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Abstract: We compute corrections for sedentary behavior in physical activity levels (PALs) and 
incorporate them along with corrections for over estimation of basal metabolic rates (BMRs) into 
threshold caloric intakes, known as Minimum Dietary Energy Requirements (MDERs). Using 
these modified MDERs, we compute new estimates of food insecure populations using USDA-
ERS International Food Security Assessment (IFSA) model for the 83 countries covered by IFSA 
for 2023. We compute moderate upward biases in the FAO’s MDERs due to sedentarism of 
3.52% or 57.49 kcal a day, leading to an average of 1720 caloric MDER, which translate to 
reductions in the estimate of food insecure population of 71.3 million in the 83 IFSA countries. 
With both BMR and PAL corrections, the MDER falls to 1638 kcal on average and the food 
insecure population estimate falls by 173.6 million. Relative to USDA-ERS’ 2100-calorie 
threshold estimating 1.056 billion food-insecure, the 1638 kcal per capita per day accounting for 
BMR and PAL corrections would result in 711.7 million reductions. Robustness checks using a 
lognormal distribution approach with FAO data confirm similar large responses of food insecure 
population estimates to the MDER corrections for the same countries. Beyond the correction for 
systematic upward bias, estimating more precise MDERs will lead to more precise food insecure 
estimates. 
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Increasing Sedentary Time, Minimum Dietary Energy Requirements and Food Security 
Assessment 
 
Introduction 

Estimates of global food insecurity play an important role in informing policy decisions, such as 

those surrounding COVID-19 (Balistreri et al., 2022) or the EU’s Farm to Fork Strategy 

(Beckman et al., 2020). Yet, despite the important role they play, issues of inconsistencies and 

disparities in the estimates provided by food security indicators have been identified (Barrett 

2010, de Haen et al. 2011, Henry 2005, Poudel and Gopinath 2021, Swaminathan et al. 2018, 

Svedberg 2002, among others). We address two major sources of upward bias in food security 

indicators as explained below. 

Poudel and Gopinath (2021) examine global food security indicators on the Prevalence of 

Undernourishment (PoU) from the Food and Agriculture Organization (FAO), the International 

Food Policy Research Institute (IFPRI), the United Nations Development Programme (UNDP), 

and the United States Department of Agriculture (USDA). They find that the variation within the 

indicators is explained by economic growth, literacy, urbanization, and internet access. They 

further employ meta-regression analysis to examine the sources of variability between indicators, 

with significant findings regarding study characteristics such as primary data use, experience of 

the agency in food security analysis, and the number of countries examined, among others.  

De Haen et al. (2011) examine the FAO PoU indicator as compared to two other 

approaches to food insecurity assessment, household consumption surveys, and childhood 

anthropometrics. They provide overall assessments of each approach in terms of strengths and 

weaknesses, while pointing out conflicting results from the three approaches, and provide 

options for improving these indicators. They conclude that the estimates of food insecurity are 

inaccurate, but do not identify a systematic bias below or above the FAO estimates. 



2 
 

The methods of assessing the prevalence of undernourishment rely upon a minimum 

dietary energy requirement (MDER), which is given in kcal per person, per day. This MDER 

forms a critical average daily caloric threshold for which a typical lightly active individual would 

be considered undernourished calorically, should they fall below the threshold. FAO provides 

yearly revised estimates of MDERs for the set of nations included in its annual report, The State 

of Food Security and Nutrition in the World (SOFI). The MDER used in PoU estimation is 

updated for small demographic changes occurring over time such as the sex and age composition 

of the population; it is otherwise static over time (FAO et al., 2023). We elaborate on this point in 

section 2.1. 

The MDER is a summation across population strata, based on sex and age subgroups, 

which form weights that are multiplied by a minimum daily energy requirement of the specific 

population subgroup in question. The subgroup energy requirement estimates used in the MDER 

are multiple decades old, dating back to at least 1985 (FAO, 2005). There is no adjustment made 

for changes in caloric needs of the population due to other factors. We further note that the 

MDER cutoff used in the annual USDA International Food Security Assessment (IFSA), is a 

fixed value of 2,100 kcal per person a day. 

Another contention pertains to the Basal Metabolic Rate (BMR) values estimating the 

caloric needs of the population subgroups based on age and sex which are aggregated into the 

MDER. Swaminathan et al. (2018) examined the estimated BMRs used in the FAO PoU. They 

found that for Indian adults, the BMR was overestimated between 5 and 12%. With an 

overestimated BMR value used, PoU estimates will be biased upwards and overstate the true 

level of food insecurity. Svedberg (2002) also examines the issue of BMR inflation, noting a 

10% overestimation in the BMR for people living in the “tropics.” He constructs a revised 
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alternative modeling approach and finds overestimation and underestimation effects in the FAO 

PoU approach, with a net effect of overestimation. In checking his PoU values against 

anthropometric indicators, he finds better agreement in most regions modeled with his revised 

PoU methodology. 

Henry (2005) summarizes past criticisms of the equations and data utilized in the FAO 

SOFI methodology for estimating PoU. The current FAO PoU methodology utilizes what are 

called the “Schofield equations” to compute BMRs. Henry (2005) created revised equations, the 

“Oxford equations” utilizing more recent data that better represents developing economies. He 

finds notable inflation in the estimated BMR from the Schofield equations compared to his 

revised Oxford equations. BMR inflation is important to examine since BMR inflation has an 

elasticity of one in the MDER, causing upward bias when the BMR is inflated.  

These shortcomings strongly suggest the need to revise estimates of the PoU, which we 

address in this paper. First, changes for sedentarism and BMR inflation are accounted for in 

revised MDERs and then we look at their implications for estimates of food insecurity such as 

those provided by the FAO’s SOFI and the USDA’s IFSA. Further, we assess the sensitivity of  

food insecurity estimates to the revised caloric cutoffs used. More precise cutoffs may be key to 

reduce the inaccuracy of PoU estimates. 

Michels and Beghin (2024) address bias in the FAO PoU indicator sourced from changes 

in sedentarism worldwide over time. Here, we employ and update the methods of Michels and 

Beghin (2024) to provide revised estimates of food insecurity for the set of 83 nations in the 

annual IFSA report. To accomplish this, we construct revised MDER cutoffs, adjusted for 

sedentarism and BMR inflation. We model various constructed MDER values through the use of 

the IFSA model and its corresponding dataset applying, but also via the Lognormal approach of 
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FAO as a robustness check. The IFSA model uses elements of the Lognormal approach to 

calibrate the average caloric intake of the bottom decile, but relies on an empirical distribution 

for the other nine deciles based on income distribution data. Our results show substantial 

implications for food security and estimations, while highlighting the sensitivity of estimates of 

undernourishment to the MDER cutoffs used.  

Based off our findings, we compute multiple elasticity values of the estimates of food 

insecurity to the MDER cutoff for each nation in our dataset. The elasticity results show notable 

heterogeneity between nations, but homogeneity in values for a given nation, suggesting the 

elasticity for a given nation isn’t highly sensitive to the particular MDER used. We find that the 

elasticity is sensitive to which nation is under consideration, that the PoU itself is sensitive to the 

MDER cutoff, and that the estimates of undernourishment utilizing the PoU are sensitive to 

small PoU errors, particularly for high population nations. Hence getting MDERs right is pivotal. 

2. Methods 

In the following section we first introduce the MDER and the proposed correction to account for 

increased sedentarism. Then we describe two main modeling approaches to assess food 

insecurity, the USDA IFSA model, and the lognormal approach used in FAO’s SOFI assessment. 

We also formalize the link between the correction in the MDER and its impact on the prevalence 

of undernourishment and food insecure population. 

2.1 Correction of the MDER 

FAO uses a lognormal approach to compute its PoU indicator. The PoU is written as: 

θ
<

= ∫ ( | ) .
MDERx

PoU f x dx  (1) 

Function ( | )f x θ  is the assumed lognormal probability density function describing a population’s 
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representative average individual’s habitual dietary energy intake levels (FAO 2014).1 The 

energy intake is given by x, which is expressed in kcal per day, per person.  Parameters θ are the 

mean dietary energy consumption and the coefficient of variation of the lognormal distribution, 

from which a standard deviation is implied. The cumulative probability of the representative 

individual’s habitual dietary energy intake falling under the kcal cutoff, given by the MDER, is 

one interpretation of the PoU. The MDER represents the caloric requirement for a lightly active 

lifestyle. Another use and interpretation of the PoU is to estimate the proportion of the population 

that is undernourished. For a given nation’s population, the following relationship holds (Wanner 

et al. 2014) to derive the food insecure population in a country, FIP: 

 FIP  PoU Population*=  (2).  

FAO constructs the PoU to be nation specific and it is computed as an aggregation 

utilizing weights Pij consisting of the share of the population that a constructed sex and age 

group of the nation represents. More formally: 

 = *ij ij
ij

MDER MER P∑ , across sex i and age groups j, (3) 

where ijMER  is the minimum daily energy requirement per person in the ij group and ijP  is the 

population share of sex i and age group j (FAO 2008). Formerly, a pregnancy allowance was also 

included, and which has been omitted since in FAO et al. (2023). Each group has a specific 

minimum energy requirement based upon its basal metabolic rate (BMR) and a physical activity 

level (PAL)  (FAO 1985 and 2005). These BMRs and PALs were established in 1985 for FAO 

from older data using the so-called Schofield BMR equations (Schofield, 1985). Based on 

available data from the UN Department of Economic and Social Affairs, these population 

 
1 This individual is representative of the population in the sense that they are of average physical activity level, age, 
stature, and sex. (FAO, 2014). 
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weights are adjusted over time (FAO et al., 2023). These demographic weights are the only time-

varying elements of the FAO MDER. 

Various kcal cutoffs for modeling undernourishment are possible. The MDER values 

computed by FAO and discussed above are one such possibility. An alternative used by the 

USDA ERS in their modeling work in the annual IFSA report instead utilizes a constant 2,100 

kcal per person per day cutoff. Here, we seek to adjust the MDER values from FAO for changes 

in sedentarism around the world to create revised MDERs to derive revised PoU estimates. Our 

methodology allows for revised MDERs that are time and country specific, include current 

population weights, and account for current country-specific sedentarism. The timespan we 

consider for the revised MDERs in this paper is from 1985 to the latest available data, 2022/23. 

In the current application, we use the aforementioned approach in conjunction with covariate 

data we collected to allow for revised MDERs that are adjusted for sitting time changes. 

Our methodology relies upon and extends Michels and Beghin (2024), which established 

the methodology for accounting for rising sedentarism based on a conceptual model of labor 

allocation decisions faced by a representative household with physical and intellectual labor 

types, selling these to labor markets and using them to produce non-market goods such as leisure 

activities. They showed that increasing productivity and wages to sedentary activities, called 

“cognitive human capital intensive,” lead to more time allocated to these activities, rationalizing 

the labor allocation towards more sitting time. Their empirical implementation translates the 

conceptual model into regression models of sitting time using a pseudo panel dataset. Sitting 

time is determined by covariates which explain the progression away from physical labor toward 

cognitive and sedentary activities with improvements in productivity and returns in the latter.  

Among covariates, the proportion of the population using the internet, xweb,  reflects the 
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changing relative productivities of cognitive vs physical human capital types. It captures access 

to and intensity of information during both work and leisure activities, and the increasing 

digitization of occupations. Gains in cognitive human capital, xeduc, are represented by upper-

secondary education completion rates. The rural share of population, xrural, traces changes in the 

physical human capital type as urban occupations tend to be more sedentary. Income inequality, 

xtheil, as measured by the Theil index of inequality reflects heterogeneity in human capital and 

returns. The greater the inequality, the less sedentary, all else equal as less remunerated activities 

tend to be physical. GDP per capita, xgdp, encapsulates economic development and more 

sedentarism. 

Their econometrically estimated transfer functions predict changes in national average 

sitting time, ysit, (serving as a proxy for sedentarism), for a country and year as determined by 

these five covariates, which are time varying and make use of population weights in the 

regressions, and by a few fixed effects, d, reflecting some data imputations. They select five 

preferred specifications based on goodness of fit and consistency with the predictions of the 

conceptual model. The coefficients were then aggregated in both slope and elasticity forms, 

applying the necessary transformations across the functional forms to allow for aggregation of 

the estimated coefficients via meta-analysis methods. Eight transfer functions were constructed.  

Equations (4)-(7) give the form of all eight but we have omitted the version of each with 

the squared proportion on the web covariate for brevity. Equations (4) and (5) give the 1st order 

Taylor approximation models that utilize deviations from the mean in slope and elasticity forms, 

respectively. Equation (6) is an aggregated regression form model utilizing slopes (β) and (7) 



8 
 

gives the aggregated multiplicative model using elasticities (δ).2 

  

  

_

_ __

( ) ( ) ( )

( ) ( ) ( )

web rural theilsit web rural theilsit prediction web rural theil

educ gdp theil impeduc gdp theil impeduc gdp theil imp

y y x x x x x x

x x x x d d

β β β

β β β

= + − + − + −

+ − + − + −
(4) 

 


 

__ __ _
,

,
,
,

[ ( ) exp{ } 1],j
j theil imptheil imp theil impsit sitsit prediction j theil imp

jj web
educ
rural
theil
gdp

y y y x x d d
x
δ δ δ

=

= + − + − −∑  (5) 

 _ 0 _ _
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,sit prediction web web educ educ rural rural theil theil gdp gdp theil imp theil impy x x x x x dβ β β β β β β= + + + + + +  (6) 

 

    



0 __ _exp{ } * * * * * * exp{ }.web educ rural theil gdp
theil impsit prediction web educ rural theil gdp theil impy x x x x x dδ δ δ δ δδ δ=  (7) 

Predicted sitting time changes were used to construct revised physical activity levels (PALs) by 

adjusting the time allocation to activities in the factorial calculation used, see Table 1 and its 

notes. Our methodology builds on their proposed method of updating the total energy 

expenditure calculation.  

<Table 1 about here. FAO example factorial calculation and revised factorial calculation> 

The variable “SC” in the sixth column stands for the predicted change in sitting time 

from 1985 to 2022/23 from the transfer functions. The sixth column of Table 1 shows how we 

adjust downward the household chores and walking time allocations and adjust up the leisure 

time allocations for the changes in predicted sitting time in the factorial calculation. The 

computed time allocations are then multiplied by their energy costs, then these values are 

summed and normalized by 24 (1 day), similar to what is done in the original example 

calculation in the fourth column of Table 1 and the bottom cell of the fifth column of Table 1. 

The resulting revised PALs are then used to rescale the FAO MDER values for changes in sitting 

 
2 Model (7) is unused due to a zero value for the proportion on the web covariate in 1985. The outputs of the other 
six models are averaged to make sitting time predictions. Upper bars designate average values, hats designate 
estimated coefficients.  
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time, generating new MDER cutoffs to use in food insecurity modeling such as the lognormal 

approach of FAO or the USDA IFSA approach.  

 Revisions of MDERs can be carried out using the construction of FAO’s MDER. Recall 

that: ∑ = * .ij ij
ij

MDER MER P  The ijMER term is further broken out to 1.55 * ijBMR . The 

1.55 value is the PAL used by FAO, which is common to all subgroups of the population used. 

The BMR is the source of variability by subgroup. Hence we can rescale the old MDER by our 

new revised PAL value divided by 1.55. Thus, we have that:  

 * .
1.55

Revised
Revised FAO

PALMDER MDER= (8) 

The revised MDERs capture several time-varying determinants. First, the composition of the 

population by age and sex categories changes, which is built into the original MDER values FAO 

computes. Caloric needs are modeled by FAO based on age, sex, and weight (FAO et al., 2023). 

Secondly, sedentary behavior drives the PAL, which we capture with our covariates that proxy 

for the levels of and changes in the productivity and returns to sedentary vs more physically 

demanding activities. The makeup of the economy and state of advancement plays a role here, 

more advanced economies are expected to be more sedentary by influences of technology and 

urbanization and often reduced income inequality. Lastly, the effects of time play a role. Both the 

composition of the population and the sedentary behavior are time varying. FAO adjusts MDERs 

for the compositional makeup changes of the population regarding age and sex, but our work 

here also adjusts MDERs for changes over time in technology, urbanization, and the economy 

overall, which is reflected in our covariates. Finally, a uniform proportional reduction in BMR 

can be imposed on the revised MDER (8) by scaling down the right-hand side of the equation. 

We choose a conservative 5% inflation of the BMR downward adjustment of the BMR (a scalar 
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of 0.9528 in (8)). 

2.2 IFSA Model Summary 

This section provides a succinct description of the key characteristics of the USDA’s IFSA 

model, avoiding formal equations. Readers interested in the full mathematical details and 

calibration approach can refer to Appendix A of Zereyesus et al. (2023). This section heavily 

draws upon their work. The IFSA model projects food demand access, and food gaps for 83 low- 

and middle-income countries by 10 income deciles over ten-year horizons (Zereyesus et al. 

2023). Each country’s food security metrics are estimated and calibrated to 2020-2022 data for 

the 2023 estimation and projected to 2033. Food consumption is categorized into four groups, 

two of which are country-specific for grains. The four groups encompass the entire food 

consumption spectrum. They are the major (caloric) grain (determined by calorie share), other 

grains, root and tuber crops, and an aggregate of all-other-foods. The modeling projections of 

food demand are expressed in a grain equivalent based on each food group’s caloric content to 

allow aggregation across food groups, which allows this grain equivalent to be easily expressed 

in kilogram calorie per days (kcal/day). 

The food security of a country is evaluated by comparing estimated domestic food 

consumption (food demand) with a caloric threshold necessary to sustain life at a level of 

activity. This threshold varies depending on the model used. For example, the USDA IFSA 

model uses 2,100 kilocalories (kcal/day) per capita.  

Three food security indicators are estimated: (1) the population share of food insecure: 

This indicator represents the proportion of the total population unable to reach the reference 

caloric threshold of 2100 kcal/day. This threshold is higher than both the FAO's MDER and our 

corrected MDERs, as mentioned below. (2) the number of food insecure people; and (3) the food 
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gap, this indicator represents the total amount of additional food (measured in calories) needed to 

bring all individuals below the 2100 kcal/day threshold up to that level.  

The centerpiece of the IFSA model is a food demand system included in a multi-market 

partial-equilibrium model for each country in the assessment. World prices reflecting USDA’s 

world outlook feed into localized domestic prices via price transmission equations, determining 

local demand and then grain supply and imports. Beghin et al. (2015) introduced the 

methodology, and Beghin et al. (2017) provided more detail on price transmission and food 

security projections. 

The demand system for the four food groups employs a simplified price-independent 

generalized log-linear (PIGLOG) (Deaton & Muellbauer,1980; Muellbauer 1975). This model 

captures own-price and income responses but excludes cross-price responses, which are often 

difficult to obtain. Importantly, the PIGLOG system allows for exact aggregation of decile 

demands into an aggregate average demand, accounting for both average income and the income 

distribution. For the 2023 estimation, the model is calibrated on a 3-year-average of prices and 

incomes (2020–22), along with observed consumption levels, a measure of inequality, and a 

combination of consensus and estimated income and price elasticities. This calibration process 

involved adjusting free parameters within the demand system to allow imposition of plausible 

patterns of price and income responses across income deciles. The model assumes decreasing 

income and price sensitivity of food demand as decile-income rises. For further details on the 

calibration, refer to Beghin et al. (2015) of. 

The model accounts for quality differentials within each of the four food categories. 

Poorer deciles face lower quality at lower prices and richer deciles do the opposite. By 

aggregation, the consumption weighted average equality is equal to one to be consistent with 
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aggregate data. The quality of the bottom decile is calibrated to match the caloric consumption 

pattern of the bottom decile implied in FAO’s SOFI assessment under its lognormal approach. 

The focus here is on the decile most likely to contain food insecure populations.  

IFSA has two ways to assess the PoU and food-insecure population. First, it compares 

each decile’s total average caloric intake and counts the deciles that fall below the 2,100-kcal 

threshold. In that case, the changes in food-insecure population are by decile increments of a 

population. The second way to predict food insecure population is to use the estimated mean 

aggregate caloric intake projected by the model and use this as the lognormal mean availability 

along with the coefficient of variation of published by FAOSTAT and assume a lognormal 

distribution mimicking SOFI but centered on USDA’s projection of the total caloric availability. 

As noted above, the trade-off with this second approach is that the projected decile distribution 

might not be consistent with the lognormal distribution for its entirety, but it allows one to refine 

the estimate of the food insecure population beyond the decile-based variation. Here we report 

results based on this second approach. 

2.3 Scenario-IFSA Calibration with Different MDERs 

In our analysis, we calibrate the IFSA model on the original FAO MDER and then our corrected 

MDERs along with the 2,100-kcal threshold.3 We do not use the projection element of the IFSA, 

but rather focus on estimates of food insecurity in the calibrated 2020-2023 and compare the 

implications of using different MDERs on food insecurity estimates. The IFSA model uses 

slightly different caloric availability than that shown in the Food Balance Sheets of FAOSTAT. It 

combines and reconciles information for grain production data from USDA, Foreign Agricultural 

 
3 The IFSA model calibrates the food availability of the bottom decile using a quality adjustment factor increasing 
consumption and decreasing prices, holding expenditure constant, that matches the FAO’s first decile food 
availability. The adjustment factor evolves; as deciles become richer, quality increases. By aggregation, it leads to 
the original food availability for a nation (Beghin et al. 2017). 
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Service’s Production, Supply and Distribution (PSD) database, and from the Food and 

Agriculture Organization of the United Nations (FAO). 

2.4 Lognormal Approach  

On top of utilizing the IFSA model for estimates of the undernourished, we also use our revised 

MDERs in the FAO PoU framework to re-estimate the PoU to adjust for sedentarism. FAO uses 

the total food availability per person to represent the mean dietary energy consumption that is 

required for its lognormal modeling approach. This data is available through FAOSTAT along 

with the CV needed for the lognormal computations.4 To obtain the parameters of the lognormal 

distribution, the following two equations are used (FAO, 2008) with

 σσ µ= + = −
2

2 1/2[ln( 1)] ,and ln( ) ,
2
x

x xCV x withx being the mean dietary energy 

consumption, approximated here by the total food availability per person. Then, we use the 

standard normal cumulative distribution function ()Φ ⋅  to compute (ln( ) )[ ]x

x

MDER µ
σ

−
Φ  that 

gives the PoU. Then, we use (2) to estimate the food-insecure population.  

2.5 The MDER Elasticity of the Prevalence of Undernourishment 

Based upon the lognormal modeling approach of FAO, we find that the MDER elasticity of the 

PoU can be readily computed. Food insecurity estimates for a given country using the PoU are 

computed using equation (2). Using FAO (2008) and inserting the PoU from the lognormal 

distribution, we have: 

MDER

xFIP  dx Population

ˆln( )
ˆ 21 exp * .

22

µ
σ

π

−

−∞

 
 − =      

∫   

 
4 https://www.fao.org/faostat/en/#data/FBS and https://www.fao.org/faostat/en/#data/FS for the total food 
availability and CV, respectively. 2021 and 2022 were the latest years available during our analysis for total food 
availability and CV values. We also include FAO’s food waste estimate to obtain the average caloric availability 
“utilized.” 

https://www.fao.org/faostat/en/#data/FBS
https://www.fao.org/faostat/en/#data/FS
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The implied elasticity of the food insecure population with respect to the MDER is: 

MDER

d FIP MDER x dx
d MDER

1ˆln( )
2 ˆ 2

2

ˆln( ) (ln( ) ) 1 1exp * exp * .
ˆ ˆln( ) 22

µ
σµ

σ σπ

−−

−∞

 
   − − = −         

∫ 5 

The lognormal model lends itself to a relatively simple equation for computing the 

elasticity. In the case of the IFSA model the implied caloric intake distribution of the population 

is more empirical as explained above, combining a log-normal assumption for the first decile, 

and an empirical distribution based on income distribution for the other deciles. We make use of 

arc elasticities instead, using the formula: 

− +
≈

+ −
( )( )ln( )

ln( ) ( )( )
i FAO i FAO

i FAO i FAO

PoU PoU MDER MDERd FIP
d MDER PoU PoU MDER MDER

,  

where the subscript i denotes any of the three revised MDERs and PoU estimates based on them, 

the PAL Revised, BMR Deflated, and PAL and BMR Revised MDERs. All arc elasticities are 

computed from the FAO original MDER value to a revised MDER point. Similar arc elasticities 

can be computed for the results from the lognormal model, but for that model elasticities 

computed using the method described above are preferred since it yields exact point elasticities.   

3. Data Discussion and Results on Corrected MDERs  

3.1 Data and Covariates 

We construct the necessary dataset, which covers the 83 nations included in the annual USDA 

IFSA report. The necessary covariates to predict the new MDERs are collected from the same 

sources as in Michels and Beghin (2024) shown in Table 2. Table 2 provides summary statistics 

 
5 From the Food Insecure Population definition above, differentiate each side with respect to the MDER, apply the 
Fundamental Theorem of Calculus and the Chain Rule. Then, construct the elasticity, cancelling terms and 
simplifying to arrive at our given equation. Without canceling constants, the right-side expression can be written 
with the Inverse Mills Ratio.  
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for our covariates.  

<Table 2 about here Data Sources and Years of Variables> 

Following the order of Table 2, we collected 2023 MDERs from FAOSTAT, which serve as the 

base upon which our BMR and PAL revisions to the MDER build. Our covariates are collected 

for as close to those years as was available for each nation in order to compute our revisions to 

the original FAO MDERs. Data availability by year varies, see Table 2 and the online 

supplementary materials for more details. In some cases, covariate values needed to be imputed 

for some countries and years. An Excel workbook documenting the steps taken for the covariates 

is available online in the supplementary materials for the paper. We observe large heterogeneity, 

in some cases, in the changes to the covariate values for the included set of nations over time.  

The proportion of the population in 2022 with internet access varies from a very low 

level in the Democratic People’s Republic of Korea, estimated to be only a matter of thousands 

with internet access, up to over 88% in Morocco. Further, Angola saw over a 37-percentage point 

drop in the rural population percentage over the time period we examine, while five nations 

actually experienced an increase in the share of rural population. Income inequality over time 

exhibits large decreases in some cases but also significant increases as well, although the average 

inequality trends downward. Upper secondary education completion rates rose in all countries, at 

least marginally, except in Zimbabwe where they actually declined a bit over 3.3 percentage 

points. Lastly, GDP per capita rose in most countries, sometimes by large percentage increases, 

but fell in 15 nations of our 83 countries included in the IFSA. Sizeable covariate changes may 

translate to sizeable changes in predicted sitting time and in our revised PAL, and revised 

MDERs we compute, and ultimately larger changes in the PoU.  

We include kernel density estimates (KDE) of the distributions of the covariates in the 
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two time periods in our appendix figures, which allow for some informative visualization of the 

changes in the distributions of the covariates over time. In Appendix Figure 1, the KDE of the 

proportion of the population using the internet in 2022 reveals a bimodal distribution, indicating 

a trend towards nations having largely connected online and others with only some web 

connection. Appendix Figure 2 illustrates the overall decline in the rural population percentage; 

Appendix Figure 3 tells a story of a generally declining Theil index, with higher concentration 

around the 0.25 range. Appendix Figure 4 shows an overall improvement in upper secondary 

completion rates, with the distribution shifting up and the upper tail gaining mass. Finally, 

Appendix Figure 5 shows a similar pattern for GDP per capita.  

3.2 Results on Sitting Times, Physical Activity Levels, and MDERs 

Figure 1 gives the KDE of the distribution of the change in predicted sitting time of the 83 

nations in our dataset. All nations had positive changes in sitting time. In some cases, the 

changes were quite large, as high as 1.848 hours a day for Tunisia, and some as small as 0.103 

hours a day, as for Niger. There is a clustering of countries around 0.5 hours a day increase, but 

still a significant portion of nations with as high as a 1-hour a day increase.  

<Figure 1 about here> 

Figure 2 gives the KDE of the distribution of the revised PALs we have constructed from the 

predicted changes in sitting time. Recall that FAO uses a PAL of 1.55 in its MDER calculation. 

We see the shift of the values downwards, with a large proportion falling in the 1.5 to 1.525 

neighborhood, roughly speaking. Since all predicted changes in sitting time are positive, all 

revised PALs are below 1.55. The largest value is Niger at 1.543, while the smallest is Tunisia at 

1.427. These values make good sense based on these two nations having the smallest and largest 

predicted changes in sitting time, respectively. 
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<Figure 2 about here> 

In Figure 3, KDEs of the distributions of the original 2023 FAO MDERs are visualized in 

dark grey. Furthermore, we have KDEs of the 5%-BMR deflated MDER, visualized in blue, the 

PAL-revised MDER, visualized in grey, and the PAL-and-BMR-revised MDER, visualized in 

orange. We see a shift downwards of the distribution in all cases, with the 5% revision in BMR 

MDER shifting further on average than the PAL revised MDER, and the BMR and PAL revised 

having the furthest left distribution. There does appear a tendency of the PAL revision to reduce 

the dispersion of the distribution, with the mass somewhat more concentrated. Lastly, we should 

note that the nations of India, Indonesia, and Nigeria all saw large predicted sitting time changes, 

translating to large changes in revised MDERs, and are ultimately expected to have significant 

implications for the revised PoU. These nations are important to note due to their large 

populations, which combined equal over 1.9 billion people for 2022 (World Bank, 2023). 

Descriptive statistics for the MDERs (including our revised MDERs), our revised PAL and 

estimated changes in sitting time appear in Table 3.  

<Figure 3 about here> 

<Table 3 about here> 

4. Results on Estimates of Undernourished populations 

We examined the changes in FAO MDERs published, as of January 2024. This is of interest as it 

makes a nice comparison of what occurred over time with the FAO MDERs vs. changes induced 

by our adjustments for sedentarism and the assumed 5% bias in BMR in MDERs. We 

downloaded FAO’s published MDER values and computed the percentage change from 1985 to 

2023, when available, and in other cases used the oldest available data when it was not available 
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back to 1985.6 Summary statistics appear in Table 4, column 2, while a histogram of the 

percentage changes appears in Appendix Figure 6. It should be noted that the change in the FAO 

MDERs over time is driven by the demographic changes of the population; FAO adjusts for age 

and sex changes in the populations. 

<Table 4 about here> 

Inspection of the revisions to FAO’s MDERs over time compared to our adjustments 

from 1985 to 2023 showed some opposite signs occurring. Upon trimming the country list of 

FAO to match that of the IFSA, which is the nation set we apply our PAL correction to for the 

MDER, we observe a modestly strong -0.4283 simple correlation between the percentage change 

of the FAO MDER over time compared to our PAL sedentarism adjustment percentage change 

over time. Only 12 of 205 FAO MDER percentage changes over time are negative and tend to be 

those of more developed economies. All the rest are positive, and in some cases quite large, as 

seen in Table 4 above, the maximum is 14.469% and the 75th percentile 6.703%, while the mean 

is a 4.603% increase.  

 Table 4 also shows in columns 3 and 4 descriptive statistics for the percentage changes in 

our PAL revised MDERs and the PAL and BMR revised MDERs, computing percentage change 

as (New MDER/Old MDER)-1. Note that the MDERs that had the 5% BMR deflation applied 

computes to a 4.762% decrease in all cases. We find mean downward percentage revisions of 

2.929 and 7.552%, respectively, when we adjust for only the PAL and when we adjust for the 

PAL and the BMR inflation. All revisions are downward and in some cases for PAL only, quite 

small, at only -0.443% for Niger.  

 
6 Some computed values are artificially small due to a smaller timescale involved due to data limitations. 178 out of 
205 (86.83%) nations had data back to 1985.  
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We compare the MDERs that have the PAL and BMR adjustments both applied as to the 

original FAO MDERs. We break down the MDER inflation to examine how much is attributable 

to the PAL adjustment, the BMR adjustment, and their interaction effect. Table 5 contains the 

four different MDER cutoffs, the FAO MDER, our PAL Revised BMR, our BMR Deflated 

MDER (5%), and the PAL and BMR Revised MDER.  

For the five nations with the highest number of food insecure individuals, we have 

broken down the inflation in the MDER into its components in both absolute kcal terms and 

percentage.7 Examining the PAL inflation alone, we see that for Nigeria it is as high as 6.449%, 

higher than the assumed BMR inflation, but for three of the five selected nations it is within 1-

2%. However, we will see next that even relatively small amounts of bias are meaningful due to 

the high elasticity of the food insecurity estimates with respect to the MDER cutoff used.  

<Table 5 about here> 

The posited BMR inflation is often higher than the PAL inflation for this small subset of 

nations. The interaction effects of the PAL and BMR are generally smaller, but the total inflation 

with an assumed 5% BMR inflation, which is on the conservative end from the literature, is as 

high as 11.771% for Nigeria. Regardless, even without any assumed BMR inflation, there are 

meaningful implications for the estimates of the food insecure due to the sensitivity of the 

methodology to the kcal cutoff chosen (MDER). Assuming some BMR inflation serves as an 

exercise to show the impacts on food security assessment, compounding the bias from 

sedentarism over time.  

 Table 6 provides descriptive statistics of the inflation in kcal and percentage for the whole 

set of 83 IFSA nations we consider. Table 6 provides some information on the distribution of 

 
7 The FAO Lognormal approach predicts a different list of five nations as the top food insecure than the IFSA model 
predicts. We use the former. 
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these PAL and BMR inflations. We see the PAL inflation varies from a minimum of about 7 kcal 

to a maximum of about 137 kcal. The total inflation percentage shown in the last column ranges 

from 5.5% to just over 14%.  

<Table 6 about here> 

 Table 7 shows the implications of the varying MDER cutoffs we have computed, for the 

five nations mentioned above, when utilized in the USDA IFSA model. We see for the original 

FAO MDER, India has an estimated 90 million (rounded) undernourished, but this number 

declines dramatically as each alternative MDER is substituted in, down to 45 million for the PAL 

and BMR Revised MDER, while the 2,100-kcal cutoff of the ERS gives a higher 270 million 

undernourished in India. The PAL Revised MDER alone implies 22 million fewer 

undernourished. Swaminathan et al. (2018) found that the current methodology used to estimate 

BMR overestimates the BMR of Indians by 5 to 12%, so the PAL and BMR Revised MDER 

values for India are plausible. For just these five nations, the differences between the FAO 

MDER and our revised MDERs translate in decreases of 37, 56, and 84 million people (rounded) 

who are food insecure, for the PAL Revised, BMR Deflated, and PAL and BMR Revised 

MDERs. The difference becomes starker when all 83 nations of the IFSA are included in the 

world aggregate row at the bottom of the table. 

<Table 7 about here> 

Estimation with the 2,100-kcal cutoff of ERS results in an aggregate value of 1056 

million (rounded) undernourished, as compared to using the IFSA model and the FAO MDER 

cutoff which estimates a total of 518 million (rounded) undernourished. The difference between 

the FAO MDER cutoff and our revised MDERs are 71, 118, and 174 million (rounded), for the 

PAL Revised, BMR Deflated, and PAL and BMR Revised MDERs, respectively. Again, even 
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without assuming any BMR inflation and only examining the PAL revised numbers, we see a 

difference of over 71 million people, a substantial population. Small revisions to the MDER 

values amount to large changes in the estimates of the undernourished. These values are only for 

the 83 nations considered in the IFSA, FAO includes a larger set of nations in the annual SOFI, 

which means their total undernourished population estimates would fall by a larger amount than 

suggested here.  

 The results shown in Table 8 show a sensitivity in the PoU estimates to the MDER cutoff 

used. We present arc elasticities for the same set of five nations and the results from the IFSA 

model. The elasticities are computed from the original FAO MDER value to each of our revised 

MDERs. For these five nations, we see a range of elasticities from around 2.7 to over 8.1, 

showing notable variability between nations, but high sensitivity for some to the MDER 

threshold used for the PoU estimation. Further, for a given nation, all three elasticity values are 

relatively similar. For a given nation, which MDER cutoff used doesn’t mean a large difference 

in elasticity value, but the PoU itself is sometimes highly sensitive to the MDER. It would be 

inappropriate to use an average elasticity value as an approximation for all countries as the fit 

would be very poor in some cases.  

<Table 8 about here> 

Table 8 also shows descriptive statistics of the arc elasticities calculated from the IFSA modeling 

results but for all 83 nations of the dataset showing notable heterogeneity between nations (from 

1.681 to 12.013), but small variations for any given nation.  

 We also present in Table 9 results for the same set of five nations for PoU estimates 

utilizing the Lognormal model with our various MDER cutoffs, including the 2,100-kcal cutoff 

used by ERS, which is similar in spirit to Table 7. Comparing these two tables, we see the 
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Lognormal model predicts much higher levels of undernourishment in India (by over 100 million 

in one case), slightly higher in DRC, Nigeria, and Ethiopia. The IFSA model predicts higher 

undernourishment in Pakistan. Typically, the Lognormal model predicts notably higher world 

aggregate levels of undernourishment in the set of 83 nations considered in this work, with the 

exception of the 2,100-kcal cutoff scenario.8 

<Table 9 about here> 

 Point estimates of the PoU elasticities from the Lognormal approach for a given MDER 

cutoff are shown in Table 10 for the same top five food insecure nations. For India, the 

Lognormal point elasticities are lower than those from the IFSA model (5.6-6.5, roughly, 

compared to 8 to 8.13). However, the values for Pakistan are nearly similar in both methods; 

DRC’s elasticities are actually higher in the Lognormal approach; Nigeria’s elasticities are higher 

in the IFSA approach, as well as Ethiopia’s. Regardless of the model used, the values are usually 

consistent across MDER cutoffs for a given nation; they are all large and with notable 

heterogeneity across nations.  

Table 10 also shows descriptive statistics for the point elasticities from the Lognormal 

model for the full 83 nation set. They range from 2.795 to 16.159, showing extreme sensitivity to 

the MDER value used in the PoU at the upper end. This underscores the importance of obtaining 

the best data possible to generate more precise estimates of the PoU. Similarly, noisy estimated 

values used as inputs (the CV used and the total food availability as discussed in section 2.4) to 

the modeling work of the PoU could introduce large errors in the estimated PoU at these high 

elasticity values. However, even a more moderate elasticity value, such as those for India around 

6, when considering its large population, the PoU will be multiplied against, again translates into 

 
8 FAO food supply values were not available for Eritrea and Somalia. We created synthetic population weighted 
estimates using Ethiopia, Djibouti, and Sudan for Eritrea, and Ethiopia, Djibouti, and Ethiopia for Somalia. 
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large possible errors in the estimate of the undernourished.  

<Table 10 about here> 

5. Conclusion and Implications 

Our work addresses an important aspect of food insecurity assessment in adjusting estimates of 

the PoU for changes in sedentarism over time. We apply and update the approach of Michels and 

Beghin (2024) to adjust MDERs for sedentarism by adjusting the PAL used in the calculation of 

the MDER for changes in sedentarism, proxied by changes in estimated sitting time, along with 

allowing for a deflation of the MDER for bias in the calculated BMRs used in the MDERs by 

FAO. We collected data from 1985 to 2022/23 for the 83 nations included in the yearly USDA 

ERS IFSA report to apply our revision methodology to. The results from either modeling 

approach, that of the IFSA or the Lognormal approach used by FAO, show significant declines in 

the number of undernourished in this set of 83 nations considered. The estimated PAL bias is 

positive and all MDERs were revised downwards.  

The IFSA model with the 2,100-kcal cutoff of ERS reported 1056.248 million 

undernourished in the 83-nation aggregate, while the 2,100-kcal cutoff implemented into the 

Lognormal model results in a higher 1,226.394 million estimate. Use of the FAO MDERs in the 

IFSA model resulted in 518 million (rounded) undernourished, 447 million using our PAL 

Revised MDERs, 400 million for the BMR Deflated MDERs, and 345 million for the PAL and 

BMR Revised MDERs. These are staggering differences confirmed in the robustness check using 

the FAO’s Lognormal approach.9 The Lognormal model estimated 589, 507, 459, and 393 

million undernourished for the FAO MDER, the PAL Revised MDER, the BMR Deflated 

 
9 We applied food waste & loss percentages from FAOSTAT to the FAO MDERs in an attempt to match FAO’s 
estimated PoU values. Significant discrepancies remain as compared to the estimates FAO has published in the latest 
SOFI report. The SOFI uses 3-year averages but the discrepancies we encounter tend to be larger than this 
adjustment. 
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MDER, and the PAL and BMR Revised MDER, respectively. These numbers, from either 

modeling approach, suggest a high sensitivity to the MDER value used in the modeling 

approach.  

The elasticities of PoU with respect to the MDER are high (all above 1) but 

heterogeneous across nations with some extreme values as high as 16. For India, with elasticity 

values around 6 to 8, a small adjustment to the MDER can imply drastic changes in the estimate 

of the undernourished, meaning tens of millions fewer undernourished people with a seemingly 

small change in the MDER cutoff. The heterogeneous elasticities computed across the 83 nations 

considered show the importance of deriving more accurate MDERs and their underlying 

elements (PAL, BMR) for each food insecure country.  

These results above highlight the importance of obtaining the best data possible as inputs 

to these modeling approaches and reducing sources of noise whenever possible. Small errors in 

the inputs of these modeling approaches, such as the mean dietary energy consumption and the 

CV, can translate to large errors in the output estimates of undernourished. While it is impossible 

to eliminate these issues entirely, the adjustment for sedentarism via the PAL over time helps to 

account for an important  bias and generate more accurate estimates of undernourishment to 

make better informed policy decisions.  
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Table  1. FAO example factorial calculation and revised factorial calculation 

Notes: FAO uses the factorial method to estimate total energy expenditure. The approach allocates time in hours per day to various daily activities (components 
of the calculation, called “factors”), each of which is assigned an energy cost as a multiple of BMR, and aggregates across activities to estimate an overall PAL 
value (FAO, 2008). We utilized an adjustment factor of 0.4424 to add and subtract from the time allocation of each activity, based on whether the energy cost in 
PAR is above or below 1.55. This was done to bring the approximate value of 1.53 in the table above in line with the 1.55 value used by FAO. Their exact 
factorial calculation is unknown to us. We also adjusted the factorial calculation using Solver in Excel utilizing constraints on time allocations and minimizing 
the sum of the squared deviations from the time original allocations. The results were overall similar to the above method, with only some minor differences.  
 

 

 

 

 FAO Example Factorial Calculation (FAO/WHO/UNU 2001) Revised Factorial Calculation 
Main daily activities 
Sedentary or light 
activity lifestyle 

Time 
allocation 
hours 

Energy 
cost PAR 

Time × 
energy 
cost 

Mean PAL 
multiple of 24-
hour BMR 

Time allocation 
hours 

Adjustment 
Factor (AF) 

Sleeping 8 1 8  8-0.25*AF 0.4424 
Personal care (dressing, 
showering) 1 2.3 2.3  1+0.2*AF  
Eating 1 1.5 1.5  1-0.25*AF  
Cooking 1 2.1 2.1  1+0.2*AF  
Sitting (office work, 
selling produce, tending 
shop) 8 1.5 12  8-0.25*AF  
General household work 1 2.8 2.8  1+0.2*AF-0.5*SC  
Driving car to/from work 1 2 2  1+0.2*AF  
Walking at varying paces 
without a load 1 3.2 3.2  1+0.2*AF-0.5*SC  
Light leisure activities 
(watching TV, chatting) 2 1.4 2.8  2-0.25*AF+SC  
Total 24   36.7 36.7/24 =1.53   
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Table 2. Data Sources and Years of Variables 

Variable Source Years Mean Standard 
Deviation Minimum  Maximum 

MDER FAOSTAT 2023 1774.70 62.15 1655.00 1933.00 
Proportion of 
Population Using the 
Internet 

World Bank WDI 1985, 
2022 2022: 46.62 2022: 23.77 2022: 0.00 2022: 88.13 

Rural Population 
Percentage World Bank WDI 1985, 

2022 
1985: 66.38 
2022: 51.74  

1985: 17.34 
2022: 18.05  

1985: 20.58 
2022: 10.74  

1985: 94.94 
2022: 85.58 

Theil Index 

World Bank Poverty 
and Inequality 
Platform, World Bank 
World Development 
Report 1999, LM-
WPID dataset from 
Lakner and Milanovic 
(2013) 

1985, 
2022 

1985: 0.33 
2022: 0.26 

1985: 0.17 
2022: 0.11  

1985: 0.10 
2022: 0.10 

1985: 1.03 
2022: 0.64 

Upper Secondary 
Education 
Completion Rate 

UNESCO 1990, 
2023 

1985: 0.21 
2023: 0.40 

1985: 0.22 
2023: 0.29 

1985: 0.01 
2023: 0.02 

1985: 0.93 
2023: 0.99 

GDP Per Capita in 
2015 USD World Bank WDI 1985, 

2022 
1985: 1445.12 
2022: 2437.02 

1985: 1094.08 
2022: 1915.51 

1985: 172.92 
2022: 262.18 

1985: 4704.06 
2022: 8732.08 

Notes: Web use is zero in 1985 in all nations. For the Theil Index the nearest values to 1985 and 2022 available were used when 
data availability was limited. For the upper secondary education completion rate, 2023 is the latest data available. 
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Table 3. Descriptive Statistics of Output Variables and MDERs 
Variable Mean Standard Deviation Minimum Maximum 
Predicted Change in Sitting 
Time (hours/day) 0.68 0.36 0.10 1.85 
New Physical Activity 
Level (PAL) unitless 1.50 0.02 1.43 1.54 
FAO MDER (kcal/day) 1774.70 62.15 1655.00 1933.00 
BMR Deflated MDER 
(kcal/day) 1690.19 59.19 1576.19 1840.95 
PAL Revised MDER 
(kcal/day) 1722.30 54.23 1614.86 1877.26 
PAL and BMR Revised 
MDER (kcal/day) 1640.28 51.64 1537.97 1787.87 

Note: Population weighted averages of the PAL Revised MDER and PAL and BMR Revised 
MDER are 1720 and 1638, respectively, as presented in the abstract, counter to the arithmetic 
means presented above. 
 

Table 4. Descriptive Statistics of FAO MDER vs PAL Revised MDER and PAL and BMR 
Revised MDER Percentage Changes Over Time 

 

FAO MDER 
Percentage Changes 

Over Time via 
demographic change 

PAL Revised MDER 
Percentage Changes 

Over Time 

PAL and BMR Revised 
MDER Percentage 

Changes Over Time 
Mean 4.603% -2.929% -7.552% 
Minimum -2.355% -7.949% -12.333% 
25th Percentile 1.749% -3.700% -8.286% 
Median 4.470% -2.578% -7.218% 
75th Percentile 6.703% -1.758% -6.436% 
Maximum 14.469% -0.443% -5.184% 
Std. Dev. 3.457% 1.530% 1.457% 
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Table 5. MDER Inflation for Top Five Food Insecure Nations 
 

Country 

FAO 
MDER 
(kcal) 

PAL 
Revised 
MDER 
(kcal) 

5%-BMR 
Deflated 
MDER 
(kcal) 

PAL & 
BMR 

Revised 
MDER 
(kcal) 

Inflation 
Via 
PAL 
(kcal) 

Inflation 
Via 

BMR 
(kcal) 

Inflation 
Interaction 

(kcal) 

Total 
Inflation 

(kcal) 

PAL 
Inflation 

(%) 

BMR 
Inflation 

(%) 

Interaction 
Inflation 

(%) 

Total 
Inflation 

(%) 
India 1806 1744.462 1720.000 1661.393 58.607 83.070 2.930 144.607 3.528% 5.0% 0.176% 8.704% 
Pakistan 1740 1713.984 1657.143 1632.366 24.777 81.618 1.239 107.634 1.518% 5.0% 0.076% 6.594% 

Dem. Rep. 
of Congo 1655 1625.932 1576.190 1548.507 27.684 77.425 1.384 106.493 1.788% 5.0% 0.089% 6.877% 
Nigeria 1719 1614.865 1637.143 1537.966 99.177 76.898 4.959 181.034 6.449% 5.0% 0.322% 11.771% 
Ethiopia 1739 1717.923 1656.190 1636.117 20.073 81.806 1.004 102.883 1.227% 5.0% 0.061% 6.288% 

 

Table 6. Descriptive Statistics on the MDER Inflation for 83 IFSA Nations 

 
Inflation Via 
PAL (kcal) 

Inflation Via 
BMR (kcal) 

Inflation 
Interaction (kcal) 

Total Inflation 
(kcal) 

PAL 
Inflation (%) 

BMR 
Inflation (%) 

Interaction 
Inflation (%) 

Total 
Inflation (%) 

Mean 49.9064 82.0141 2.4953 134.4159 3.043% 5.000% 0.152% 8.195% 
Minimum 7.0566 76.8983 0.3528 86.6756 0.445% 5.000% 0.022% 5.467% 

25th Percentile 28.9318 80.4184 1.4466 112.1831 1.789% 5.000% 0.089% 6.879% 
Median 44.4597 81.6352 2.2230 128.1719 2.647% 5.000% 0.132% 7.779% 

75th Percentile 65.0272 83.4535 3.2514 152.6989 3.842% 5.000% 0.192% 9.034% 
Maximum 137.8652 89.3933 6.8933 224.5795 8.636% 5.000% 0.432% 14.068% 
Std. Dev. 26.7719 2.5822 1.3386 28.3398 1.646% 0.000% 0.082% 1.728% 

 Note: Population weighted averages for the Inflation Via PAL and PAL Inflation are 57.49 and 3.52%, as reported in the abstract, 
counter to the arithmetic means of 49.9064 kcal and 3.043% as shown in the table above.
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Table 7. Top Five Countries and World Aggregate of Undernourished Population Utilizing 
IFSA Model (millions) 

Country FAO     
MDER 

PAL Revised 
MDER 

BMR Deflated 
MDER 

PAL and BMR 
Revised MDER 

ERS 2100 (2020-22 
Calibrated) 

India 90.457 68.270 60.580 44.633 270.242 
Pakistan 48.713 45.268 38.124 35.188 80.278 

Dem. Rep. of 
Congo 30.893 29.427 26.946 25.583 54.341 

Nigeria 27.593 18.476 20.249 13.107 64.562 
Ethiopia 16.696 15.514 12.319 11.368 36.310 

World Aggregate 
(83 countries) 518.202 446.875 400.201 344.583 1,056.248 

Table 8. Arc Elasticities of IFSA PoU Results Top Five Nations 

Country 
PAL Revised 

MDER 
BMR Deflated 

MDER 
PAL and BMR 
Revised MDER 

India 8.065 8.110 8.134 
Pakistan 4.867 5.000 5.051 

Dem. Rep. of Congo 2.743 2.798 2.828 
Nigeria 6.335 6.293 6.403 
Ethiopia 6.015 6.184 6.227 

World Aggregate (83 countries) Descriptive Statistics 
Mean 6.213 6.283 6.291 

Minimum 1.681 1.770 1.803 
25th Percentile 4.147 4.280 4.394 

Median 6.335 6.339 6.403 
75th Percentile 7.956 8.011 7.931 

Maximum 12.824 12.833 12.013 
Std. Dev. 2.434 2.406 2.327 

 
Table 9. Top Five Countries and World Aggregate of Undernourished  

Population Utilizing the Full Lognormal Model (millions) 
 FAO 

MDER 
PAL Revised 
MDER 

BMR Deflated 
MDER 

PAL and BMR 
Revised MDER 2,100 kcal 

India 191.558 156.554 143.696 115.421 401.519 
Pakistan 39.717 37.017 31.420 29.117 82.927 
Dem. Rep. of Congo 32.841 31.071 28.069 26.419 58.389 
Nigeria 31.472 22.646 24.409 17.115 73.052 
Ethiopia 24.427 23.257 19.957 18.928 46.403 
World Aggregate (83 
countries) 589.360 507.093 459.318 392.664 1,226.394 
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Table 10. Point Elasticities of Lognormal PoU Results Top Five Nations 

 FAO MDER 
PAL Revised 
MDER 

BMR Deflated 
MDER 

PAL and BMR 
Revised MDER 

India 5.645 5.997 6.141 6.500 
Pakistan 4.614 4.730 4.993 5.112 
Dem. Rep. of Congo 3.073 3.178 3.365 3.473 
Nigeria 5.006 5.530 5.414 5.948 
Ethiopia 3.985 4.064 4.301 4.381 

World Aggregate (83 countries) Descriptive Statistics 
Mean 6.057 6.560 6.381 6.890 

Minimum 2.795 3.043 2.877 3.128 
25th Percentile 3.914 4.252 4.031 4.356 

Median 5.441 5.933 5.641 6.013 
75th Percentile 7.770 8.289 8.178 8.789 

Maximum 14.247 15.386 15.109 16.159 
Std. Dev. 2.635 2.828 2.822 3.016 

 
 

Figure 1. Change in Predicted Sitting Time Distribution 
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Figure 2. Revised Physical Activity Level Distribution 

 
 

Figure 3 . MDER Distribution by Revision Type
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Appendix 
Appendix Figure 1. Kernel density for proportion on the web. 

 

Appendix Figure 2. Kernel density for proportion of rural population. 

 
 

Appendix Figure 3. Kernel density for Theil index. 
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Appendix Figure 4. Kernel density for upper secondary completion 

 
 

Appendix Figure 5. Kernel density for GDP per capita. 

 
 

Appendix Figure 6. Histogram of FAO MDER Percentage Changes Over Time 
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Appendix Table A1. Estimates of Undernourished Utilizing IFSA Model (in millions) 

Country 
FAO 
MDER 

PAL 
Revised 
MDER 

BMR 
Deflated 
MDER 

PAL and BMR 
Revised 
MDER 

ERS 2100 
(2020-22 
Calibrated) 

Afghanistan 16.979 15.847 13.874 12.811 18.467 
Algeria 1.168 0.737 0.784 0.481 2.583 
Angola 6.449 5.547 5.004 4.246 13.752 
Armenia 0.060 0.046 0.035 0.026 0.173 
Azerbaijan 0.108 0.056 0.057 0.028 0.388 
Bangladesh 9.677 7.532 6.504 4.960 33.198 
Benin 1.063 0.915 0.767 0.654 2.644 
Bolivia 1.555 1.110 1.092 0.753 3.599 
Burkina Faso 4.439 4.133 3.691 3.420 6.818 
Burundi 7.732 7.589 6.809 6.662 9.920 
Cabo Verde 0.058 0.040 0.041 0.027 0.192 
Cambodia 1.089 0.857 0.747 0.577 3.466 
Cameroon 2.216 1.829 1.561 1.270 5.972 
Central African 
Republic 2.807 2.696 2.394 2.287 4.317 
Chad 6.558 6.435 5.623 5.507 8.939 
Colombia 1.668 1.148 1.091 0.731 5.178 
Congo 2.340 2.173 1.914 1.759 3.048 
Cote d'Ivoire 2.965 2.413 2.346 1.886 5.991 
Democratic 
People's Republic 
of Korea 10.736 10.401 8.848 8.534 14.507 
Democratic 
Republic of the 
Congo 30.893 29.427 26.946 25.583 54.341 
Djibouti 0.100 0.086 0.074 0.063 0.193 
Dominican 
Republic 0.290 0.150 0.177 0.087 0.918 
Ecuador 1.649 1.359 1.082 0.874 4.010 
Egypt 8.359 6.782 6.168 4.932 16.207 
El Salvador 0.501 0.426 0.345 0.289 1.250 
Eritrea 2.536 2.317 2.086 1.882 3.709 
Eswatini 0.150 0.127 0.107 0.089 0.292 
Ethiopia 16.696 15.514 12.319 11.368 36.310 
Gambia 0.157 0.119 0.108 0.080 0.735 
Georgia 0.224 0.164 0.145 0.104 0.537 
Ghana 1.037 0.706 0.688 0.456 2.589 
Guatemala 2.093 1.736 1.565 1.278 4.932 
Guinea 1.019 0.881 0.758 0.648 2.665 
Guinea-Bissau 0.510 0.454 0.401 0.353 0.964 
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Haiti 5.605 5.268 5.125 4.793 6.740 
Honduras 1.170 0.934 0.878 0.688 2.548 
India 90.457 68.270 60.580 44.633 270.242 
Indonesia 16.502 13.158 11.445 8.971 41.605 
Iran 0.773 0.429 0.463 0.248 9.229 
Jamaica 0.229 0.169 0.151 0.108 0.402 
Kenya 16.204 14.398 12.729 11.153 25.057 
Kyrgyzstan 0.166 0.122 0.103 0.074 1.124 
Laos 0.667 0.508 0.450 0.334 2.382 
Lebanon 0.431 0.290 0.298 0.194 1.125 
Lesotho 0.664 0.581 0.534 0.460 0.988 
Liberia 1.805 1.742 1.566 1.507 3.023 
Madagascar 12.141 11.417 10.182 9.499 19.423 
Malawi 2.842 2.500 2.162 1.882 6.059 
Mali 1.848 1.550 1.363 1.128 3.685 
Mauritania 0.240 0.186 0.170 0.129 0.746 
Moldova 0.103 0.085 0.059 0.048 0.318 
Mongolia 0.201 0.136 0.138 0.090 0.464 
Morocco 1.994 1.480 1.423 1.035 2.955 
Mozambique 11.596 10.967 9.813 9.227 17.372 
Myanmar 5.434 4.730 3.858 3.319 10.029 
Namibia 0.450 0.332 0.319 0.227 0.827 
Nepal 1.223 0.939 0.798 0.600 4.485 
Nicaragua 1.083 0.957 0.856 0.749 1.924 
Niger 3.304 3.236 2.611 2.553 8.200 
Nigeria 27.593 18.476 20.249 13.107 64.562 
Pakistan 48.713 45.268 38.124 35.188 80.278 
Peru 2.641 1.540 1.826 1.018 6.587 
Philippines 9.077 6.731 6.646 4.824 23.895 
Rwanda 2.657 2.463 2.098 1.931 5.188 
Senegal 1.104 0.880 0.737 0.576 3.526 
Sierra Leone 2.078 1.935 1.757 1.626 3.115 
Somalia 12.094 11.830 11.093 10.816 13.861 
South Sudan 6.531 6.416 5.804 5.686 6.501 
Sri Lanka 2.142 1.487 1.453 0.975 3.970 
Sudan 3.959 3.481 2.875 2.503 15.136 
Syria 1.989 1.768 1.384 1.218 4.361 
Tajikistan 1.831 1.709 1.422 1.319 2.587 
Tanzania 13.739 12.819 11.386 10.568 23.847 
Togo 1.192 1.034 0.881 0.755 2.718 
Tunisia 0.344 0.170 0.230 0.109 0.638 
Turkmenistan 0.152 0.139 0.093 0.084 0.547 
Uganda 16.730 15.844 14.132 13.309 24.218 
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Ukraine 4.837 3.688 3.170 2.344 4.127 
Uzbekistan 0.591 0.343 0.343 0.190 1.797 
Vietnam 2.467 1.597 1.626 1.024 8.483 
Yemen 17.883 16.752 15.653 14.515 21.927 
Zambia 6.919 6.650 6.034 5.780 9.129 
Zimbabwe 7.921 7.717 6.962 6.760 11.491 
Total 518.202 446.875 400.201 344.583 1056.248 

 
 

Appendix Table A2. Estimates of Undernourished Utilizing  
Lognormal Model (in millions) 

Country 
FAO 
MDER 

PAL 
Revised 
MDER 

BMR 
Deflated 
MDER 

PAL and 
BMR 
Revised 
MDER 

2100 kcal 
Cutoff 

Afghanistan 13.162 12.495 11.341 10.719 22.763 
Algeria 0.823 0.499 0.534 0.314 2.835 
Angola 7.808 6.959 6.435 5.682 15.855 
Armenia 0.017 0.012 0.008 0.006 0.076 
Azerbaijan 0.047 0.023 0.023 0.011 0.196 
Bangladesh 18.088 14.566 12.824 10.126 45.126 
Benin 1.349 1.190 1.026 0.897 3.380 
Bolivia 2.581 2.042 2.019 1.562 5.129 
Burkina Faso 3.716 3.425 3.009 2.757 7.308 
Burundi 6.173 6.033 5.290 5.153 9.909 
Cabo Verde 0.070 0.047 0.049 0.032 0.138 
Cambodia 0.658 0.484 0.406 0.291 2.470 
Cameroon 1.526 1.226 1.023 0.808 5.153 
Central African 
Republic 

2.649 2.549 2.278 2.181 4.276 

Chad 5.445 5.335 4.620 4.519 9.460 
Colombia 3.585 2.705 2.602 1.925 7.806 
Congo 2.058 1.943 1.764 1.657 3.249 
Cote d'Ivoire 2.241 1.736 1.676 1.276 5.743 
Democratic People's 
Republic of Korea 

12.383 12.042 10.432 10.102 17.178 

Democratic Republic 
of the Congo 

32.841 31.071 28.069 26.419 58.389 

Djibouti 0.119 0.102 0.088 0.075 0.232 
Dominican Republic 0.711 0.441 0.496 0.296 1.576 
Ecuador 2.442 2.118 1.794 1.536 5.404 
Egypt 8.853 7.289 6.675 5.425 18.126 
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El Salvador 0.566 0.489 0.405 0.346 1.393 
Eritrea* 0.399 0.340 0.283 0.238 1.116 
Eswatini 0.119 0.100 0.083 0.068 0.302 
Ethiopia 24.427 23.257 19.957 18.928 46.403 
Gambia 0.454 0.375 0.351 0.285 0.954 
Georgia 0.130 0.094 0.082 0.058 0.305 
Ghana 1.449 1.031 1.007 0.701 4.061 
Guatemala 2.011 1.710 1.565 1.315 4.650 
Guinea 1.405 1.245 1.100 0.968 3.174 
Guinea-Bissau 0.670 0.618 0.567 0.519 1.094 
Haiti 4.480 3.993 3.791 3.335 6.584 
Honduras 1.971 1.696 1.628 1.386 3.365 
India 191.558 156.554 143.696 115.421 401.520 
Indonesia 14.208 11.249 9.743 7.583 39.732 
Iran 4.598 2.887 3.065 1.856 11.411 
Jamaica 0.189 0.141 0.127 0.092 0.346 
Kenya 13.820 12.417 11.118 9.883 25.669 
Kyrgyzstan 0.314 0.232 0.197 0.142 1.059 
Laos 0.262 0.180 0.152 0.101 0.947 
Lebanon 0.490 0.354 0.362 0.255 1.020 
Lesotho 0.885 0.798 0.748 0.666 1.371 
Liberia 1.838 1.768 1.576 1.510 2.965 
Madagascar 10.492 9.843 8.748 8.148 18.403 
Malawi 3.181 2.883 2.580 2.323 6.619 
Mali 2.864 2.509 2.278 1.978 6.322 
Mauritania 0.395 0.323 0.301 0.243 0.911 
Moldova 0.033 0.027 0.017 0.013 0.103 
Mongolia 0.043 0.024 0.024 0.013 0.210 
Morocco 2.006 1.538 1.486 1.121 4.041 
Mozambique 7.430 6.863 5.860 5.370 16.380 
Myanmar 2.069 1.713 1.299 1.059 7.016 
Namibia 0.435 0.354 0.344 0.275 0.816 
Nepal 1.261 0.989 0.851 0.656 4.117 
Nicaragua 1.106 0.982 0.882 0.776 2.069 
Niger 3.879 3.804 3.103 3.038 9.000 
Nigeria 31.472 22.646 24.409 17.115 73.052 
Pakistan 39.717 37.017 31.420 29.117 82.927 
Peru 1.808 1.003 1.208 0.640 5.409 
Philippines 5.303 3.615 3.557 2.356 18.177 
Rwanda 3.533 3.322 2.917 2.728 6.370 
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Senegal 0.829 0.658 0.550 0.429 2.730 
Sierra Leone 2.105 1.941 1.740 1.594 3.730 
Somalia* 3.390 3.203 2.726 2.563 7.179 
South Sudan 1.638 1.569 1.241 1.184 3.910 
Sri Lanka 0.573 0.352 0.341 0.201 2.313 
Sudan 4.210 3.702 3.056 2.660 11.933 
Syria 5.230 4.914 4.317 4.034 8.155 
Tajikistan 0.687 0.624 0.482 0.435 1.872 
Tanzania 13.048 12.114 10.669 9.848 27.153 
Togo 1.328 1.181 1.034 0.910 2.839 
Tunisia 0.294 0.149 0.199 0.097 0.808 
Turkmenistan 0.212 0.194 0.131 0.120 0.770 
Uganda 16.208 15.478 14.057 13.369 25.827 
Ukraine 1.689 1.235 1.039 0.740 3.746 
Uzbekistan 0.542 0.331 0.331 0.195 1.867 
Vietnam 4.050 2.724 2.769 1.813 11.814 
Yemen 10.078 9.270 8.523 7.782 17.498 
Zambia 5.117 4.834 4.202 3.948 9.643 
Zimbabwe 5.517 5.304 4.544 4.349 9.443 
Total 589.360 507.093 459.318 392.664 1,226.394 

Note: * denotes the food supply per day in kcal was imputed for this nation using the 
three nearest neighbors by population weighted average. 

 
 

Appendix Table A3. Arc Elasticities of IFSA  
Modeling from FAO MDER Origin Point 

Country 

PAL 
Revised 
MDER 

BMR 
Deflated 
MDER 

PAL and 
BMR 
Revised 
MDER 

Afghanistan 3.946 4.127 4.224 
Algeria 8.058 8.055 7.944 
Angola 5.101 5.173 5.264 
Armenia 10.801 10.813 10.682 
Azerbaijan 12.824 12.833 12.013 
Bangladesh 7.988 8.041 8.059 
Benin 6.535 6.618 6.661 
Bolivia 7.164 7.173 7.283 
Burkina Faso 3.702 3.772 3.814 
Burundi 2.442 2.603 2.634 
Cabo Verde 7.186 7.172 7.240 
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Cambodia 7.580 7.633 7.663 
Cameroon 7.034 7.106 7.151 
Central African Republic 3.111 3.255 3.305 
Chad 3.028 3.148 3.165 
Colombia 8.576 8.583 8.510 
Congo 3.940 4.102 4.198 
Cote d'Ivoire 4.762 4.774 4.844 
Democratic People's Rep of Korea 3.749 3.952 3.993 
Democratic Rep of the Congo 2.743 2.798 2.828 
Djibouti 6.044 6.127 6.186 
Dominican Republic 9.919 9.949 9.549 
Ecuador 8.378 8.510 8.559 
Egypt 6.143 6.183 6.238 
El Salvador 7.483 7.588 7.628 
Eritrea 3.865 3.992 4.103 
Eswatini 6.716 6.833 6.914 
Ethiopia 6.015 6.184 6.227 
Gambia 7.485 7.520 7.555 
Georgia 8.725 8.756 8.726 
Ghana 8.296 8.300 8.232 
Guatemala 5.866 5.923 6.001 
Guinea 5.963 6.030 6.074 
Guinea-Bissau 4.785 4.894 4.987 
Haiti 1.811 1.833 1.883 
Honduras 5.808 5.842 5.933 
India 8.065 8.110 8.134 
Indonesia 7.365 7.419 7.451 
Iran 10.274 10.298 9.853 
Jamaica 8.389 8.437 8.467 
Kenya 4.802 4.924 5.035 
Kyrgyzstan 9.533 9.553 9.464 
Laos 7.924 7.982 8.030 
Lebanon 7.491 7.481 7.518 
Lesotho 4.348 4.432 4.564 
Liberia 2.824 2.905 2.933 
Madagascar 3.463 3.598 3.672 
Malawi 5.487 5.575 5.637 
Mali 6.132 6.194 6.250 
Mauritania 6.997 7.028 7.060 
Moldova 10.962 11.041 10.977 
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Mongolia 7.651 7.646 7.650 
Morocco 6.843 6.855 6.883 
Mozambique 3.309 3.414 3.467 
Myanmar 6.840 6.955 7.005 
Namibia 6.957 6.985 7.129 
Nepal 8.597 8.639 8.618 
Nicaragua 4.726 4.798 4.869 
Niger 4.675 4.804 4.814 
Nigeria 6.335 6.293 6.403 
Pakistan 4.867 5.000 5.051 
Peru 7.521 7.478 7.473 
Philippines 6.335 6.339 6.401 
Rwanda 4.704 4.825 4.877 
Senegal 8.095 8.168 8.194 
Sierra Leone 3.356 3.430 3.484 
Somalia 1.681 1.770 1.803 
South Sudan 2.276 2.417 2.443 
Sri Lanka 7.846 7.855 7.905 
Sudan 6.411 6.507 6.549 
Syria 7.218 7.358 7.397 
Tajikistan 5.012 5.160 5.209 
Tanzania 3.761 3.840 3.884 
Togo 6.060 6.163 6.232 
Tunisia 8.164 8.196 7.917 
Turkmenistan 9.835 9.955 9.942 
Uganda 3.344 3.451 3.502 
Ukraine 8.449 8.538 8.607 
Uzbekistan 10.913 10.913 10.515 
Vietnam 8.427 8.426 8.306 
Yemen 2.631 2.727 2.826 
Zambia 2.722 2.801 2.833 
Zimbabwe 2.519 2.643 2.676 

 
 

Appendix Table A4. Point Elasticities of Lognormal Model 
 

Country 
FAO 
MDER 

PAL 
Revised 
MDER 

BMR 
Deflated 
MDER 

PAL and BMR 
Revised MDER 

Afghanistan 2.926 3.016 3.179 3.271 
Algeria 8.610 9.232 9.151 9.779 
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Angola 3.809 3.996 4.121 4.312 
Armenia 14.247 14.834 15.386 15.980 
Azerbaijan 14.046 15.109 15.086 16.159 
Bangladesh 6.739 7.137 7.363 7.769 
Benin 5.404 5.588 5.799 5.985 
Bolivia 4.795 5.249 5.270 5.736 
Burkina Faso 4.172 4.292 4.478 4.600 
Burundi 2.952 3.017 3.378 3.447 
Cabo Verde 6.800 7.530 7.469 8.214 
Cambodia 9.504 10.038 10.334 10.876 
Cameroon 7.875 8.233 8.520 8.884 
Central Afri. Rep. 2.890 2.995 3.291 3.401 
Chad 3.219 3.257 3.515 3.554 
Colombia 6.341 6.742 6.795 7.202 
Congo 3.017 3.127 3.306 3.420 
Cote d'Ivoire 5.753 6.106 6.153 6.511 
Dem. People's 
Rep. of Korea 3.266 3.350 3.765 3.854 

Dem Rep of Congo 3.073 3.178 3.365 3.473 
Djibouti 5.862 6.102 6.334 6.579 
Dominican 
Republic 7.125 7.854 7.680 8.421 
Ecuador 6.032 6.299 6.601 6.875 
Egypt 5.601 5.863 5.979 6.245 
El Salvador 6.575 6.818 7.121 7.368 
Eritrea* 6.713 7.009 7.336 7.639 
Eswatini 7.125 7.463 7.801 8.146 
Ethiopia 3.985 4.064 4.301 4.381 
Gambia 5.050 5.392 5.506 5.855 
Georgia 8.985 9.497 9.694 10.212 
Ghana 7.203 7.666 7.696 8.165 
Guatemala 4.975 5.203 5.325 5.557 
Guinea 4.850 5.008 5.168 5.328 
Guinea-Bissau 3.258 3.410 3.568 3.725 
Haiti 3.240 3.501 3.615 3.887 
Honduras 3.782 3.998 4.056 4.276 
India 5.645 5.997 6.141 6.500 
Indonesia 7.451 7.802 8.012 8.367 
Iran 7.991 8.730 8.638 9.388 
Jamaica 7.870 8.382 8.561 9.081 
Kenya 4.244 4.461 4.677 4.901 
Kyrgyzstan 9.159 9.698 9.983 10.532 
Laos 10.612 11.309 11.608 12.317 
Lebanon 5.996 6.479 6.445 6.935 
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Lesotho 3.261 3.496 3.637 3.882 
Liberia 3.010 3.085 3.300 3.377 
Madagascar 3.522 3.668 3.930 4.082 
Malawi 4.141 4.281 4.434 4.575 
Mali 4.535 4.718 4.847 5.033 
Mauritania 5.376 5.641 5.733 6.002 
Moldova 13.002 13.399 14.127 14.529 
Mongolia 11.354 12.247 12.209 13.111 
Morocco 5.970 6.294 6.335 6.663 
Mozambique 4.632 4.792 5.102 5.267 
Myanmar 9.170 9.486 9.935 10.255 
Namibia 4.611 4.948 4.990 5.334 
Nepal 7.770 8.124 8.335 8.693 
Nicaragua 4.460 4.641 4.801 4.986 
Niger 4.417 4.446 4.742 4.772 
Nigeria 5.006 5.530 5.414 5.948 
Pakistan 4.614 4.730 4.993 5.112 
Peru 7.950 8.881 8.596 9.541 
Philippines 7.887 8.467 8.491 9.079 
Rwanda 3.755 3.866 4.095 4.210 
Senegal 8.094 8.464 8.742 9.118 
Sierra Leone 3.740 3.880 4.064 4.208 
Somalia* 4.295 4.389 4.649 4.746 
South Sudan 5.441 5.519 5.933 6.013 
Sri Lanka 10.212 11.004 11.053 11.855 
Sudan 6.310 6.518 6.819 7.031 
Syria 3.773 3.880 4.098 4.208 
Tajikistan 6.971 7.125 7.524 7.681 
Tanzania 3.969 4.087 4.284 4.405 
Togo 4.938 5.132 5.345 5.542 
Tunisia 7.770 8.576 8.243 9.056 
Turkmenistan 9.408 9.550 10.176 10.320 
Uganda 2.795 2.877 3.043 3.128 
Ukraine 9.543 10.085 10.373 10.924 
Uzbekistan 9.790 10.461 10.460 11.138 
Vietnam 7.527 8.077 8.055 8.612 
Yemen 3.287 3.437 3.584 3.739 
Zambia 3.860 3.967 4.221 4.330 
Zimbabwe 3.758 3.850 4.199 4.294 

Note: * denotes the food supply per day in kcal was imputed for this nation using the  
three nearest neighbors by population weighted average. 
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