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Abstract

This paper investigates the use of rainfall insurance to manage agricultural production risks. A

number of rainfall insurance products are presented along with a rational model which identifies

the economics of rainfall. The use of rainfall insurance will increase in future years as capital

markets, financial institutions, reinsurance companies, crop insurance companies, and hedge funds

collectively organize to share and distribute weather risks. The focus of this paper is in fact

directed towards the intermediation function of risk markets rather than on end user benefits.
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The Essentials of Rainfall Insurance

For crop insurers in Canada the U.S. and elsewhere the majority of indemnities they face

are weather related. Heat, rainfall, hail, and frost payouts are much more common than payouts

on pestilence and disease, and even if in some jurisdictions pestilence was a high indemnity the

root cause of the pestilence can often be tracked to a weather based trigger. In Ontario the forage

plan offered by Agricorp, the provincial crown corporation for crop insurance, a type of rainfall

insurance is offered for forage crops. Because of the complexities involved in measuring forage

yields the program uses a rainfall-based simulation model called SIMFOY which requires insureds

to record rainfall at the farm level. This rainfall measure is then entered into the computer

program and along with heat measures a simulated yield is calculated. Indemnities are based on

the relationship between the simulated yield and the previous (simulated) yield history. 

Using a simulation model has its own built in hazards which can be costly to both the

insurer and the insured. For example it would not be unusual for two adjacent farms to receive

significantly different indemnities because one farmer might have been away when significant

rainfall occurred and thus did not have this recorded for the simulation. Furthermore, because past

histories are also based on simulated outcomes, the current years’ payoff would include an

accumulated bias from such errors uncorrected in the past. In the U.S.A. multiple and single peril

crop insurance is offered for grains and oilseeds, but for forages the primary approach to

insurance is based upon area yields. With area yield insurance, forage yields are recorded for a

smaller acreage within a region and extrapolated to an area average. This average is then

compared to area yield histories and if below a trigger an equal indemnity is paid to all of the

insureds in the area. Several issues concerning the equity and efficiency of area yield insurance

have been raised (Turvey and Islam 1995).

Whether the insured crop is grain, oilseed, horticultural or forage economic theory and

practice recognizes that a successful insurance policy is one which adequately transfers risk

between two counterparties. The efficacy of conventional stop-loss crop insurance in North

America is determined by the perceived relationship between premiums and risk (Coble et al

1996, Islam 1997,Goodwin 1993, Vercammen 1995).



1 The payoff structure between an exchange traded weather derivative would be the same
as an insurance products. In financial markets the two are separated because the regulatory regime
for selling an insurance product is quite different than that for OTC derivatives. There are also
substantial difference in the accounting principles used for insurance products versus financial
derivatives.
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With the complexities, difficulties, and ambiguities associated with forage insurance and

other types of insurance, it is prudent to investigate alternative insurance structures for

agriculture. A market for tradeable risk management weather derivatives is emerging in the United

States and to a lesser extent Canada. Weather derivatives have similar characteristics to put

options, call options, and swaps and can be traded over the counter as derivative products or sold

directly as insurance products.1 In fact as traditional boundaries between financial institutions fall,

insurance companies, reinsurance companies, brokerages, and investment banks all participate as

insurer or counterparty to a trade. In the U.S.A., companies such as World Wide Weather

Insurance Inc, American Agrisurance Inc., and NatSource Inc. (A New York City brokerage)  are

examples of companies which have recently entered the weather insurance or  derivatives market.

At least one Canadian Institution, the Royal Bank Financial Group, is marketing financially

engineered weather products.

While an emerging and increasingly liquid market for weather derivatives is perhaps

sufficient to motivate research into rainfall insurance there is a significant scholarly reasoning

behind the investigation as well; The move from all risk/multiple peril crop insurance to rainfall

based insurance requires one to segregate risk into specific event risks. Specific event risks deal

with the economics of certainty, and our expected utility, mean-variance based paradigm  of

insurance no longer suffices as an economic model. Fortunately, as will be shown in the next

section, the economics of rainfall insurance relies on much less stringent requirements than the

conventional models, and can easily be justified through an argument of prudence and sensibility

rather than risk aversion and expected utility.

The objectives of this paper are to illustrate the significance of specific event risks as they

relate to rainfall insurance, to illustrate how rainfall insurance is priced in practice, and to offer an

economic justification for the use of rainfall insurance as a substitute for conventional multiple

peril crop insurance, especially for forage crops..



2 Optimal in this context does not imply that the producer chooses the optimal amount of
rainfall. Rather, it suggests that there exists a natural optimum amount of rainfall which is
exogenous.

3 I’m making a bit of a generalization here. Naturally there are some crops which do very
well under drought conditions and others which do very well with excessive rains. For these cases
using � or � would be totally satisfactory.
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Specific Event Risks and the Economics of Certainty

Specific event risk refers to those specific events for which the outcome is known with

certainty. The statement “if there is a drought there will be a crop failure” is a simple example of

this concept. The specific event ‘drought’ will, with 100% certainty result in a “crop failure”.

Consequently, insurance conditioned on specific event risks draws a parallel with cause and effect,

with the significant departure from tradition being that the cause is insured, not the effect.

Significantly this implies that crop yield damage does not have to be proven in order to receive a

benefit from an insured specific event.

The economics of certainty within a framework of specific event risks can be captured by

using some classical economic tools. Assume that farm profits are represented by �(|&) where &

is the rainfall event and  is the set of resources used in production. Under this specification,

�(|&) is determined by the input set but the ultimate measure of profits is conditioned on the

specific rainfall events. Profits are determined from revenues P*Y(|&) and the cost function

C(|&). The economic effect of rainfall risk is measured by both. It is assumed that  is

predetermined so that marginal profits can be measured relative to & alone. 

It is assumed that Y() is concave in & while C() is convex in & which implies that as

rainfall increases dY/d& >0 up to some point at which &* is optimal, dY/d& =0, and then dY/d&

<02. This assumption admits that rainfall insurance does not apply to drought conditions alone,

but can also be applied to specific events of excessive rain.3. The convexity argument in the cost

structure is justified by a symmetric argument. There will be some &* such that dC/d& =0. For

&<&* costs will be increasing as the costs associated with drought (e.g., labour, capital, and

energy costs associated with irrigation) increase and for  &>&* costs associated with excess rain



4As in note 2, setting dC/d& � 0 or dC/d& � 0 instead of dC/d& >0 or dC/d& < 0 for
&<&* or &>&* is entirely acceptable and depends on specific circumstances.

5 Clearly figure 1 and the accompanying discussion is an abstraction from reality. Most
likely there will be a range in rainfall about the optimum for which marginal profits are zero.
There, will ultimately be a point at which rainfall deficits and/or accumulations cause diminishing
marginal profitability. This point will be crop specific.
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(e.g. capital costs of tiling or drainage, down time etc.)   are incurred4.

Marginal profits are then equal to 

(1) 00�(|&) /00& = P 00Y(|&) / 00&  - 00C(|&) / 00& 

and will be convex with 0�() /0&>0 for &<&*, 0�() /0& =0 for &=&* or 0�() /0& <0 for &>&*.

The relationship between rainfall and profits is depicted in figure 1 which shows a

possibility frontier, all other things being equal. At point ‘c’ the marginal impact of rainfall on

profits is zero, and for rainfall above and below this point marginal profits decrease at an

increasing rate as rainfall becomes too little or too much5.

From the end users’ perspective �min in figure depicts a critical profit level which needs to

be protected. The insured can select a put option which would provide an indemnity if rainfall falls

below &a, a call option if rainfall exceeds &b, or both (a collar). In general the price of these

contracts (in the absence of time value) would be

 (2) Vput = ,,&a �’(&) (&a - &)f(&)d &    for    & < &a

and

(3) Vcall =  
&b,, �’(&) (& - &b)f(&)d &    for    & >&b.

Equations (2) and (3) rely on several factors to be priced. First, f(&) represents the

probability distribution function which describes rainfall throughout the growing season; second

the insured must have some idea of the specific event to be insured. For the put option in equation

(2) the specific event is & < &a, and for the call option in equation (3) the specific event is given

by & >&b where &a and &b are strike levels. Finally, the third element is the absolute value of

�’(&) which will increase as rainfall moves away from the optimum. As written in (2) and (3) the

pure-form derivative product would increase compensation at an increasing rate as the option

moved further into-the-money.
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While theoretically precise equations (2) and (3) are not very practical since in practice

they require the a priori examination of the profit-rainfall response function �(&) and its

derivative �’(&). It is unlikely that producers, insurers, brokers or reinsurers would demand such

precision, and the estimation would require significant costs and time.  

In practice,  �’(&) will be defined by the end user (purchaser of rainfall insurance)  as a

constant dollar amount, Z, applied to each in-the-money outcome; that is the option would be

priced according to 

(4) Vput = Z ,,&a(&a - &)f(&)d &    for    & < &a

and

(5) Vcall = Z 
&b,,(& - &b)f(&)d &    for    & >&b .

In formulations (4) and (5) the integral calculates the expected value of the option when it

is in the money, e.g. E[Max(&a - &, 0)] for a put option with units of rainfall (e.g. inches or cm or

mm). The value of Z (with units $/inch etc.)  is established perhaps as the expected value of

�’(&) over the entire range of & when it is in the money. Alternatively, it could also be a

measured average cost derived from accounting and production records, or simply as a subjective

allocation. 

An alternative to the option-like rainfall insurance products described by equations (4) and

(5) is the all-or-nothing option. This option is triggered as soon as the rainfall measure becomes in

the money. Once this event happens a fixed payout is made. The all-or-nothing option is given by

(6) Vput = Z ,,&af(&)d &    for    & < &a

and

(7) Vcall = Z 
&b,,f(&)d &    for    & >&b 

where the integral term measures the cumulative probability of the event happening..

There are three requirements to calculating the premium of a rainfall insurance product.

The first, as discussed , is a determination of the dollar value placed on the event happening , i.e.

Z or �’(&)  The second element is to determine the criteria for the event; if the insurance is to

insure that no rain occurs over a 14 day period, then the appropriate measure of risk would be the

daily record of rainfall;  if the derivative is designed to insure that at least 1" of rain falls in a seven

day period then the appropriate probability measure would be based on cumulative rainfall. The
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third element is the definition of the probability distribution or stochastic process which defines

the risks and outcomes associated with &.. It would be atypical at this time to argue or defend the

use of Black’s option pricing model to price the options since there is no forward market or index

with wich to price such a derivative nor can it be argued that the underlying volatility structure

complies with geometric Brownian motion. Consequently the most practical approach, and one

which is used in practice is to use historical time series to compute probabilities. The most

common approach, often referred to as the ‘Burn Rate’, assumes that history will repeat itself or

that there is a form of mean reversion which allows for the use of history to calculate the present

with reasonable precision. In the alternative, a normal distribution could be used. With a large

number of observations the use of normal curve theory could approximate the burn rate, but it

should be understood that the difference between the two approaches is that normal curve theory

assumes that history repeats itself over an infinite time horizon whereas the burn rate assumes this

repetition only for the period in which data is collected.

Finally, the insureability of rainfall can only be localized. The distribution of rainfall

throughout the year is affected by sporadic bursts which impact one locale and not another.

Different regions also face different ecological effects from macro weather patterns to lake and

other waterway effects. For this reason most rainfall insurance contracts would specify

measurement at a specific location over a specific time period. Moreover, it would be unusual for

any counterparty to accept a contract which does not provide an authoritative and verifiable

measure. For this reason contracts in the U.S.A. would rely exclusively on the measurements from

the National Weather Service, and in Canada the authority would be Environment Canada.

Based on this discussion the specific details of an insurance contract (or ticket if an OTC

derivative traded product) has at least three elements; 1) The insured event, 2) the duration of the

contract, and 3) the location at which the event is measured. The wording is specific as suggested

by the following hypothetical contract (which will be discussed below) “The company will insure

from June 1, 1999 to July 31, 1999, that accumulated rainfall will not be 100 mm or below at the

Environment Canada Weather Station located in Welland Ontario”. The contract would then go

on to stipulate the indemnity or payoff should the specific event happen. Once the terms have

been established the product will either be sold directly at a fixed or negotiated price, or brokered



6 The Environment Canada data base has many different locations. Most have data to 1996
and many will have data going back as far as 30 or 40 years. Only a small percentage of locations
has data prior to 1900.

7 The fact that data has been recorded as far back as 1890 does not necessarily imply that
all of the data is available on each day of each year. The software written specifically for this study
eliminated any year which had missing data.

Page -7-

on an over-the-counter exchange on a bid-ask basis.

Data Sources and empirical Measurement of Rainfall Insurance

In this paper a number of different insurance contracts will be specified and valued for

three separate locations in Ontario. The number of possibilities for rainfall insurance is limited

only by imagination and data, however the examples provided should reasonably represent the

most common types and measures of insurance that will emerge for Canadian agriculture.

Data used are daily rainfall measures from 1892  to 1996. Measurement is in mm/day as

recorded by Environment Canada. The three locations selected for this paper are Ottawa (Eastern

Ontario), Welland (South Central Ontario and Niagra District), and Woodstock (Central Ontario).

These three regions have diverse agricultural economies. The Ottawa region is mixed farming but

the majority of land would be planted to forages and grain corn. Woodstock represents a diverse

cash cropping region which includes forage crops, grains, oilseeds, edible beans, and tobacco.

Welland, with its proximity to the Niagra Escarpment represents an area rich in fruit orchards,

vineyards, and cash crops. In addition to diversity, these three particular weather stations had

daily data as far back as at least 18926 7 .

The analysis and summaries in this study uses daily data from June 1 through to July 31

from 1892 to 1996. Table 1 summarizes some key information for the three locations over this

period and Figure 2 Illustrates for Woodstock the variability in total rainfall over this period..

From Table 1 the average rainfall for Ottawa, Welland and Woodstock is 174.1 mm,

145.0 mm and 163.8 mm respectively. The Highest rainfall for each is 325.6 mm (1899), 318.8

(1937) and 308.3 (1892), and the lowest rainfall is 68.9 mm (1991), 44.5 mm (1933) and 40.4

mm (1899). The table reveals that the systematic relationship between the regions cannot be relied
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upon. In 1899 Ottawa recorded its highest rainfall ever, while in that same year drought

conditions recorded the lowest rainfall in Woodstock. In 1937 Welland recorded its highest

rainfall ever, while approximately 120 km away Woodstock recorded rainfall close to the average.

In 1991 Eastern Ontario faced a drought while in Central Ontario above average rainfall was

recorded. This summary illustrates the importance of using localized weather data , indicates the

diversity (and perhaps randomness) of weather patterns across Ontario, and provides an

explanation for the differences in the systematic risk of crop production across Ontario that was

observed by Turvey (1991).

In the following section a number of contracts will be specified and the premiums

compared by location. When specific events are being insured, it will be shown that not only do

differences in regions matter for inter year comparisons, but what happens within a year is equally,

if not more, important.

Insuring Specific Event Risks

In this section a number of different insurance contracts will be analyzed. The analysis tool

is a proprietary computer program written in Visual Basic Applications with Microsoft Excel.

Data from Environment Canada are stored in an excel spreadsheet and the VBA organizes the

data, checks for missing data, and computes the insurance premiums for the specified rainfall

events. Five contracts are evaluated for each of the three locations. These are:

� Option 1: Insurance which pays out $1,000 for each mm of cumulative rainfall below a

strike of 125mm calculated using the burn rate method and the normal curve method.

� Option 2: Insurance which pays out $1,000 for each mm of cumulative rainfall below a

strike of 100mm calculated using the burn rate method and the normal curve method.

� Option 3: Insurance which pays $10,000 per event where each event is defined as zero

rainfall for 14 consecutive days, and the insurance will pay up to four separate and

mutually exclusive events.

� Option 4: Insurance which pays $10,000 if the cumulative rainfall between June 1 and July

31 is less than or equal to 100mm.

� Option 5: Insurance which pays $10,000 if the cumulative rainfall between June 1 and July
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31 is greater than or equal to 275mm.

The first two put option-like insurance policies or derivatives are drought insurance

contracts calculated using Equation 3, where Z is fixed rather than using marginal profits as

defined by equation 1. The distributional assumption is that the empirical rainfall distribution is

not necessarily normal. Hence, the ‘Burn Rate’ is calculated using the empirical distribution, and

this is compared to a normal distribution assumption. For the first option the specific event which

triggers a payout, or puts the policy in-the-money, is when cumulative rainfall is less than 125 mm

on July 31, and for the second option the strike is at 100 mm on July 31.

The third option is a specific event rainfall policy which insures 2-week drought. This

policy will pay $10,000 to the insured for each non-overlapping 14 day period in which no rain is

recorded. The policy would expire out-of-the-money if even 1mm or rainfall fell at least once

every 14 days. Up to four separate events will be covered under this policy which means that the

possibility of a payoff increases with extended drought.

The fourth option is a specific event drought contract which pays $10,000 if cumulative

rainfall is less than 100mm on July 31. The option expires out-of-the-money if rainfall in excess of

100mm is recorded. This policy differs from the first two in that it is a single-event, single-payout

policy. The payout of $10,000 is fixed and is paid out regardless of whether rainfall is 0mm or

100mm. In the first two cases the amount by which rainfall is below 100mm determines the

payoff.

The fifth option is a specific event call option. Policies of this type could be referred to as

flood insurance, but in general an end user of this policy will have crops which are sensitive to

excessive rainfall. The call option pays a fixed rate of $10,000 if cumulative rainfall is greater than

or equal to 275mm on July 31.

The results from these policies are presented in Table 2. With the exception of the first

two options, It would be incorrect to compare and contrast all of the policies because the

underlying probability structure differs between them. However it is possible to compare the three

locations since it is the nature and design of probabilities which distinguishes them. For the first
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option, there is a substantial difference between the cost of insurance in Ottawa, Welland, and

Woodstock. At a 125mm strike the value of the option is equal to $4,142 in Ottawa and $12,819

in Welland. The maximum payoff that would have been made since 1892 is 84,600 for

Woodstock, $80,500 for Welland, and $56,100 for Ottawa. The results illustrate the significance

of how events are distributed. For example, even though Woodstock would have recorded the

largest payoff, the insurance costs is still lower than Welland. 

If a normal distribution is assumed the calculated premiums are lower at 3,906 for Ottawa,

and $10,701 in Welland and $6,901 in Woodstock. From a historical perspective there is a bias

associated with the normal distributional assumption at the 125mm strike level. In contrast, at the

100mm strike the normal distribution overprices relative to the empirical distribution, which is to

say that it assigns probabilities to large in-the-money events which have not occurred in over 100

years. However, the nearer the strike is to the mean the closer the normal distributional

assumption will echo the premium calculation of the empirical distribution.

The zero rainfall 14-day event option is priced at $952, $2,039, and $1,810 for Ottawa,

Welland, and Woodstock respectively. There is a 91.4% chance that no event will occur in

Ottawa, while an 81.6% chance of no event is recorded for Welland. There is nearly a 2% chance

of 2 events occurring in Welland, a 3% chance of two events in Woodstock, and a 1% chance of

two events in Ottawa. In general, significant drought is a rare event which occurs about once a

decade only. However, depending on location, the frequency and distribution of these rare events

can vary significantly.

The fourth option is a less extreme drought policy than that above, but its structure is

different as well. As at July 31, the chance of having less than 100mm of accumulated rainfall is

very rare in Ottawa where the premium would only be $571. Welland is most drought prone with

a cost of $2,621, and the cost of the policy in Woodstock would be $1,714.

Finally, the fifth option illustrates how insurance can be used to protect against excessive

rainfall. With a premium of $571, Woodstock appears to have the greatest likelihood of excessive

rain, with Welland and Ottawa facing costs of only $388 and $381 respectively. In contrast to the

fifth option there is a much greater likelihood of too little rain than too much rain.

The important observation from exploring this limited number of insurance products is the



8 One can imagine many situations where incomplete data at one location may require
regression or correlation analysis with a second location in order to extrapolate rainfall. If , under
these circumstances, systematic risk is low and the extrapolation is used to calculate premiums, it
may be prudent to use Monte Carlo or other simulation techniques to estimate the premiums.
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verification that a uniform rainfall insurance policy will not be successful, at least on an actuarial

basis. The risks by location are significantly different as one would expect in an area where

different and varied macro and micro climatic conditions prevail. Of the three locations illustrated

above, Welland is the most drought prone, and therefore insurance or derivative products targeted

towards this region would be higher than the other two regions. Ottawa is the least likely area to

suffer extreme drought conditions. It is also important to recognize that different climatic

conditions can affect different locations at the same time. Recall from Table 1 the observation that

in 1899 Ottawa recorded its wettest season on record, Woodstock its driest, and in that same year

Welland was near average. The obvious caveat is that even though some weather conditions can

be highly correlated amongst locations this is not a rule that can be relied on with any actuarial

precision8.

Discussion and Conclusions

the purpose of this paper was to provide some insights into the economics of rainfall and

its relationship to specific event risks which cause economic damage .  It was argued that a

paradigm for understanding rainfall insurance starts with the definition of a profit function, and

how profits vary with rainfall. In a classical economic framework, insurance would be calculated

according to changes in the direct and indirect marginal profits of the business. Because

measuring changes to marginal profits can be costly and impractical the approach was not pursued

in this study. Rather, a fixed payoff associated with a specific event was assumed in all cases.

Drought insurance relies on the strike value (elected coverage level) of rainfall and its

relationship with the underlying probability distribution or stochastic process wich determines the

frequency of specific rainfall events. Using daily rainfall data compiled by Environment Canada,

and having found three locations across Ontario which had daily data from 1892, this paper

examined only five such policies . Depending on which policy was used the range of prices truly
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reflected the underlying weather risks. The premiums for drought insurance ranged from $12,819

to $571, and it was shown that these differences are location specific.

The emergence of primary and secondary markets for weather based risk management

products will result in many new products coming to the market.  For forage crop insurance this is

timely since the largest problem with forage insurance is measuring actual yields. Note that at no

point in this paper was crop yield measurement or proven losses an issues. Rainfall insurance can

provide a simple and intuitive approach to managing production risks which can be delivered in a

cost effective and unambiguous manner. This paper provided some insights into the theoretical

justification for these products, illustrated how rainfall insurance/derivative premiums can  be

computed, and raised some practical issues relating to the recognition of risks. However, it is

understood that as the market does grow these techniques will become more refined, and the

market for weather insurance and derivative models will become much more sophisticated.
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Table 1: Data Summary 1892-1996, Cumulative Rainfall (mm) June 1 to July 31

Location Ottawa Welland Woodstock

Average 173.3 144.0 162.8

Standard Deviation 51.7 54.1 56.9

High 325.6 318.8 308.0

Low 68.9 40.4 44.5

Min and Max Years

1892 228.9      305.6 308.3

1899 325.6 138.4 40.4

1933 123.2 44.5 72.2

1937 194.7 318.8 141.6

1991 68.9 94.2 153.0
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Table 2: Estimated Premium and Payoff results for Insured Events; June 1 - July 31

Description Ottawa Welland Woodstock

Drought Insurance Put Option@$1,000/mm; Strike = 125mm

Burn Rate Model Premium $4,142 $12,819 $9,100

Normal Curve Model Premium $3,906 $10,701 $6,901

Maximum Payout (1892-1996) $56,100 $80,500 $84,600

Drought Insurance Put Option@$1,000/mm; Strike = 100mm

Burn Rate Model Premium $968 $4,372 $3,524

Normal Curve Model Premium $1,464 $5,101 $3,103

Maximum Payout (1892-1996) $31,100 $55,500 $59,600

Drought Insurance; Insure specific event of 0mm/day for 14 days; Maximum 4
events;$10,000/event

Premium $952 $2,039 $1,810

Standard deviation of Payout $3,259 $4,506 $4,553

Maximum payout $20,000 $20,000 $20,000

Chance of 0 events .914 .816 .848

Chance of 1 events .076 .165 .124

Chance of 2 events .010 .019 .029

Chance of 3 events .00 .00 .00

Chance of 4 events .00 .00 .00

Drought Insurance; Insure specific event of <=100mm cumulative rainfall;
Payout=$10,000

Premium $571 $2,621 $1,714

Maximum Payout $10,000 $10,000 $10,000

Flood Insurance; Insure specific event of >=275mm cumulative rainfall; Payout=$10,000

Premium $381 $388 $571

Maximum Payout $10,000 $10,000 $10,000
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Figure 1: Business profits are a concave function of
rainfall.
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Cumulative Rainfall (mm/year) 1892-
1996, Woodstock Ont.
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Figure 2 Cumulative rainfall for Woodstock Ontario from June 1 through to July
31: 1892-1996


