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Does Ordinary or Fractional Brownian Motion
Describe Agricultural Commodity Futures Prices?

Abstract

This paper investigates whether the assumption of Brownian motion often used to describe

commodity price movements is satisfied. Using historical data from 17 commodity futures

contracts specific tests of fractional and ordinary Brownian motion are conducted. The analyses

are conducted under the null hypothesis of ordinary Brownian motion against the alternative of

persistent or ergodic fractional Brownian motion. Tests for fractional Brownian motion are based

on a variance ratio test and compared with conventional R-S analyses. However, standard errors

based on Monte Carlo simulations are quite high, meaning that the acceptance region for the null

hypothesis is large. The results indicate that for the most part, the null hypothesis of ordinary

Brownian motion cannot be rejected for 14 of 17 series. The three series that did not satisfy the

tests were rejected because they violated the stationarity property of the random walk hypothesis.
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1.0 Introduction

The notion of a random walk in futures prices has, for the most part, been treated as an

assumption rather than a hypothesis.  The assumptions of a random walk and geometric

Brownian motion have not only led to closed form solutions for pricing derivatives (e.g. Black

Scholes, 1973 , Black, 1976 and Merton 1973), but have also provided a simple mechanism for

generating derivative prices using Monte Carlo methods (e,g, Boyle, Broadie and Glasserman ,

1997).  From an economic perspective a random walk has been tied to the concept of efficient

and arbitrage-free markets and this has led to many equilibrium models in finance for both traded

and non-traded assets, securities and derivatives (e.g. Boyle and Wang 1999, Cox, Ingersoll and

Ross, 1985, Garman 1977, or Rubinstein 1979).  So critical is the random walk assumption that

treating it as a null hypothesis, and rejecting the null hypothesis, has wide spread theoretical and

practical consequences for the pricing of derivatives, in particular, and market efficiency in

general.  Failure to accept the null hypothesis implies that markets can be arbitraged. Persistent

arbitrage challenges the risk neutral assumption of classical derivative pricing, which requires

that assets grow at the risk-free rate, rather than the natural growth rate.

Rejection of the null hypothesis of ordinary Brownian motion as a descriptor of price

movements gives consideration to an alternative hypothesis of fractional Brownian motion. The

term fractional Brownian motion (fBm) was coined by Mandelbrot and Van Ness (1968) to

describe particular random series that do not display self-similar behaviour. These random series

have a memory characterized by strong interdependence between current and future samples.

Because sub samples of data tend to be correlated the data violate the Markovian assumption of

independence, and fBm is not a semi martingale (Rogers, 1997). We care about Markov

processes and the martingale measures because these are crucial in the pricing of traded or non-

traded financial or commodity derivatives under the no arbitrage (e.g. Black 1976, Black and

Scholes 1973) or equilibrium models (Cox, Ingersoll and Ross 1985, Garman 1977, Rubinstein

1979). Indeed, Rogers (1997) shows that a fBm can give rise to arbitrage opportunities in

general, while Cutland, Kopp and Willinger (1995) and Sottinem (2001) show that a fractional

Black-Scholes model, in particular, gives rise to arbitrage opportunities. For example , defining

H as a self similarity parameter in the sense of Hurst (1951) and Mandelbrot and Van Ness

(1968), then HtdZ 2ε=  is a Wiener process for H=.5, where t a time increment, and ε is a

standard normal variate with mean zero and variance equal to one. When H=.5  the Ito property
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that dZ2 = t  is satisfied. However, if H≠.5 then dZ2 = t2H and Ito’s lemma does not hold. Loosely

speaking, the order of bias in options pricing is determined by the implicit assumption that  t’ =

t2H , and Ito’s lemma is applied for dZ2 = t’,  an obvious falsification for H≠.5. By simple

substitution, the Black-Scholes call option formula for an asset with current value X , strike price

E, and time step t, would become

C(X,t’) = X N(d1)-Ee-rt N(d2)

with N( ) representing the cumulative normal distribution function evaluated at d1 and d2,

d1 = ( log(X/E) + ( r + .5 σ2 ) t2H ) / σ tH

and

d2 = ( log(X/E) + ( r - .5 σ2 ) t2H ) / σ tH   .

 For H=.5 this reduces to the usual Black-Scholes formula. All other things held constant,

∂C(X,t’)/∂H > 0  over the defined range of  H, 0<H<1 . In other words the value of the call

option will be higher or lower than the implied Black-Scholes price for H > .5 and H < .5

respectively. Under the fractional Brownian motion assumption of Mandelbrot and Wallace

(1968), values of H > .5 imply long range or persistent memory. As H rises above .5 there is

increasing positive dependence between time steps so that there is a greater chance that the call

option will expire in-the-money. As H falls below .5, the time series exhibits persistent reversals

due to a short memory process. Time steps are negatively correlated. The lower the value of H

the more jagged the time series will appear and the more likely that a reversal will occur. Since

an increase in the price will likely be followed by a reversal there is a greater chance that the call

option will expire out-of-the-money, so the value of the call option will fall relative to the

ordinary Brownian motion case.

The arbitrage opportunities now become obvious. Consider the call option as a function

of  H, C(X,t,H) . For a persistent time series, C(X,t,H>.5) > C(X,t,H=.5) so a knowledgeable

speculator anticipating that the likelihood of the option expiring in-the-money is greater than that

suggested by Black-Scholes could buy an option priced at H=.5 immediately and sell the option

at expiry for an expected gain of  E[C(X,t,H >.5) - C(X,t,H=.5)]>0. Likewise for H<.5 a

knowledgeable speculator, anticipating that the likelihood of an expiry in-the-money is lower

than that represented by Black-Scholes, could sell an option for an expected capital gain of

E[C(X,t,H=.5) - C(X,t,H <.5)] > 0.  That speculators can use historical price patterns to infer,

with some degree of success, future price patterns, violates the most basic tenets of the efficient
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market hypothesis. Furthermore, that arbitrageurs can leverage fractional Brownian motion to

obtain (expected) profits above the market price of similar-risk assets violates the no-arbitrage

assumption of options pricing.

   The subject of this paper is the random walk generated by Brownian motion. The

objective of this paper is to determine if commodity futures prices satisfy the Brownian motion

assumption.  In the alternative, we are interested in determining if Brownian motion is fractal,

(i.e. fractional Brownian motion).  Recent investigations are mixed on the existence of memory

in financial and commodity price series. In the broader context of existence of long-term

memory, Comte and Renault (1996) prove that the stochastic differential equations commonly

employed to characterize financial and commodity price movements can be extended to

encompass long memory models. Hommes (2001) suggests that nonlinearities in financial time

series could be due to heterogeneous expectations among traders that give rise to adaptive belief

systems. Several researchers have investigated fractal structure in futures contracts using a

procedure from Hurst and Mandelbrot (1965, 1972) (R-S analysis) and/or a modified Hurst

procedure owing to Lo (1991).  Studies using R-S analysis have shown that there is persistent (H

> .5) behaviour in financial markets (Greene and Fielitz (1977), Booth, Kaen, and Koveos (1981,

1982a, b , Peters 1996) and futures markets (Helms, Kaen and Rosenman 1984, Barkoulas,

Labys and Onochie 1997, Corazza, Malliaris, and Nardelli, 1997, Peters 1996, Cromwell, Labys

and Kouassi 2000).  However, recent research using Lo's (1991) modification for correlated bias

fails to reject the null hypothesis of no fractal structure in futures prices (Crato and Ray 2000).

This study differs from previous studies in that I test specifically for Brownian motion

and note that much of the fractal research conducted on economic data is geared towards

determining if long or short term memory exists, and from there making inferences about

random walks. Noting that with fractional Brownian motion a time series can be stationary while

failing the independence assumption, Brownian motion is examined using a time series

stationarity test in addition to a variance ratio test.  The value of H is estimated directly from the

variance ratio.  In addition, the value of H is also estimated, for comparison purposes, from

conventional R-S analysis.

Failure to reject the null hypothesis of no fractal structure using the variance ratio test, or

R-S analysis, does not unto itself imply a random walk (Peters 1996) unless the stationarity

conditions are also satisfied.  Likewise, rejecting the null hypothesis of a random walk by itself
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does not necessarily imply the existence of fractals.  This paper takes the position that a true test

of Brownian motion is a joint test of stationarity and fractal structure.  If stationarity is true and

the variance ratio test indicates H = .5, then agreement would confirm an ordinary Brownian

motion.  If stationarity is true and H ≠ .5, then the random walk follows a fractional Brownian

motion.  If the time series is non-stationary in differences then the null hypothesis of a random

walk, and hence any form of Brownian motion, is rejected.

The specific hypotheses are examined for 17 time series of futures prices of

approximately 950 days.  Statistical tests are based on Monte Carlo simulations of the standard

errors of particular parameter estimates for the stationarity and variance tests.  The Monte Carlo

simulations indicated that the standard errors on stationarity and variance parameters estimates

were high. Simulated values of H for example had a mean of .5 and a standard deviation of .125.

All of the time series indicated ordinary Brownian motion under the null hypotheses.  Tests of

stationarity indicated that 3 of 17 time series did not satisfy the stationarity assumption. The

conclusion is that most time series are consistent with ordinary Brownian motion - the time

series are not fractal.  The 3 futures contracts that did not satisfy the random walk assumption

were rejected because of the stationarity conditions rather than persistent or anti-persistent

behaviour.  However, a qualitative assessment of the H values from both the variance ratio test

and R-S analysis suggests that most futures contracts show anti-persistent or mean-reverting

patterns.

The paper proceeds as follows. The next section explains the variance ratio test for a

random walk and introduces the concepts of Brownian and Fractional Brownian motion.  This is

followed by a review of some basic concepts in chaos theory, fractals, and the R-S test.  Both the

variance ratio and R-S tests are applied to 950 daily observations of futures prices for 17

commodities traded on the Chicago Mercantile Exchange, Chicago Board of Trade, and

Winnipeg Commodities Exchange.  The results are discussed and the paper is then concluded.

2.0 Fractional Brownian Motion

In the classical models of random walk, efficient markets, and the pricing of derivatives it

is assumed that the percentage change in the futures price over a discrete interval of time is

governed by

(1) dF = αFdt + FσFdZ
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where tdZ ε= is a Gauss - Wiener process, F is the futures price, α is the instantaneous change

in futures prices and σ is the variance of the percentage change in futures prices.

A fractional Brownian motion in contrast is specified by

(2) dF = αFdt + FσFdX

where HtdX 2ε= .  In (1) and (2) the term ε can be interpreted as a random shock over the

prescribed time interval.  In (2) the parameter H measures the fractal dimension of the stochastic

process.  It is analogous to the Hurst coefficient in standard R-S analysis.  H can take on any

value between 0 and 1, and the fractal dimension is measured by

(3) D = 2 - H.

The variable D has particular meaning.  Consider a two-dimensional plain such as a piece

of paper.  A straight line drawn on the paper is of dimension 1.  If the paper is completely shaded

then it is of dimension 2.  Therefore a value of H = 0 represents a dimension of 2 and H = 1

represents a line of dimension 1. A random walk is neither a plane or a line but something in

between.  A pure random walk has H = .5 and a biased random walk has H ≠ .5.  For H > .5 the

system is said to be persistent.  Persistence refers to a stochastic system that has long-term

memory such that an event at some point t is positively correlated with observed events at some

future period, t + ∆t.  It implies positive correlation among random events over time.  The limit

of this is a straight line representing a perfectly correlated system.

In contrast, H < .5 becomes increasingly jagged.  It would appear on a piece of paper, to

be more volatile and more erratic than a pure random walk with H = .5.  The system also

reverses itself frequently and for this reason it is said to be anti-persistent, ergodic, or mean

reverting.  It is also referred to as a short-memory process and unlike a persistent system it is

characterized by negative correlation.  That is, an event at some moment in time t (say an

increase in futures price) will cause a reversal at some point in the future at t + ∆t.

We are concerned with the properties of dX and will examine them using results from

Crownover (1995).  For this purpose define dX = X(t2) - X(t1) with expected value of zero and

variance σ2(t2 - t1)2H.  A fractal Brownian motion has a Gaussian distribution of the form

(4) µ
σ

µ
σπ

d
tttt

xdX H

x

H
))

)(
(2/1exp(

)(2
1)Pr( 2

1212 −
−

−
=< ∫ ∞−
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If H = .5 then a fractional Brownian motion is the same as standard Brownian motion as used in

equation (1).  Likewise the variance of a fractal Brownian motion

(5) E[X(t2) - X(t1)]2 = σ2(t2 - t1)2H

reduces to that of standard Brownian motion when H = .5,

(6) E{X(t2) - X(t1)]2 = σ2(t2 - t1).

The critical difference between (6) and (5) is that the variance property for standard Brownian

motion increases linearly in time, whereas the variance in fractal Brownian motion is a non-

linear function of H.  From (5)

(7) ∂E[X(t2) - X(t1)]2/∂H = 2σ2ln(t2 - t1)(t2 - t1)2H

is positive for any H and t2 - t1 >1, and

(8) ∂2E[X(t2) - X(t1)]2/∂H2 = (2σln(t2 - t1)(t2 - t1)H)2

is also positive.  In other words, a fractional Brownian motion is characterized by a variance

increasing in H at an increasing rate. The implications for arbitrage and derivative pricing are

evident: an option priced according to ordinary Brownian motion, a priori, will be overpriced for

H<.5, precisely priced for H=.5, and under priced for H>.5 .

In part, the difference between variance measured by ordinary and fractional Brownian

motion is due to correlation between time increments. Under ordinary Brownian motion the

Markovian property of independence between time increments is required, but fractional

Brownian motion does not, as shown below, exhibit this property.

To see this define the covariance between any two time increments, as

(9) COV(t, ∆t) = E[X(t) - X(0)] [X(t + ∆t) - X(t)].

Taking the standard deviation of (5) and substituting it into (9) gives

(10) E[X(t) - X(0)] [X(t + ∆t) - X(t)] = .5 σ2 [(t + ∆t)2H - t2H - ∆t2H])

Once again by setting H = .5 the right hand side of (10) collapses to zero and the independent

increments assumption is satisfied.  For any H ≠ .5, it is not satisfied.  As H approaches zero the

limit of covariance approaches -.5σ2, and as H approaches +1, covariance approaches σ2(t ∆t) >

0.

Taking the derivative of (10) with respect to the time interval ∆t yields

(11) ∂C0V(   ) / ∂∆t = σ2H ((t + ∆t)2H-1 - ∆t2H-1)
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For H < .5 the covariance term decreases with increasing time steps.  Hence the term 'short

memory'.  In contrast the term 'long memory' comes from the results that covariance increases

with increased time steps when H > .5. Importantly, since the independence property is violated,

a fractional Brownian motion is not a Markov process, nor is it a Martingale.

Finally, even though a fractional Brownian motion does not satisfy the independence

property it does satisfy the stationarity in differences property. That is, since variance depends

only on the difference between t1 and t2, and not t1 and t2 particularly, the increment dX is

stationary.  We can use the stationarity and independence assumptions to test for fractional

versus ordinary Brownian motion in the following way.  Under the null hypothesis of a

stationary time series a specification test that rejects the null automatically eliminates the time

series as being either ordinary or fractional Brownian motion, let alone a random walk. Failure to

reject the null hypothesis is sufficient to conclude a random walk, but is not sufficient on its own

to declare a Brownian motion. The test for ordinary or fractional Brownian motion is applied

only to stationary time series. The specification test is conducted under the null hypothesis Ho:

H=.5. Failure to reject the null implies an ordinary Brownian motion. Rejecting the null implies

H ≠.5 and a persistent or antipersistent fractional Brownian motion would be concluded for H>.5

and H<.5 respectively.

3.0 Random Walks and the Variance Ratio Test

Lo and Mackinnon (1999) used the variance property of Brownian motion to test for

random walks.  The essence of their argument is that the variance of any step or lag K (1 < k ≤

T) must be a linear multiple of the variance of a single step or lag.  For example, the variance of

price changes over a 2 day period will be twice the variance of the change in 1 day or the

variance over 20 days will be twenty times the variance of 1 day.  Hence

(12) σ2
K = Kσ2

1

and

(13) 12
1

2

==
σ

σ
K

VR K .

The result suggests a specific test for a random walk.  First, calculate the percentage change in

prices for each of ln(Ft+1) - ln(Ft), allowing for overlapping prices.  Second calculate the
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variance, VAR (ln(Ft+k) - ln(Ft)), for each k step including k = 1.  Third, divide the calculated

variance for each k ≥ 1 by the variance for k = 1.  This gives k ratios of the form σ2
k/σ2

1.

The results allow for a number of tests.  The Lo and Mackinnon (1999) approach is to

treat each of the k ratios as a separate hypotheses.  That is

(14) kkHo k ∀=− 0: 2
1

2

σ
σ

.

Lo and Mackinnon (1999) provide a formula for calculating the asymptotic variance of the ratio

and provide a standardized test for the null hypotheses.  In the alternative, an equivalent test

would be to regress

(16) εσσ ++= kbak
ˆˆ/ 2

1
2

and set 1ˆ: =bHo .  Failure to reject H0 would indicate that variance increases linearly in time as

required by the random walk hypothesis.

In the context of fractional Brownian motion the above model may not be specific

enough since its variance is given by σ2T2H. To test for a biased random walk follow the steps

described above for calculating variance ratios. To test for fractional Brownian motion we need

an estimate of the H coefficient.  The following regression can be used to estimate the value for

H.

(16) εαασσ ++= )ln()/ln( 10
2
1

2 kk

with  Ho: α0 = 0 and Ho: α1 = 1  .  In (16) the value of H can be calculated from α1 = 2H or

H=α1 /2.  If α1 =1 then H = .5 and there is no evidence of fractal structure.  If α1 >1 then H > .5

and this would indicate long-term memory and positive autocorrelation.  If α1<1 then H < .5,

memory is short and the system is ergodic or mean reverting.

4.0 Stationary Increments in Futures Prices

Even though fractional Brownian motion does not satisfy the property of independent

increments, it still must satisfy the Gaussian assumption of stationary increments.  In general

stationary increments imply that the first difference of the returns series are independent for any

choice of  t.  that is the differenced series

{x2 - x1, x3 - x2, x4 - x3 … xt - xt-1}
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are independent.  Furthermore the process is stationary across any time step.  This means that for

a time step k (where k can equal days or weeks, etc.)

(17) E[xk - x1] = E(xk - xk-1 + xk-1 - xk-2 +…+ x2 - x1)

    = kµ

where µ = E[xt - xt-1] across all t.  This definition of stationarity states that the k-step difference

between any two observations is a linear function of the mean 1-step difference.  Hence

(18) k
xx
xx

E
tt

tkt =







−
−

+

+

1

.

This leads to a simple test for stationarity by estimating the following regression,

(19) ek
xx
xx

tt

tkt ++=







−
−

+

+
10

1

ββ .

Under the null hypotheses H0:  β1 = 1 the linearity assumption, and hence a finding of a

stationary process, will be rejected if Ho is rejected.  The alternative hypothesis HA:  β1 ≠ 1

implies that the increments are non-stationary.

The test is slightly more complicated to generate than standard unit-root tests since the

numerator in (19) requires calculating the differences for each step.  For example if k = 150 then

the values xt+150 - xt, xt+149 - xt and so on must be calculated.  More degrees of freedom will be

available if overlapping rather than non-overlapping increments is used.  On the other hand, the

procedure is consistent with the unit-root test since by using xt+1 - xt in the denominator an AR(1)

process is implicitly assumed.

5.0 Classical R-S Analysis

A common approach to measuring fractal dimension uses the non-parametric

approximation developed by Hurst (1951) to measure randomness in water flows. The approach

developed by Hurst is called R-S analysis or the rescaled range analysis. Nonetheless, it is

apparent that Hurst's R-S analysis is commonly used by researchers searching for fractal

structure in financial instruments.  It is, therefore, important to compare the measure of fractal

structure using the variance ratio measure in equation (16) to the classical Hurst measure.1

                                                
1 Although Lo's (1991) modification has been used by a number of fractal investigators (e.g. Corazza et al., 1997;
Crato and Ray, 200) it is not required here.  Lo's (1991) modification is required only in the case where R-S analysis
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The R-S procedure is described in an economic context by Mandelbrot (1972),

Mandelbrot and Wallis (1969), Peters (1996), Lo (1991), and Helms, Kaen and Rosenman

(1984) among others.  The procedure uses a time series data set comprised of T observations.

The data set is then divided into N non-overlapping sub-series of length k (N equals the lower

integer of T/k).  From an initial starting point k, the procedure is repeated by increasing k in

fixed increments, k2 = k1 + µ, k3 = k1 + 2µ and so on.  For each incremental k the following

procedure is taken.

For each n = 1, N sub-series calculate the mean in

k

i
n x

k
x

1

1
=
Σ= .  Next define

(20) )( ,1, nni

k

ink xxW −Σ=
=

n=1,N

For each sub-series n, the partial sums are calculated and for each addition in Wk,n the value of

Wk,n will increase or decrease.  There are i=1,k partial sums (e.g. (x1n - xn) is the first partial sum,

)()( 21 nnnn xxxx −+−  is the second partial sum and so on) and the minimum and maximum

values of the k partial sums for each n are recorded.

Using the minimum and maximum values define the range

(21) R*
k,n = Max(Wk,n) - Min (Wk,n) n=1,N.

The range is then rescaled to the standard deviation of the sub-series sample,

2/12

1
))(1( nin

k

in xx
k

S −Σ=
=

, to get the classical R-S statistic

(22)
n

nknk
nk S

WMinWMax
R

)()( ,,
,

−
= n=1,N

There are N=T/k range statistics calculated for each k (with N decreasing with an increase in k)

so the final step is to average the range statistics

(23) nk

N

n
kn R

N
R ,1

1
=
Σ= .

There will be one value of knR  for each k iterant.  Under the null hypothesis that the rescaled

range is asymptotically related to the sub-series size, Mandelbrot and Wallis (1969) following

Hurst (1951) suggest

                                                                                                                                                            
indicate long run persistent dependence.  The correction is to remove any short run memory effects from the long-
run memory effects.  Since the results do not indicate long-memory, the modification is not required.
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(24) H
k akR ≅

where H (the Hurst coefficient) is the same theoretical measure of fractal dimension associated

with Ht 2σ  from the fractal Brownian motion process.  By estimating the value kR  for each k,

the coefficient H can be estimated by the least squares regression

(27) ekHaRk ++= )(ln)ln()(ln .

The value of H from this R-S analysis can then be compared to the value of H estimated

from the variance ratio.

6.0 Data

Seventeen futures contracts for agricultural commodities are examined for Brownian

motion.  Summarized in Table 1,  the data represent 950 matched daily observations from 1996

through February 7, 2001 on the nearby futures price.  The futures contracts include grains and

oilseeds, livestock and livestock products, and cocoa, coffee, orange juice and sugar.  The

contracts are traded on the Chicago Mercantile Exchange (CME), the Chicago Board of Trade

(CBOT), the Coffee, Sugar and Cocoa Exchange (CSCX) and the Winnipeg Commodity

Exchange (WCE).  Alberta barley, rapeseed, Winnipeg oats and Winnipeg wheat are

denominated in Canadian dollars while others are in $U.S.

The sample means and range are given in Table 1.  In the last two columns the annualized

geometric growth rate and volatility based on a 250-day trading year are presented.  The results

show that 13 of 17 commodities faced price declines over this period with the largest declines

being on CBOT and WCE oats at -19.7% and -22.7% respectively.  Feeder cattle (CME) showed

the largest annual gain of approximately 10.2%/year.

On average, volatility exceeded 30% per year.  The most volatile commodity was pork

bellies (CME) at 55.2% followed by coffee (CSCX) at 52.8%, lean hogs (CME) at 42.6% and

wheat (CBOT) at 40.1%.  Sugar (CSCX) was the least volatile at only 8.5% and Alberta barley

(WCE) had the second lowest volatility at 19.4%.

7.0 Results

The methods employed were directed towards testing the single null hypothesis that

futures prices followed a random walk as described by geometric Brownian motion.  Failure to
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reject the null hypothesis will result if it is shown that the price differences are stationary and H

= .5.  If H ≠ .5 then this would be evidence of a fractional Brownian motion.  If the time series is

non-stationary then the time series cannot be either fractional or non-fractional Brownian

motion.

The parametric tests of stationarity and H are based on a lag structure with k = 150 days.

Initial estimates were done for up to 300 lags but following Peter's (1996) suggestion logarithmic

plots of R/S statistic and k were constructed, and these plots indicated that any memory effect

dissipated by about 150 days for many of the futures contracts.  Hence all estimation is done for

k = 150 days.

7.1 Standard Error Estimation

As indicated previously least squares estimation of the slope coefficients in equations

(16) and (19) would not provide asymptotic standard errors since each of the price series

represents but a single stochastic path of many potential paths that could arise under a random

walk hypothesis.  To overcome this problem a Monte Carlo technique was used to estimate the

standard errors.  This technique generated a 1,000-day path with zero mean and volatilities of

.10, .20, .30, .40, .50, and .60.  The Monte Carlo model was constructed using the exact

estimation process used on the 950-day actual series to estimate β1 (equation 19) and H values

(H = α1/2 from equation 16) except that the simulated results were done for only 40 lags.2  The

experiment was replicated 2,500 times.  The results provided a mean value for H approximately

equal to .5 with a standard deviation about the estimate Ĥ  being .125.  This standard error was

stable for all volatility measures.

The standard errors for the estimate of 1β̂ were more variable ranging from .78, .77, .75,

.78, .76, and .70 for volatilities of .10 through .60 respectively.  With an average volatility across

all contracts of .30 an estimated standard error of .75 is used to establish the asymptotic

confidence limits about 1β̂ .3

                                                
2 Using 40, rather than 150, lags provided standard errors that would be lower than those from 150 lags (see Fama
and French, 1988).  A lower standard error implies a smaller confidence interval around the expected value.  This
provides a more rigorous test of the null since it decreases the acceptance region in favour of the rejection region.
3 Each simulation was run using the same seed value for the Monte Carlo draws. The simulations were run for
several different seed values and similar results were obtained.
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The Monte Carlo estimates of asymptotic standard errors fails to reject the null

hypothesis of stationarity at the 95% level if -0.47 ≤ 1β̂  ≤ 2.47 and the null hypothesis H0: H = .5

should not be rejected at the 95% level if 0.255 ≤ Ĥ  ≤ 0.745.

The standard errors in both instances are large and qualitatively important since they

suggest that a finding of β1 ≠ 1 or H ≠ .5 cannot be taken as a rejection of the random walk

hypothesis as a matter of course.  Any single sequence of actual data can, by chance alone, have

β1 ≠ 1 and H ≠ .5 , and still be consistent with a Brownian motion assumption.  The range over

which the standard error rejects the null hypothesis of ordinary Brownian motion is small (0 < Ĥ

< .255 or Ĥ  > .745 > 1.0).  Likewise rejection of the null hypothesis on stationarity requires

estimates of 1β̂ < -0.47 and 1β̂  > 2.47.4

Estimates of actual values of 1β̂  are found in Table 2, for the entire period (column 2)

and four sub periods of 180 days with the first sub period representing days 1-179 and so on. The

hypothesis test is directed toward the full sample estimates in column 1, while columns 3.5 are

presented to illustrate the range of variance about 1β̂  in smaller samples.

Under the null hypothesis only three series fall outside of the acceptance region.  These

are coffee ( 1β̂ = -.102), lean hogs ( 1β̂ = -2.89) and pork bellies ( 1β̂ = -1.02).  Since stationarity is a

necessary condition for a Gaussian and Brownian process these three commodities can

immediately be eliminated from the set of prices displaying geometric Brownian motion (even

though all of them have at least one sub sample sequence that might satisfy stationarity).

The remaining 14 commodities will have either ordinary or geometric Brownian motion

at the 95% confidence level if  .255 ≤ Ĥ  ≤ .745.   The estimates of Ĥ  are presented in Table 3.

In Table 3, column 2 provides the estimate of H used in the hypothesis test and columns 3

through 5 show the four 180-day sub periods.  Column 6 provides an estimate of H using R-S

analysis as a point of comparison.  Since no value of Ĥ  falls outside of the asymptotic 95%

                                                
4 I have not found previous research that supported Monte Carlo estimates of the asymptotic standard deviations of
H and β1.  However, in Fama and French (1988) a similar approach is used to estimate the standard errors of first
order autocorrelation coefficients.  Qualitatively they are able to support the conjecture that stock price movements
have stationary and random components.  However, when their specific tests were assessed using standard errors
from Monte Carlo simulations they found that the null hypothesis (of non-stationarity in prices) was difficult to
reject.  In fact they speculate that the large standard errors in a pure random walk may make such hypotheses
altogether untestable (Fama and French, 1988, page 257). A wide acceptance region for unit roots in time series data
has also been discussed by Kwiatkowski et al (1992).



15

confidence limit there is no instance where the estimated value of H is statistically different from

.5.  From a statistical perspective ordinary Brownian motion cannot be rejected for all series

except coffee, lean hogs and pork bellies.

In a qualitative sense, accepting the values as given has several implications.  First, with

the exception of sugar which shows a slightly persistent dynamic with H = .543, the evidence

suggests that commodity futures prices are ergodic or mean-reverting. This observation is in

opposition to recent concerns regarding persistent long-term memory in commodity futures

contracts (Barkovlas et al. 1997, Corazza et al., 1997 or Crato and Kay 2000).  The results in

Table 3 provide no support for long-term memory.

The R-S estimates in Table 3 are different than those presented in column 1.

Qualitatively, corn, fluid milk, pork bellies, soybeans, sugar and Winnipeg oats display persistent

tendencies with H > .5.  However only Winnipeg oats (.566) and perhaps fluid milk (.540) are

sufficiently higher than .5 to warrant concern.

The remaining 11 commodities have R-S estimated H ≤ .5.  Winnipeg wheat (.499) and

rapeseed (.494) are virtually identical to .5 and would thus be characterized as having a pure

random walk.  The remaining futures prices again display mean-reverting tendencies.

Qualitatively the main conclusion is that the Mandelbrot-Hurst approach provides results that are

not inconsistent with the variance ratio approach.

8.0 Implications of Results

The results of this study have significant implications for the analysis of futures (and

other financial) time series.  The evidence of this paper is that the null hypotheses of stationary

increments and H = .5 cannot generally be rejected.  These two conditions are sufficient to

support the conjecture that futures prices follow a random walk in general and an ordinary

Brownian motion in particular,.  A comparative analysis of the variance ratio test and the

unadjusted (in the sense of Lo) Hurst-Mandelbrot R-S statistic also provides support for the

conclusions reached.

While these null hypotheses are not rejected on the basis of simulated standard errors a

qualitative assessment of the results suggests, in general, that futures prices series are mean

reverting.  This conclusion is consistent with recent findings by Corazza et al. (1997) and Crato

and Ray (2000) and is at odds with earlier findings by Helms et al. (1984) and Barkoulas et al.
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(1997).  Qualitatively, the variance ratio tests indicate that most commodities have ergodic or

mean reverting properties.  This is a comforting result since it indicates that in the long run the

laws of supply and demand work in a classical dimension (e.g. the cob-web cycle).  An opposing

result would suggest that supply and demand are complementary; an increase in demand leads to

an increase in supply, which leads to an increase in demand and so on.  While such an economy

may operate in the short-run a persistent time series would suggest that it goes on indefinitely,

that demand is never saturated, and that equilibrium is never attained.

Only two series showed some form of a long-term memory, but the measured persistence

is not qualitatively different than .5.  Nonetheless it is interesting to note that one of the

persistent series was the Milk futures contract.  Up to January 2000 this contract was based on

the U.S. base formula price (BFP), and was settled monthly.  The settlement price was not based

on observed market transaction as is normally the case in price discovery.  Rather the settlement

price was based on a monthly survey of U.S. processors by the U.S.D.A.  Only on the settlement

data was there price discovery and even so, the survey was limited to a small proportion of

processors.  In the absence of transparent price discovery it is not surprising that hedgers would

bid a futures price based on past performance.

From an analytical perspective this paper has provided a means to empirically test for

fractional Brownian motion using variance ratios.  This is a parametric approach that relies on

the fractional definition of the Wiener process.  In contrast, the Hurst-Mandelbrot approach is

non-parametric.  Given the qualitatively similar results, this is not necessarily a criticism of the

Hurst-Mandelbrot approach, but an approach to measuring fractals and fractal dimension using a

consistent-theoretical structure has its advantages.  From a computational perspective the

approach was less cumbersome than the R-S approach.

Finally, the overall intent of this paper was to determine if commodity futures prices

followed a random walk process consistent with non-fractal Brownian motion.  The results

indicate that futures price movements are consistent with Brownian motion.  One of the

beneficial outcomes is that, for the most part, the assumption of Brownian motion used in the

pricing of options on futures is justified.  If Brownian motion is consistent with the efficient

market hypothesis (an inference that is, according to Lo and Mackinnon (1999) and Corazza et

al. (1997), debatable) then the results of this study indicate that markets are indeed efficient.
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Table 1Sample Statistics for Futures Price Series

contract Exchange Mean Variance Standard
Dev.

Maximum Minimum Geometric
Mean

volatility

Alberta Barley
price

WCE 137.60 476.14 21.82 196.80 108.50 -0.108 0.194

coffee price CSCX 129.15 996.54 31.56 261.00 81.35 -0.028 0.528
cocoa price CSCX 1337.5

0
62310.14 249.62 1762.00 763.00 -0.116 0.274

corn price CBOT 272.33 5928.11 76.99 548.00 178.50 -0.146 0.373
Feeder Cattle
price

CME 71.50 65.10 8.07 86.88 47.65 0.102 0.208

Fluid Milk
price

CME 13.51 4.75 2.18 21.70 9.47 -0.074 0.342

Lean Hogs
price

CME 60.25 221.06 14.87 90.12 25.22 -0.050 0.426

live cattle
price

CME 65.61 10.49 3.24 73.63 54.80 0.023 0.211

oats price CBOT 148.85 1755.47 41.89 286.00 99.00 -0.197 0.377
orange juice
price

CSCX 97.57 292.75 17.11 138.00 66.80 -0.126 0.395

Pork Bellies
price

CME 63.98 249.857 15.80 104.475 32.75 0.069 0.552

Rapeseed
canola price

WCE 376.71 3563.54 59.69 490.20 251.30 -0.137 0.213

Soybeans price CBOT 637.02 15992.26 126.46 894.25 410.00 -0.095 0.277
Sugar price CSCX 21.78 1.66 1.29 23.09 16.55 -0.070 0.085
wheat price CBOT 345.37 9079.49 95.28 716.50 224.00 -0.156 0.401
Winnipeg oats
price

WCE 121.87 1906.97 43.66 243.00 83.00 -0.227 0.297

Winnipeg
Wheat price

WCE 165.08 998.46 31.59 293.40 121.70 -0.128 0.235

Average -0.067 0.297
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Table 2: Estimated Values of Hurst Coefficient from Equation (16) where H=αααα1/2 for Days in Sample and
from R-S Calculations from Equation (27). Null Hypothesis Ho= .5 Accepted within range  0.255 ≤≤≤≤ H ≤≤≤≤ 0.745

Days/Contract 940 760 580 400 220 R-S
Hurst

Alberta Barley price 0.414 0.431 0.451 0.428 0.333 0.489
coffee price 0.402 0.441 0.448 0.376 0.065 0.467
cocoa price 0.465 0.431 0.280 0.291 0.117 0.446
corn price 0.348 0.363 0.362 0.363 0.254 0.503
Feeder Cattle price 0.401 0.407 0.360 0.099 0.059 0.461
Fluid Milk price 0.481 0.489 0.473 0.523 0.381 0.540
Lean Hogs price 0.438 0.388 0.342 0.203 0.156 0.486
live cattle price 0.272 0.269 0.243 0.256 0.088 0.460
oats price 0.348 0.321 0.323 0.356 0.194 0.436
orange juice price 0.458 0.479 0.514 0.248 0.141 0.425
Pork Bellies price 0.381 0.356 0.380 0.253 0.206 0.519
Rapeseed canola price 0.396 0.336 0.352 0.251 0.267 0.494
Soybeans price 0.332 0.331 0.324 0.269 0.226 0.515
Sugar price 0.543 0.285 0.261 0.200 0.029 0.519
wheat price 0.231 0.221 0.171 0.168 0.123 0.483
Winnipeg oats price 0.481 0.477 0.459 0.480 0.200 0.566
Winnipeg Wheat price 0.341 0.349 0.345 0.334 0.265 0.499
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Table 3: Estimated Values of ββββ1 From Equation (19): Test for Stationarity. Null Hypothesis Ho: 1β̂ = 1

accepted in range –0.47 ≤≤≤≤ 1β̂ ≤≤≤≤ 2.47 .

Days/Contrac
t

940 760 580 400 220

Alberta
Barley price

1.323 1.277 1.135 3.436 1.462

coffee price 3.084 0.513 8.608 3.152 1.033
cocoa price 1.187 -0.122 1.131 0.643 0.848
corn price 1.647 1.430 1.221 2.078 1.130
Feeder
Cattle price

0.993 1.172 1.930 1.383 1.336

Fluid Milk
price

0.451 -0.122 -0.913 16.957 -7.556

Lean Hogs
price

2.898 5.638 1.146 -0.442 0.959

live cattle
price

1.090 -0.422 -0.700 2.933 5.459

oats price 1.252 1.562 0.988 1.374 1.029
orange juice
price

0.781 0.618 1.172 1.164 0.753

Pork Bellies
price

-1.016 2.651 2.015 -1.378 1.971

Rapeseed
canola price

1.272 1.019 0.820 2.040 0.795

Soybeans
price

1.676 1.147 1.160 -0.184 -0.362

Sugar price 0.644 1.525 -7.519 1.880 1.314
wheat price 1.426 1.256 1.119 1.824 1.806
winnipeg
oats price

1.257 1.297 1.246 1.660 1.401

Winnipeg
Wheat price

1.366 1.445 1.259 2.481 1.144


