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Abstract 
 
 
This paper presents a model and framework for pricing degree-day weather derivatives when the 

weather variable is a non-traded asset.  Using daily weather data from 1840-1996 it is shown that 

a degree-day weather index exhibits stable volatility and satisfies the random walk hypothesis.  

The paper compares the options prices from the recommended model and compares it to a 

typical insurance-type model.  The results show that the insurance model overprices the option 

value at-the-money and this may explain why the bid-ask spreads in the weather derivatives 

market is sometimes very large. 
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An Options Pricing Model for Degree-day Weather Derivatives 
 
 The role of weather as a source of business risk has resulted in an emerging market for 

weather based insurance and derivative products.  In the U.S.A. companies such as World Wide 

Weather Insurance Inc., American Agrisurance Inc., Natsource Inc. (a New York City 

brokerage), Enron (a U.S. utility company), and SwissRe (a U.S. reinsurance companies) all 

offer weather risk products, such as swaps and/or options.  In the fall of 1999 the Chicago 

Mercantile Exchange (CME) began trading in degree-day futures and options.  Applications are 

wide spread among the natural gas, oil, and electricity sectors, and more and more such products 

are being used for agricultural and other weather sensitive industries such as ski resorts and snow 

mobile manufacturing. The main attraction of weather derivatives is that it insures volume rather 

than price.  Too cool or too hot, too dry or too wet affects energy demand in utilities, production 

of crops and processing inventory in agriculture.  

 The types of contracts used to insure weather events are varied and include both swaps 

and options.  In terms of heat-based options there are two different types.  First, there are 

multiple event contracts.  A utility company may want to insure against a specific event such as 

daily high temperatures being below 5oF for 3 days straight, and the contract might stipulate that 

up to 4 events would be insured over a 90 day period, or an agribusiness firm may want to insure 

against multiple events of the daily high temperature exceeding 90oF for 4 days straight in order 

to compensate for yield and/or quality loss. 

 Second, are straight forward derivative products based upon such notions as cooling 

degree-days above 65oF (an indication of electricity demand for air conditioning), heating 

degree-days below 65oF (an indication of electricity, oil, and gas demand required for heating), 

and growing degree-days or crop heat units above 50 degrees Fahrenheit (an indication of 

maximum crop yield potential in agriculture).  These contracts are described as cooling degree-

day call (put) spreads or heating degree-day call (put) spreads.  The options contract (or ticket) 

has several sections including a general description of the product and the insured event; the 

specific weather location; the weather units being measured (e.g. degree-days or rainfall); the 

weather index being used (e.g. cooling, heating, or growing degree-days for the contract term); 

the contract term (e.g. June 1 to August 31); the index strike (e.g. 400 cooling degree-days); the 

unit price and currency (e.g. $5,000 per cooling degree-day); the settlement terms which indicate 

the specific source of weather information, the timing for payment, and any adjustments made 
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due to revisions from the weather authority; and the buyer’s premium1.  Likewise, the CME has 

specified CDD and HDD futures contracts for each month of the year for 20 cities across the 

U.S.A.  Thinly traded, the futures contracts are based on cumulative degree-days within the 

month, and settlement is based on readings supplied by Earth Satellite Corporation.  The 

Notional value of the futures contract is equal to $100 times the CDD or HDD index value.  

CME degree-day options on CDD and HDD futures are listed in units of degrees Fahrenheit.   

One of the problems facing the weather derivatives markets is how these derivatives 

should be priced. In the absence of a tradeable contract in weather and equilibrium price cannot 

be established using conventional means (Dischel 1998). At one end of the pricing spectrum, 

Cao and Wei (2000) develop a pricing model based on expected utility maximization with an 

equilibrium developed from   Lucas’s (1978) model.  Davis (2001) also concludes that a Black-

Scholes type framework is not appropriate for pricing weather derivatives as a matter of course, 

but under the assumptions of  Brownian motion, expected utility maximization, a drift rate that 

includes the natural growth rate of the degree day measure, the natural growth rate in the spot 

price of a commodity (e.g. fuel price) and the natural growth rate in firm profits, then degree day 

options can be priced by a Black-Scholes analogue.  Considine (undated) provides some simpler 

formulas based on the historical probability distribution of weather outcomes as well as a 

gaussian (normality) model that he claims can be sufficient at times. Turvey (2001) presents a 

number of flexible rainfall and heat related option contracts based upon historical probabilities. 

There are empirical issues related to weather derivatives and a large part of this paper is 

dedicated toward resolving these issues in general, and the pricing of degree-day options in 

particular.  First, until the CME started trading weather futures there was no forward market for 

weather.  Individuals speculate on what a heat index might be 90 days hence, but unlike stock 

market indexes there is no mechanism for transparent price discovery on which to base such a 

prediction, and nature is under no obligation to comply with subjective market assessments.  

Second, rain or heat or any other insurable condition does not have a tangible form that is easily 

described (in contrast with common stock or a commodity futures contract).  Third, for cities in 

                                                
1 To insure against excessive heat, World Wide Weather uses the following wording “The Company will insure 
from July 1, 1999 through August 31, 1999 that the temperature will not be 100 degrees Fahrenheit or above at the 
National Weather Service Station located in Santa Barbara, California”.  For growing degree-days “The Company 
will insure from April 1, 1999 to May 31, 1999 that there will be 1000 or more GDDs at the National Weather 
Service Station located in Fresno, California.  Everyday where the average temperature is X degrees over 50 degrees 
Fahrenheit, there are x GDDs for that day”. 
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the U.S.A. and elsewhere that are not listed on the CME, there does not exist a forward market 

weather index that would allow brokers, traders, and insurers to price such derivatives on an 

ongoing and transparent basis.  This can impact liquidity in the OTC and insurance markets and 

can also have an impact on the appropriate market price of risk with which to price the contract.  

Fourth, the mechanics of brokering weather contracts depends specifically on the nature of the 

contract.  A common approach is to use historical data and from this use traditional insurance 

‘burn-rate’ methods to determine actuarial probabilities of outcomes.  This convention limits 

trade.  For the most part counterparties must agree on a price prior to the opening contract date 

and are in general restricted by lack of data to efficiently price and trade the contract during the 

period in which it is active.   

 For pricing put and call options on cumulative weather outcomes a limiting factor is in 

the transparency of a forward weather index. A forward weather index such as the HDD and 

CDD futures at the CME would operate like any other index and would be used to provide a 

current estimate of what the final weather index settlement would be.  In so doing it would 

provide a mechanism  for counterparties to trade on a continuous basis, and would also provide a 

mechanism for the continual pricing of the options’ intrinsic values. 

This paper develops an option pricing model based on such an index even if it is not 

traded.  However, unless the index is formally traded, deriving option values from it will require 

consideration of the natural diffusion rate and the market price of risk as per lemma 4 in Cox, 

Ingersoll and Ross (1988).  This paper discusses the properties of such an index, shows the 

evolution of the index in a dynamic context, and develops an options pricing model. 

The theoretical development of an option pricing model for cumulative degree-day call 

and put spreads is the focus of this paper.  The next section briefly establishes the economic 

motivation for weather derivatives.  This is followed by an explanation of the insurance-type 

model and then the pricing of options in a dynamic framework is presented. The theoretical 

model is then applied to the pricing of  degree-day derivatives for Toronto, using daily mean 

temperatures from 1840 to 1996. 
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The Economics of Weather in the Profit Maximizing Firm 

 The purpose of this section is to provide some economic intuition behind the role of 

weather and its effects on firm profits.  In a classical economic context the profits of the firm can 

be defined by 

(1) Π (P, Q(W), C(W),t) = P(Q) Q(W) - C(Q(W)) 

where P is the output price as a function of Quantity, Q; Q represents a quantity of sales or total 

productivity and it is a function of the weather variable; and the cost function C( ) is an 

increasing function of Q.  The derivative of the profit function with respect to weather gives 

(2) dW
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In equation (2) ∂Q/∂W can be viewed as the marginal productivity of weather and being industry 

specific it can take on values that are negative, positive, or zero.  

 Equation (2) indicates three not mutually exclusive impacts on firm profitability.  The 

first part on the right hand side of equation (2) is the direct price effect.  The direct price effect is 

a consequence of changes in supply or demand in the market place due to weather impacts.  It 

can be positive or negative.  Sustained drought conditions in agriculture will at least affect prices 

in localized markets, if not national or international markets.  We have seen, for example, crop 

failures in Eastern Europe lead to dramatic increases in local and international wheat prices.  In 

other cases mild winters in the northern hemisphere will lead to excess supply and price 

reductions in vacation spots at winter holiday destinations.  Energy wholesalers can see dramatic 

increases or decreases in prices depending on weather driven demand impacts. 

 The second component is the increase or reduction in quantity produced or sold.  For the 

farmer facing localized drought conditions profit losses will result from decreased yields.  For 

the ski resort the number of lift tickets sold will be an increasing function of snowfall.  

 The third component is the impact on costs.  In some industries the cost effect is subtle.  

Reseeding, fertilizing or herbicide spraying will often result from extreme weather events in 

agriculture.  In the energy sector peak load pricing resulting from excess demand in extreme heat 

or cold conditions is a significant cost borne by the municipal utility.  In many regulated 

electrical energy markets any price increase to be transferred to consumers is regulated so that 

cost increases cannot easily be transferred to consumers in the short run. 
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 The common element across examples is that the weather impact is transmitted to firm 

profitability through the quantity variable.  The uncommon element is the precise functional 

form of Q(W).  In energy markets it will be a convex function with quantity affects rising at 

weather extremes due to excess demand.  In agriculture the Q(W) function is likely concave with 

crop losses occurring at either extremes of weather conditions.  Still, other industries will exhibit 

strictly increasing, or strictly decreasing functions of weather.  In fact, it is the heterogeneity of 

weather impacts across firms and industries that has given rise to a market for weather-risk 

derivative products including swaps and options. 

 It is this heterogeneity that has also given rise to a market based on specific weather 

events rather than firm cashflow.  Since by equation (2) different firms are impacted differently it 

is impractical to even attempt to insure cashflow directly.  Instead, firms engaged in trade in the 

weather derivatives market will attempt to hedge cashflow risks by adjusting the notional value 

or hedge position in specific-event weather derivatives.  To gain some intuition as to why this 

market evolved, consider the expected value of equation (1) at which some point in time T is 

given by 

(3) E[Π(P, Q(W), C(Q),T) = ∫[P(Q) Q(W) - C(W)] g(W)dW. 

Where g(W) is the probability distribution function associated with the specific weather event.  

Define Wz as the certainty equivalent value of a weather index, below which profits will fall and 

above which profits will rise.  Then  

(4) E[Π( )] = ∫WzΠ (W) g(W)dW + ∫WzΠ (W) g(W)dW. 

The first part of equation (4) gives the expected value of losses below Wz and the second gives 

the expected value of gains.  If the firm wants to insure losses below Π(Wz) then it could buy a 

cashflow-based insurance contract with a value 

(5) V(Wz) = ∫Wz (Π(Wz) - Π(W)) g(W)dz. 

However, such a contract would be difficult to price in practice because the cashflows will not 

generally be observable.  Furthermore, such a contract implies a specific business to business 

transaction, and as indicated by the discussion around equation (2), heterogeneous weather 

impacts suggests that each weather affected firm will need to negotiate a separate contract.  This 

comes with substantial transactions costs. 

 To avoid these transactions costs capital markets are designing a set of homogenous 

weather-based derivative products with a payoff structure contingent on specific weather 
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outcomes rather than firm-specific cashflow.  These include swaps and options.  In this market it 

is the affected firm that defines its weather risk and the quantity of standardized weather 

contracts to be bought (or sold).  From equation (5), at some point in time T, we can equate the 

value of losses due to weather events to a number of specific-event weather derivative products, 

i.e. 

(6) ∫Wz (Π(Wz) - Π(W)) g(W)dW = ��∫Wz (Wz-W) g(W)dW 

or 

(7) V(Wz) = ∆V*(Wz) 

Equation (6) sets the expected value of cashflow losses equal to the expected payoff from a 

weather option.  The (put) option value is measured by the right hand side in equation (6) and is 

denoted as V*(Wz) in equation (7).  The expected value of the option at time T is given by Max 

E[Wz - W, 0].  The intrinsic value of the weather index is multiplied by θ which has units 

converting the value of W to $/W (for example $100/cooling degree-day).  The value ∆ 

represents the number of contracts required to insure the certainty equivalent value of profits, 

that is ∆ = V(Wz) / V
* (Wz). 

 While the economics guiding the advent of the weather derivatives market is rational the 

problem of pricing weather derivatives remains unresolved.  In the next section a common 

insurance type solution - referred to as the 'burn-rate' model or insurance model is presented and 

then a general solution to the problem along the lines of modern options pricing is presented. 

  

The Pricing of Weather Options 

 This section describes a pricing methodology for weather derivatives. First, a ‘burn rate’ 

method employed by many brokers and insurers is described. Second,  based on the assumption 

that a forward degree-day weather index exists for any location a general proof that such 

contracts can be priced using a formula similar to Black’s formula for pricing European options 

on futures contracts is presented; third, a simple approach to creating a forward weather index is 

provided; fourth, the underlying assumptions of volatility and a random walk in a weather index 

are empirically evaluated, and fifth the option model and insurance ('burn rate') model are 

compared. 
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The ‘Burn Rate’  Method for  Pricing Weather Derivatives 

In the absence of a forward weather index the pricing of weather derivatives is relatively 

straightforward.  Using historical data cumulative degree-days (heating days, cooling days or 

crop heat units) are calculated for the time period in question and the options are priced as 

(8) ]}0,[{ ∗− −= T
pT

p WZMaxEeV   

for a put option, and  

(9) ]}0,[{ ZWMaxEeV T
pT

c −= ∗−   

for a call option where p is the appropriate risk adjusted discounted rate, T is time or duration of 

contract in years, Z is the strike level in degree-days, and W*
T is the value of the index at 

expiration also measured in degree-days. Since V measures the expected value of  in-the-money 

degree-days, the actual price of the option is calculated by multiplying  V by a  dollar value with 

units $/degree-day.  In equations (8) and (9)  it is assumed that the payoff is $1/ degree-day. The 

probabilities that establish V are assumed to be stationary priors drawn from historical weather 

patterns and can be defined as either discrete or continuous.   

The conventional methodology used in the industry is the ‘burn rate’ model which uses 

discrete observations of the n=1, N sampling distribution.  That is, for a put option, 

(10) ]0,[
1

∗

=

−

−Σ= n

N

n

pT

p WZMax
N

e
V  

where each in-the-money observation is given equal weight. The  burn-rate approach draws from 

statistical inference over time, which assumes that history will repeat itself with the same 

likelihood as the past events described by the data used. In the alternative a long enough time 

series could be used to fit a known continuous probability distribution (e.g. a normal distribution) 

and the put option price could be obtained from 

(11) dwwfWZeV Z
L

pT
p )()( ∗∗− −∫=  

where L is a lower bound to the distribution. 

If a continuous probability distribution is used there is an underlying assumption that the 

data series used is sufficient to fully describe the limiting probability distribution of outcomes 

with all asymptotic properties intact. Whether the probabilities of specific weather events are 

described by discrete or continuous distributions it should be noted that the measure of variance 

represents independent, cross-sectional inter-year risks. The use of this variance may or may not 



 
 

10 
 

be representative of the current year’s (intra-year) risk, and as will be shown later, what is 

assumed about the underlying stochastic structure is a critical element in distinguishing between 

the burn-rate model and modern options pricing. 

 

Weather Indices, Futures Hedging, and Options Pricing 

 The burn-rate models will typically be purchased prior to the insured period, and will be 

traded infrequently, if at all.  The reason that such contracts will not be traded results from the 

fact that there is no transparent mechanism to update or revise the probabilities during the 

insured period and hence no opportunity to arbitrage risk. The opportunity to arbitrage requires 

liquidity and liquidity requires observable volatility in an expected weather index W*
T.  IF WT is 

the value of a degree-day weather index at expiration then for any t<T there must exist an 

expectation about WT, that is W*
T = E[WT|t], conditional on weather information up to and 

including time t.  Observable volatility in W*
t requires  first the existence of a forward weather 

index, and secondly that it be defined by an inter-temporal stochastic process. 

 The continuous time stochastic differential equation for the weather index can be 

described by Brownian motion and the Ito process 

 (12) tttt dZWdtWdW ∗∗∗ += σµ  

The stochastic process described by (12) describes a random walk and is fundamental to the 

design of new derivative products for entities that follow a Markov process.  As shown by 

Merton (1993), Black and Scholes (1973), Black (1976) and others, if the underlying 

assumptions in (12) hold then it can be used to price options.  In Equation (12) µ is the mean 

change in cumulative degree-days and σ is the variance of the daily change in degree-days.  The 

assumptions, which are empirically tested in this paper, are that the diffusion rate µ is constant 

over time and σ2 increases linearly in time. 

   

Equilibrium Pricing Formulas for Degree-Day Derivatives 

 With the introduction of the CME degree-day future contracts there will be, at least for 

specific locations, a spanning asset for which a classical options pricing formula can be derived.  

However, there are more jurisdictions without contracts than with, and this implies that not all 

risks can be spanned and risk-neutral valuation techniques cannot readily be used without 

modification. Under such circumstance it is necessary to apply a different set of rules to price 
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options on non traded assets. In particular, an options pricing model when the underlying asset 

cannot be spanned by traded assets requires including the market price of risk. This has lead 

some practitioners to declare that modern options theory in the form of Black (1976) or Black-

Scholes  (1973) will not work (Nelken 1999, Dischel 1998) for pricing weather derivatives. 

 To capture the market price of risk, equation (12) is represented by 

(13) dW*
t = (µ - λσ) W*

t dt + σW*
t dZ 

where λ represents the market value of risk, and λσ the risk premium.  Equation (13) is not 

consistent with Black-Scholes, but is consistent with the risk-neutral solution of Cox and Ross.  

The market price of risk as an economic entity results from Lemma 4 in Cox, Ingersoll and Ross 

and ensures that in equilibrium the rate of return on the option equals the risk-free rate in 

equilibrium.  Therefore the term (µ-λσ) is called the risk-neutral growth rate and it can be used 

to derive equilibrium prices of options on non-traded assets. 

 To price these options we modify the dynamic programming approach presented in Dixit 

and Pyndick.  The Bellman equation is  

(14) F(W,t) = E [F(W,t) + dF(W,t)]e-pt 

where F(w,t) is the value of the option, and p is the appropriate (risk adjusted) discount rate.  

Using equation (5) suppressing the * in W*, and applying Ito’s lemma 

(15) dF(W,t) = (1/2 F"w σ2 W2 + F'w (µ-λσ) W + F't) dt + F'w σ Wdz 

 Setting e-pt = (1-pdt), substituting dF(W,t) into equation (14), and solving yields the 

stochastic differential equation. 

(16) ½ F"w σ2W2 + F'w (µ-λσ) W + F't = pF. 

 Equation (16) is a common-form partial differential equation.  The call option value of 

F(W, X, t) that solves this equation for a strike price X=Wz is 

(17) C(W,t) = F(W,t) = θ [e-pt N (d1) X - e-(P- (µ-λσ))t N(d2) W] 

where t is time remaining until option enquiry, θ is the value per tick, X is the strike price in 

degree-days, p is the discount rate, N( ) is the value of the standard normal cumulative 

distribution function evaluated at d1 or d2, 

d1 = [ln (W/X) + (µ - λσ + .5σ2)t]/σ√t 

and 

d2 = d1 - σ√t 
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Since the market price of risk is explicitly included in the solution, the appropriate discount rate 

'p' for a risk-neutral valuation is the risk free rate, r.  However this still leaves unresolved the 

problem of determining the market price of risk λ.  In a more general framework the diffusion  

µ - λσ = r is called the risk neutral growth rate (Cox and Ross, 1976) and is a necessary 

condition for equilibrium pricing.  In contrast µ is viewed as the natural growth rate in the value 

of the underlying.  The value λ = (µ-r)/σ is then the market price of risk. 

 If the market price of risk so defined is applied to freely traded assets then p = r = µ-λσ 

can be substituted into equation (17) and the resulting formula is identical to Black-Scholes.  A 

more general argument is required for assets that are not-traded.  For this we appeal to the 

security market line of the capital asset pricing model where 

µ = r + β [rm - r] 

or 

(18) µ - r = β [rm - r]. 

Then we can define the market price of risk λ as 

(19) λ = β [rm - r]/σ 

so that in equation (17), d1 becomes 

(20)  d1 = [ln (W/X) + (µ - β [rm - r] + .5σ2)t}/σ√t. 

To use equation (20) we need to interpret the Sharpe-Lintner model in the broadest sense. Roll's 

critique of the CAPM reminds us that the basic theory of pricing assets in equilibrium does not 

only apply to traded assets but non-traded assets as well.  With this, the true market portfolio is 

unobservable and broad based indices such as the S&P500 used to proxy the true market 

portfolio return may be biased.  Nonetheless, the theory provides for the equilibrium pricing of 

capital assets so that (20) must hold in (theoretical) equilibrium.  In fact Stambaugh's follow-up 

to Roll indicates that inferences about the CAPM model are consistent with theory even when 

assets are not traded. 

 As indicated above, equation (21) is a general solution to pricing all assets in equilibrium.  

For the particular case of weather derivatives its form becomes simplified.  If the underlying is a 

futures contract such as those traded on the CME, then we can use Dusak's argument that since 

the number of long positions equal the number of short positions then the outstanding value of 

the futures market is always zero and therefore excluded from the market portfolio.  
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Consequently the β coefficient for all futures contracts is zero.  Furthermore, we know from 

Black that to avoid riskless arbitrage the growth rate in the futures contract must equal the risk 

free rate. 

 For futures contracts on weather variables (20) becomes 

(21) d1 [ln (W/X) + (r + .5σ2)t]/σ√t 

and (17) becomes the standard Black-Scholes pricing model with p=r.  Using W(t) = e-rt W(T) 

and substituting this into (17) gives Black's model for pricing options on futures. 

 When the weather index is not a traded variable we rely on the direct relationship 

between the non-traded weather index and the market portfolio.  Since the impact of weather 

events in localized regions will not be correlated with the market portfolio, then it to will have a 

beta of zero. This is consistent with the empirical findings in Cao and Wei (2000). The result and 

conclusion does not imply that the conditional  underlying risks of economic outputs are zero, 

butthat in equilibrium the source of the risk can be diversified away.   However, unlike a futures 

contract the non-traded weather variable will not grow at the risk-free rate.  In fact the spot value 

at time t will simply equal the expected value at time T, that is W*
t = E[W*

T].  This implies a 

natural tendency towards mean reversion so E[µ]=0.  By substituting β=0 and µ=0 into equation 

(17) and setting p=r to account for risk neutral valuations, the pricing model for call option on a 

non-traded weather index is given by  

(22) C(W,t) = θe-rt [N(d1)X-N(d2)W] 

where 

d1 = [ln (W/X) + .5σ2t]/σ√t 

 and 

 d2 = d1 - σ√t 

As a reminder the parameter θ is the tick value measured in $/degree and the bracketed term is 

measured in degrees.  The equivalent put option value is 

(23) P(W,t) = θe-rt [N (-d2)W - N(-d1)X] 

The solution value of the option pricing models rests on three assumptions that are 

evaluated in the empirical section.  Assumption 1 is that the natural dynamics of dW originates 

from a random walk and hence unanticipated changes in W are not serially correlated.  If strong 

and predictable autocorrelation is present then asymmetric information between buyers and 

sellers of the option will allow for risk free arbitrage opportunities.  In a later section I provide 
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strong evidence that W* evolves as a random walk that is consistent with geometric Brownian 

motion. 

 The second assumption is that volatility is non-stochastic.  If volatility evolves in an 

unpredictable way then equation (15) is misspecified and a more complex solution would be 

required.  Hence the third assumption is that σ = E[σ(t)] in equation (15) which means that 

volatility is set equal to the mean from a sample of measured volatility.  I will show later that 

volatility is stable within and between years.  This assumption is consistent with the assumption 

of time dependence in Merton (1993) and Wilmott (1998). 

 The fourth assumption is that E[µ]=0 in equation (15).  This assumption simply states 

that W*
O = E[WT] and investors in weather options will use the mean of the historical sampling 

distribution as an unbiased estimate of the initial condition for dW.  This is exactly how the 

opening prices of the CME exchange traded degree-day future prices are set.  A less naïve 

condition is that W*
O = E[WT|Ω] where the expectation is now based on the conditional mean 

based on the information set Ω at time t=0.  This is relevant when counterparties believe that 

degree-days will be higher or lower than the historical average.  This may or may not come about 

as a variance preserving shift.  However, I will provide evidence that the volatility of the degree-

day index is remarkably stable even with large swings in the historical value of the indices and 

will also show how differing expectations affect option prices. 

 

Defining a Weather Index 

 In the previous section the existence of a forward weather index was presumed. While 

possibility rather than existence is sufficient to support the development of an option pricing 

model, it is obviously a limitation to implementation and practice. The CME futures contracts 

will satisfy the spanning requirement of a correlated underlying derivative security, but CME 

contracts do not exist for many regions or cities.  Hence the foregoing is a generalized solution 

that can be used to price options even if a formal futures contract does not exist.  In this section a 

general approach to constructing a weather index using historical data is presented. In the next 

section the index model will be applied to a case study of degree-day contracts for Toronto. 

 The challenge for any broker or exchange to accurately price weather options is in the 

construction of an appropriate weather index which can be observed on a daily basis, and provide 

representative measures of volatility. To construct such an index it is useful to draw on the 
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unique characteristic that the weather index cannot be influenced by human speculation. In this 

context the index is observable, objective, and representatively transparent.   For example, 

settlement of the CME contracts is based exclusively on the data collected by Earth Satellite 

Corporation.  Furthermore, a consistent characteristic of weather is that it is seasonal and 

systematic; summer, for example, always starts of with low temperatures that rise to a peak, and 

then decreases towards autumn. A naïve hedger planning a hedge in early spring would naturally 

assume that the summer weather pattern would follow the average pattern as dictated by history. 

Critical to this is the additional assumption that temperature is mean reverting: In the absence of 

any contrary information it is not unreasonable to assume that if the average temperature on June 

30th is 70 degrees Fahrenheit, then in the current year the best unbiased estimate is that it will 

also be 70 degrees. The notion of mean reversion is also a natural phenomenon; the tendencies 

for temperature to fall to within a normal range following a heat wave, or to rise to normal 

temperatures following a cold snap is clearly the norm rather than the exception. 

 The absence of predictability and the assumption of mean reversion suggest that the best 

initial (t=0) unbiased estimate of the forward index is the historical average of the index over the 

specified contract time horizon.  Indeed the opening trade on the CME futures contracts will 

most likely be the long-run average cumulative degree-day with some adjustment for long-term 

forecasts or revised expectations.  The initial index value is given by equation (18): 

(24) *
0W = E[WT] = 

T

0t =
Σ  E[Wt]  

where W represents the weather index (e.g. cooling degree-days, heating degree-days, growing 

degree-days or cumulative rainfall). After 1 day the observed weather condition at t=0 is 

recorded and the index value is appropriately adjusted to include the actual outcome plus the 

projected outcome; 

(25) W*
 1 = W0  + 

T

1t=
Σ  E[Wt] . 

Similarly at t=2  

(26) W*
 2 = W0  + W1 + 

T

2t=
Σ E[Wt] ,  

and for any time increment k in the sequence 

(27) W*
k = Σk

t=0 Wt  + 
T

1kt +=
Σ E[Wt]. 
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As the index evolves with time the instantaneous percentage change in the weather index can be 

calculated as  

(28) E[µ] = E[(W*
k - W

*
k-1)/ W

*
k-1] 

and daily volatility is  

(29) σ2 = E[µ - E[µ]]2. 

Finally, under the assumption of mean reversion the path described by 
T

0t =
Σ E[Wt] needs to be 

estimated. This can be done by using historical data directly but since this has to be recalculated 

for each day in the contracts life it is computationally intense.  In the alternative,  
T

0t =
Σ E[Wt] can 

be estimated from a simple regression equation to get the same result. In this study the estimated 

equation describing the evolution of temperatures during the summer months was quadratic.  

 
 
The Pricing of Cooling Degree-Day Options 
  
 In this section option premia are calculated for Toronto Ontario using Environment 

Canada daily mean temperatures from 1840 to 1996.  The contracts examine summer cooling 

degree-day call (put) spreads.  With this option the buyer agrees to pay a fixed premium in  

exchange for payment from the seller if the defined Weather Index settles above (below) the 

Index Strike for the Contract Term. The payment equals the number of Weather Units the 

Weather Index falls above (below) the Index Strike times the Unit Price. There may be a payout 

limit but this is not considered in this study. 

 First the temperature history from June 1 through August 31 is described from a 

historical perspective. As history will always be the source of weather patterns it is important to 

understand how more recent trends compare to past trends.  

Second, using a cooling degree-day measure of heat above 65 degrees Fahrenheit, 

degree-days are calculated for each day and cumulative degree-days are calculated for each year.  

Third, a quadratic regression equation is estimated with mean daily degree-days as the 

dependent variable and time and time squared (within the contract term) as the independent 

variables.  
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Fourth, using mean cumulative cooling degree-days as the initial index value, observed 

daily degree-days, and the regression equation, the forward index value for each day, in each 

year was calculated. 

Fifth, using the daily forward index values, the empirical volatility of the index is 

calculated from the variance of the daily percentage change in index values. This is done for 

each year. 

Sixth, assuming a discount rate of 6.5%, the historical mean volatility, 92 days to 

expiration, and a strike price (which is varied), call and put option premiums are calculated. As a 

point of comparison premiums using the ‘burn rate’ approach are also calculated. 

 

Toronto’s Weather History 

 This section describes the weather history from June 1 to August 31 for the years 1840-

1996 in Toronto. The data used were obtained from Environment Canada and represents one of 

the longest available weather data series in Canada. Figure 1 plots the data. The plot shows an 

overall increase in mean daily temperature over this time period, with temperatures increasing at 

an increasing rate until approximately 1930 and then increasing at a decreasing rate. Since  

Approximately 1950 there does not appear to be a significant rise in mean daily temperatures.  

 Figure 2 shows the cumulative cooling degree-days in Toronto between 1840 and 1996. 

The cooling degree-days increase with the mean temperature as would be expected, but the graph 

also illustrates the variability and unpredictability of the measure. The graph shows that cooling 

degree-days increased at an increasing rate throughout most of the 19th century but appear to be 

quite stable or decreasing in terms of mean value towards the end of the 20th century.  Table 1 

summarizes the key statistics for the entire 1840-1996 period and the sub period from 1930 to 

1996.  From 1840 the average cooling degree-days ranged from 107 to 787 with a mean of 379 

and a standard deviation of 147. The period since 1930 has cooling degree-days ranging from 

186 to 787 with a higher mean of 489 and a standard deviation of 114.  

Figure 3 illustrates the mean actual and predicted daily degree-days within the 92-day 

period from June 1 to August 31. The pattern is parabolic and the statistical fit (using a quadratic 

equation) of predicted to average was approximately 93% (R-squared)2. Figure 4 illustrates the 

                                                
2 With daily temperatures about 65oF as the dependent variable the equation is Temp = -.38 + .21T - .002T2 where T 
is day number (e.g. 1-92).  Only the intercept is not statistically significantly different from zero. 
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cumulative degree-day effect throughout the time period. The degree-day value used in options 

pricing is the total sum recorded on the 92nd day. 

 

Calculating the Cooling Degree-Day Weather Index 

 This section describes how the CDD weather index was calculated.  The index was 

calculated for each year in order to assess the range of CDDs and to measure volatility.  The 

cooling degree-day weather index was generated from a combination of observed daily data in 

each year, the seasonal regression equation, and the average cumulative degree-day value across 

all years. The initial index value at t=0 is assumed equal to the average cumulative degree-day 

value.  This is identical to the sum of the marginal degree-days illustrated in figure 3.  The 

smooth parabola in figure 3 illustrates how the regression equation smoothes the variability in 

daily degree-day measures and acts as an unbiased predictor of the most likely temperature path 

based on the assumption that weather patterns are mean reverting. To calculate the index the 

degree-day above 65f is calculated from the first observation (day 1). Then the sum of the 

predicted daily degree-days is calculated along the parabola from day 2 through to day 92. 

Assuming that the day one degree-day measure is small this will provide a day 1 index value 

very close to the long run average. On day 2, the actual degree-day measure is taken and is added 

to the day 1 value. The sum of the predicted is then taken from day 3 to day 92 and added to the 

actual day 1 plus day 2 values (see equation 17). The procedure is repeated for each of the 92 

days (see equation 18), and is repeated for each year in the sample.   

 Figure 5 illustrates the results for three recent years in Toronto; 1986 was an average year 

with cooling degree-days of 386. The summer started of quite cool and this caused the index to 

fall below the average until about day 55 where a warming trend caused a slight increase in the 

value of the index; 1988 was a hot year and the index was above average throughout the season. 

A short cooling spell from day 31 to about day 40 caused the index to decrease but beyond that 

cooling degree-days were significantly higher than average. The 1988 index peaked at 

approximately 750 on day 80, but a cooling trend caused the index to fall to 725 by day 92; In 

contrast to 1986 and 1988, 1992 was unusually cool with cumulative degree-days of 186 by day 

92. The index was average for the first 3 weeks of June, but after that a long cooling trend caused 

the index to fall to a low of about 180 before ending at 186. 
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Calculating Volatility 

 Volatility is measured relative to the percentage change in the value of the index on a 

daily basis and then converted to an annualized (365 day) basis for convenience. Table 2 and 

Figure 6 show the estimated average volatility for Toronto cooling degree-days from 1840 to 

1996 and from 1930 to 1996. 

 The results indicate that the weather has actually been less variable since 1930 than in the 

previous 90 years. From 1840 to 1996 annualized volatility was .2063 or 20% per year, but this 

decreased to .1739 or 17% per year in the mid to latter part of the 20th century. For the entire 

period the minimum volatility was found to be 16.62% with a maximum of 29.61%, while the 

latter part of the century the range was as low as 14.14% but only went as high as 23.5%. 

Combined with the information in Table 1, weather averages in Toronto saw an increase in mean 

summer temperatures and degree-days, but this increase did not come with increased variability. 

In fact, the standard deviation of cumulative degree-days (Table 1) is lower for the 1930-1996 

period than the 1840-1996 period. Importantly, these observations signify that when options on 

weather are being priced it is important to match recent weather trends on index values and 

volatility. In the next section, which calculates option premia, an approach, which mitigates this 

problem, is discussed. 

 

Volatility Stability 

 Use of the options pricing model requires stability in the index's volatility within a given 

year and across years.  The first item is important because if daily volatility is a function of time 

or is characterized by discernable jumps the proposed pricing model will be misspecified.  The 

second is important because stability in volatility across years means that the sample volatility 

can be used as an unbiased estimate of volatility. 

 Volatility stability was measured by calculating the percentage daily change in the 

weather index in each year (91 days), i.e. In [WT/Wt-1].  To determine the stability of volatility 

rolling 30-day standard deviations of the percentage change were calculated and annualized to a 

365 day year.  Thus for 91 days used in this study there were 61 volatility estimates for each 

year.  Table 4 shows the results from this evaluation over the 1840-1996 period and two 

subperiods 1840-1935 and 1936-1996.   
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The annualized volatilities have been stable across years, with the average 30 day 

volatility being about 20%.  This compares to the average volatility over the whole 91 days of 

.2063 as shown in Table 2.  The results also show that the standard deviations are low relative to 

the mean.  For example a standard deviation of .023 for 1840-1996 indicates that the average 30 

day volatilities ranged from .178 to .223 approximately 67% of the time.  The within year 

coefficient of variation (mean/standard deviation) reveals that the means are 6.42, 5.98 and 7.13 

times the within-year 30-day standard deviations for each of the periods.  These numbers imply 

that not only is volatility stable across years but they are quite stable within each year as well. 

 

The Variance Ratio Test for Random Walks 

 The pricing of weather derivatives requires that the weather index W*
T evolves over time 

as a random walk described by geometric Brownian Motion.  Failure to support the random walk 

hypothesis would vitiate the model structure.  In addition, the model assumes that the volatility 

of W*
T is fairly stable.  Failure to show stability in volatility would require expanding the model 

to include a volatility diffusion or jump process. 

 A general test for a random walk as presented by Lo and MacKinlay (1999) is the 

variance ratio test.  Under the normal definition of a diffusion process the expectations are that 

the mean diffusion rate is constant and volatility is linear in time.  Hence the mean return on an 

asset with two time steps will be twice that for a single time step and likewise the variance of the 

two time step will be double that of a single time step.  These conditions can be stated as 

follows3 

a) E[Wt+1 - Wt] = µ1 

b) E[Wt+k - Wt] = kµ1 

c) VAR[Wt+1 - Wt] = σ1
2 

d) VAR[Wt+k - Wt] = kσ1
2 = σ2

k 

                                                
3 If levels data are used the conditions apply to arithmetic Brownian motion, and if In(Wt) is used they apply to 
geometric Brownian motion.  The tests in this paper use the logarithmic conversion, but I do not change the notation 
of Wt. 
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where k represents the number of time steps, µk represents the mean of a k-step (or k day) 

diffusion, and σ2
k represents the variance of a k-step diffusion.  This property allows for a simple 

test of the random walk by testing the null hypothesis Ho: 01
2
1

2

=−
σ
σ
k

k . 

Lo and MacKinlay (1999) provide a measure of the asymptotic variance for the variance ratio.  If  

(30) Z = 1
2
1

2

−
σ
σ
k

k    

then 

 

(31) 
kN

kk
z )1(3

)1)(12(22

−
−−=σ  

is the asymptotic variance of z when overlapping lags of length k are drawn from N 

observations.  Thus the null hypothesis can be tested against the standardized normal z test with 

mean and variance σ2
z.  For example, if z<1.96 in equation (30) we would fail to reject the null 

hypothesis at the 5% level if (31) was used as the asymptotic population variance.  In the 

alternatively one could also use an F-Test for the differences in variances when the means are 

equal.  In this case the numerator is kkk /ˆ 22 σσ =  so that the ratio )1,(~/ˆ 1
2 −− NkNFk σσ .  The 

null hypothesis would be rejected if the ratio fell outside the two-tailed range of the F-

distribution over a specified acceptance region. 

 

Seasonality and the Variance Ratio Test 

 One of the concerns about pricing weather derivatives is the influence of seasonality on 

the random outcomes.  Autocorrelation brought about by seasonal weather patterns can lead to 

rejections of hypothesis using the variance ratio test even if autocorrelation is spurious as is 

found in heat waves and so on. 

 The impact of systematic seasonal influences cannot be ignored but the effects can be 

removed.  Removing systematic weather patterns leaves a path dependent residual that resembles 

a random walk.  To see this define the daily temperature path above 65oF as a function of time as 

g(t).  In the current study for example, g(t) = a+bt-ct2 is a quadratic which fits nicely the summer 

weather patterns in Toronto.  The function g(t) is a deterministic function of time.  Estimated 
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from daily data across many years non-systematic weather events are removed and captured by 

the residuals. 

Given the definition of g(t), the expected value of cumulative cooling degree-days at time 

t=0 is  

(32) dttgW
T

)(
1

*
0 ∫=  

After day 1 the actual degree-day is calculated and its deviation from expected is recorded.  At 

the end of day 1 

(33) dttgegW
T

)()1(
21

*
1 ∫++=  

and at the end of day 2 

(34) dttgeedttgW
T

)(])([
321

2

1

*
2 ∫∫ +++= . 

This can be generalized to any data t<T as 

(35) dttgdtedttgW
t

tt

tt

T )()(
111

* ∫∫∫ +
++=  

(36) dtedttgW t

tT

t ∫∫ +=
11

* )(  

 One can see from this process that the random part follows a walk over each time step, 

and is independent of the systematic influence of time.  That is 

(37) E[W*
2 - W

*
0] = E[W*

2 - W
*
1 + W*

1 - W
*
0] 

  = E[e1 + e2] 

or more generally 

(38) E[W*
t - W

*
t-k] = ket 

as required for a random walk. 

 However, while this process is consistent with a random walk, the existence of a random 

walk must still be treated as a hypothesis.  Recall that the function g(t) removed non-systematic 

weather events such as heat waves or other extraordinary items that could cause year specific 

transitory autocorrelation. 

 Transitory autocorrelation can be removed by averaging across years, but to do this the 

definition of the variance ratio must be modified accordingly.  From the above results the mean 

value of the k-lag error in each year was shown to be ket. 
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 For a variety of reasons the value of et will not necessarily equal et, n-1 or et, n+1 so across 

N years the expected value of ket is 

(39) kµ1 = e[ke1] = n

N

n
ke

N ,11

1
=
Σ  

where the subscript n has been added to denote the year of the observation. 

 The variance of equation (39) is given by 

(40) σ2
k  = E[ke1 - E[ke1]]

2 

  = E [ke1 - kµ1]
2 

  = k2 [e1 - µ1]
2 

(41) σ2
k = k2σ2

1 

This measure of σ2
k contrasts with the standard measure of σ2

k = kσ2
1 in that the step multiplier k 

is squared.  This results from averaging the mean lags from each year.  However, since 

seasonality and spurious autocorrelation have been removed the variance measure is unbiased 

and asymptotically efficient and the variance ratio is 

(42) VRa = 
2
1

2

2

σ
σ

k
k . 

Moreover, the Lo and MacKinlay asymptotic estimator can still be used to test the null 

hypothesis Ho: 
2
1

2

2

σ
σ

k
k - 1 = 0 

 

Long-Run Versus Short-Run Effects 

 Having resolved problems of seasonality and asynchronous autocorrelation a final 

question to consider is whether the random walk hypothesis holds across a smaller number of 

years.  Rather than averaging across the entire history of weather records (e.g. 1840-1996) a 

useful examination would be to examine shorter (e.g. overlapping 30-year) time horizons.  The 

benefits to doing this are to first determine if acceptance or rejection of a random walk is due to 

long versus short time horizons, and second to examine the persistence or frequency of the 

random walk over time.  Each 30-year sample can be considered an unbiased estimate of the 

larger population, but the asymptotic population variance is known.  Therefore the standard 

errors can easily be estimated. 

 The standard error of the sample n<N is  
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(43) n
kN

kk
Sn /

)1(3

)1)(12(2
2/1









−

−−=  

and this can be used in the denominator of a t-statistic with n-1 degrees of freedom. 

 

Variance Ratio Test Results 

 The variance ratio hypothesis was tested using daily data from 1840-1996 for 92 days in 

each year. The tests were conducted by first calculating the value W*
t,n for each day and across 

years, and then converting this data to logarithms.  The results are presented in Table 4 for all 

years and 5 subperiods for lags of 1-10 days and lags of 35-40 days. 

According to theory a random walk would be rejected if the means of the k-lag difference 

or the variance of the k-lag difference are significantly different than the values of k in the first 

column.  Using N=92 in the calculation of the asymptotic variance in equation (31) and 

calculating the test statistic Z in equation (30) there are no instances where the random walk is 

rejected.  Using N=92 the F-test fails to reject the null hypothesis that the variance ratio is 

significantly different than 1.0 in all case. 

 Failure to reject the null hypothesis on the variance ratio occurs even though there is a 

visible departure in the computed value of k in Table 3 from the theoretical value of k.  The 

reason for this is that the asymptotic variance increases with k.  For example when k=2 the 

asymptotic variance for N=92 is .011, but for k=40 it is .34.  Therefore even though the 48.27 

value of σ2
40/σ2

1 in the 1840-1870 subperiod is 8.27 points above the theoretical value of 40, the 

normalized variance ratio test (σ2
40/k

2σ2
1 - 1)/σz is equal to 1.20 which falls below the critical 

value of 1.96 at the 5% level. 

 To examine whether the results in Table 4 are a consequence of chance or sampling the 

variance ratios were also calculated for overlapping 30 year periods and the null hypothesis was 

tested using the t-statistic which accounts for possible sampling error.  The standard error is 

defined in equation (37) which divides the Lo and Mackinlay asymptotic variance measure by 

the square root of 30 (years).  Of 128 overlapping time periods in no case was the null hypothesis 

rejected at the 5% level for up to 29 lags, and only 1 violation beyond that.   Repeating the 

analysis for 20 and 10-day lags revealed that at 20 lags there were 29 rejections for an 

acceptance rate of 80.4% and at 10 lags there were 37 of 148 rejections for an acceptance rate of 

75%. 



 
 

25 
 

 The results offer strong support for the random walk hypothesis even when a small 

number of years are considered.  But in this result also resides the caveate that to truly smooth 

individual year effects at least 30 years should be considered in practice.  Notwithstanding this 

assertion there is sufficient evidence to conclude that indeed the index of cooling degree-days 

follows a random walk about the seasonal trend.  Failure to reject the random walk also implies 

that volatility jumps are probably not of great concern.  This does not imply volatility is a 

constant value, but it does imply that an average value of volatility across years, E[σ] is an 

unbiased estimate of volatility.  Furthermore given the evidence in Table 3 the estimate E[σ] will 

be consistent and efficient.  The evidence suggests that the option pricing model proposal in this 

paper is appropriate for the pricing of degree-day weather options. 

 

Estimates of Cooling Degree-Day Option Premia 
 
 This section reports actual option premiums calculated for Toronto, Ontario. The 

contracts considered are 92-day put and call options with contract terms from June 1 with an 

expiry on August 31.  Each tick in-the-money (θ) was valued at $5,000 per degree-day. Several 

empirical considerations are illustrated in the results. First, premium estimates are calculated 

using the both the inter-year ‘burn-rate’ method used in the insurance industry (equations 8 and 

9) and the intra-year Black’s option pricing model (equations 22 and 23). Second, in order to 

illustrate the importance of ‘relevant time horizon’, estimates are provided for the 1840-1996 

data period and the 1930 to 1996 sub-period. Third, the options pricing model is sensitive to the 

initial index value, W*
0, and using a simple average in all cases would not be prudent. For the 

options pricing model only, a range of initial values of W*
0 are examined. This type of sensitivity 

analysis is important because weather agencies such as Environment Canada and the U.S. 

Weather Service cannot generally predict forward temperatures with reasonable accuracy. 

However, they can and do provide three or four-month forecasts that state whether conditions are 

going to be normal, below normal, or above normal. If the prediction is above normal, for 

example, the buyer of a call may want to increase the initial expectation of W*
T to match the 

forecast and reduce the premium. 

Tables 5 for 1840-1996 and 6 for 1930-1996 present results for base case at-the-money 

option pricing calculations as well as a range of strike prices above and below this value. The at-

the-money strike is defined as the average cooling degree-days across the years sampled. This is 
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379.39 for 1840-1996 and 489.50 for 1930-1996. The option premiums differ between the 

options model and the burn rate model as well as across the two time periods. When the 

sampling period was represented from 1840 the at-the-money put and call price was $77,073 for 

the 379-CDD strike option model and approximately $297,030 for the burn rate model (Table 5). 

The maximum payoff for the put option under either case would have been $1,361,450 for the 

put option and $2,038,150 for the call option.  As the strike price was increased put options 

would be issued in-the-money and the put option premiums would rise as the call premiums fell. 

For a strike of 600 CDD the option model put premium was $1,085,126 while the burn-rate 

model was $1,136,421. The maximum put payoff increased to $2,464,500. The corresponding 

call option for the option model was $0 and for the burn-rate model it was $33,405. The 

maximum payoff that would have possibly occurred with this strike over this period was 

$935,100.  A lower than average strike implies that put options are issued out-of-the-money, 

while call options are issued in-the-money. At a strike of 250 CDD the put options price is 

negligible, while the call option price is $636,438. Using the burn-rate model the corresponding 

put and call prices were $63,947 and $710,420 with maximum payoffs being $714,500 for the 

puts and $2,685,100 for the calls. 

 A similar pattern was observed for the 1930-1996 period (Table 6). The at-the-money 

option price (489.5 CDD) for the put and call was $83,835 and using the burn-rate model the 

put-call price was approximately $220,358. The maximum put and call payoffs would have been 

$1,516,900 and $1,487,600 respectively.  For in-the-money calls with a strike of 250 CDD the 

call option was  $1,178,041 and the corresponding put was $0. The burn-rate put and call prices 

were $4,767 and $1,202,279 respectively, with maximum payoffs of $319,400 and $2,685,100. 

For in-the-money puts at 600 CDD the put option price was $544,298 and the call price was only 

$776. The burn-rate premiums were $624,900 and $72,412 for the put and call respectively. 

 These results illustrate some important and critical details regarding the pricing of 

degree-day derivatives and the selection of a time period over which to analyze heat. The 

difference between options pricing and burn-rate models is striking, especially when priced at-

the-money. Using the 1840-1996 period the burn-rate model prices the insurance at 3.85 times 

the option pricing model whereas the 1930-1996 period the pricing multiple is 2.63. The ratio 

converges to 1 for policies that are in-the-money and infinite for options out-of-the-money.  The 
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results illustrate why different approaches to pricing weather options can result in large bid-ask 

spreads. 

 The explanation for these differences lies in how risk is measured and what risks are 

actually being traded. The burn rate model assumes that history will repeat itself and the 

variability and probability distribution of the past will be replicated in the future. It rests upon an 

actuarial structure, which is seemingly predictable, but one, which also carries with it some 

significant variability. In contrast the options pricing model is not backward looking in the sense 

of a memorized historical probability distribution. It assumes an infinite of random weather 

patterns, which can occur in any season. The role of history is vague only in its use to establish 

seasonal norms and a range of volatility measures, but once these are established history’s role is 

done. 

 Another key difference is the assumption of a starting point. The options pricing model 

assumes a numerical starting position from which variability in a weather index is measured, and 

the price of the option is sensitive to this initial position. For example the further the index strike 

is below the initial index value the higher will be the value of a call option and lower will be the 

value of a put option. Because the burn-rate model’s principal Gaussian assumption is that 

history will repeat itself, the burn-rate model does not require an estimate of the initial weather 

index value perse.  

 
 As discussed above the initial assumption regarding the forward weather index is crucial 

to the accurate pricing of options. Tables 5 and 6 present results assuming that the initial index 

value is equal to the historical mean. In reality this may not be the case. Weather forecasts may 

predict higher or lower than normal temperatures and this will have a conditional impact on what 

the initial index value is. For example mean growing degree-days for the 1930-1996 period was 

489.5 with a range from 186 to 787 and a standard deviation of 114 (Table 1). If the long-range 

weather forecast was for warmer than usual weather, then it would be prudent to increase the 

initial index value accordingly so that the likelihood that a put option would end in-the-money is 

lower and the likelihood that the call would end in-the-money is higher. Likewise, if the long-

range forecast was for cooler than normal weather then the index would be decreased such that 

the likelihood of a put ending in-the-money would increase and the likelihood of a call ending in-

the-money would decrease.  
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 Table 7 presents option pricing sensitivity results for the 1840-1996 period and Table 8 

presents results for the 1930-1996 period. Since the burn-rate model does not rely on initial 

conditions only the option pricing model is considered. Each column in Tables 7 and 8 represent 

a percentage of the mean with 1.0 representing the mean, .50 being 50% of the mean and 150% 

being 50% higher than the mean. As predicted by options theory as the initial condition 

decreases the put option value increases and the call option value increases holding the strike 

level constant. For example if the strike level is 400 CDD the values in Table 7 for the 1840-

1996 period for a put option is $1,034,468 and call price is $0 if the weather forecast implies that 

cumulative degree-days will be 50% less than average. If the cooling trend is believed to be less 

severe, say 75%, then the put value for a 400 CDD strike decreases to $507,929 and the call 

price is $23. If the weather prediction calls for a 50% increase in cooling degree-days then the 

likelihood that a 400 CDD put option will expire in-the-money is nil, and the put option is priced 

at $21.  In contrast, the likelihood that the call option expires in-the-money rises and the call 

option premium increases to $831,708. A similar pattern is illustrated for the 1930-1996 period 

in Table 8. 

 

Conclusions 

 This paper addressed the pricing issue of degree-day weather derivatives. The market for 

weather insurance products has increased dramatically in past years for several reasons. First 

weather derivatives are directed at hedging production or volume versus price risk. In the natural 

gas and energy sectors, utilities will often fix prices to the consumer or face regulated prices to 

consumers. Electrical utilities must of ten pay peak-load prices when energy demand exceeds 

contracted supplies, and natural gas and oil companies must pay higher spot prices when extreme 

cold causes excess demand in those markets. Agriculture is also an industry that faces weather 

related production risk. A crop insurer might have to pay increased indemnities if weather is 

either too hot or too cool, and might use weather derivatives as a reinsurance product, or a food 

processor might require a hedge against undeliverable forward contracts resulting from weather 

conditions. 

 An important driver of the weather derivatives market is the relationship between 

economic damage and specific events. Electrical utilities know with 100% certainty that 

prolonged above normal heat or below normal coolness will create an increased demand for their 
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products, and they can also determine statistically at what level, in cumulative heating or cooling 

degree-days, this occurs. What is unknown is when the specific event will occur and with this 

uncertainty routine hedging of weather risks can provide economic stability and increase share 

values. 

 This paper examined the pricing methods of degree-day derivatives. It was shown that 

many of the underlying assumptions used in modern options pricing are relevant to weather 

conditions. The critical, and justifiable, assumption is that weather risks follow a Martingale, and 

based on this assumption the stochastic differential equation which drives weather dynamics 

follows an Ito process. It was shown that applying arbitrage free arguments to this stochastic 

process results in a pricing formula similar, but not identical to Black’s formula for pricing 

European options on futures. The key difference between the pricing model developed in this 

paper is that price per degree-day is held constant while the quantity variable (degree-days) 

varies, whereas the original Black’s model holds quantity constant (e.g. 1 bushel) while allowing 

price to vary. Another difference is that Black’s (1976) model is derived from trading in an 

underlying futures contract which is subject to many supply and demand influences which create 

volatility and liquidity whereas the weather option relies on a non-traded forward weather index. 

An approach to defining such an index was discussed at length in this paper. 

 The approach used in this paper differs markedly from an insurance approach to pricing 

weather derivatives. The ‘burn-rate’ approach, prices premiums based upon what would have 

occurred over a recent time period. It was pointed out that the key difference between the burn-

rate model and the options pricing model is in how risk is defined. Under the burn-rate model it 

is assumed that history will repeat itself with the same likelihood, but not necessarily the same 

order, as the time horizon selected for pricing. In other words, the approach assumes that the 

relevant measure of risk is the inter-year variability in weather. The options pricing model 

developed in this study makes no such assumption and is in fact based on intra-year risks. As 

with conventional options pricing, volatility and the initial value of the weather index are the key 

drivers of risk. History is used only to measure volatility and determine a range of index values, 

but once a measure of volatility is selected and the initial condition determined, history has no 

further role to play in the pricing process. For example the 1840 to 1996 period had mean 

cooling degree-days (above 65f) of 379 CDD and an annualized volatility of 20.63% for the 

period June 1 to August 31. Using the 1930-1996 period the average cooling degree-days was 
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489 CDD with a volatility of 17.39%. Under no year was volatility found to exceed 29.6%, yet 

the implied volatility that would equate the options pricing model to the burn rate model was 

80% for the 1840-1996 period and 45.8% for the 1933 to 1996 period.  

 It was shown that there is a significant and often large difference between the burn-rate 

model and the options pricing model, particularly for products priced at or near-the-money. It 

was shown that the burn rate model prices options as much as 2 to 3 times higher than the 

options pricing model. The two approaches converge only for options that are priced in the 

money or out of the money.  It is consistent with the various theories of pricing non-traded assets 

in equilibrium, and in a risk-neutral economy.  Statistical analyses confirmed that the underlying 

assumptions required for pricing degree-day weather options are empirically valid. 

 The options pricing model presented in this paper is new. On one hand it is an 

improvement over the traditional burn-rate approach in that it places much more emphasis on 

risk and for a derivatives market which is essentially designed to manage the buying and selling 

of risk there can be efficiency and liquidity gains if the model is implemented in practice. On the 

other hand the traditional approach is easy to implement and even easier to comprehend. 

However, if a formal derivatives market for weather insurance is going to emerge it is very likely 

that the approach developed in this study will provide foundation for pricing weather derivative 

products. 
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Table 1: Historical Summary of Toronto Cooling Degree-Days 

 

 Mean Standard 

Deviation 

Minimum Maximum 

1840-1996 379.39 146.67 107.10 787.02 

1930-1996 489.50 114.69 186.12 787.02 
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Table 2: Historical Summary of Toronto Cooling Degree-Days’ Volatility 

 

 Mean Standard 

Deviation 

Minimum Maximum 

1840-1996 .2063 .0012 .1662 .2961 

1930-1996 .1739 .0009 .1414 .235 

 
 

 



 
 

33 
 

 

Table 3:  Seasonality and Stability in Volatility 

    

 1840-1996 1840-1936 1936-1996 

Mean (365 days) .201 .207 .193 

Standard Deviation .023 .022 .021 

Coefficient of Variation Mean 6.42 5.98 7.13 

Coefficient of Variation Standard Deviation 3.19 3.03 3.32 
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Table 4:  Estimated Value of Means and Variance Ratios (VR)* 

 
 1840-1996 1840-1870 1871-1900 1901-1930 1931-1960 1961-1996 
Lag K Mean VR Mean VR Mean VR Mean VR Mean VR Mean VR 

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0 
2 1.99 2.01 2.00 2.01 2.01 2.00 2.00 2.01 2.01 2.03* 2.01 2.00 
3 2.99 3.02 3.00 3.03 3.03 3.01 3.01 3.02 3.02 3.08* 3.04 3.01 
4 3.99 4.04 4.00 4.06 4.06 4.03 4.00 4.04 4.03 4.14 4.07 4.02 
5 4.98 5.06 5.00 5.09 5.09 5.07 4.95 5.06 5.03 5.23 5.11 5.03 
6 5.97 6.09 6.00 6.14 6.14 6.11 5.87 6.09 6.03 6.32 6.15 6.05 
7 6.96 7.13 7.00 7.21 7.18 7.16 6.79 7.12 7.05 7.41 7.18 7.10 
8 7.95 8.17 8.01 8.30 8.22 8.21 7.71 8.17 8.08 8.52 8.20 8.19 
9 8.95 9.23 9.02 9.40 9.26 9.26 8.65 9.23 9.12 9.65 9.22 9.22 
10 9.97 10.30 10.03 10.54 10.32 10.32 9.62 10.29 10.18 10.80 10.23 10.24 

             
35 35.47 31.05 36.07 42.07 38.99 40.99 30.39 38.50 37.27 41.56 37.74 40.85 
36 36.47 40.22 37.11 43.28 40.22 42.27 31.31 39.67 38.35 42.75 39.01 42.03 
37 37.46 41.58 38.14 44.50 41.44 43.56 32.23 40.82 39.41 43.91 40.28 43.20 
38 38.47 42.55 39.16 45.75 42.69 44.86 33.12 41.94 40.47 45.06 41.54 44.38 
39 39.47 43.73 40.16 47.02 43.95 46.15 34.01 43.18 41.51 46.23 42.79 45.57 
40 40.48 44.90 41.5 48.27 45.20 47.46 34.95 44.37 42.56 47.41 44.02. 46.77 

* The variance ratio (VR) is σ*
k/kσ2

1 and the mean ratio is µkk/µ1. 
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Table 5: European Options and Burn Rate Premiums: 1840-1996, Tick = $5,000 
 Option Value Burn Rate Maximum Payoff 
 Put Call Put Call Put Call 

200 0 882,374 18,215 915,190 464,500 2,935,100 
250 0 636,438 63,647 710,420 714,500 2,685,100 
300 692 391,264 135,264 533,239 964,500 2,435,100 
350 23,156 167,718 229,910 376,885 1,214,500 2,185,100 

379.39 77,073 77,073 297,054 1,361,450 2,038,150 2,038,150 
400 139,950 38,574 352,121 249,096 1,464,500 1,935,100 
450 351,674 4,361 508,943 155,918 1,714,500 1,685,100 

489.50 542,100 497 657,13 106,788 1,912,000 1,487,600 
500 539,513 263 698,560 95,534 1,964,500 1,435,100 
550 839,198 10 908,806 55,781 2,214,500 1,185,100 
600 1,085,126 0 1,136,421 33,405 2,464,500 935,100 
650 1,331,062 0 1,370,114 17,089 2,714,500 685,100 
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Table 6: European Options and Burn Rate Premiums: 1930-1996, Tick = $5,000 

 Option Burn Rate Maximum Payoff 
 Put Call Put Call Put Call 

200 0 1,423,978 1,035 1,448,548 69,400 2,935,100 
250 0 1,178,041 4,767 1,202,279 319,400 2,685,100 
300 0 932,103 8,498 956,010 569,400 2,435,100 
350 2.52 686,168 20,119 717,631 819,400 2,185,100 

379.39 94 541,697 841,749 39,261 2,319,400 685,100 
400 670 440,897 50,519 498,031 1,069,400 1,935,100 
450 17,974 212,266 121,639 319,150 1,319,400 1,685,100 

489.5 83,835 83,835 220,358 220,370 1,516,900 1,487,600 
500 113,047 61,400 249,622 197,134 1,569,400 1,435,100 
550 306,996 9,411 417,813 115,325 1,819,400 1,185,100 
600 544,298 776 624,900 72,412 2,069,400 935,100 

 650 789,497 37 841,749 39,261 2,319,400 685,100 
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Table 7: Sensitivity of Options Prices to Initial Conditions, 1840-1996 

 .50 .75 1.0 1.25 1.50 
Strike Put Call Put Call Put Call Put Call Put Call 

200 69,975 19,287 10 415,853 0 882,375 0 1,348,906 0 1,815,437 
250 296,757 132 6,873 176,779 1 636,438 0 1,102,968 0 1,569,499 
300 542,563 0 104,962 28,931 692 391,192 0 857,031 0 1,323,562 
350 788,500 0 323,336 1,367 23,156 167,718 100 611,193 0 1,077,624 
400 1,034,468 0 567,929 23 139,950 38,574 4,644 369,800 21 831,708 
450 1,280,375 0 813,844 0 351,674 4,361 46,048 165,266 1,039 586,788 
500 1,526,313 0 1,059,781 0 593,513 263 174,937 48,218 13,747 353,559 
550 1,772,250 0 1,305,719 0 839,198 10 381,556 8,900 72,838 166,712 
600 2,018,188 0 1,551,656 0 1,085,126 0 619,676 1,081 209,925 57,861 
650 2,264,125 0 1,797,594 0 1,331,063 0 864,624 92 412,954 14,593 
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Table 8: Sensitivity of Options Prices to Initial Conditions, 1930-1996 
 .50 .75 1.0 1.25 1.50 

Strike Put Call Put Call Put Call Put Call Put Call 
200 335 220,449 0 822,046 0 1,423,978 0 2,025,910 0 2,627,842 
250 56,523 30,700 0 576,109 0 1,178,041 0 1,779,973 0 2,381,904 
300 272,149 388 502 330,673 0 932,103 0 1,534,035 0 2,135,967 
350 517,699 0 28,254 112,488 2.52 686,168 0 1,288,098 0 1,890,030 
400 763,636 0 175,874 14,170 670 440,897 0 1,042,160 0 1,644,092 
450 1,009,573 0 408,223 582 17,974 212,266 12 796,234 0 1,398,155 
500 1,255,510 0 653,588 9 113,047 61,400 837 551,122 0 1,152,217 
550 1,501,448 0 899,516 0 306,996 9,411 13,374 317,721 33 906,313 
600 1,747,386 0 1,145,454 0 544,298 776 77,173 135,584 1,004 661,346 
650 1,993,323 0 1,391,391 0 789,497 37 226,707 35,180 10,968 425,373 

 



 
 

39 
 

 

 

 

 

Mean Temperature; Toronto June 1-August 31;1840-1996

56

58

60

62

64

66

68

70

72

74

18
40

18
45

18
50

18
55

18
60

18
65

18
70

18
75

18
80

18
85

18
90

18
95

19
00

19
05

19
10

19
15

19
20

19
25

19
30

19
35

19
40

19
45

19
50

19
55

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

Year

D
eg

re
es

 F
ah

re
n

h
ei

t

Figure 1:Mean Seasonal Temperature, Toronto, June 1 to August 31 

Cooling Degree Days; Toronto June 1-August 31; 1840-1996
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Figure 2:Mean Actual and Predicted Daily Degree-Days, Toronto, June 1 
to August 31 
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Figure 3:Mean Daily Cooling Degree-days, actual and predicted, Toronto, 
June 1 to August 31 
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0

50

100

150

200

250

300

350

400

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91

Day in Period

C
u

m
u

la
ti

ve
 D

eg
re

e 
D

ay
s>

65
f

Actual Predicted

Figure 4:Cumulative Cooling Degree-days, Actual and Predicted, 
Toronto, June 1 to August 31 
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Cooling Degree Days Index

0

100

200

300

400

500

600

700

800

1 4 7 1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

Day in Period

C
o

o
lin

g
 D

eg
re

e 
D

ay
s

Expected 1986 1988 1992

Figure 5: Cooling Degree-Day Weather Indexes for 1986 (average), 1988 
(above average) and 1992 (below average), Toronto, June 1 to August 31 

Annualized Volatility; Toronto Cooling Degree Days;1840-1996
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Figure 6:Mean Annualized (365 day) Volatility, Toronto, June 1 to August 
31, 1840-1996 
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