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THE FAST DECAY PROCESSIN RECREATIONAL DEMAND ACTIVITIES
AND THE USE OF ALTERNATIVE COUNT DATA MODELS



Abstract

Snce the ealy 1990s researchers have routindy used count data modes (such as the
Poisson and negaive binomid) to edimate the demand for recregtiond activities Along
with the success and popularity of count data models in recreationd demand andyss
during the last decade, a number of shortcomings of dtandard count data models became
obvious to researchers. This had led to the development of new and more sophidticated
modd spedifications Furthermore, semi-parametric and non-parametric  gpproaches have
aso made their way into count data modes.

Despite these advances, however, one interesting issue has received little research
atention in this area. This is related to the fast decay process of the dependent varigble
and the associated long tal. This phenomenon is observed quite frequently in recregtiond
demand dudies; most recredtionists make one or two trips while a few of them make
exceedingly large number of trips This introduces an extreme form of overdisperson
difficult to address in popular count data modds. The mgor objective of this paper is to
investigate the issues reaed to proper moddling of the fast decay process and the
associated long tails in recregtion demand andyss. For this purpose, we introduce two
caegories of dternative count data modes. The fird group incdudes four dternaive
count data modds, eech characterised by a dngle paameaer while the second group
includes one count data modd characterised by two parameters. This paper demondrates
how these dternative modds can be used to properly modd the fast decay process and
the associaed long tal commonly obsarved in recregtion demand andysis. The firg four
dternative count data modds are based on an adaptation of the geometric, Bord,
logarithmic and Yule probebility digributions to count data modds while the second
group of modds relied on the use of the generdised Poisson probability digtribution.

All thee dterndtive count data modds are empiricdly implemented usng the maximum
likdihood edimation procedure and goplied to dudy the demand for moose hunting in
Northern Ontario. Econometric results indicate that most of the dterndive count data
models proposed in this paper are able to capture the fast decay process characterising the
number of moose hunting trips. Overdl they seem to perform as wdl as the conventiond
negative binomid modd.and better than the Poisson gpecification. However further
invedigation of the econometric results reved that the geometric and generdised Poisson
model specifications fare better than the modified Bordl and Y ule regresson modds.

Keywords : fast decay process ; recregtiond demand; count data modes ; Bord, Yule,
logarithmic and generdised Poisson regresson models.



THE FAST DECAY PROCESSIN OUTDOOR RECREATIONAL ACTIVITIES
AND THE USE OF ALTERNATIVE COUNT DATA MODELS

INTRODUCTION

To messure the nonmarket vaues of various recregtiond activities using the travel cost
method, economiss gengrdly use annud demad for trips  The daa for individud
recregtionits are often collected from recregtion dtes where only the number of
participants consuming podtive quantities are represented.  Data for non-participants or
for paticipants consuming zero quantities are not reedily avalable Since observed trips
are nonnegative and occurs in integer quantities, the dependent varidble is truncated and
censored. Falure to address censoring and truncation issues in econometric andysis can
lead to biased estimates.

Ealy atempts to address these issues include edimation of continuous demand modds
with truncated eror didributions (Shaw). Smith and Kaoru, and Hanneman edtimated
random utility models in which recreationd choice is represented as purdy discrete.
Fndly, Heckman and Bocksed et al. made atempts to combine continuous and discrete
models to address truncation and censoring. In particular, discrete modes were used to
predict the probability of participation while the continuous modds were usad to etimate
the quantity demanded of the sdected goods or sarvices given paticipation. Problems
encountered in above atempts to address truncation and censoring dong with the
redization tha demand for recredtion trips can be moddled more parsmonioudy as a
nonnegative integer vaued vaiable led ressachers to employ count data modds

(Smith, Helersein and Menddsohn). Since the early 1990s researchers have routindy



used count data modds such as the Poisson, negative binomia (denoted negbin heresfter)
modds to edimate the demand for recregtiond fishing (Grogger and Carson, Woodward
et al.), big game hunting (Cred and Loomis, 1990; Yen and Adamowicz, Offenbach and
Goodwin, and Sarker and Surry, among others), water fowl hunting (Cooper, Cooper and
Loomis), recregiond boaing (Ozuna and Gomez), canoeing (Helergen), hiking (Englin
and Shonkwiler), whitewater rafting (Bowker et al.) and rock dimbing (Shaw and Jakus).

Along with the success and growing popularity of count data modes in recreationd
demand andyss during the last decade, a number of their shortcomings became obvious
to researches. The mgor inadequacies relae to the problem of treating zeros,
inditutional condraints, vistation of multiple dtes and over-disperson adequady in
count data modds (Habb and McConndl; Cred and Loomis 1992, and Hausmen et al.,
1995).

In a typicd recredion demand gpplicaion of the benchmak Poisson modd, the
edimated moded underpredicts the true frequency of zeroes, overpredicts the true
frequency of other smdl vdues and underpredicts the true frequency of large counts A
manifestation of this phenomenon is the exigence of a variance larger than its mean. This
is wdl recognized in the count deta literature as overdigperson and is caused by some
form of unobserved heterogendty in population parameter. Three dternative gpproaches
have been used to capture different forms of heterogeneity in the Poisson modd by
dlowing the variance of the didribution to vary across counts. Following the parametric
tradition, King, and Winkdmann and Zimmemann proposed generdized count data

modds devdoped by exploting the propaties of the Kaz family of probability



digributions to tackle the problem of overdigperson. Note that these generdizations
modify only the variance function but not the conditiond meen. Recently, Cameron and
Johansson  proposed  another  parametric  approach  that sSmultaneoudy  affects  the
specification of dl conditiond moments. In particular, they condder generdisations of
the Poisson count data modd based on a squared polynomiad series expanson which
permits flexible moddling of conditiond moments and dlows us to escgpe the redrictive
framework of commonly used paameric count daa modds Deveopments in
nonparamelric and semi-parametric econometrics during the last decade have dso made
their way into count data modds For example, Gurmu et al. proposed a specification in
which the didribution of the variance is edimaed non-paramericdly usng Laguere
sries expanson esimaors.  The Laguerre polynomids are useful for count deta modes
because they ae based on gamma random vaiables commonly used in parametric
modds  Gurmu extends the methods proposed in Gurmu et al. to the case of hurdle count
modds  Hurdle modds are conddered as refinements of modds with truncation and
censoring. While parametric variants of hurdle count modds have been very useful in
empiricd work for handling 'excess zer0 problem, the trestment of unobserved
heterogeneity has been problematic in this dass of modd. Gurmu's andyss shows how
one can incorporate additiond functiond form flexibility by usng seies expansons to
model unobserved heterogenaity. The proposed method nests the Poisson and negative
bnomid hurde modds and pemits non-Gamma didributions for  unobsarvebles
Findly, Cooper proposed two nonparametric gpproaches, the pool adjacent violators and

the kernel smoothing, to travel cost andyss of recregtion demand.



These devdopments in court data modes ae indeed, exdting and have contributed to
their growing popularity in recreation demand andyss. Despite these advances, however,
one interesting issue has recealved little research atention. This is rdated to the fast decay
process of the dependent varidble and the associaed long tal. This phenomenon is
observed quite frequently in recrestiond demand Studies; mogt recrationids make one or
two trips while a few recredtionists meke exceedingly large number of tripss This
introduces an extreme form of overdisperson very difficult to address in popular count
data models The mgor objective of this paper is to invedigate the issues rdaed to
proper modeling of the fast decay process and the associated long tals in recreation
demand andyds  Although nonparametric gpproach makes no precise assumptions about
functiond form and dlows the data to 'spesk for themsdves, good edimates of a
nonparametric model can be obtained only with a very large amount of data (Ddgado and
Robinson).  While semi-parametric gpproach provides a compromise between parametric
and nonparametric gpproaches and can reduce the potentid for misspecification, it
requires complex and delicate moddling efforts and careful fitting to the data Even with
carefu modeling, the interpretation of the results remans open (Cred). Moreover,
Cooper's empiricd andyss of waefow hunting shows that with proper econometric
specification the parametric gpproach generates more relidble results than the semi-

parametric or nonparametric gpproaches to recregtion demand anayss.

! The fast decay phenomenon can be noted in the recreational data set used in the Ozuna and Gomez's
study. The total number of trips for recreational boating range from zero to 88 while the frequency of trips
(which totals 659) goes from a high 417 observations for zero trips to 68 and 38 respectively for one and
two trips. A few receationists, however, took 8 or more boating trips. As aresult, the mean is equal to 2.34
and its standard deviation is 6.29



In light of these observations and of the fact that the data sets avallable for recrestion
demand andyss are often amal, we employ the parametric gpproach to address the fast
decay process and the associated long tal of the digtribution. To this end, we introduce
three categories of dternative count data modes. Included in the firsg category is a
generdisation of the negaive binomid regresson modd in which the variance is podted
to be an increesng and non-linear function of its conditiond meen. The second group
includes four dternative count data modds each chaacterised by a sngle parameter.

Thefind group includes three types of hybrid generdized Poisson modes

The inadequacies of the conventiond count data modes to ded with the issues rdaed to
the fast decay process ae highlighted in Section 2. This section dso focuses on
goproprigie generdisdion of the negbin specifications to accommodate the fast decay
pracess. The other dternative count data models capable of capturing the features of the
fast decay process dong with ther basic properties are presented in Sections 3 and 4.
Section 5 addresses various edimation issues and moddling quesions (i.e, mocH
performance and sdection) encountered in the empiricd implementation of these
dternaive count data modds. Section 6 reports the results of an empirica application of
proposed dternative count data modes and discusses thar policy implications. The find
section of the pagpear summaizes the mgor findings of this dudy and offers some

concluding remarks.



FAST DECAY PROCESS AND CONVENTIONAL COUNT DATA MODELS

A common obsarvation in recregtion demand dudies is tha a vast mgority of the
participants make a least one or two trips and the number of recregtiond trips higher
than two fdls rgpidly. However, only a few ovely enthusadic recredtionids make
excedingly large number of trips Such idiosyncratic behaviour of recreationists
generdes trip data with some specid features, the frequency of trips fdl sharply after one
or two trips but the digtribution contains a long tall. This is caled the fast decay process.
As a reallt, the variance will be greater than the mean (over-digoerson) and is likdy be
an increesng (and possbly non-linear) function of its mean. We revist the popular count
data modds - i.e Poisson and the negbin modds - and comment on ther &bility to
capture the fast decay process and the associated over-disperson. Then we examine a
2generdizec form of the negbin modd that is cgpable of capturing the fast decay
process.

The most widdy used sngle parameter count data modd in recregtiond demand andysis
is the Poisson didribution. The besic Poisson model assumes that Y;, the ith observation

of the number of recrestiond trips follows a Poisson digtribution given by
- I k

ProbY =k)=2 -

@

where | isthe Poisson parameter to beestimated and k=0, 1, 2....n.
A count data regresson basad on the Poisson didribution is specified by letting | to vary
over observaions according to a specific function of a st of explanaiory varigbles The

most commonly used spedification for | is |j = exp(Xib) where X is a matrix of



explanatory varigbles induding a congat and b is a conformable vector of unknown
paanees to be edimaed. The basc Poisson mode ceptures the discrete and
nonnegative nature of the dependent variable and dlows inference on the probability of
trip occurrence. However, this gpecification aso implies that the variance of the
digribution is equd to its mean. This is a redrictive property not often met in redity. In
particular, when the dependent varidble is characterised by a fast decay process, the so-
cdled equidigperson property of the Poisson didribution is flagrantly violated. If this is
not recognised and accounted for in moddling demand for recredtion, the esimated
paameters will be biased and inconggent (Grogger and Cason). The Poison
digribution admits the fast decay process only when the estimated vaue of the parameter
| islessthan one.

An dternative to the Poisson modd has been proposed about two decades ago by
Hausman et al. (1984) to ded with over-disperson in count data modds This dterndive
can be judified on the grounds that measurement erors and/or omisson of explanatory
vaiables could introduce additiond heterogengty and hence, over-disperson in the daa
Under these conditions, it can be assumed that the dependent variable is measured with a
multiplicative eror cgpturing unobsarved  heterogendty and  this eror term s

uncorrdated with the explanaory vaiables. If the eror tem, e, fdlows a Gamma

digribution, atwo-parameter negative binomiad modd can be defined as:

Gkn) én u el u @
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Prob(Y, =k;k=0,12,..n) =



The expected vaue and the variance of this distribution are | and [I + ?/n], respectively.
The parameter n is non-negative and cdled the precison parameter. Note dso that the
vaiance is a quadraic function of its mean. To make sure that the mean | is non-
negative, the mode is parameterised by assuming |; =exp(Xib) where X is a vector of
explanatory variables. A wide range of modd specifications can be generaed by seting

the parameter n as afunction of the explanatory varigbles, X, such that:

m
n, =

i ('a) :ga@(p(x{b)]m " a>0 &)

where mis an arbitrary condant. By replacing ni in the variance by equétion (3) results in

agenadised form of the variance such as (Cameron and Trivedi, 1987):
Var(Y|X,) = E[Y,|X ] +aE[Y,|X, ]*" =1, +a - (I )*" @

The associated probability didribution is now a"generdised” dengty function given by

G€k+e(| )mUu i m()™ om G
Prob(Y; =k;k=0,12,...) = e Z(l l)Juu' 'l @l ), )(|a)m ;/ ©
T
Gl +D)- Gg 2 o ymear J5o)

A dos look a expressons (4) and (5) reveds that different forms of overdisperson can
be cgptured in this modd depending on the vaues taken by the parameters m and a.

Moreover, it provides a convenient formulation for nesing popular count data modds
through linking the conditiond mean and variance of the dependent varidble as discussed

bdow.

- Avdueof a =0yiddsthe Poisson modd where variance and mean are equd.



If mel, Va(Y¥2X)=E[Yi¥X]- (1+a)=l i-(1+a). This gpecification is cdled
neghin type I. It assumes a condant reaionship between conditiond mean and
variance,

- When m = 0, the precison parameter n; is a condant and equds to 1/a. The
variance of the didribution is equd to | -(1+al). This spedification is known as
negbin typell.

- A fast decay process is obtained when the parameter a assumes vaues greater
than or equd to one.

-When mtlandlor * 0, we have severd types of specification to represent over-
disperson. For example, when m < 1, the conditiond variance increeses with the
mean a an increedng rae. On the other hand, when 1 < m < 2, the variance

increases with the mean but a a decreasing rate. When m > 2, the derivative of

Var(Yi¥X) with repect to the conditiond mesn becomes negative’ and the

conditiond variance becomes a decreasing function of the mean E(Yi%Xi).
From the above, it can be seen that a fast decay process can be captured in a negbin
binomid modd with a 3 1 axd m < 1. This explans why the negbin Il specification
provides a better representation of over-digperson than negbin | and has been extensvey
used for moddling the demand for recrestiond activities. However, the "generdized"
vearson of this mode presented in equation (5) is yet to receive wide gpplication because
its probebility digribution and the associaed likdihood function ae both highly non-
linear with respect to the parameters.  Such nonlinearities make it difficult to obtan
convergent estimates of parameters from this moded (Saha and Dong).

ALTERNATIVE COUNT DATA MODELS AND ONE-PARAMETER
PROBABILITY DISTRIBUTIONS

A st of four dternative count data models and ther basc features are presented in this
sction.  Each modd is characterized by one-paameter probability didribution and is

auitable for representing the fast decay process and the long tal. These modds ae

» TVar(Y)
TECY)

=1+a(2- m)l ™. Thisfirst order derivativeisnegativefor | <[{-1} /{a(2-m}]/*™




presented in the same oirit as the origind introduction of count data modds in
recregtiond demand andysis.

The geometric digtribution

The geometric probability didtribution is characterised by the parameter | assumed to be
postive and can be adopted to andyse recregtiond demand (Mullahy). Its dendty
function can be obtained as a goecid case of expression (2) because it is equivdent to the
negbin probability didribution when the its precison parameter n is equa to one The
mean and variance of this digribution are | and | - (1+]), respectively (see Appendix 1).
Since the variance is a quadratic function of the mean, the geometric didribution alows
for over disperson in daa and can represent the fast decay process. The left-truncated

geometric mode can be specified as:

Prob(Y =k) _1*@+1) &

Prob(Y =k;k=01..nfk >0) = Prob(Y=0) (- @+1)"Y

= k—1(1+|)—k (6)

The geomeric didribution is unimodd for k = 0. The modd is parameterised as
| i=exp(X'b), where X; isthe matrix of explanatory variables.

Bord digtribution

Ancther count data modd cgpable of capturing the fast decay process is the Bord
digribution (see Appendix 1). It was origindly devdoped in the context of queuing

theory®. The Bord digribution cannot be used in its origind form to mode the demand

3 Conceptualised first by Borel and then extended by Tanner, this probability distribution described the
distribution of the total number of customers served before a queue vanishes given a simple queue with
random arrival times of customers (at constant rate) and a constant time occupied in serving each customer
(Johnson et al.). To the best of our knowledge, none has previously applied the Borel distribution in
recreational demand analysis.

10



for recreationa trips because it admits only pogtive vaues for the random vaiadle (i.e,
the number of trips) and thus excdludes zeroes This could be overcome by shifting the
Bord didribution to the left o thet it supports O, 1, 2...(.e by obtaning Z= Y-1). The
resulting probability didribution can be cdled a modified Bord didribution and defined

asfolows

_ (k+D M ¥ expl- | (k+1)]
_ > o

Prob(Z = k;k=01,....n)

where the parameter | is podtive and smdler than one The modified Bord probabity
digribution is unimodd for k = 0. The left-truncated modified Bord didribution is as

follows

(k+D* 1 X expl- 1 (k +1)]
KI[1- exp(-1)] )

Prob(z =k;k =01,...nk>0) =

The mean mof this distribution is | /(1-1), while the variance is equd to | /(1-1)* or to
n{1+n)? when expressed in terms of m The variance of the modified Borel distribution is
then a polynomid of degree three of its mean and thus it can dlow a richer kind of over-
digperson and a better representation of the fast decay process than the geometric model.
To modd the recregtiond demand for tripss a modified Bord regresson can be
parameterised such that | =1/(1+exp(-X'b)) where X isamatrix of explanatory varigbles.

The logarithmic distribution

The third dterndive is bassd on the logaithmic digribution developed by Fisher et al..
The dendty function and the badc characterigics of this didribution are presented in

Appendix 1. The logaithmic digribution is unimodd for Y = 1 and it is the limiting

11



didribution of a Ieft-truncated negative binomid didribution when the precison
parameter v gpproaches O (or a tends to +u). In its origind form, this didribution aso
excdudes zero vaues. Consequently, it cannot be used for modeling the demand for
recregtiona activities. For the purpose of this paper, we use a random vaiable, Z =Y - 1,
and devdop a modified logaithmic digribution, which can be written as

_|k+1

Prob(Z = k;k =0.,.n) =
rob( 1.n) (K+DIn(1- 1) )

where, | isthe parameter of thisdigtribution. It is pogtive but smdler than one.
The mean of the modified logarithmic digribution, E(Z) isgiven by

| [In@-1)-1-In@-1)
@- 1)In@- 1)

E(Z) =E(Y)- 1= (10)

while the variance is linked to its mean through the following non-linear relaionship:
E@)= [E@+Y**[-In(2-)-1] (1D
Unlike its origind form, the modified logaithmic digribution is characterised by a
variance that is dways greater than the mean regardless of the vaues taken by | over the
range [0, 1]. The left-truncated probability dengty for the modified logarithmic modd
can be defined as:

Prob(Z =k) _ - |k

mouZ:Kk=0lka>®:1_M@uz:oy_w+nule)+H

(12)

While the logaithmic didribution can hande both unde- and over-dispersed data

generaing processes, the over-disperson is saidfied only when the variance to mean



raio is greater than unity. The later condition is readily stidied by the modified
logarithmic digtribution.
Asauming that the parameter of the didribution | is a logidic function of the explanatory

variables, the mean of the modified logarithmic ditribution can be derived as

EZ) = exp(X'b)
Iog[1+ exp(X'b)]

(13

The Yule digribution

The last one-parameter count data mode suggested in this paper is based on the Yule
didribution (see Appendix 1). Like the Bord and logaithmic probability disributions,
the Yule didribution in its origind form does not accommodate zero vaues and hence
canot be employed to andyse the demand for recredtiond trips To overcome this
problem, we shift the Yule digribution to the left so that it has support O, 1, 2,..n (i.e. by
obtaining Z = Y-1). The resulting probebility didribution is a modified Yule digribution

defined as

b - _ _hG@k+1)Gh +1)
Pro(Z =k;k =0,1,...n) =hB(k +1h +1) = Sih 2 (14)

Where, B(.) and Q.) are the Beta and Gamma functions, repectively and the parameter h
is gredter than one. The modified Yule digribution is unimodd for k = 0 (Johnson et al.).
The mean is now equd to E(Z)=1/(h-1) while its vaiance is linked to its mean as

follows

2 _ [E(2) +1f

V(Z)=s 1- EQ) (15)

13



It can be seen from eguation (15) that the variance exigs only if the mean is amdler than
one’. This property of the modified Yule distribution can be viewed as a weskness in case
of recregtiond demand analysis because the average number of trips is usudly greater
than 1. To modd the recregtiond demand for trips, a modified Yule regresson can be
parameterised such that the distribution parameter® h is equa to exp(-X'b)+1 where X is
the matrix of explanatory variables.

Although the Bord, logarithmic and Yule didributions have been modified to capture
zero counts, these didributions can dso be used in ther origind form to edimae the
demand for recregtiond activities If the recreation decisons can be viewed as an
outcome of a two-stage decison meking process where the consumer decides firg
whether or not to participate and then decides how many trips to take. Following Hagb
and McConndl, such a decison making process can be moddled as:

w, fork =0 u

_1 '
Prob(Y;) = %(1_ w)g(k) for k :],2,...n¥,

(16)

where W is an indicator that represents the participation decison; w is a function of the
vaidbles afecting the paticipaion decison and its doman lies between zero and one
The dengty function g(k) can be agpproximated by a Bord, logaithmic or a Yule
digribution. The expected vaue of Y is then (1-w)E(Y). The above modd can dso be
viewed as a Bord, logaithmic or Yule probability didribution with added zeroes and w

isavarying parameter of some of the explanatory varigbles

* See also the Cauchy probability distribution for which the variance s not also defined.
®> We implicitly assume that the parameter h is equal to the inverse of the logistic function of the
explanatory variables.

14



Each of the four count data models presented above captures over-disperson through a
vaiance tha is an increesng function of the mean. Note, however, the rdadionship
between the mean vadues and the variance differs across the modds. A smple numericd
dmulaion was peformed to obtan the probability didributions associated with esch of
the four count data models presented above. Figure 1 provides a pictorid view of the
results on a linear scde while Table 2 reports some useful indicators defining the shape
of each probeblity didribution. A number of interesting features emerge from Fgure 1
and Tdde 1. Fird, irregpective of the mean vdues, the modified Yule has the highest
mode, followed by the modified Bord, modified logarithmic and geometric disributions
Second, the nature of the decay process is more pronounced in case of modified Bord,
logarithmic and Y ule digtributions than in case of a geometric didtribution.

It is not difficult to implement the four count data modds for Sudying recrestiond
demand and it is dso reatively easy to generate the edtimates of consumers surplus per
trip for the geometric, modified Bord and modified Yule modds  Due to spedfic
paanderisaion of the regresson modds each yidds a semi-logaithmic demand
function. The associated consumer surplus per trip is equd to -1/price coefficient.
However, the derivation of the consumer surplus for the modified logarithmic count data

mode involves amore complicated prooedure®.

8 For this model, expression (14) defining the demand for recreational activities is quite complex at first
sight because it involves aratio of an exponential function over alogarithmic function. The computation of
the consumer surplus, therefore, requires some special treatment using the Loglntegral function. For this
purpose, we derive the following expression of consumer surplus for this distribution

pcn€  exp(a+bp) Loglntegrd (1 + exp(a + bp))u

5 =6 &Log|1+exp(a+ bp)] b H,

Pch

-]_ul}jFT :é— P+
a8
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THE GENERALISED POISSON DISTRIBUTION AS AN ALTERNATIVE
COUNT:

An assumption implicit in most count data analyss is that the occurrence of one count is
independent of the occurrence of another count.  While this may be a reasonable
assumption for moddling many physcd processes, it is not SO in sodd scences For
exanple the independent occurrence assumption may not be plausble when one is
deding with the number of vidts to a doctor (Pohimeer and Ulrich) or the number of
trips to a recregion dte (Cred and Loomis, 1990; Grogger and Cason). Since the
generdisad Poisson didribution dlows for the probability of an event to depend on the
number of events dready occurred (Consul and Shoukri), this didribution may be
paticulaly useful in recregiond demand andyss Introduced by Consul and Jan
(19733, 1973p), the generdised Poisson didribution has recently been used In a
regresson context by Consul and Famoye, 1992, Famoye and Satos Slva We
concentrate on only those aspects of the generdised Poisson (GP) didribution relevant
for recregtiond demand andyss.

Following Consul, the generdisad Poisson digtribution can be defined as:

I (1 + dk Y'ep [-(1 +dk)]

i ki (17)

f Ofor y>m when d <0

Prob(Y=k; k=0,1,2....n) =

6(continued) where Ry is the choke price defined as the price at which the quantity demanded approaches
zero. Loglintegral is defined as follows:;
dt

Log(t)

Logintegrd (z) = ¢

The consumer surplus per trip isthen obtained by dividing CS(PR,) by the expected number of trips.
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where, | > 0, max €1, -l /m) < d <lad m?3 4isthe largest pogtive integer for which |
+d m> 0 when d is negaive. The mean and variance of the generdised Poissn
disribution are m= E(Y) = 1 /(1-d) and s® = V(Y) = 1/(1-d )* = nmi(1-d )?, respectively.
Note that the variance is greater than, equd to, or less than the mean if d is pogdtive zero
or negative. Moreover, when d is pogtive, both the mean and variance incresse as the
vadue of d increases. However, the variance increases faster than the mean. This property
is vay usful in recregiond demand dudies where the dependent variadle is
characterised by over-digperson. The GP didribution dso admits under-digperson and
eguidisperson.

Usng the fact that m=1/(1-d) = | r, it is dso possble to express the GP didribution as a

function if its meen. The resulting digribution is as follows:

; m[m+(r - 1)k]"'1r K glme(r -k /e ]

i
I K
f Ofor y>mwhen r <1 (18)

Prob(Y = k; k=0,12.., n)=

where, r 3 max (12, 1-n#4) and mis the largest pogtive integer for which mrm (r-1) >0
when r is less than one. The variance is given by s? =V(Y) = r>mWhen r =1, the GP
is equivdent to the Poisson modd while the modified Bord probability digribution is
obtaned if r = Y/(1-1) or if r = (1+m). Any vadues of r > 1 represents count data process
with over-digperson and 05 £ r < 1 characterises count data with under-disperson when

m > 2. Note that, the variance is proportiond to its meen, thus implying a condant
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variance to mean rdio (like in the case of negbin I). This is not a desirable property for a
model to capture the fast decay process.

To gan additiond indghts about the ability of the GP modd to cgpture over-digperson
asociated with the fast decay process, a smulation exercise was performed for the one-
paameter GP probability didribution usng different values of the mean, m and of the
paameter r 3 1. Fgure 2 presents a graphical representation of these results. As
expected, the unimoddity of the GPD is preserved for a vdue of r equd to one and a
mean, m£ 0.5. This result is not surprising because this case corresponds to the standard
Poisson didribution.  Secondly, the graphica results show that the L-shgped digtribution
is well represented for m=05 and r 31 It appears from this Smulation exercise that the
GP Poisson didribution admits a fast decay process only under some redrictive
conditions”.

To overcome this problem, a redricted verson of the generdlised Poisson (denoted RGP
heregfter) didribution can be formulaed by meking the parameter d proportiond to |,
such tha d = al. Subdituting this expresson for d in expresson (17) yidds the

fallowing RGP digribution:

: I k(1+ak)k'1e»<p[- I (1+ak)].|'L.'l
Prob(Y =0k =01,...n) =i k! Y fork=0,1,2..n (19
{ 0 for x>m when a <0 ,o

" As demonstrated by Consul and Famoye (1986), the GP distribution is unimodal for all values of r at k=0
if m<r exp[(r-1)/r]. This condition is satisfied in terms of the original paramete's of the GP distributon if

| <exp(-g.
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The domain of the parameter a is given by max (1 %, -14) £ a £ 1 (Famoye). If a =0,
the RGP digribution reduces to the Poisson didribution while for a =1 and | < 1, we get
a modified Bord didribution. The mean and vaiance associated with the RGP
digribuion ae m = EY)= l/(l-al) ad s?>= V (Y)= l/(l-al)® = m[l + a nf
repectively.

An dternative specification of the RGP didribution can dso be obtained if the parameter
| is expressed as a function of the mean (n). This yidds a one-parameter probability

digribution such as

o K (1+ak)"'1exp[— A(1+ak)]

Prob(Y =0;k =01,...n) = A K (20
m

l+am-

A=

where

Over-digperson is obtained when a > 0. It is interesting to note that the variance of this
modd is a third degree polynomia function of its mean. This permits a richer type of
ove-digperson and is likdy to modd the fat decay process efficiently. Figure 3
provides a grgphicd representation of the one-parameter RGP didribution for a wide
range of vaues of the mean mand the parametera. Clearly, we obtan well-defined L-
shaped didribution regardless of the vdues of the mean, m and the parameter a.
Therefore, the redricted generdised Poisson didribution can represent the fast decay
process.

If we assume tha the mean, mis an exponentid function of the explamatory variables o

that m =exp(X'b), then it is possble to define generdised Poisson regresson modes
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which can be edimated eather in redricted or unredricted forms (Consul and Famoye,
1992; Famoye). Santos Slva has shown that the two (restricted and unrestricted) forms of
the GP regresson modd can be nested through a hybrid generdised Poisson modd. To
do 50, the paameter a is linked to the covariates Xi, so that ai = ai(Xi, q, b)= qo exp[qs
(X®b)] and that m =exp(Xi'b). Incorporating these expressions in equaion (20), a hybrid

generalised Poisson (denoted HGP!) regresson mode can be defined as:

Prob(Y =k k=01,.) =[A(X, b )] - 2.0, o] Aélx' b.0)- A+a(X.b.a))] (21)
exp(X'b)

where A(X,b, ) isnow equd to ,
1+g,exp|(L+, J(X'b )

A cdos look a expresson (21) reveds that, depending upon the form teken by the
functiona(X,q,b), the following mode specifications can be obtained as specid cases.
- When ai(Xi, q, b) is a congant (when o = 0), one obtains the restricted GP
model (denoted HGPII)®. In addition, if o =1, the modd is reduced to the modified
Bord regresson model.

- If ai(Xi, g, b) is proportiond to exp(-Xi'b) (which is obtaned when o1 = -1), we
obtain the GP regression mode (denoted HGPII1)°.

- Andly, if ai(X, g, b) is equa to zero (which is obtained when gy = 0), we obtan
the standard Poisson regresson modd.

A left- truncated HGP modd could aso be defined by adjusting expresson (21) with the
prob(Y; > 0) setting equa to 1-exp[-A(X b, q)]. The resulting l&ft- truncated HGP mode
is

KK Lepl- AX,b,q) - (L+a(X,q,b)K)]

Prob(Y =k k >0) =|A(X,b, k. [1+a(X,b.q)
ob( >0) =[AX,b.q)] @ ool A b ]

(2

8 qoisthen equal to the parameter a in expression (20).
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HGP demand modes for recregtiond ectivities are obtained through m = exp(X’b) with
the covariates X including price (i.e, trave codts). It is dso interesting to note that the
consumer surplus per trip obtained from this HGP modd is equd to -1/(price coefficient).

Thisisamgor advantage of the HGP modes.

ESTIMATION ISSUESAND MODEL EVALUATION

This section deds with two important aspects of practica gpplication of dterndtive count
daa modds Frd, how to obtan coefficient edimaes from each modd that are
condgtent and unique. Second, how to evauate the performance of one modd rddive to
others.

The fird issue is rdaed to whether or not a dosed form and wdl-behaved (log)
likdihood function can be obtained for each modd. These in turn, depend on if the log
likdihood function is globdly optimd for eech modd. A cursory look a the
mathematical expressons of the log likdihood functions of dternative count data modds
presented in gopendix 2 seem to suggest that obtaining globdly optimum  parameter
edimates for some modds may not be possble because their log likdihood functions are
higny non-lineer. However, this impresson mugt be tempered because most of these
modds have been dudied thoroughly by ddidicians For example, Consul and Famoye
(1992), Famoye and Santo da Slva addressed these edtimation issues for the unredtricted
and redricted versons of the generdised Poisson modd and found thet the maximum
likdihood egimaion (ML) edimation procedure yidds efficient parameter estimates.

The results dso hold for the modified Bord regresson specification because it is nested

° Inthis case, gpis equal tor -1 and replacing it in (21) yields expression (18).
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in the generdized Poisson modd. The ML edimation of the geometric modd is dso
draightforward since it is nesed in negbin modd for which the ML egtimator has been
extensvdy sudied in the econometric literature'™® To obtain globd convergence of the
log likdihood function of the modified logarithmic regresson modds we rdied on
Johnson et al. (p. 294). For the modified Yule regresson modd, the fird and second
derivatives of the log likdihood function with respect to b produced highly non-lineer
expressons that required to be solved through the Newton-Rgphson gradient dgorithm.

Once the ML edimates of the parameters are obtained, negdive inverse of the matrix of
second derivatives of the log likdihood function with respect to the parameters can be
ued to edimate the asymptotic variancecovariance matrix of the parameters. These

estimates can be used to form Wad (W) or likdihood ratio (LR) tests for teding relevant

0 As pointed out earlier; due to high nonlinearities, estimating the 2generalised? negbin model is frown
with difficulties. However, adopting the iterative procedure suggested by Dong and Saha eased somewhat
this task, alowing to obtain global convergence of the underlying maximum likelihood function and to
generate ML estimates of parameters associated with the 2generalised? neghbin model. This procedure

consists of the following steps (Dong and Saha, p. 426):

i) obtain estimated values of the parameters a and min expressions (4) and (5) by running the following
eguationusing non linear least squares:

(yi - | i)2 ~ Vi :a(IAi)l>m+u
where | :exp(X‘B)with b being the estimate of b from the Poisson model, y; is the observed number of
trips while u; is the error term. The estimates of a and mare used as starting values in maximising the log
likelihood function of the2 generalised? negbin model .

ii)holding the parameters a and m at their estimated values, optimise the log likelihood function of
the2generalisec? neghin model with respect to the parametersb and obtain estimated valuesof b,denoted
by b.

iii) using 6 , re-estimate expression (4) generating new values for a and m Use these new estimates of a

andmand b as starti ng values to maximise the log likelihood function of the2generalised? negbin model .



hypotheses. Econometric implementation of al the count data modes has been conducted
usng the TSP program (Hal and Cummins).

The peaformance of al count data modds proposed in this paper is evduated usng
severd indicators ranging from pseudo-R? to informationbased datistics. Cameron and
Trivedi (1997) provide a good overview of such indicators The choice of indicators in
this research has been influenced by two condderations; how each count data modd fit
individua obsarvaions (frequencies) and more importantly, how wel each modd the fast
decay process. The ovedl goodness of fit of each mode has been evaduated usng the

Chi-square test as well pseudo-R? . The Chi-square goodness-df-fit test is given by

((”51 - Np; )
np; (23

c’=

Qo

1

—
1}

where J is the number of cels n is the number of observaions P, is the observed

rldtive frequency, and P;is the esimated relative frequency (probability) of cell j. The

pseudo-R? we use is the RERT mesasure proposed by Maddda (1983) and Magee (1990)
and defined asfollows:

Rier =1- exp(- LRT/n) (24

where, n is the totd number of observations and LRT is the likdihood ratio test datistic

for the joint sgnificance of dope parameters. This measure takes vaues between 0 and 1

and is invaiant to units of measurement. It becomes larger as the goodness of fit of the
model improves. It is dso a more generd goodness-of-fit measure in the sense that Rx;

isequd to R3, s inalinear modd (Cameron and Windmeijer, 1997).

23



AN EMPIRICAL APPLICATION OF ALTERNATIVE COUNT DATA MODELS
THE DEMAND FOR MOOSE HUNTING IN NORTHERN ONTARIO

The data used in the illudrative gpplications of various count data modds discussed
ealier in this pgper relae to the 1992 moose hunting seeson a the wildlife management
Unit (WMU) #21A locaied in Northern Ontario. It is a popular WMU for moose hunting
because of its remoteness and moose population densty. During the 1992 season some
1286 hunters received moose vdiddion tags to hunt an adult moose a this Ste and about
9% of these hunters were from Ontario™'. Most of the data came from the Ontario
Minigry of Naturd Resources. Data include the number of moose hunting trips made by
eech hunter to the WMU #21A and the travdl cost per hunter (which includes vehicle
related cods, a licence fee of $26.50 per hunter per season, equipment codts, costs of food
and lodging and time codt). The income variable condss of 1991 average employment
income and other income a the Enumeration Area (EA) levd. This information is based
on 1991 census data and wes adjuded to 1992 levd usng consumer price index (CP).
Further details on this data set can be found in Appendix 3.

The generd specification of the travel cost modd adopted for the ith moose hunter is

Y = exp (bo + b1 COST; + b2 INCOME) (25
where the bi's are parameters to esimate, COST and INCOME represent respectively the
travel cogt (price) and income of moose hunter i. It is expected that by < 0 and by >0.

The dependent variable is the number of moose hunting trips taken to WMUZ21A and is

1 About 200 hunters gave information on the number of hunting trips made to the WMU21A, duration of
each trip, number of hunters in each group and the number of moose hunted. Several inconsistent
responses were dropped annd the final sample includes 194 hunters
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truncated a zero. During the 1992 hunting season, hunters in Ontario made 2.35 moose
hunting trips on an average to the WMUZ21A. Note that the data exhibit a quick decay
process, about 78% of the sample hunters made only one trip during this seeson and the
number of trips higher than one fdls rapidly. Hence, the ratios of the frequency of one
trip over two and three trips are equd to 152 and 50.68, respectively. However, a few
hunters made more than 10 trips to this hunting dte.  Moreover, the vaiance of the
dependent  variable is 12.89. Clealy, the equidisperson propety of the Poisson
ditribution is not satified.

The results for recreaiond moose hunting trips in Ontaio for dl dternative left-
truncated count data modds proposed in this pgper are presented in Table 2. In addition,
Poisson and negbin Il models have been edimaed for compadive purposes The
dandard erors of the coefficients were estimated usng the Eicker-White procedure. This
procedure generaes heteroskedadticity-condgent variance-covariance marix when the
heteroskedadticity is of unknown form (White).

The econometric results indicate that in terms of explanatory power and/or goodness of
fit dl count data modds proposed in this paper peform a leest as wel as the negbin I
modd. Thus, based on esimated vaues of R, the modified Bord modd provides the
best fit followed by the geometric and the two negaive binomid modds The other
dternative count data modds have R, ranging from 0.64 fa the modified Yule modd
to 0.77 for HGP modd.

Based on the Chi-squared goodness-df-fit test, the null hypothess that the demand for

moose hunting in northern Ontario is represented by Bord and Yule regresson modds is
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rgected & 5% and 10% levels of error probability (Table 3). The null hypothess is dso
rgected for the Poisson specification. On the other hand, test results confirm that two
negaive binomid, geomeric and modified logarithmic specifications fit the data wdl.
Only the HGP and HGPIlI specifications could not be rgected a 10% levd of
sgnificance.

The edimated price coefficients (b;) have expected sgns and are datidicdly ggnificant
in dl cases However, there is no uniformity in terms of its magnitude across dternative
count data modds While the Z2generdisec? negdive binomid, geomeric, modified
logarithmic, HGPl and HGPII modds have an edimated price coefficent amilar in vaue
to the one edimated for the negbin Il specification, the estimated price coefficients are
vay dffeent for the three remaning dternaive count data modes (Modified Bord,
modified Yule and HGPIII). The esimated income coefficients (b,) are not Saidicaly
dgnificant @ a 5% levd of dgnificance regardless of modd specification and two of
them even have the wrong sgns.

An attractive feature of dternative count data models is that some of them can be nested
with the others enabling us to test them usng a LR ratio test or Wad tes. A Wad test
agoplied to the negbin Il modd dows that the edtimated precison parameter (a) is not
ggnificantly different form one, indicating that the geometric and negbin 11 specifications
yidd amilar results for this sample. Smilarly, a Wdd andlor LR retio tests goplied to the
2generdiset? negbin modd reveds that the edtimated parameters m and a ae not
sgnificantly different from zero and one, respectively. This confirms the former result

that we can accept a geometric modd specification a the expense of the negbin 1l or its
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2generdised® verson. LR tests gpplied to the HGP and Poisson modds indicate that we
can safely rgect the HGPIII and Poisson specifications. On the other hand, we cannot
rgect the null hypothess of an admissble redtricted HGPII mode (corresponding to the
case where g1 = -1). Smilaly, we cannot acogpt the null hypothess that the redrictive
HGPII specification is a modified Bord modd. The results of these tests suggest that the
geometric and the redricted generdlissed Poisson regresson (HGPII) modds are viddle
dternatives for capturing the fast decay process in the demand for moose hunting in
Northern Ontario.

Fndly, the reliability of dternative count data modds can dso be judged by looking a
the edtimated benefits they generate. For this purpose, estimated consumer surplus (CS)
pe moose hunting trip dong with ther dandard erors and 95% confidence intervas
computed for left-truncated count data models and reported in Table 4. The results
indicate that for five out of eight dternative count data modds the esimated consumer
surplus vary from $CDN 168 to $CDN 203 per moose hunting trip. These vaues fdl
within the 95% confidence intervd [$CDN 156 $CDN 216] obtained for the negbin I
modd.  Findly, the edimated consumer surplus vdues ae smdler for the modified
logarithmic, modified Bord and modified Y ule spedifications and are less riable.

CONCLUDING REMARKS:
Our andydss in this paper was motivated by the fact that a vast mgority of the

paticipants in many recregtiond activities make a least one or two trips.  While the
number of trips higher than two fal rgpidly, a few overly enthusastic recreationiss make

exceedingly large number of trips Such behaviour of recredtionids generates trip data
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with some specid features, the frequency of trips fdl sharply after one or two trips but
the didribution contain a long tal. Despite condderable progress in count data moddling
of recregtiond demand activities during past two decades, this issue has duded
researchers. The objectives of this paper were to address the issue of fast decay process in
recregtional demand activities more formdly and demondrate how it can be represented
through gppropriate count deta modedls.

Although recent advances in semi- and nonparametric gpproaches could have been used
to capture this phenomenon, we decided to investigaie the issue through the parametric
gpproach. Accordingly, we proposed a sat of eght dternative count data models that can
be used with some modifications to capture the fast decay process. Included in this set a
gengdistion of the negbin | and Il regresson modds (in which the variance is an
increasing and non-linear function of its conditiond mean), geometric, Bord, logarithmic
and Yule probability digributions and three different versons of the generdised Poisson
digribution.  The characteridics of the probability disributions and the log likelihood
functions for each of these count data modes have been studied and ther ability to
capture the fast decay process investigated through some smulaion exercisess  The
results suggest that the dternative count data models mimic the fast decay process much
better than conventional count data models.

Findly, an illudraive applicaion of dternative count data modds proposed in this paper
is presented. The empirical gpplication concentrates on the demand for moose hunting
trips in Northern Ontario. The results suggest a satidfactory performance of five out of

eght dternative count data modds (including the 2generalisec® neghbin, geomeric and
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the three generdised Poisson specifications).  The edimated benefits (messured by
consumer surplus per hunting trip) obtained from these specifications are more reigble
and can be compared to those obtained from the sandard negative binomia modd.

A number of directions for future research in this area can be suggested. Firg, it would be
beneficid to goply these dternative count data modds to other dStuations deding with
other recregtiond activities. Second, the performance of these modds can be compared
and contrasted to those of semi-parametric and non-parametric models.  Findly, research
is needed to devdop a generdised regresson framework that could dlow negting of dl
dternative count data models dong with the traditiond count deta modds (Famoye, and

Kaufman Jr.).
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Appendix 1. Characterigtics of the alter native probability distributions used in this study

Desgnation Range of Probability distribution Expectation Variance Specific remarks
support vaues
Geometric 0,1,2,3,...n Pr Ob(Y — k) =1 (1+ | ) (k+1) I I (1+) bV (Y) =E(Y)*[1+E(Y)]
kk-2| k-le-lk )o<l <1
Bore 1,2,3,....... n Prob(Y=k)= (k- 2/(1-1) 1 /1(2-1)3 iV (Y)=[E(Y)*[E(Y)-1]
o R - -1 (n2-1)+1) o<l <1
Logaithmic  1,23,.....n Prob(Y =k) = KIn@- 1) @-1)In@-1) @ 1)%(n(a- 1))’ ii)V(Y):E(Y)*%— E(Y)E
Yule 1,23,....... n Prob(Y =k) =hB(k,h +1) i)h > 1for the existence of
h h? the mean
= h&K)Gh +1) h-1 h-1%h- 2 ii)h > 2 for the existence
Gk+h+1] of the variance
iy - [EOF[EW)- 1
iinvey) = 2 E(Y)
Generalised | (I +dk )k-le—(l +dK) | | |) ?>0 and'*d* <1
Poisson 0,1,23,..n Prob(Y=K)= ” 1-d (1-d )3 ii)d =0, Poisson

ii)?=d < 1, Modifed Bore

Notess B(h, k) and GK) designates the Beta and Gamma functions, respectively. They ae linked to each other by the following
relaionship: B(h, k) = G(h)G(k)/G(h+k).



Appendix 2. Log Likeihood functions associated with the alter native count data models proposed in this paper

Desgnation Untruncated cases Left-truncated cases Parameters of the
digribitions

Geometric gl{k'”(' )- (k+1)In(L+1,)} 5{(k- Dind,) - kln(1+|i)} I 1= exp(X;'b)

i=1 i=1

vadfica 1K= DIk +kin( ya g1 (e Dinler+kini) o (X b)

Bore Bi- (Dl -y p A G-l eet 1l 1= R

Vogified g:(k+1)|n(| ) - In(k +1)i él{(k+l)ln(k)-ln(k+l)-|n[- Inf@- 1) +1, B  ep(xb)

Logaithmic =17~ In(- In(- 1)) i; li_1+exp o

vogies 41! )Gk +1] 12600 ) +inak + 0]+ e +] | _1rep(xb)

Yue -1 +Inh, +1]- In[dk +h, +2) |. 1 T e(xb)

§- In[Gk +h, +2)]+Inh, +1)}

Hﬂgised o 1kIn(A )+ (k- Din(1+a k)i Sy - DinfL+a k) m= exp(X;'b)
I%oisson 91} A (1+a,k)- In(k) i; :21 n(A)+(kk-1)Inl+a, o]
- A

(1+ak)- In(k!)- In(1- exp(- m )} A= exp(X.b)
1+q, exp[(1+q1)(xi'b)J

Note: (k) designates the Gamma function.
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Appendix 3: The frequency distribution of the number of moose hunting trips

Number of trips Frequency
1 152
2 10
3 3
4 6
5 4
6 2
7 1
8 0
9 4
10 1
12 5
13 4
15 3
2 3
Totd 14
Mean 235
Standard deviation 12.89
Mode 152
Median 1
Ratiol 152
Retio Il 50.68

Notes Ratio | is defined as the raio of the frequeny of one trip over the frequency of
two trips while Ration |l is expressed as the ration of the frequency of one trip over
the frequency of three trips.



Table 1. On some characterigtics of the one parameter probability digtributions

Modified Modified Modified
Geomdric Bord logarithmic Yule
Mode

Means 0.5 0.6667 0.71653 0.70191 0.75000
1 0.5000 0.60653 056934 0.66667

2 0.3333 053134 044700 0.60000

4 0.2000 044933 0.34852 0.55556

8 01111 041111 0.27892 052941

Ratio | = probahility of zero count/ probability of one count

Means 05 3.00000 4.18684 377301 5.00000
1 200000 3.29744 2.79591 4,00000

2 1.50000 292160 2.35018 3.50000

4 1.25000 2.78193 2.15035 3.25000

8 112506 2.73648 206396 3.12500

Ratio 11 = probability of zero count/ probability of two counts

Means 0.5 9.00000 11.68640 10.67670 15.0000
1 4,00000 7.24875 5.86284 10.0000

2 2.25000 5.69050 414250 7.87500

4 156250 515941 346801 6.90625

8 1.26562 499221 319495 6.44531

7



Table 2 : Econometric resultswith truncated sample

Conventiona count Alternative count data models
datamodds
Hybrid generalised Poisson
' Negetive ~ Modified Modified Modified Generalised
Parameters Poisson  binomid Geometric  Logarith. Borel Yue negative HGPI HGPIl  HGPIII
I binomia
° (10.300) (3409) (4.058)  (3.783) (1.951)  (1.690) (2.892)  (3.359) (3.515) (7.456)
b1 -0416  -0.5%4 -0.533 -0.674 -0.861 -1.341 -0.585 -0.596 -0.551 -0.493
(15.488) (11.609) (9.454) (9.732) (3514) (3.661) (12.108) (6.068) (6.801) (9.435)
b, -0.127 0.137 0.101 0.316 0.646 1.149 0.116 0.129 0204 -0.175
(1.691) (0.660) (0.624) (1.412) (A.772)  (1.548) (0.516) (0.591) (0.959) (1.601)
r 1.184
(2.792)
Qo 0.499 0.344
(2.070) (2.460)
01 -0.223
(1.226)
a 1.366 1571
(1.7149) (1.590)
m 0.106
(0.999)
LogL -19152 -15251 -15268 -152.76 -155.56 -154.61 -152.39 -153.13 -153.75 -185.40
Rar 0.956 0.782 0.803 0.740 0.889 0.640 0.773 0.768 0.766  0.676

Thetiguresin parentneses are “t” values. LogL adesgnates the vaue of the likelihood function. R Is Maddala's pseudo-R'.



Table 3: Recreational moose hunting trips in Ontario: actual and predicted numbers using mode specifications with left
truncated sample

Counts Actud Predicted values Pearson ¢“ Statigic
vaues  Conventiond Alternative count data models
count data
modes
Hybrid Generalised
Neghbin Mod. Mod. Mod. Gen. Poisson (HGP)
Poisso I Geom. log. Bord Yue negbin. HGPI HGPII HGPIII
n

1 152 147 152 152 152 149 147 152 152 150 150 Poisson 33.38

2 10 11 6 6 6 4 4 7 7 8 11 .

3 03 03 3 4 4 3 ¢t o3 oz 3 & Tobnd o

5 4 0 3 3 3 1 0 3 3 2 3 Geometric 863

6 2 4 2 2 2 0 0 2 2 2 2 Modified logarithmic 8.63

7 1 3 1 1 1 1 1 1 0 3 2 o

o] 0 0 4 4 4 0 1 4 1 0 0 Modified Bord 26.32

9 4 2 0 0 0 0 1 0 4 1 17 .

1 0 0 7 8 8 0o 1 8 0 0 0 i i

2 5 0 1 10 10 1 0 0 2 0 0 Generalised negbin 895
>12 6 1 12 2 2 32 39 12 18 20 1 HGPI 9.83
Tota 194 194 194 194 194 194 194 194 194 194 194 HGPI 10.83

HGPIII 11.93

For dl the modd specifications but the modified Bord and Yule ones, the computation of the Pearson datistic has required to aggregate
the various into six cells defined as follows: {1} {2} {34} .{56,7}, {89,10} and {11,>11}. As a result, the critical c? vaue with five
degrees of freedom is 11.07 for a sgnificance level of 5% and 9.24 for a 10% sgnificance leve. In the case of the modified Borel and the
modified Yule model specifications, the various counts have been aggregated into five cdls defined as follows. {1}, {2}, {34}, {56,7}
and {8, >8}. Consequently, he criticd ¢? vaue with four degrees of freedom is 9.49 for a significance level of 5% and 7.78 for a 10%
sgnificance levd.
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Table4 : Egimated Consumer surplus (3CDN) per moose hunting trip

CShrip Standard 95% confidence

($CDN) error interval
Conventional count data models
Poisson 24039 26.98 [1993 3014]
Neghin 1 18040 15.82 [1560 215.8]
Alternative count data models
Geometric 187.60 14.84 [1634 2218
Modified logarithmic 14553 11.77 [1280 175.]]
Modified Bord 116.11 17273 [67.7 3837]
Modified Yule 7798 4834 [489 1633
Generdisad negbin 171.30 14.90 [1459 204.2]
HGP1 167.87 1711 [1422 207.]]
HGPII 181.33 3810 [1343 2719
_HGRIlI 20262 221 [1691 2540]

Edimated sandard erors and 95% confidence intervas are based on the results of a
Monte Carlo smulaion involving 1000 replicaions



_Figure 1: probability distributions of four alternative single-parameter count data models
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Figure 2: Probability distributions of the generalised Poisson distribution
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Figure 3: Probability distributions of therestricted generalized Poisson model
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