

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Research Progress in Biological Control of Soft Rot of *Amorphophallus konjac*

Lisha NIU, Tongshu DAI, Zhenliang CAO, Boxuan JIA, Bo HUANG, Lijuan DENG, Shuanglin YANG, Zhen REN, Yu ZHONG*

Kunming University, Kunming 650214, China

Abstract In this paper, the main control methods of soft rot of *Amorphophallus konjac* are reviewed, with a focus on the current research status of using plant growth promoting rhizobacteria for biological control of soft rot of *A. konjac*, and future research directions are looked forward to.

Key words *Amorphophallus konjac*, Soft rot, Plant growth promoting rhizobacteria, Induced resistance

1 Introduction

Amorphophallus konjac is perennial herb of *Amorphophallus* of Araceae, and could synthesize large amounts of konjac glucomannan (KGM). Due to strong thickening and film-forming properties, KGM is widely used in industries such as food, health products, pharmaceuticals, cosmetics, and chemicals, and has broad development prospects^[1-2]. Yunnan Province is the birthplace of *A. konjac* in China, and the *A. konjac* industry is also one of the important pillar industries for agricultural industrial structure adjustment and farmers' poverty alleviation and prosperity in the central and western regions^[3]. Soft rot of *A. konjac* is a bacterial disease mainly caused by *Erwinia carotovora* subsp. *carotovora* (Ecc.)^[4]. It generally occurs in the production of *A. konjac*, and the resulting yield loss can reach 20% to 50%. Therefore, soft rot is often referred to as the "cancer" of *A. konjac*, and its high incidence has become the main factor limiting the development of *A. konjac* industry^[5]. Exploring efficient prevention and control methods for soft rot of *A. konjac* is a necessary means to promote the development of *A. konjac* industry.

2 Prevention and control methods of soft rot of *A. konjac*

The research on the prevention and control of soft rot of *A. konjac* is currently mainly focused on the selection of resistant varieties and genetic engineering, chemical control, biological control, and other aspects. The breeding of resistant varieties of

A. konjac has always been one of the research hotspots in the prevention and control of soft rot. *A. konjac* is mainly distributed in the southern region of the Qinling Mountains in China, and *A. konjac* species resources in the southwestern and southern regions of Yunnan are the most abundant, and there are 16 species of recorded wild *A. konjac*^[6]. At present, the main cultivated varieties after artificial breeding include *Amorphophallus konjac* K. Koch, *Amorphophallus albus* P. Y. Liu & J. F. Chen, *Amorphophallus krausei* Engler, *Amorphophallus yunnanensis* Engl., *Amorphophallus muelleri*, etc^[7-9]. Among them, *Amorphophallus bulbifer* (Roxb.) Blume, represented by *A. muelleri*, has received a lot of attention in recent years due to its excellent resistance to soft rot of *A. konjac*. *A. bulbifer* (Roxb.) Blume has also become one of the research hotspots in variety breeding^[9]. Although some progress has been made in disease resistance breeding, *A. konjac* K. Koch is still the most widely planted species in China at present. Therefore, the current focus of prevention and control of soft rot of *A. konjac* is to extensively collect germplasm resources for research and promotion, and to comprehensively select economically valuable resistant *A. konjac* varieties through various breeding methods. Additionally, further development of preparations with good control effects on soft rot of *A. konjac* is needed to control the impact caused by the disease. At present, chemical agents such as streptomycin, thiamazone, clotrimacin, bromobinil, etc. are mainly used in production to control the soft rot of *A. konjac*, which can control the development of the soft rot of *A. konjac* to a certain extent^[10-11]. However, long-term use of chemical agents not only enhances bacterial resistance, but also causes adverse effects such as pesticide residues in agricultural products and damage to the ecological environment. With the development demand of green agriculture and the improvement of people's awareness of food quality and safety, researchers have conducted biological control of soft rot of *A. konjac* by screening and using beneficial microorganisms and their metabolites, plant extracts, etc. that can antagonize the pathogen of soft rot of *A. konjac* in recent years.

Received: March 3, 2023 Accepted: May 7, 2023

Supported by Joint Special Project for Basic Research of Local Undergraduate Universities in Yunnan Province (202101BA070001-057); 2021 Provincial College Student Innovation and Entrepreneurship Training Program Project in Yunnan Province (202111393018); Science Research Fund Project of Yunnan Provincial Department of Education (2022Y705, 2023Y0857, 2023Y0859).

Lisha NIU, master candidate, research fields: resource utilization and plant protection.

* Corresponding author. Yu ZHONG, lecturer, PhD., research fields: biological control.

3 Biological control of soft rot of *A. konjac*

3.1 Current situation of biological control At present, there is a lot of research on inhibitory effects of biocontrol bacteria such as *Lysobacter*^[12–14] and *Bacillus subtilis*^[15–18], biocontrol actinomycetes such as streptomycetes^[19–21] on soft rot of *A. konjac*, and antibacterial activity of plant extracts such as water extract from *Melia azedarach* leaves and seeds against Ecc. Among them, screening biocontrol bacteria that resist the pathogen of soft rot of *A. konjac* is currently a research hotspot, and certain research progress has been made. But there are still many limitations in application and promotion. Many studies have reported biocontrol bacteria that have good inhibitory effects on soft rot of *A. konjac*, but the types of microbial agents available for resisting soft rot in practical production applications are still relatively limited, and the screening of antagonistic microorganisms needs to be further strengthened. From the current research, it can be seen that no particularly effective biological control methods have been found. Currently, production mainly relies on chemical agents combining with agricultural measures to prevent and control the soft rot of *A. konjac*.

3.2 Using plant growth promoting rhizobacteria to control soft rot of *A. konjac*

Plant growth promoting rhizobacteria (PGPR) is a rhizosphere microorganism that can directly or indirectly promote plant growth. During the interaction with plants, some PGPRs can stimulate the production of system signals, trigger defense responses in the distal region, and ultimately form resistance throughout the entire plant. They exhibit rapid and strong resistance to subsequent pathogen infections, known as systemic resistance, also known as induced resistance^[23–24]. The plant induced resistance is persistence and broad-spectrum. Once induced, resistance can last for weeks or even months, and can resist various pathogens with different life histories and invasion strategies^[25]. With the continuous application of induced resistance in plant disease control and the further study of its mechanism, the use of induced disease resistance of plants has become a research hotspot in the field of plant disease control. Research by Zhang Zhongliang *et al.* showed that root irrigation with LouChe's streptomycetes D74 bio organic fertilizer can enhance the polyphenol oxidase activity and soluble protein content of *A. konjac*, and enhance the disease resistance of *A. konjac*^[26]. Lei Zhenzhen *et al.* studied the changes in SA and JA content in leaves of *A. konjac* K. Koch plants resistant to soft rot and common susceptible plants after inoculation with soft rot pathogens. They found that the changes in SA and JA content in leaves of *A. konjac* K. Koch plants with strong resistance were significantly different from those of ordinary plants after inoculation with soft rot pathogens^[27]. It can be seen that using PGPRs with antibacterial effects on the pathogenic bacteria of soft rot of *A. konjac* for comprehensive control could inhibit the growth of the pathogenic bacteria, and regulate the rhizosphere microenvironment. Additionally, it could induce the disease resistance of *A. konjac* plant system, enhance the plant's resistance to the pathogenic bacteria of soft rot, which is a new way to pre-

vent and control soft rot of *A. konjac*. However, there are currently few reports on this aspect of *A. konjac*.

The induced resistance of plants is divided into systemic acquired resistance (SAR) and induced systemic resistance (ISR). SAR is generally induced by pathogenic microorganisms and chemical inducers such as salicylic acid (SA) and 2,1,3-benzothiophenone (BTH), depends on SA mediated signaling pathways, and is marked by the expression of a large number of pathogenesis-related protein genes^[28]. ISR is generally induced by plant rhizosphere promoting microorganisms, such as plant growth promoting rhizobacteria (PGPR), and depends on jasmonic acid (JA)/ethylene (ET) mediated signaling pathways^[29]. Different from SAR, the formation of ISR is not accompanied by a direct disease resistance defense response, but rather by a faster defense response when plants are attacked by pathogens, a phenomenon known as priming^[30–31]. There have been reports that PGPR and its metabolites can induce plant resistance to soft rot pathogens. The two strains of *Pseudomonas* isolated from potato tubers by Pavlo *et al.* not only promote growth of potato plants, but also induce systemic resistance of plants. SAR and ISR marker genes are expressed to varying degrees^[32]. Streptomyces PM1 and PM5 (PGPRs) not only have antibacterial effects on Ecc., but also can stimulate plant immune response and induce rapid accumulation of polyphenol oxidase and peroxidase in plants^[33]. The research by Chandrasekaran *et al.* showed that inoculation with *Bacillus subtilis* CBR05 (PGPR) can enhance the resistance of tomatoes to Ecc. Among them, the expression of disease-resistant genes and the activity of antioxidant enzymes induced by *B. subtilis* system play a key role in the resistance to soft rot^[34].

4 Prospect

Although there have been few reports on the use of induced resistance to control soft rot of *A. konjac*, the use of PGPR, which has the ability to induce systemic resistance of plants, to control Ecc. can provide a reference for the control of soft rot of *A. konjac*. It is a new way to prevent and control soft rot of *A. konjac* using rhizosphere microorganisms that have antibacterial effects.

References

- [1] LIU PY. Konjac[M]. Beijing: China Agriculture Press, 2004. (in Chinese).
- [2] NIU Y, ZHANG SL, WANG ZM, *et al.* The germ plasm resources of *Amorphophallus rivieri* Durieu: A review [J]. Southwest Horticulture, 2005(2): 22–24. (in Chinese).
- [3] ZENG LQ, WU W, DUAN YY, *et al.* Strengths and countermeasures for development of konjac industry in Yunnan Province[J]. Research of Agricultural Modernization, 33(6): 717–721. (in Chinese).
- [4] WU JP, DIAO Y, GU YC, *et al.* Infection pathways of soft rot pathogens on *Amorphophallus konjac*[J]. African Journal of Microbiology Research, 2010, 4(14): 1495–1498.
- [5] GU HH, WANG ZX, JIANG X, *et al.* Soft rot of *Amorphophallus* and its control research progress[J]. Journal of Agriculture, 2018, 8(9): 15–19. (in Chinese).
- [6] WANG D. Analysis of cultivation suitability of main konjac varieties in Yunnan and construction of planting management information system[D].

- Kunming: Yunnan University, 2017. (in Chinese).
- [7] XIE SQ, YU Y, LIU GZ, et al. Study of superior resources of dasheen in Yunnan Province[J]. Seed, 2004(3): 49–50. (in Chinese).
- [8] LI JM, YANG Y, XIE SQ. The study condition and prospect of *Amorphophallus* in Yunnan[J]. Journal of Yunnan Agricultural University, 2006, 21(1): 73–75. (in Chinese).
- [9] ZHANG DH, WANG QP. Biology characteristic and prospect of *Amorphophallus muelleri* in plantation of konjac [J]. Journal of Changjiang Vegetables, 2010(22): 71–73. (in Chinese).
- [10] LI JT. Control effect of 72% agricultural streptomycin sulfate on soft rot of *Amorphophallus konjac*[J]. The Journal of Hebei Forestry Science and Technology, 2014(4): 9–10. (in Chinese).
- [11] BAO N, LI SQ, SUN ZX, et al. Toxicity measurement of three kinds of fungicides on *Erwinia bacterium* from konjac [J]. Journal of Yangtze University (Natural Science Edition), 2014, 11(5): 6–7, 4–5. (in Chinese).
- [12] WU YP, JI GH, CHEN YL, et al. Biocontrol effect and mechanisms of *Lysobacter antibioticus* 13-1 against soft rot pathogen of *Amorphophallus konjac*[J]. Chinese Journal of Biological Control, 2010, 26(2): 193–199. (in Chinese).
- [13] ZHANG LH, WANG YJ, LIAO L, et al. Biocontrol effect of *Lysobacter antibioticus* 06-4 on soft rot pathogen of *Amorphophallus konjac* and its mechanism[J]. Journal of Hunan Agricultural University (Natural Sciences), 2011, 37(3): 286–289. (in Chinese).
- [14] JI GH, WU YP, BAI XH, et al. Effects of *Lysobacter antibioticus* on soft rot disease and the diversity of konjac rhizosphere microbial community[J]. Acta Agriculturae Universitatis Jiangxiensis (Natural Sciences), 2009, 31(3): 499–503, 544. (in Chinese).
- [15] SU N, ZHONG FF, YANG TX, et al. Research on the cultivation technology system of konjac disease prevention[J]. China Plant Protection, 2010, 30(9): 32–34. (in Chinese).
- [16] LI H, LI LL, GAO Y, et al. Isolation and screening of *Bacillus thuringiensis* against soft rot of konjac[J]. Journal of China Three Gorges University (Natural Sciences), 2019, 41(3): 108–112. (in Chinese).
- [17] ZHOU LH, LI M, JI GH, et al. The screening and identification of endophytic bacteria of *Amorphophallus konjac* against *Erwinia carotovora* var. *carotovora*[J]. Journal of Yunnan Agricultural University (Natural Science), 2015, 30(4): 547–553. (in Chinese).
- [18] CUI S, CHEN CL, FENG JH, et al. Characterization of *Pectobacterium aroidearum* causing konjac soft rot and biocontrol effect of *Bacillus velezensis*[J]. China Vegetables, 2021(3): 83–93. (in Chinese).
- [19] HE F, CUI M. Research progress in biological control of soft rot of konjac[J]. Shaanxi Journal of Agricultural Sciences, 2017, 63(1): 64–67. (in Chinese).
- [20] HE F, ZHANG ZL, CUI M, et al. Disease prevention and growth promotion effects of actinomycete strain D74 on *Amorphophallus konjac*[J]. Acta Horticulturae Sinica, 2015, 42(2): 367–376. (in Chinese).
- [21] DAI XF, ZHU L, ZHANG SL, et al. Screening of antagonistic actino-
- mycetes against *Amorphophallus* soft rot[J]. Journal of Southwest University (Natural Science Edition), 2021, 43 (11): 9–17. (in Chinese).
- [22] BDLIYA BS, DAHIRU B. Efficacy of some plant extracts on the control of potato tuber soft rot caused by *Erwinia carotovora* ssp. *carotovora*[J]. Journal of Plant Protection Research, 2006, 46(3): 285–294.
- [23] SATTARI NR, PAHLAVAN YM, BOZORG-AMIRKALAEI M. Effects of humic acid and plant growth-promoting rhizobacteria (PGPR) on induced resistance of canola to *Brevicoryne brassicae* L. [J]. Bulletin of Entomological Research, 2019, 109(4): 479–489.
- [24] SERTEYN L, QUAGHEBEUR C, ONGENA M, et al. Induced systemic resistance by a plant growth-promoting rhizobacterium impacts development and feeding behavior of aphids[J]. Insects, 2020, 11 (4): 234.
- [25] PIETERSE CM, LEON-REYES A, VAN DER ENT S, et al. Networking by small-molecule hormones in plant immunity[J]. Nature Chemical Biology, 2009, 5(5): 308–316.
- [26] ZHANG ZL, HE F, XUE QH. Study of special actinomycete-derived organic fertilizer on growth-promoting of *Amorphophallus konjac* under *Castanea mollissima* stands[J]. Acta Agriculturae Boreali-occidentalis Sini- ca, 2016, 25(7): 1056–1061. (in Chinese).
- [27] LEI ZZ, YE JL, CHENG HL, et al. Characterization of soft-rot-resistant *Amorphophallus konjac* and preliminary analysis of the resistance mechanism[J]. Chinese Bulletin of Botany, 2013, 48(3): 295–302. (in Chinese).
- [28] FU Z, DONG X. Systemic acquired resistance: Turning local infection into global defense[J]. Annual Review of Plant Biology, 2013 (64): 839–863.
- [29] PIETERSE CM, ZAMIOUDIS C, BERENDSEN RL, et al. Induced systemic resistance by beneficial microbes[J]. Annual Review of Phytopathology, 2014(52): 347–375.
- [30] CONRATH U, BECKERS GJ, LANGENBACH CJ, et al. Priming for enhanced defense[J]. Annual Review of Phytopathology, 2015 (53): 97–119.
- [31] MAUCH-MANI B, BACCELLI I, LUNA E, et al. Defense priming: An adaptive part of induced resistance[J]. Annual Review of Plant Biology, 2017(68): 485–512.
- [32] PAVLO A, LEONID O, IRYNA Z, et al. Endophytic bacteria enhancing growth and disease resistance of potato (*Solanum tuberosum* L.) [J]. Biological Control, 2011, 56(1): 43–49.
- [33] DIAS MP, BASTOS MS, XAVIER VB, et al. Plant growth and resistance promoted by *Streptomyces* spp. in tomato[J]. Plant Physiology and Biochemistry: PPB, 2017(118): 479–493.
- [34] CHANDRASEKARAN M, CHUN SC. Expression of PR-protein genes and induction of defense-related enzymes by *Bacillus subtilis* CBR05 in tomato (*Solanum lycopersicum*) plants challenged with *Erwinia carotovora* subsp. *carotovora*[J]. Bioscience, Biotechnology, and Biochemistry, 2016, 80(11): 2277–2283.

(From page 13)

References

- [1] WANG ZG, YAO DL. Effect analysis of multiple linear regression model in forecasting the total output value of Jiangsu construction industry[J]. Journal of Taiyuan City Vocational and Technical College, 2018, 202 (5): 51–53. (in Chinese).
- [2] ZHANG L, LI HM. Application of ARIMA model in forecasting the total output value of China's construction industry[J]. Enterprise Economy, 2011, 30(11): 93–96. (in Chinese).
- [3] LI FE, YUE PW. Forecast of output value of construction industry in Henan Province-based on grey GM (1, 1) model[J]. Management Engineer, 2015, 20(1): 9–12. (in Chinese).
- [4] MA CY, LIU YG, XU L, et al. Forecast of construction waste output in Fujian Province based on grey prediction model[J]. Journal of Harbin University of Commerce, 2019, 35(5): 545–550. (in Chinese).
- [5] BAI DD. Forecast of economic structure and economic growth in Gansu Province based on grey GM (1, 1) model[J]. Modern Marketing, 2020 (12): 21–23. (in Chinese).
- [6] WEN CH. On the influencing factors of economic growth of China's construction industry[J]. Science and Wealth, 2014(1): 185. (in Chinese).