errors

Large surveys logic written to fix data

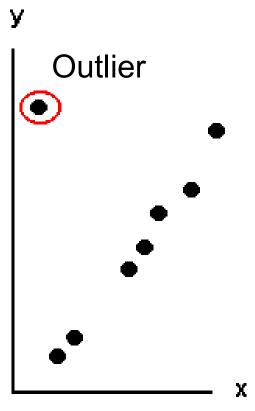
Philosophy

FIX WHAT MATTERS

Fixing all known errors may not improve the final results. Focus on reducing large impactful errors.

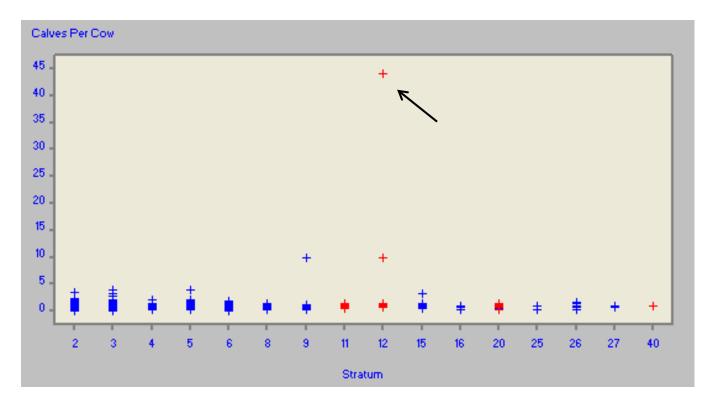
What is Data Analysis?

- Data analysis is the process of reviewing survey data with analytical tools
 - To understand the current data
 - Find outliers.

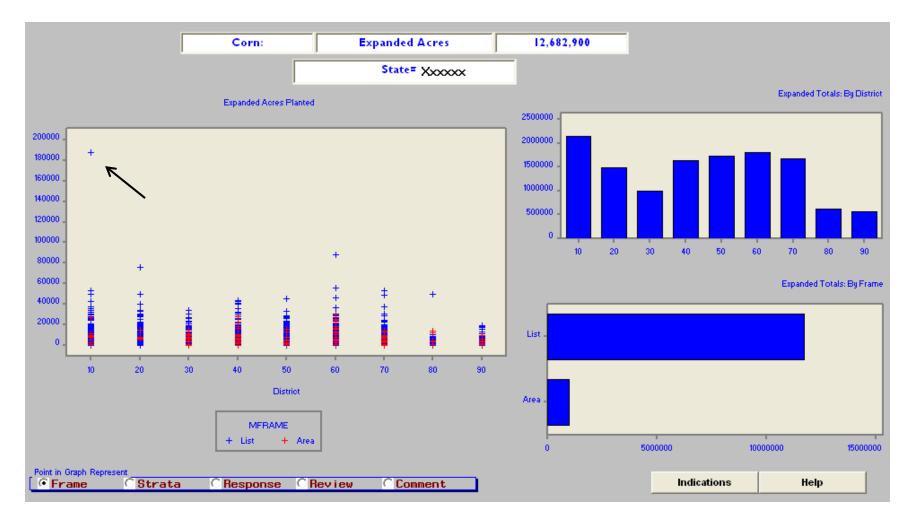


What is an outlier?

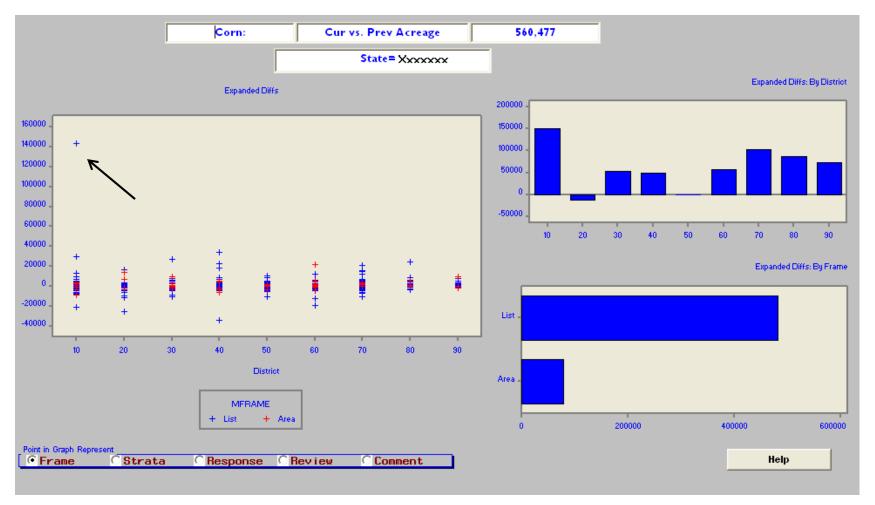
- A data value that is markedly different than the rest of the data
- An outlier may be correct
- Reasonable to expect outliers in the population



Identifying Outliers

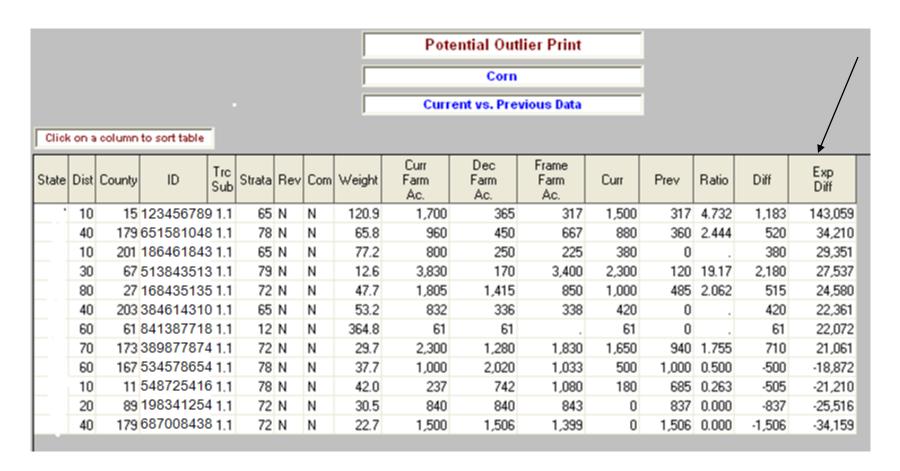

- Graphical Identification
 - Subjective
 - NASS Interactive Data Analysis System (IDAS)

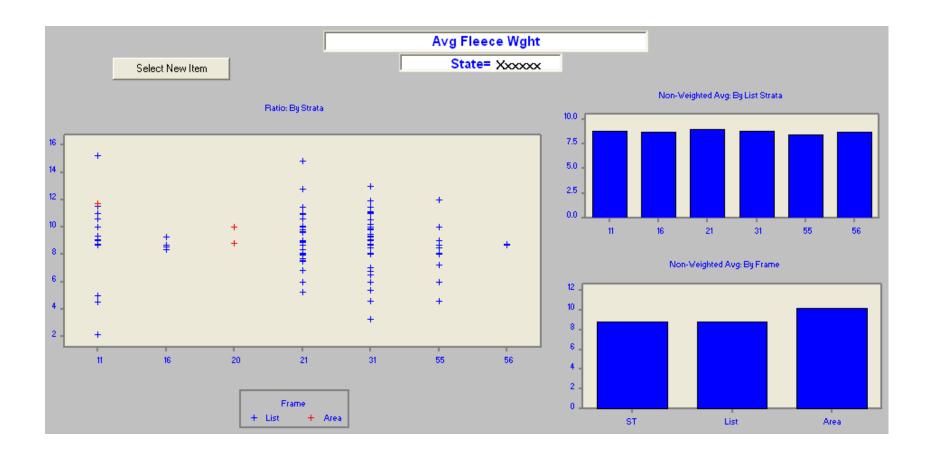
Review survey data's expanded values



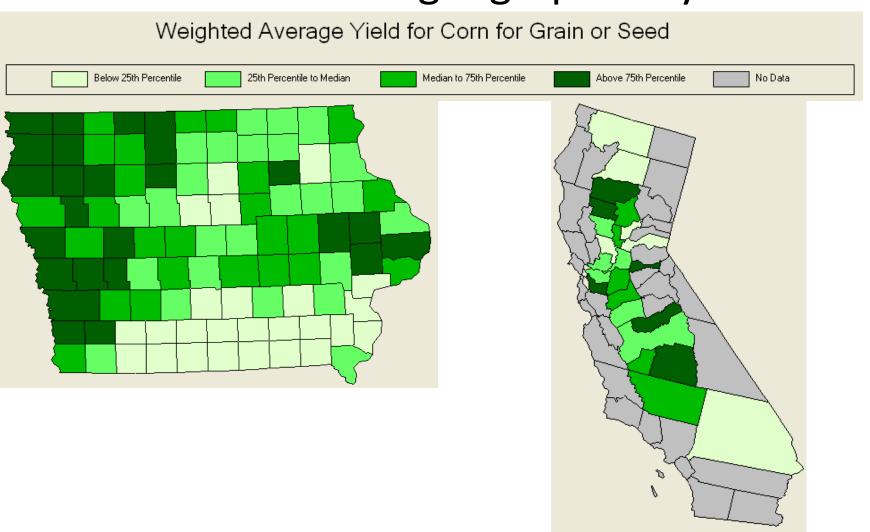
Review survey data's expanded values

								Potenti	al Outl	ier Print		(Corn	1				
								Direct	Expan	sion: Table				837,313				
								Direct	Expan	sion: All Red	cs		12,	682,900				/
Click	on a	colu	mn to sort tal	ble				Ratio:	Table	vs. All Recs				0.066				\downarrow
State	Dist	Cnty	ID	Trc Sub	Strata	Rev	Com	Weight	Tret/ Farm Wt	Curr Farm Ac	Prev Farm Ac	Crop land	Imp	Frame Data	Curr Ac.	Dec. Ac.	diff	Exp Ac.
	10	15	12345678	91.1	65	N	N	125.5		1,700	365	1,700		245.0	1500.0	317.0	1183.0	188,227
	60	171	12378945	61.1	78	N	N	49.0		2,900	2,705	2,800		900.0	1800.0	1700.0	100.0	88,195
	20	99	12365498	71.1	66	N	N	95.0		1,500	1,500	1,400		240.0	800.0	800.0	0.0	76,000
	20	99	45645698	11.1	79	N	N	25.2		4,207	4,207	3,906		820.0	3000.0	3000.0	0.0	75,698
	60	61	69813572	11.1	78	N	N	21.5		3,400	1,895	3,400		900.0	2600.0			55,858
	10	15	92432186	11.1	78	N	N	28.1		2,250	2,550	2,250		1800.0	1900.0			53,462
	70	23	65731832	91.1	72	N	N	16.0		7,000	2,200	7,000		1200.0	3300.0			52,812
	20	37	18313818	41.1	78	N	N	33.8		1,500	1,295	1,480		1361.0	1480.0			50,000
	10	73	35184113	11.1	78	N	N	28.5		2,670	2,670	2,600	i	839.0	1746.4	2150.0		49,751
	10	141	84351351	41.1	72	N	N	60.3		1,270	1,134	1,200		650.0	820.0	600.0	220.0	49,475
	80	27	16841318	71.1	72	N	N	49.3		1,805	1,415	1,805		525.0	1000.0	485.0	515.0	49,272
	70	173	45681384	11.1	72	N	N	29.4		2,300	1,280	2,300		1500.0	1650.0	940.0	710.0	48,562

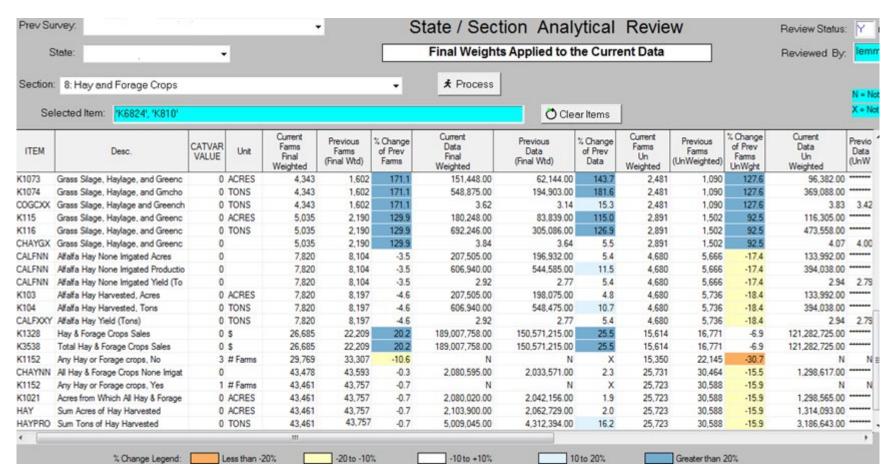

Review differences from prior survey


Review differences from prior survey

Review data ratios within current survey


Review data ratios within current survey

	Potential Outlier Print: Survey Ratio															
										Av	g Fleece Wgt	nt		/		
Ci	Click on a Column to Sort Table															
- Cil																
St	Dist	C n t y	ID	Tract Sub	Str	R e v	C o m	Curr Resp Code	Exp Fact	Tract Farm Wt	Numerator: Pounds Wool	Denominator: Sheep Shorn	Ratio	Exp Numerator: Pounds Wool	Exp Denominator: Sheep Shorn	Exp Diff
١.	20	9		1.1	11	No	No	COMPLETE	11.7		700	46	15.22	8,179	537	7,641
!	40	65		1.1	21	No	No	COMPLETE	3.3		950	64	14.84	3,101	209	2,892
	70	7		1.1	31	No	No	COMPLETE	1.7		2,925	225	13.00	5,048	388	4,660
	50	83		1.1	21	No	No	COMPLETE	3.3		1,200	94	12.77	3,917	307	3,610
	80	59		1.1	55	No	No	REFUSAL-EST	1.0		6,180	515	12.00	6,180	515	5,665
	70	33		1.1	31	No	No	COMPLETE	1.7		2,800	235	11.91	4,832	406	4,427
ı	90	45		1.1	11	No	No	COMPLETE	127.0	1.000	152	13	11.69	19,297	1,650	17,646
	70	11		1.1	11	No	No	COMPLETE	11.7		817	71	11.51	9,546	830	8,716
	40	57		1.1	21	No	No	COMPLETE	3.3		800	70	11.43	2,611	228	2,383
	50	93		1.1	31	No	No	COMPLETE	1.7		4,000	350	11.43	6,903	604	6,299
	70	1		1.1	31	No	No	COMPLETE	1.7		10,000	896	11.16	17,258	1,546	15,712
	90	47		1.1	31	No	No	COMPLETE	1.7		1,700	154	11.04	2,934	266	2,668
	80	25		1.1	11	No	No	COMPLETE	11.7		440	40	11.00	5,141	467	4,674
	70	85		1.1	21	No	No	COMPLETE	3.3		1,507	137	11.00	4,919	447	4,472
	70	33		1.1	31	No	No	COMPLETE	1.7		4,708	428	11.00	8,125	739	7,386
	90	21		1.1	21	No	No	COMPLETE	3.3		1,200	110	10.91	3,917	359	3,558
	60	3		1.1	11	No	No	COMPLETE	11.7		425	40	10.63	4,966	467	4,498
	40	55		1.1	21	No	No	COMPLETE	3.3		900	85	10.59	2,938	277	2,660
	70	11		1.1	31	No	No	COMPLETE	1.7		2,888	275	10.50	4,984	475	4,510
	40	25		11	31	Nο	Nο	CUMBI ETE	17		870	25	10 24	1 501	147	1 355


Review data geographically

Aggregates Review

What to do with an outlier? Verify the Reported Data

- Verify the Reported Data
 - If an error is found: correct it!
- Otherwise
 - Adjust weights
 - Remove from models
 - Adjust estimates

Impacts of Outliers

- Survey Indications
 - In what direction
 - To what degree
- Measures of Precision
 - Standard Error (SE)
 - Coefficient of Variation (CV)
- Nonresponse Adjustment

Messy Data Outline

- Survey Quality
- Finding Data Errors
 - Edit
 - Analysis
- Handling Nonresponse
 - Item Nonresponse Imputation
 - Unit Nonresponse Imputation or Reweighting

What is Item Imputation?

The process of replacing missing data with substituted values.

BEFORE Clean dataset with missing data

AFTER
Clean dataset with imputed values

ID	Variable 1	Variable 2	ID	Variable 1	Variable 2
1	10	33	1	10	33
2	?	74	2	27	74
3	25	?	Imputation 3	25	70
4	15	?	4	15	52

Why is there missing data?

Refusal to answer the item in question

- Too personal
- Too sensitive

Too difficult to answer

- Poor memory or inadequate records
- Too difficult to calculate

Accidentally skipped

Other unknown reasons?

Common Item Imputation Techniques

- → Manual
 - Means
 - Ratio
 - Hot Deck/Cold Deck
 - Multivariate

Manual Imputation

Replacing missing data with external information or historical data

- May be used when data are known at least approximately.
- Generally a simple process but not always statistically defensible.
- May be the easiest way to estimate extreme operators

Common Item Imputation Techniques

- Manual
- → Means
 - Ratio
 - Hot Deck/Cold Deck
 - Multivariate

Mean Imputation

Replacing missing data with the mean of clean reported data

- Un-weighted means is the most common
- Best practice is to group the records with similar attributes

Mean Imputation Grouping

Which \bar{x} to use?!

$\bar{\chi}_L$

Location

 \bar{x}_{LSF}

 \bar{x}_{SF}

- Region
- State
- County

\bar{x}_{LS}

Sales class

- Less than \$100,000
- \$100,000 -\$500,000
- More than \$500,000

\bar{x}_{LF}

Farm Type

 $\bar{\chi}_F$

- Grain
 - Fruit/Vegetable
 - Cattle/Hog
 - Dairy
 - Poultry

Typical Grouping Hierarchy

- 1. \bar{x}_{LSF} Location, Sales Class, Farm Type
- 2. \bar{x}_{SF} Sales Class, Farm Type
- 3. \bar{x}_{LS} Location, Sales Class
- 4. \bar{x}_{LF} Location, Farm Type
- 5. \bar{x}_F Farm Type
- 6. $\bar{\chi}_S$ Sales Class
- 7. $\bar{\chi}_L$ Location
- 8. \bar{x} National
 - Picking the best \bar{x} often depends on if enough records exist.
 - Combining subgroups into broader categories is an option to get enough records

Mean Imputation

An Example:

Grain Farms with less than \$10,000 sales in Western Region							
	Farm 1	Farm 2	Farm 3	Farm 4	Farm 5	Farm 6	
Taxes	\$10	\$15	?	\$27	\$33	\$20	
Expenses	\$89	\$74	\$13	?	\$36	\$100	
Wages	?	\$50	\$44	\$150	\$102	\$170	

$$\frac{89 + 74 + 13 + 36 + 100}{5}$$

$$\frac{50+44+150+102+170}{5}$$

Grain Farms with less than \$10,000 sales in Western Region							
	Farm 1	Farm 2	Farm 3	Farm 4	Farm 5	Farm 6	
Taxes	\$10	\$15	\$21	\$27	\$33	\$20	
Expenses	\$89	\$74	\$13	\$62	\$36	\$100	
Wages	\$103	\$50	\$44	\$150	\$102	\$170	

Common Item Imputation Techniques

- Manual
- Means
- Ratio
 - Hot Deck/Cold Deck
 - Multivariate

Ratio Imputation

Replacing missing data with values calculated from ratio of data from different reports

- Used in monthly surveys using a ratio of current to previous month
- Assumes similar relationship among different operations.

Ratio Imputation

Monthly Survey Results								
	C	urrent Mont	h	Previous Month				
	Farm 1	Farm 2	Farm 3	Farm 1	Farm 2	Farm 3		
Production	?	120	190	130	110	170		
Yield	40	?	50	60	45	55		

Production Ratio

$$\frac{120+190}{110+170} = 1.10$$

Yield Ratio

$$\frac{40+50}{60+55} = 0.78$$

Farm 1 Production

$$130 * 1.10 = 143$$

Farm 2 Yield

$$45 * 0.78 = 35.1$$

Monthly Survey Results								
	Current Month Previous Month							
	Farm 1	Farm 2	Farm 3	Farm 1	Farm 2	Farm 3		
Production	143	120	190	130	110	170		
Yield	40	35.1	50	60	45	55		

Mean & Ratio Imputation

Advantages/Disadvantages

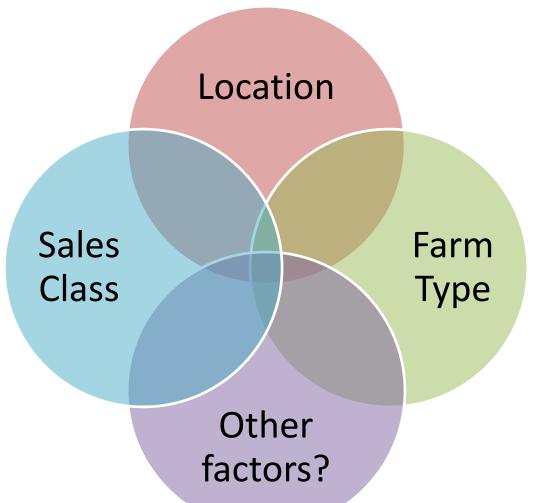
Advantages	Disadvantages
Easy to implement	Artificially lowers variance
Easy to debug	More statistically sound methods available
Flexible	One record can really drive imputation
Creates imputations within edit limits	

Common Item Imputation Techniques

- Manual
- Means
- Ratio
- → Hot Deck/Cold Deck
 - Multivariate

Hot Deck / Cold Deck

Nearest Neighbor Selection


Hot Deck Imputation
Replacing missing data with values from a similar record in the <u>same</u> dataset

Cold Deck Imputation
Replacing missing data with values from a similar record in a different dataset

Hot Deck/Cold Deck

Selecting a "similar" record from a donor pool

DONOR POOL is a group of complete records that have similar characteristics as the record requiring imputation.

Different algorithms (like Nearest Neighbor) can be used to find a similar record.

Different variables can potentially use different scoring algorithms.

Hot Deck Imputation

An Example:

Grain Farms with less than \$10,000 sales in Western Region							
	Farm 1	Farm 2	Farm 3	Farm 4	Farm 5	Farm 6	
Taxes	\$10	\$15	?	\$27	\$33	\$20	
Expenses	\$89	\$74	\$13	?	\$36	\$100	
Wages	?	\$50	\$44	\$150	\$102	\$170	

Farm 1 similar to Farm 2
- Use \$50 wages from
Farm 2 in Farm 1

Farm 3 similar to Farm 5
- Use \$33 taxes from
Farm 5 in Farm 3

Farm 4 similar to Farm 6
- Use \$100 expense
from Farm 5 in Farm 4

Grain Farms with less than \$10,000 sales in Western Region							
	Farm 1	Farm 2	Farm 3	Farm 4	Farm 5	Farm 6	
Taxes	\$10	\$15	\$33	\$27	\$33	\$20	
Expenses	\$89	\$74	\$13	\$100	\$36	\$100	
Wages	\$50	\$50	\$44	\$150	\$102	\$170	

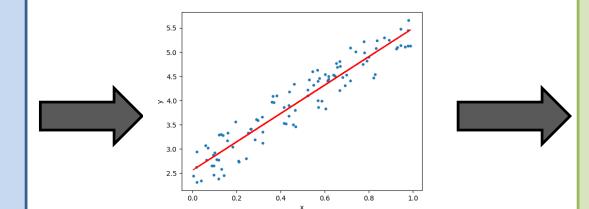
Common Item Imputation Techniques

- Manual
- Means
- Ratio
- Hot Deck/Cold Deck
- → Multivariate

Multivariate Imputation

Replacing missing data with values calculated from regression models

- Typically uses linear regression to fit data to missing values
- Uses both complete and incomplete cases to help predict the missing values.


The Basic Form of Multivariate Imputation

TYPEFARM CROPLAND OWNED AC RENTED AC

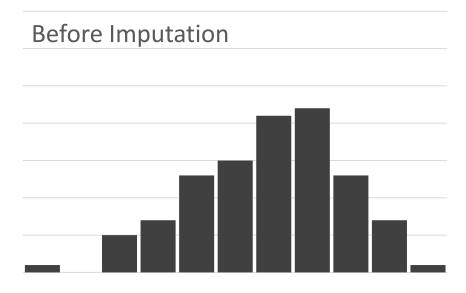
.

LAND VALUE ASSETS

Imputed variables and covariates

Iterative Sequential Regression

 Each variable run thru unique regression model



Imputed variables

Why Multivariate Imputation?

Unit Nonresponse

Primarily Refusal and Inaccessibles

- Can be done by Imputation (whole record)
- Commonly done by reweighting

Reweighting

A very simple example:

- If we sent 100 questionnaires where 90 were completed and 10 were nonrespondents then the nonresponse weight = 100/90 = 1.11.
- To summarize the data multiply all the record's data by 1.11.

$$Survey \ Estimate = \sum_{i=1}^{completed} nonresponse \ weight_i * item_data_i$$

In Production:

 Group records into homogeneous groups since nonresponse can be dependent on different attributes.

Adjusting weights of good reports.

Complex Reweighting

$$DE = \sum \frac{N}{n} A_c \frac{n}{n_a + n_{na}} \bullet \frac{n_a}{n_a + n_{ah}} \bullet \frac{n_h}{n_{gh}} y_{gh}$$

N = number of units in the population n = number of units in the sample A_c = post stratification weight for post strata

*Business Status

*Presence of item

n_a = number of known ag operations in the sample

n_{na}= number of known non-ag operations in the sample

 n_h = number of known commodity operations in the sample

 n_{ah} = number of known non-commodity ag operations in the sample

 n_{gh} = number of positive responding commodity operations in the sample

 y_{gh} = value of the positive responding commodity operation

Calibration

A re-weighting algorithm that minimizes the change in the sampling weights so that several important weighted survey items match official published totals. (Bench marking)

- Input weights to the calibration routine are the sampling weights
- Unit non-response adjustment can be done prior to calibration or incorporated.
- Calibration helps correct for any disproportionate response from a particular farm type or sales class

Census of Agriculture Weights

- Composed of three adjustments
 - Nonresponse (nr)
 - Misclassification (m)
 - Coverage (c)
- Integerized
- For COA, max weight is 6

$$w_i = n r_i m_i c_i$$
Fully adjusted weight

Questions?

