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Abstract

This paper presents a model and framework for pricing degree-day weather derivatives when the
weather variable is a non-traded asset. Using daily weather data from 1840-1996 it is shown that
a degree-day weather index exhibits stable volatility and satisfies the random walk hypothesis.
The paper compares the options prices from the recommended model and comparesit to a
typical insurance-type model. The results show that the insurance model overprices the option
value at-the-money and this may explain why the bid-ask spreads in the weather derivatives

market is sometimes very large.

Keywords. weather derivatives, degree-day options, weather risk.






An Options Pricing M odéel for Degree-day Weather Derivatives

The role of weather as a source of business risk has resulted in an emerging market for
weather based insurance and derivative products. Inthe U.S.A. companies such as World Wide
Weather Insurance Inc., American Agrisurance Inc., Natsource Inc. (a New Y ork City
brokerage), Enron (a U.S. utility company), and SwissRe (a U.S. reinsurance companies) all
offer weather risk products, such as swaps and/or options. Inthe fall of 1999 the Chicago
Mercantile Exchange (CME) began trading in degree-day futures and options. Applications are
wide spread among the natural gas, oil, and electricity sectors, and more and more such products
are being used for agricultural and other weather sensitive industries such as ski resorts and snow
mobile manufacturing. The main attraction of weather derivativesisthat it insures volume rather
than price. Too cool or too hot, too dry or too wet affects energy demand in utilities, production
of crops and processing inventory in agriculture.

The types of contracts used to insure weather events are varied and include both swaps
and options. Interms of heat-based options there are two different types. First, there are
multiple event contracts. A utility company may want to insure against a specific event such as
daily high temperatures being below 5°F for 3 days straight, and the contract might stipulate that
up to 4 events would be insured over a 90 day period, or an agribusiness firm may want to insure
against multiple events of the daily high temperature exceeding 90°F for 4 days straight in order
to compensate for yield and/or quality loss.

Second, are straight forward derivative products based upon such notions as cooling
degree-days above 65°F (an indication of electricity demand for air conditioning), heating
degree-days below 65°F (an indication of electricity, oil, and gas demand required for heating),
and growing degree-days or crop heat units above 50 degrees Fahrenheit (an indication of
maximum crop Yield potential in agriculture). These contracts are described as cooling degree-
day call (put) spreads or heating degree-day call (put) spreads. The options contract (or ticket)
has several sectionsincluding a general description of the product and the insured event; the
specific weather location; the weather units being measured (e.g. degree-days or rainfall); the
weather index being used (e.g. cooling, heating, or growing degree-days for the contract term);
the contract term (e.g. June 1 to August 31); the index strike (e.g. 400 cooling degree-days); the
unit price and currency (e.g. $5,000 per cooling degree-day); the settlement terms which indicate

the specific source of weather information, the timing for payment, and any adjustments made
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due to revisions from the weather authority; and the buyer’s premium*. Likewise, the CME has
specified CDD and HDD futures contracts for each month of the year for 20 cities across the
U.S.A. Thinly traded, the futures contracts are based on cumulative degree-days within the
month, and settlement is based on readings supplied by Earth Satellite Corporation. The
Notional value of the futures contract is equal to $100 times the CDD or HDD index value.
CME degree-day options on CDD and HDD futures are listed in units of degrees Fahrenheit.
One of the problems facing the weather derivatives markets is how these derivatives
should be priced. In the absence of a tradeable contract in weather and equilibrium price cannot
be established using conventional means (Dischel 1998). At one end of the pricing spectrum,
Cao and Wei (2000) develop a pricing model based on expected utility maximization with an
equilibrium developed from Lucas's (1978) model. Davis (2001) also concludes that a Black-
Scholes type framework is not appropriate for pricing weather derivatives as a matter of course,
but under the assumptions of Brownian motion, expected utility maximization, a drift rate that
includes the natural growth rate of the degree day measure, the natural growth rate in the spot
price of acommodity (e.g. fuel price) and the natural growth rate in firm profits, then degree day
options can be priced by a Black-Scholes analogue. Considine (undated) provides some simpler
formulas based on the historical probability distribution of weather outcomes as well asa
gaussian (normality) model that he claims can be sufficient at times. Turvey (2001) presents a
number of flexible rainfall and heat related option contracts based upon historical probabilities.
There are empirical issues related to weather derivatives and alarge part of this paper is
dedicated toward resolving these issues in general, and the pricing of degree-day optionsin
particular. First, until the CME started trading weather futures there was no forward market for
weather. Individuals speculate on what a heat index might be 90 days hence, but unlike stock
market indexes there is no mechanism for transparent price discovery on which to base such a
prediction, and nature is under no obligation to comply with subjective market assessments.
Second, rain or heat or any other insurable condition does not have a tangible form that is easily
described (in contrast with common stock or a commodity futures contract). Third, for citiesin

! Toinsure against excessive heat, World Wide Weather uses the following wording “The Company will insure
from July 1, 1999 through August 31, 1999 that the temperature will not be 100 degrees Fahrenheit or above at the
National Weather Service Station located in Santa Barbara, California’. For growing degree-days “The Company
will insure from April 1, 1999 to May 31, 1999 that there will be 1000 or more GDDs at the National Weather
Service Station located in Fresno, California. Everyday where the average temperatureis X degrees over 50 degrees
Fahrenheit, there are x GDDs for that day”.



the U.S.A. and elsewhere that are not listed on the CME, there does not exist a forward market
weather index that would allow brokers, traders, and insurers to price such derivatives on an
ongoing and transparent basis. This can impact liquidity in the OTC and insurance markets and
can aso have an impact on the appropriate market price of risk with which to price the contract.
Fourth, the mechanics of brokering weather contracts depends specifically on the nature of the
contract. A common approach isto use historical data and from this use traditional insurance
‘burn-rate’ methods to determine actuarial probabilities of outcomes. This convention limits
trade. For the most part counterparties must agree on a price prior to the opening contract date
and are in general restricted by lack of datato efficiently price and trade the contract during the
period in which it is active.

For pricing put and call options on cumulative weather outcomes a limiting factor isin
the transparency of a forward weather index. A forward weather index such asthe HDD and
CDD futures at the CME would operate like any other index and would be used to provide a
current estimate of what the final weather index settlement would be. In so doing it would
provide a mechanism for counterparties to trade on a continuous basis, and would also provide a
mechanism for the continual pricing of the options' intrinsic values.

This paper develops an option pricing model based on such an index even if it is not
traded. However, unless the index is formally traded, deriving option values from it will require
consideration of the natural diffusion rate and the market price of risk as per lemma 4 in Cox,
Ingersoll and Ross (1988). This paper discusses the properties of such an index, shows the
evolution of the index in a dynamic context, and develops an options pricing model.

The theoretical development of an option pricing model for cumulative degree-day call
and put spreads is the focus of this paper. The next section briefly establishes the economic
motivation for weather derivatives. Thisisfollowed by an explanation of the insurance-type
model and then the pricing of options in a dynamic framework is presented. The theoretical
model is then applied to the pricing of degree-day derivatives for Toronto, using daily mean
temperatures from 1840 to 1996.



The Economics of Weather in the Profit Maximizing Firm

The purpose of this section is to provide some economic intuition behind the role of
weather and its effects on firm profits. 1n aclassical economic context the profits of the firm can
be defined by
D 1P, QW), C(W),1) = P(Q) QW) - C(Q(W))
where P is the output price as a function of Quantity, Q; Q represents a quantity of sales or total
productivity and it is a function of the weather variable; and the cost function C( ) isan
increasing function of Q. The derivative of the profit function with respect to weather gives
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In equation (2) 0Q/0W can be viewed as the marginal productivity of weather and being industry
specific it can take on values that are negative, positive, or zero.

Equation (2) indicates three not mutually exclusive impacts on firm profitability. The
first part on the right hand side of equation (2) isthe direct price effect. The direct price effect is
a conseguence of changes in supply or demand in the market place due to weather impacts. It
can be positive or negative. Sustained drought conditions in agriculture will at least affect prices
in localized markets, if not national or international markets. We have seen, for example, crop
failures in Eastern Europe lead to dramatic increases in local and international wheat prices. In
other cases mild winters in the northern hemisphere will lead to excess supply and price
reductions in vacation spots at winter holiday destinations. Energy wholesalers can see dramatic
increases or decreases in prices depending on weather driven demand impacts.

The second component is the increase or reduction in quantity produced or sold. For the
farmer facing localized drought conditions profit losses will result from decreased yields. For
the ski resort the number of lift tickets sold will be an increasing function of snowfall.

The third component is the impact on costs. In some industries the cost effect is subtle.
Reseeding, fertilizing or herbicide spraying will often result from extreme weather eventsin
agriculture. In the energy sector peak load pricing resulting from excess demand in extreme heat
or cold conditions is a significant cost borne by the municipal utility. In many regulated
electrical energy markets any price increase to be transferred to consumers is regulated so that

cost increases cannot easily be transferred to consumers in the short run.



The common element across examples is that the weather impact is transmitted to firm
profitability through the quantity variable. The uncommon element is the precise functional
form of Q(W). In energy marketsit will be a convex function with quantity affects rising at
weather extremes due to excess demand. In agriculture the Q(W) function is likely concave with
crop losses occurring at either extremes of weather conditions. Still, other industries will exhibit
strictly increasing, or strictly decreasing functions of wesather. Infact, it is the heterogeneity of
weather impacts across firms and industries that has given rise to a market for weather-risk
derivative products including swaps and options.

It isthis heterogeneity that has also given rise to a market based on specific weather
events rather than firm cashflow. Since by equation (2) different firms are impacted differently it
isimpractical to even attempt to insure cashflow directly. Instead, firms engaged in trade in the
weather derivatives market will attempt to hedge cashflow risks by adjusting the notional value
or hedge position in specific-event weather derivatives. To gain some intuition asto why this
market evolved, consider the expected value of equation (1) at which some point intime T is
given by
(3  EIM(P, QW), C(Q).T) = [[P(Q) QW) - C(W)] g(W)dW.

Where g(W) is the probability distribution function associated with the specific weather event.
Define W, as the certainty equivalent value of a weather index, below which profits will fall and
above which profits will rise. Then

@ EMOI =71 (W) gW)dW + il (W) g(W)dW.

Thefirst part of equation (4) gives the expected value of losses below W, and the second gives
the expected value of gains. If the firm wants to insure losses below (W) then it could buy a
cashflow-based insurance contract with avalue

(B) V(W) =" (M(W,) - N(W)) g(W)dz.

However, such a contract would be difficult to price in practice because the cashflows will not
generally be observable. Furthermore, such a contract implies a specific business to business
transaction, and as indicated by the discussion around equation (2), heterogeneous weather
impacts suggests that each weather affected firm will need to negotiate a separate contract. This
comes with substantial transactions costs.

To avoid these transactions costs capital markets are designing a set of homogenous
weather-based derivative products with a payoff structure contingent on specific weather

7



outcomes rather than firm-specific cashflow. These include swaps and options. In this market it
is the affected firm that defines its weather risk and the quantity of standardized weather
contracts to be bought (or sold). From equation (5), at some point in time T, we can equate the
value of losses due to weather events to a number of specific-event weather derivative products,
e

© " (M(W5) - (W) g(W)dW = Aef™ (W,-W) g(W)dW

or

(7) V(W) =4V (W,)

Equation (6) sets the expected value of cashflow losses equal to the expected payoff from a
weather option. The (put) option value is measured by the right hand side in equation (6) and is
denoted as V*(W,) in equation (7). The expected value of the option at time T is given by Max
E[W,- W, 0]. Theintrinsic value of the weather index is multiplied by 6 which has units
converting the value of W to $/W (for example $100/cooling degree-day). The value A
represents the number of contracts required to insure the certainty equivalent value of profits,
thatisA=V(W,) / V" (W,).

While the economics guiding the advent of the weather derivatives market is rational the
problem of pricing weather derivatives remains unresolved. In the next section a common
insurance type solution - referred to as the 'burn-rate’ model or insurance model is presented and
then a general solution to the problem along the lines of modern options pricing is presented.

The Pricing of Weather Options

This section describes a pricing methodology for weather derivatives. First, a‘burn rate’
method employed by many brokers and insurers is described. Second, based on the assumption
that aforward degree-day weather index exists for any location a general proof that such
contracts can be priced using a formula similar to Black’ s formula for pricing European options
on futures contracts is presented; third, a smple approach to creating a forward weather index is
provided; fourth, the underlying assumptions of volatility and a random walk in a weather index
are empirically evaluated, and fifth the option model and insurance (‘burn rate’) model are

compared.



The'Burn Rate’ Method for Pricing Weather Derivatives

In the absence of aforward weather index the pricing of weather derivativesis relatively
straightforward. Using historical data cumulative degree-days (heating days, cooling days or
crop heat units) are calculated for the time period in question and the options are priced as
@  V,=e " E{Ma{Z -W,0]}
for a put option, and
9 V.=e " E{Maxq{W, - Z,0]}
for a call option where p is the appropriate risk adjusted discounted rate, T istime or duration of
contract in years, Z isthe strike level in degree-days, and W'+ is the value of the index at
expiration also measured in degree-days. Since V measures the expected value of in-the-money
degree-days, the actual price of the option is calculated by multiplying V by a dollar value with
units $/degree-day. In equations (8) and (9) it is assumed that the payoff is $1/ degree-day. The
probabilities that establish VV are assumed to be stationary priors drawn from historical weather
patterns and can be defined as either discrete or continuous.

The conventional methodology used in the industry is the ‘burn rate’ model which uses
discrete observations of the n=1, N sampling distribution. That is, for a put option,

-pT N

€ 5 Max{Z -W0]
N n=1

(10) V=

where each in-the-money observation is given equal weight. The burn-rate approach draws from
statistical inference over time, which assumes that history will repeat itself with the same
likelihood as the past events described by the data used. In the alternative along enough time
series could be used to fit a known continuous probability distribution (e.g. anormal distribution)
and the put option price could be obtained from

11) V=" [ (Z-WO)f(W)dw

where L isalower bound to the distribution.

If a continuous probability distribution is used there is an underlying assumption that the
data series used is sufficient to fully describe the limiting probability distribution of outcomes
with all asymptotic properties intact. Whether the probabilities of specific weather events are
described by discrete or continuous distributions it should be noted that the measure of variance

represents independent, cross-sectional inter-year risks. The use of this variance may or may not



be representative of the current year’s (intra-year) risk, and as will be shown later, what is
assumed about the underlying stochastic structure is a critical element in distinguishing between
the burn-rate model and modern options pricing.

Weather Indices, Futures Hedging, and Options Pricing

The burn-rate models will typically be purchased prior to the insured period, and will be
traded infrequently, if at all. The reason that such contracts will not be traded results from the
fact that there is no transparent mechanism to update or revise the probabilities during the
insured period and hence no opportunity to arbitrage risk. The opportunity to arbitrage requires
liquidity and liquidity requires observable volatility in an expected weather index W'r. IF Wy is
the value of a degree-day weather index at expiration then for any t<T there must exist an
expectation about Wr, that is W't = E[W+|t], conditional on weather information up to and
including time't. Observable volatility in W', requires first the existence of a forward weather
index, and secondly that it be defined by an inter-temporal stochastic process.

The continuous time stochastic differential equation for the weather index can be
described by Brownian motion and the Ito process
(12)  dwW" = pw, dt + oW, "dz,
The stochastic process described by (12) describes arandom walk and is fundamental to the
design of new derivative products for entities that follow a Markov process. As shown by
Merton (1993), Black and Scholes (1973), Black (1976) and others, if the underlying
assumptionsin (12) hold then it can be used to price options. In Equation (12) u is the mean
change in cumulative degree-days and o is the variance of the daily change in degree-days. The
assumptions, which are empirically tested in this paper, are that the diffusion rate 1 is constant

over time and o increases linearly in time.

Equilibrium Pricing Formulasfor Degree-Day Derivatives

With the introduction of the CME degree-day future contracts there will be, at least for
specific locations, a spanning asset for which a classical options pricing formula can be derived.
However, there are more jurisdictions without contracts than with, and thisimplies that not all
risks can be spanned and risk-neutral valuation techniques cannot readily be used without
modification. Under such circumstance it is necessary to apply a different set of rulesto price
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options on non traded assets. In particular, an options pricing model when the underlying asset
cannot be spanned by traded assets requires including the market price of risk. This has lead
some practitioners to declare that modern options theory in the form of Black (1976) or Black-
Scholes (1973) will not work (Nelken 1999, Dischel 1998) for pricing weather derivatives.
To capture the market price of risk, equation (12) is represented by
(13)  dW' = (u-Ao) W' dt + oW dZ
where A represents the market value of risk, and Ao the risk premium. Equation (13) is not
consistent with Black-Scholes, but is consistent with the risk-neutral solution of Cox and Ross.
The market price of risk as an economic entity results from Lemma4 in Cox, Ingersoll and Ross
and ensures that in equilibrium the rate of return on the option equals the risk-free rate in
equilibrium. Therefore the term (p-A0) is called the risk-neutral growth rate and it can be used
to derive equilibrium prices of options on non-traded assets.
To price these options we modify the dynamic programming approach presented in Dixit
and Pyndick. The Bellman equation is
(14)  F(W,t) = E [F(W,t) + dF(W,t)]e™
where F(w,t) isthe value of the option, and p isthe appropriate (risk adjusted) discount rate.
Using equation (5) suppressing the " in W', and applying 1to’s lemma
(15)  dR(W,t) = (U2 F'y 0 W? + F,, (u-A\o) W + F)) dt + F\, 0 Wdz
Setting €™ = (1-pdt), substituting dF(W,t) into equation (14), and solving yields the
stochastic differential equation.
(16) Y% F'y 0®°W? + Fy, (U-AG) W + F = pF.
Equation (16) is acommon-form partial differential equation. The call option value of
F(W, X, t) that solves this equation for a strike price X=W, is
(17)  C(W,t) = F(W,t) =8 [e™ N (dy) X - e® 2D N(d,) W]
wheret istime remaining until option enquiry, 0 is the value per tick, X isthe strike pricein
degree-days, p is the discount rate, N( ) isthe value of the standard normal cumulative
distribution function evaluated at d; or d,
di = [In (W/X) + (1 - Ao + .509)t]/oVt
and
d, =d; - oVt
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Since the market price of risk is explicitly included in the solution, the appropriate discount rate
'p' for arisk-neutral valuation istherisk free rate, r. However this still leaves unresolved the
problem of determining the market price of risk A. In amore genera framework the diffusion
M - Ao =r iscalled therisk neutral growth rate (Cox and Ross, 1976) and is a hecessary
condition for equilibrium pricing. In contrast p is viewed as the natural growth rate in the value
of the underlying. The value A = (u-r)/o is then the market price of risk.

If the market price of risk so defined is applied to freely traded assetsthenp =r = p-Ac
can be substituted into equation (17) and the resulting formulais identical to Black-Scholes. A
more general argument is required for assets that are not-traded. For this we appeal to the
security market line of the capital asset pricing model where
H=r+B[rm-r]
or
(18) m-r=p[rm-1].
Then we can define the market price of risk A as
19 A=B[rm-r]lo
so that in equation (17), d; becomes
(20)  dy =[In (WIX) + (U - B [Im - 1] + .502)t} /ot
To use equation (20) we need to interpret the Sharpe-Lintner model in the broadest sense. Roll's
critique of the CAPM reminds us that the basic theory of pricing assets in equilibrium does not
only apply to traded assets but non-traded assets as well. With this, the true market portfolio is
unobservable and broad based indices such as the S& P500 used to proxy the true market
portfolio return may be biased. Nonetheless, the theory provides for the equilibrium pricing of
capital assets so that (20) must hold in (theoretical) equilibrium. In fact Stambaugh's follow-up
to Roll indicates that inferences about the CAPM model are consistent with theory even when
assets are not traded.

Asindicated above, equation (21) is a general solution to pricing all assets in equilibrium.
For the particular case of weather derivatives its form becomes simplified. If the underlying isa
futures contract such as those traded on the CME, then we can use Dusak's argument that since
the number of long positions equal the number of short positions then the outstanding value of
the futures market is always zero and therefore excluded from the market portfolio.
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Consequently the 3 coefficient for all futures contractsis zero. Furthermore, we know from
Black that to avoid riskless arbitrage the growth rate in the futures contract must equal the risk
freerate.

For futures contracts on weather variables (20) becomes
(21)  dy [In (WIX) + (r + .56%)t]/ovt
and (17) becomes the standard Black-Scholes pricing model with p=r. Using W(t) = €™ W(T)
and substituting thisinto (17) gives Black's model for pricing options on futures.

When the wesather index is not a traded variable we rely on the direct relationship
between the non-traded wesather index and the market portfolio. Since the impact of weather
events in localized regions will not be correlated with the market portfolio, then it to will have a
beta of zero. Thisis consistent with the empirical findingsin Cao and Wei (2000). The result and
conclusion does not imply that the conditional underlying risks of economic outputs are zero,
butthat in equilibrium the source of the risk can be diversified away. However, unlike a futures
contract the non-traded weather variable will not grow at the risk-free rate. In fact the spot value
at time t will simply equal the expected value at time T, that isW'; = E[W']. Thisimpliesa
natural tendency towards mean reversion so E[]=0. By substituting =0 and pu=0 into equation
(17) and setting p=r to account for risk neutral valuations, the pricing model for call option on a
non-traded weather index is given by
(22) C(W,t) = 8e™ [N(d1)X-N(d2)W]
where

d1 = [In (W/X) + .50°t]/ovt

and

d, =d; - oVt
Asareminder the parameter 6 is the tick value measured in $/degree and the bracketed term is
measured in degrees. The equivalent put option value is
(23)  P(W,t) =0€e™ [N (-d)W - N(-d1)X]

The solution value of the option pricing models rests on three assumptions that are
evaluated in the empirical section. Assumption 1 isthat the natural dynamics of dW originates
from arandom walk and hence unanticipated changesin W are not serially correlated. If strong
and predictable autocorrelation is present then asymmetric information between buyers and
sellers of the option will allow for risk free arbitrage opportunities. In alater section | provide
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strong evidence that W* evolves as a random walk that is consistent with geometric Brownian
motion.

The second assumption is that volatility is non-stochastic. If volatility evolvesin an
unpredictable way then equation (15) is misspecified and a more complex solution would be
required. Hence the third assumptionisthat o = E[o(t)] in equation (15) which means that
volatility is set equal to the mean from a sample of measured volatility. | will show later that
volatility is stable within and between years. This assumption is consistent with the assumption
of time dependence in Merton (1993) and Wilmott (1998).

The fourth assumption is that E[1]=0 in equation (15). This assumption smply states
that W' = E[W+] and investors in weather options will use the mean of the historical sampling
distribution as an unbiased estimate of the initial condition for dW. Thisis exactly how the
opening prices of the CME exchange traded degree-day future prices are set. A less naive
condition is that W o = E[W+|Q] where the expectation is now based on the conditional mean
based on the information set Q at time t=0. Thisisrelevant when counterparties believe that
degree-days will be higher or lower than the historical average. This may or may not come about
as avariance preserving shift. However, | will provide evidence that the volatility of the degree-
day index is remarkably stable even with large swings in the historical value of the indices and

will also show how differing expectations affect option prices.

Defining a Weather Index

In the previous section the existence of a forward weather index was presumed. While
possibility rather than existence is sufficient to support the development of an option pricing
model, it is obvioudly alimitation to implementation and practice. The CME futures contracts
will satisfy the spanning requirement of a correlated underlying derivative security, but CME
contracts do not exist for many regions or cities. Hence the foregoing is a generalized solution
that can be used to price options even if aformal futures contract does not exist. In this section a
general approach to constructing a weather index using historical datais presented. In the next
section the index model will be applied to a case study of degree-day contracts for Toronto.

The challenge for any broker or exchange to accurately price weather optionsisin the
construction of an appropriate weather index which can be observed on a daily basis, and provide
representative measures of volatility. To construct such an index it is useful to draw on the
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unique characteristic that the weather index cannot be influenced by human speculation. In this
context the index is observable, objective, and representatively transparent. For example,
settlement of the CME contracts is based exclusively on the data collected by Earth Satellite
Corporation. Furthermore, a consistent characteristic of weather isthat it is seasona and
systematic; summer, for example, always starts of with low temperatures that rise to a peak, and
then decreases towards autumn. A naive hedger planning a hedge in early spring would naturally
assume that the summer wesather pattern would follow the average pattern as dictated by history.
Critical to thisisthe additional assumption that temperature is mean reverting: In the absence of
any contrary information it is not unreasonable to assume that if the average temperature on June
30" is 70 degrees Fahrenheit, then in the current year the best unbiased estimate is that it will
also be 70 degrees. The notion of mean reversion is also a natural phenomenon; the tendencies
for temperature to fall to within a normal range following a heat wave, or to rise to normal
temperatures following a cold snap is clearly the norm rather than the exception.

The absence of predictability and the assumption of mean reversion suggest that the best
initial (t=0) unbiased estimate of the forward index is the historical average of the index over the
specified contract time horizon. Indeed the opening trade on the CME futures contracts will
most likely be the long-run average cumulative degree-day with some adjustment for long-term
forecasts or revised expectations. The initial index value is given by equation (18):

@4) Wo=EWi= 3 EW]

where W represents the weather index (e.g. cooling degree-days, heating degree-days, growing
degree-days or cumulative rainfal). After 1 day the observed weather condition at t=0 is
recorded and the index value is appropriately adjusted to include the actual outcome plus the

projected outcome;

25) W .=W, + t% E[W{] .

Similarly at t=2

(26) W =W, +W; + é E[W{] ,

and for any time increment k in the sequence

]
(27) Wi=Z'coW: + = E[W].
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Asthe index evolves with time the instantaneous percentage change in the weather index can be
calculated as

(28)  E[W] = E[(W i - W ict)/ W]

and daily volatility is

(29) o”=E[p-E[W]*

.

Finaly, under the assumption of mean reversion the path described by tgo E[W{] needsto be

estimated. This can be done by using historical data directly but since this has to be recalculated
T

for each day in the contracts life it is computationaly intense. In the alternative, tgo E[W{] can

be estimated from a simple regression equation to get the same result. In this study the estimated
equation describing the evolution of temperatures during the summer months was quadratic.

The Pricing of Cooling Degree-Day Options

In this section option premia are calculated for Toronto Ontario using Environment
Canada daily mean temperatures from 1840 to 1996. The contracts examine summer cooling
degree-day call (put) spreads. With this option the buyer agrees to pay afixed premiumin
exchange for payment from the seller if the defined Weather Index settles above (below) the
Index Strike for the Contract Term. The payment equals the number of Weather Unitsthe
Weather Index falls above (below) the Index Strike times the Unit Price. There may be a payout
limit but thisis not considered in this study.

First the temperature history from June 1 through August 31 is described from a
historical perspective. As history will always be the source of weather patternsit isimportant to
understand how more recent trends compare to past trends.

Second, using a cooling degree-day measure of heat above 65 degrees Fahrenheit,
degree-days are calculated for each day and cumulative degree-days are calculated for each year.

Third, a quadratic regression equation is estimated with mean daily degree-days as the
dependent variable and time and time squared (within the contract term) as the independent
variables.
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Fourth, using mean cumulative cooling degree-days as the initial index value, observed
daily degree-days, and the regression equation, the forward index value for each day, in each
year was calculated.

Fifth, using the daily forward index values, the empirical volatility of the index is
calculated from the variance of the daily percentage change in index values. Thisis done for
each year.

Sixth, assuming a discount rate of 6.5%, the historical mean volatility, 92 days to
expiration, and a strike price (which is varied), call and put option premiums are calculated. As a
point of comparison premiums using the ‘burn rate’ approach are also calculated.

Toronto’'sWeather History

This section describes the weather history from June 1 to August 31 for the years 1840-
1996 in Toronto. The data used were obtained from Environment Canada and represents one of
the longest available weather data seriesin Canada. Figure 1 plots the data. The plot shows an
overall increase in mean daily temperature over this time period, with temperatures increasing at
an increasing rate until approximately 1930 and then increasing at a decreasing rate. Since
Approximately 1950 there does not appear to be a significant rise in mean daily temperatures.

Figure 2 shows the cumulative cooling degree-days in Toronto between 1840 and 1996.
The cooling degree-days increase with the mean temperature as would be expected, but the graph
also illustrates the variability and unpredictability of the measure. The graph shows that cooling
degree-days increased at an increasing rate throughout most of the 19" century but appear to be
quite stable or decreasing in terms of mean value towards the end of the 20" century. Table 1
summarizes the key statistics for the entire 1840-1996 period and the sub period from 1930 to
1996. From 1840 the average cooling degree-days ranged from 107 to 787 with a mean of 379
and a standard deviation of 147. The period since 1930 has cooling degree-days ranging from
186 to 787 with a higher mean of 489 and a standard deviation of 114.

Figure 3 illustrates the mean actual and predicted daily degree-days within the 92-day
period from June 1 to August 31. The pattern is parabolic and the statistical fit (using a quadratic
equation) of predicted to average was approximately 93% (R-squared)®. Figure 4 illustrates the

2 With daily temperatures about 65°F as the dependent variable the equation is Temp = -.38 + .21T - .002T? where T
isday number (e.g. 1-92). Only the intercept isnot statistically significantly different from zero.
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cumulative degree-day effect throughout the time period. The degree-day value used in options
pricing is the total sum recorded on the 92™ day.

Calculating the Cooling Degree-Day Weather Index

This section describes how the CDD weather index was calculated. The index was
calculated for each year in order to assess the range of CDDs and to measure volatility. The
cooling degree-day weather index was generated from a combination of observed daily datain
each year, the seasonal regression equation, and the average cumulative degree-day value across
all years. Theinitial index value at t=0 is assumed equal to the average cumulative degree-day
vaue. Thisisidentical to the sum of the marginal degree-daysillustrated in figure 3. The
smooth parabolain figure 3 illustrates how the regression equation smoothes the variability in
daily degree-day measures and acts as an unbiased predictor of the most likely temperature path
based on the assumption that weather patterns are mean reverting. To calculate the index the
degree-day above 65f is calculated from the first observation (day 1). Then the sum of the
predicted daily degree-days is calculated along the parabola from day 2 through to day 92.
Assuming that the day one degree-day measure is small this will provide aday 1 index value
very close to the long run average. On day 2, the actual degree-day measure is taken and is added
to the day 1 value. The sum of the predicted is then taken from day 3 to day 92 and added to the
actual day 1 plus day 2 values (see equation 17). The procedure is repeated for each of the 92
days (see equation 18), and is repeated for each year in the sample.

Figure 5 illustrates the results for three recent yearsin Toronto; 1986 was an average year
with cooling degree-days of 386. The summer started of quite cool and this caused the index to
fall below the average until about day 55 where a warming trend caused a dight increase in the
value of the index; 1988 was a hot year and the index was above average throughout the season.
A short cooling spell from day 31 to about day 40 caused the index to decrease but beyond that
cooling degree-days were significantly higher than average. The 1988 index peaked at
approximately 750 on day 80, but a cooling trend caused the index to fall to 725 by day 92; In
contrast to 1986 and 1988, 1992 was unusually cool with cumulative degree-days of 186 by day
92. The index was average for the first 3 weeks of June, but after that along cooling trend caused
the index to fall to alow of about 180 before ending at 186.
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Calculating Volatility

Volatility is measured relative to the percentage change in the value of the index on a
daily basis and then converted to an annualized (365 day) basis for convenience. Table 2 and
Figure 6 show the estimated average volatility for Toronto cooling degree-days from 1840 to
1996 and from 1930 to 1996.

The results indicate that the weather has actually been less variable since 1930 than in the
previous 90 years. From 1840 to 1996 annualized volatility was .2063 or 20% per year, but this
decreased to .1739 or 17% per year in the mid to latter part of the 20th century. For the entire
period the minimum volatility was found to be 16.62% with a maximum of 29.61%, while the
latter part of the century the range was as low as 14.14% but only went as high as 23.5%.
Combined with the information in Table 1, weather averagesin Toronto saw an increase in mean
summer temperatures and degree-days, but this increase did not come with increased variability.
In fact, the standard deviation of cumulative degree-days (Table 1) is lower for the 1930-1996
period than the 1840-1996 period. Importantly, these observations signify that when options on
weather are being priced it isimportant to match recent weather trends on index values and
volatility. In the next section, which calculates option premia, an approach, which mitigates this
problem, is discussed.

Volatility Stability

Use of the options pricing model requires stability in the index's volatility within a given
year and across years. Thefirst item isimportant because if daily volatility is a function of time
or is characterized by discernable jumps the proposed pricing model will be misspecified. The
second is important because stability in volatility across years means that the sample volatility
can be used as an unbiased estimate of volatility.

Volatility stability was measured by calculating the percentage daily change in the
weather index in each year (91 days), i.e. In [W+1/W,1]. To determine the stability of volatility
rolling 30-day standard deviations of the percentage change were calculated and annualized to a
365 day year. Thusfor 91 days used in this study there were 61 volatility estimates for each
year. Table 4 shows the results from this evaluation over the 1840-1996 period and two
subperiods 1840-1935 and 1936-1996.
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The annualized volatilities have been stable across years, with the average 30 day
volatility being about 20%. This comparesto the average volatility over the whole 91 days of
.2063 as shown in Table 2. The results also show that the standard deviations are low relative to
the mean. For example a standard deviation of .023 for 1840-1996 indicates that the average 30
day volatilities ranged from .178 to .223 approximately 67% of the time. The within year
coefficient of variation (mean/standard deviation) reveals that the means are 6.42, 5.98 and 7.13
times the within-year 30-day standard deviations for each of the periods. These numbers imply

that not only is volatility stable across years but they are quite stable within each year as well.

The Variance Ratio Test for Random Walks

The pricing of weather derivatives requires that the weather index W't evolves over time
as arandom walk described by geometric Brownian Motion. Failure to support the random walk
hypothesis would vitiate the model structure. In addition, the model assumes that the volatility
of W't isfairly stable. Failure to show stability in volatility would require expanding the model
to include a volatility diffusion or jump process.

A general test for arandom walk as presented by Lo and MacKinlay (1999) isthe
variance ratio test. Under the normal definition of a diffusion process the expectations are that
the mean diffusion rate is constant and volatility is linear in time. Hence the mean return on an
asset with two time steps will be twice that for a single time step and likewise the variance of the
two time step will be double that of a single time step. These conditions can be stated as
follows®
a) E[Wir1 - W] = 1
b) E[Wik - WY = kpa
0) VAR[Wi1 - W] = 04°
d  VAR[Wi - W] = koy? = 0%

% If levels data are used the conditions apply to arithmetic Brownian motion, and if In(Wt) is used they apply to
geometric Brownian motion. Thetestsin this paper use thelogarithmic conversion, but | do not change the notation
of Wt.
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where k represents the number of time steps, ik represents the mean of ak-step (or k day)

diffusion, and 0% represents the variance of a k-step diffusion. This property allows for asimple

2
test of the random walk by testing the null hypothesis Ho: k(7k2 -1=0.
o

1

Lo and MacKinlay (1999) provide a measure of the asymptotic variance for the variance ratio. If

(30) Z= akzz -1
then
Gy o2 22-Dk-D

3(N -1k
is the asymptotic variance of z when overlapping lags of length k are drawn from N
observations. Thus the null hypothesis can be tested against the standardized normal z test with
mean and variance o%,. For example, if z<1.96 in equation (30) we would fail to reject the null
hypothesis at the 5% level if (31) was used as the asymptotic population variance. Inthe
alternatively one could also use an F-Test for the differences in variances when the means are

equal. Inthiscase the numerator is 67 =g/ /k so that theratio 67 /g, ~F(N-k,N-1). The

null hypothesis would be rejected if the ratio fell outside the two-tailed range of the F-

distribution over a specified acceptance region.

Seasonality and the Variance Ratio Test

One of the concerns about pricing weather derivatives is the influence of seasonality on
the random outcomes. Autocorrelation brought about by seasonal weather patterns can lead to
rejections of hypothesis using the variance ratio test even if autocorrelation is spurious asis
found in heat waves and so on.

The impact of systematic seasonal influences cannot be ignored but the effects can be
removed. Removing systematic weather patterns leaves a path dependent residual that resembles
arandomwalk. To see this define the daily temperature path above 65°F as a function of time as
g(t). Inthe current study for example, g(t) = at+bt-ct? is a quadratic which fits nicely the summer
weather patternsin Toronto. The function g(t) is a deterministic function of time. Estimated
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from daily data across many years non-systematic weather events are removed and captured by
the residuals.

Given the definition of g(t), the expected value of cumulative cooling degree-days at time
t=0is

32 W = ﬁ g(t)ct

After day 1 the actual degree-day is calculated and its deviation from expected is recorded. At
the end of day 1

(33) W =g®+e+[,g(bat

and at the end of day 2

(34 W =[[[g(dt+e +e,]+ [ gt)ct.

This can be generalized to any datat<T as
. t t t
35 W :Lg(t)dt+Letdt+ft+lg(t)dt

36) W = ﬁ g(t)dt + ﬁe[dt

One can see from this process that the random part follows a wak over each time step,
and is independent of the systematic influence of time. That is
(37) E[W2-W =E[W,-Wi1+W3-Wy

= E[er + &)
or more generally
(38) E[Wi-Wi]=ke
asrequired for a random walk.

However, while this process is consistent with arandom walk, the existence of arandom
walk must still be treated as a hypothesis. Recall that the function g(t) removed non-systematic
weather events such as heat waves or other extraordinary items that could cause year specific
transitory autocorrelation.

Transitory autocorrelation can be removed by averaging across years, but to do thisthe
definition of the variance ratio must be modified accordingly. From the above results the mean

value of the k-lag error in each year was shown to be ke,.
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For avariety of reasons the value of e will not necessarily equal & 1 Or & n+1 SO across
N years the expected value of ke, is

1 N
(39) ki =elke] = - Z ke,

where the subscript n has been added to denote the year of the observation.
The variance of equation (39) is given by
(40) 0%  =E[kes - E[ke]]?
= E [Key - kpy]?
=K’ [er - )
(4) o =kKd4
This measure of 0% contrasts with the standard measure of % = ko?; in that the step multiplier k
issquared. This results from averaging the mean lags from each year. However, since
seasonality and spurious autocorrelation have been removed the variance measure is unbiased
and asymptotically efficient and the variance ratio is
oy

22"
01

(42) VR.=

Moreover, the Lo and MacKinlay asymptotic estimator can still be used to test the null

0.2
hypothesisHo: —*—--1=0
O-l

Long-Run Versus Short-Run Effects

Having resolved problems of seasonality and asynchronous autocorrelation afinal
question to consider is whether the random walk hypothesis holds across a smaller number of
years. Rather than averaging across the entire history of weather records (e.g. 1840-1996) a
useful examination would be to examine shorter (e.g. overlapping 30-year) time horizons. The
benefits to doing this are to first determine if acceptance or rejection of arandom walk is due to
long versus short time horizons, and second to examine the persistence or frequency of the
random walk over time. Each 30-year sample can be considered an unbiased estimate of the
larger population, but the asymptotic population variance is known. Therefore the standard
errors can easily be estimated.

The standard error of the sample n<N is
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_p2k-1(k-10°
(43) Sn_E 3N -1k E /\n

and this can be used in the denominator of at-statistic with n-1 degrees of freedom.

Variance Ratio Test Results

The variance ratio hypothesis was tested using daily data from 1840-1996 for 92 daysin
each year. The tests were conducted by first calculating the value W', for each day and across
years, and then converting this data to logarithms. The results are presented in Table 4 for all
years and 5 subperiods for lags of 1-10 days and lags of 35-40 days.

According to theory a random walk would be rejected if the means of the k-lag difference
or the variance of the k-lag difference are significantly different than the values of k in the first
column. Using N=92 in the calculation of the asymptotic variance in equation (31) and
calculating the test statistic Z in equation (30) there are no instances where the random walk is
rejected. Using N=92 the F-test fails to reject the null hypothesis that the variance ratio is
significantly different than 1.0 in al case.

Failure to reject the null hypothesis on the variance ratio occurs even though thereis a
visible departure in the computed value of k in Table 3 from the theoretical value of k. The
reason for thisisthat the asymptotic variance increases with k. For example when k=2 the
asymptotic variance for N=92 is .011, but for k=40 it is.34. Therefore even though the 48.27
value of 6%40/0%; in the 1840-1870 subperiod is 8.27 points above the theoretical value of 40, the
normalized variance ratio test (0%40/k?c?; - 1)/0, is equal to 1.20 which falls below the critical
value of 1.96 at the 5% level.

To examine whether the results in Table 4 are a consequence of chance or sampling the
variance ratios were also calculated for overlapping 30 year periods and the null hypothesis was
tested using the t-statistic which accounts for possible sampling error. The standard error is
defined in equation (37) which divides the Lo and Mackinlay asymptotic variance measure by
the square root of 30 (years). Of 128 overlapping time periods in no case was the null hypothesis
rejected at the 5% level for up to 29 lags, and only 1 violation beyond that. Repeating the
analysis for 20 and 10-day lags revealed that at 20 lags there were 29 rejections for an
acceptance rate of 80.4% and at 10 lags there were 37 of 148 rejections for an acceptance rate of
75%.
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The results offer strong support for the random walk hypothesis even when a small
number of years are considered. But in this result also resides the caveate that to truly smooth
individual year effects at least 30 years should be considered in practice. Notwithstanding this
assertion there is sufficient evidence to conclude that indeed the index of cooling degree-days
follows a random walk about the seasonal trend. Failure to reject the random walk also implies
that volatility jumps are probably not of great concern. This does not imply volatility isa
constant value, but it does imply that an average value of volatility across years, E[0] iSan
unbiased estimate of volatility. Furthermore given the evidence in Table 3 the estimate E[o] will
be consistent and efficient. The evidence suggests that the option pricing model proposal in this
paper is appropriate for the pricing of degree-day weather options.

Estimates of Cooling Degree-Day Option Premia

This section reports actual option premiums calculated for Toronto, Ontario. The
contracts considered are 92-day put and call options with contract terms from June 1 with an
expiry on August 31. Each tick in-the-money (6) was valued at $5,000 per degree-day. Several
empirical considerations are illustrated in the results. First, premium estimates are calculated
using the both the inter-year ‘burn-rate’ method used in the insurance industry (equations 8 and
9) and the intra-year Black’s option pricing model (equations 22 and 23). Second, in order to
illustrate the importance of ‘relevant time horizon', estimates are provided for the 1840-1996
data period and the 1930 to 1996 sub-period. Third, the options pricing model is sensitive to the
initial index value, W'y, and using a simple average in all cases would not be prudent. For the
options pricing model only, arange of initia values of W'y are examined. This type of sensitivity
analysis is important because weather agencies such as Environment Canada and the U.S.
Weather Service cannot generally predict forward temperatures with reasonable accuracy.
However, they can and do provide three or four-month forecasts that state whether conditions are
going to be normal, below normal, or above normal. If the prediction is above normal, for
example, the buyer of a call may want to increase the initial expectation of W't to match the
forecast and reduce the premium.

Tables 5 for 1840-1996 and 6 for 1930-1996 present results for base case at-the-money
option pricing calculations as well as a range of strike prices above and below this value. The at-
the-money strike is defined as the average cooling degree-days across the years sampled. Thisis
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379.39 for 1840-1996 and 489.50 for 1930-1996. The option premiums differ between the
options model and the burn rate model as well as across the two time periods. When the
sampling period was represented from 1840 the at-the-money put and call price was $77,073 for
the 379-CDD strike option model and approximately $297,030 for the burn rate model (Table 5).
The maximum payoff for the put option under either case would have been $1,361,450 for the
put option and $2,038,150 for the call option. Asthe strike price was increased put options
would be issued in-the-money and the put option premiums would rise as the call premiums fell.
For a strike of 600 CDD the option model put premium was $1,085,126 while the burn-rate
model was $1,136,421. The maximum put payoff increased to $2,464,500. The corresponding
call option for the option model was $0 and for the burn-rate model it was $33,405. The
maximum payoff that would have possibly occurred with this strike over this period was
$935,100. A lower than average strike implies that put options are issued out-of-the-money,
while call options are issued in-the-money. At a strike of 250 CDD the put options priceis
negligible, while the call option price is $636,438. Using the burn-rate model the corresponding
put and call prices were $63,947 and $710,420 with maximum payoffs being $714,500 for the
puts and $2,685,100 for the calls.

A similar pattern was observed for the 1930-1996 period (Table 6). The at-the-money
option price (489.5 CDD) for the put and call was $83,835 and using the burn-rate model the
put-call price was approximately $220,358. The maximum put and call payoffs would have been
$1,516,900 and $1,487,600 respectively. For in-the-money calls with a strike of 250 CDD the
call optionwas $1,178,041 and the corresponding put was $0. The burn-rate put and call prices
were $4,767 and $1,202,279 respectively, with maximum payoffs of $319,400 and $2,685,100.
For in-the-money puts at 600 CDD the put option price was $544,298 and the call price was only
$776. The burn-rate premiums were $624,900 and $72,412 for the put and call respectively.

These resultsillustrate some important and critical details regarding the pricing of
degree-day derivatives and the selection of a time period over which to analyze heat. The
difference between options pricing and burn-rate models is striking, especially when priced at-
the-money. Using the 1840-1996 period the burn-rate model prices the insurance at 3.85 times
the option pricing model whereas the 1930-1996 period the pricing multiple is 2.63. The ratio
convergesto 1 for policiesthat are in-the-money and infinite for options out-of-the-money. The
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resultsillustrate why different approaches to pricing weather options can result in large bid-ask
spreads.

The explanation for these differences liesin how risk is measured and what risks are
actually being traded. The burn rate model assumes that history will repest itself and the
variability and probability distribution of the past will be replicated in the future. It rests upon an
actuarial structure, which is seemingly predictable, but one, which also carries with it some
significant variability. In contrast the options pricing model is not backward looking in the sense
of amemorized historical probability distribution. It assumes an infinite of random weather
patterns, which can occur in any season. The role of history is vague only in its use to establish
seasonal norms and a range of volatility measures, but once these are established history’sroleis
done.

Another key difference is the assumption of a starting point. The options pricing model
assumes a numerical starting position from which variability in a weather index is measured, and
the price of the option is sengitive to thisinitial position. For example the further the index strike
is below the initial index value the higher will be the value of a call option and lower will be the
value of a put option. Because the burn-rate model’s principal Gaussian assumption is that
history will repest itself, the burn-rate model does not require an estimate of the initial weather
index value perse.

As discussed above the initial assumption regarding the forward weather index is crucial
to the accurate pricing of options. Tables 5 and 6 present results assuming that the initial index
value is equal to the historical mean. In redlity this may not be the case. Weather forecasts may
predict higher or lower than normal temperatures and this will have a conditional impact on what
the initial index value is. For example mean growing degree-days for the 1930-1996 period was
489.5 with arange from 186 to 787 and a standard deviation of 114 (Table 1). If the long-range
weather forecast was for warmer than usual wesather, then it would be prudent to increase the
initial index value accordingly so that the likelihood that a put option would end in-the-money is
lower and the likelihood that the call would end in-the-money is higher. Likewise, if the long-
range forecast was for cooler than normal weather then the index would be decreased such that
the likelihood of a put ending in-the-money would increase and the likelihood of a call ending in-

the-money would decrease.
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Table 7 presents option pricing sengitivity results for the 1840-1996 period and Table 8
presents results for the 1930-1996 period. Since the burn-rate model does not rely on initial
conditions only the option pricing model is considered. Each column in Tables 7 and 8 represent
a percentage of the mean with 1.0 representing the mean, .50 being 50% of the mean and 150%
being 50% higher than the mean. As predicted by options theory as the initial condition
decreases the put option value increases and the call option value increases holding the strike
level constant. For example if the strike level is 400 CDD the valuesin Table 7 for the 1840-
1996 period for a put option is $1,034,468 and call price is $0 if the weather forecast implies that
cumulative degree-days will be 50% less than average. If the cooling trend is believed to be less
severe, say 75%, then the put value for a400 CDD strike decreases to $507,929 and the call
price is $23. If the weather prediction calls for a 50% increase in cooling degree-days then the
likelihood that a 400 CDD put option will expire in-the-money is nil, and the put option is priced
at $21. In contragt, the likelihood that the call option expires in-the-money rises and the call
option premium increases to $831,708. A similar pattern isillustrated for the 1930-1996 period
in Table 8.

Conclusions

This paper addressed the pricing issue of degree-day weather derivatives. The market for
weather insurance products has increased dramatically in past years for several reasons. First
weather derivatives are directed at hedging production or volume versus price risk. In the natural
gas and energy sectors, utilities will often fix pricesto the consumer or face regulated prices to
consumers. Electrical utilities must of ten pay peak-load prices when energy demand exceeds
contracted supplies, and natural gas and oil companies must pay higher spot prices when extreme
cold causes excess demand in those markets. Agriculture is also an industry that faces weather
related production risk. A crop insurer might have to pay increased indemnities if weather is
either too hot or too cool, and might use weather derivatives as a reinsurance product, or afood
processor might require a hedge against undeliverable forward contracts resulting from weather
conditions.

An important driver of the weather derivatives market is the relationship between
economic damage and specific events. Electrical utilities know with 100% certainty that
prolonged above normal heat or below normal coolness will create an increased demand for their
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products, and they can also determine statistically at what level, in cumulative heating or cooling
degree-days, this occurs. What is unknown is when the specific event will occur and with this
uncertainty routine hedging of weather risks can provide economic stability and increase share
values.

This paper examined the pricing methods of degree-day derivatives. It was shown that
many of the underlying assumptions used in modern options pricing are relevant to weather
conditions. The critical, and justifiable, assumption is that weather risks follow a Martingale, and
based on this assumption the stochastic differential equation which drives weather dynamics
follows an Ito process. It was shown that applying arbitrage free arguments to this stochastic
process results in a pricing formula similar, but not identical to Black’s formula for pricing
European options on futures. The key difference between the pricing model developed in this
paper isthat price per degree-day is held constant while the quantity variable (degree-days)
varies, whereas the original Black’s model holds quantity constant (e.g. 1 bushel) while allowing
price to vary. Another difference isthat Black’s (1976) model is derived from trading in an
underlying futures contract which is subject to many supply and demand influences which create
volatility and liquidity whereas the weather option relies on a non-traded forward weather index.
An approach to defining such an index was discussed at length in this paper.

The approach used in this paper differs markedly from an insurance approach to pricing
weather derivatives. The ‘burn-rate’ approach, prices premiums based upon what would have
occurred over arecent time period. It was pointed out that the key difference between the burn-
rate model and the options pricing model isin how risk is defined. Under the burn-rate model it
is assumed that history will repeat itself with the same likelihood, but not necessarily the same
order, as the time horizon selected for pricing. In other words, the approach assumes that the
relevant measure of risk isthe inter-year variability in weather. The options pricing model
developed in this study makes no such assumption and isin fact based on intra-year risks. As
with conventional options pricing, volatility and the initial value of the weather index are the key
drivers of risk. History is used only to measure volatility and determine a range of index values,
but once a measure of volatility is selected and the initial condition determined, history has no
further role to play in the pricing process. For example the 1840 to 1996 period had mean
cooling degree-days (above 65f) of 379 CDD and an annualized volatility of 20.63% for the
period June 1 to August 31. Using the 1930-1996 period the average cooling degree-days was

29



489 CDD with avolatility of 17.39%. Under no year was volatility found to exceed 29.6%, yet
the implied volatility that would equate the options pricing model to the burn rate model was
80% for the 1840-1996 period and 45.8% for the 1933 to 1996 period.

It was shown that there is a significant and often large difference between the burn-rate
model and the options pricing model, particularly for products priced at or near-the-money. It
was shown that the burn rate model prices options as much as 2 to 3 times higher than the
options pricing model. The two approaches converge only for options that are priced in the
money or out of the money. It is consistent with the various theories of pricing non-traded assets
in equilibrium, and in arisk-neutral economy. Statistical analyses confirmed that the underlying
assumptions required for pricing degree-day weather options are empirically valid.

The options pricing model presented in this paper is new. On one hand it isan
improvement over the traditional burn-rate approach in that it places much more emphasis on
risk and for a derivatives market which is essentially designed to manage the buying and selling
of risk there can be efficiency and liquidity gains if the model is implemented in practice. On the
other hand the traditional approach is easy to implement and even easier to comprehend.
However, if aformal derivatives market for weather insurance is going to emerge it is very likely
that the approach developed in this study will provide foundation for pricing weather derivative
products.
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Table 1. Historical Summary of Toronto Cooling Degree-Days

M ean Standard Minimum Maximum
Deviation
1840-1996 379.39 146.67 107.10 787.02
1930-1996 489.50 114.69 186.12 787.02
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Table 2: Historical Summary of Toronto Cooling Degree-Days Volatility

M ean Standard Minimum Maximum
Deviation
1840-1996 .2063 .0012 .1662 .2961
1930-1996 1739 .0009 1414 235
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Table 3: Seasonality and Stability in Volatility

1840-1996 | 1840-1936 | 1936-1996
Mean (365 days) 201 207 193
Standard Deviation .023 .022 .021
Coefficient of Variation Mean 6.42 5.98 7.13
Coefficient of Variation Standard Deviation 3.19 3.03 3.32
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Table 4: Estimated Value of Means and Variance Ratios (VR)*

1840-1996 1840-1870 1871-1900 1901-1930 1931-1960 1961-1996
LagK | Mean | VR | Mean | VR Mean | VR | Mean | VR | Mean | VR Mean | VR
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
2 1.99 2.01 2.00 2.01 2.01 2.00 2.00 2.01 201 | 203 | 2.01 2.00
3 2.99 3.02 3.00 3.03 3.03 3.01 3.01 3.02 3.02 | 3.08 | 3.04 | 301
4 3.99 4.04 | 4.00 4.06 4.06 4.03 4.00 4.04 | 4.03 4.14 4.07 4.02
5 4.98 5.06 5.00 5.09 5.09 5.07 4.95 5.06 5.03 5.23 5.11 5.03
6 5.97 6.09 6.00 6.14 6.14 6.11 5.87 6.09 6.03 6.32 6.15 6.05
7 6.96 7.13 7.00 7.21 7.18 7.16 6.79 7.12 7.05 7.41 7.18 7.10
8 7.95 8.17 8.01 8.30 8.22 8.21 7.71 8.17 8.08 8.52 8.20 8.19
9 8.95 9.23 9.02 9.40 9.26 9.26 8.65 9.23 9.12 9.65 9.22 9.22
10 9.97 | 10.30 | 10.03 | 1054 | 10.32 | 10.32 | 9.62 | 10.29 | 10.18 | 10.80 | 10.23 | 10.24
35 35.47 | 31.05 | 36.07 | 42.07 | 38.99 | 40.99 | 30.39 | 38.50 | 37.27 | 41.56 | 37.74 | 40.85
36 36.47 | 40.22 | 37.11 | 43.28 | 40.22 | 42.27 | 31.31 | 39.67 | 38.35 | 42.75 | 39.01 | 42.03
37 37.46 | 41.58 | 38.14 | 44.50 | 41.44 | 43.56 | 32.23 | 40.82 | 39.41 | 43.91 | 40.28 | 43.20
38 38.47 | 42.55 | 39.16 | 45.75 | 42.69 | 44.86 | 33.12 | 41.94 | 40.47 | 45.06 | 41.54 | 44.38
39 39.47 | 43.73 | 40.16 | 47.02 | 43.95 | 46.15 | 34.01 | 43.18 | 41.51 | 46.23 | 42.79 | 45.57
40 40.48 | 44.90 | 415 | 48.27 | 4520 | 47.46 | 34.95 | 4437 | 4256 | 47.41 | 44.02. | 46.77

* The variance ratio (VR) is 0 /ko? and the mean ratio is piki/ps.
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Table 5: European Options and Burn Rate Premiums: 1840-1996, Tick = $5,000

200
250
300
350
379.39
400
450
489.50
500
550
600
650

Option Vaue Burn Rate Maximum Payoff
Put Cdl Put Cdl Put Cdl

0 882,374 18,215 915,190 464,500 2,935,100
0 636,438 63,647 710,420 714,500 2,685,100
692 391,264 135,264 533,239 964,500 2,435,100
23,156 167,718 229,910 376,885 1,214,500 2,185,100
77,073 77,073 297,054 1,361,450 2,038,150 2,038,150
139,950 38,574 352,121 249,096 1,464,500 1,935,100
351,674 4,361 508,943 155,918 1,714,500 1,685,100
542,100 497 657,13 106,788 1,912,000 1,487,600
539,513 263 698,560 95,534 1,964,500 1,435,100
839,198 10 908,806 55,781 2,214,500 1,185,100

1,085,126 0 1,136,421 33,405 2,464,500 935,100

1,331,062 0 1,370,114 17,089 2,714,500 685,100
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Table 6: European Optionsand Burn Rate Premiums: 1930-1996, Tick = $5,000

200
250
300
350
379.39
400
450
489.5
500
550
600
650

Option Burn Rate Maximum Payoff
Put Cdl Put Cdl Put Cdl
0 1,423,978 1,035 1,448,548 69,400 2,935,100
0 1,178,041 4,767 1,202,279 319,400 2,685,100
0 932,103 8,498 956,010 569,400 2,435,100
2.52 686,168 20,119 717,631 819,400 2,185,100
94 541,697 841,749 39,261 2,319,400 685,100
670 440,897 50,519 498,031 1,069,400 1,935,100
17,974 212,266 121,639 319,150 1,319,400 1,685,100
83,835 83,835 220,358 220,370 1,516,900 1,487,600
113,047 61,400 249,622 197,134 1,569,400 1,435,100
306,996 9,411 417,813 115,325 1,819,400 1,185,100
544,298 776 624,900 72,412 2,069,400 935,100
789,497 37 841,749 39,261 2,319,400 685,100
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Table 7: Sensitivity of Options Pricesto Initial Conditions, 1840-1996

.50 .75 1.0 1.25 1.50
Strike Put Call Put Call Put Call Put Call Put Call
200 69,975 19,287 10 415,853 0 882,375 0 1,348,906 0 1,815,437
250 296,757 132 6,873 176,779 1 636,438 0 1,102,968 0 1,569,499
300 542,563 0 104,962 28,931 692 391,192 0 857,031 0 1,323,562
350 788,500 0 323,336 1,367 23,156 167,718 100 611,193 0 1,077,624
400 1,034,468 0 567,929 23 139,950 38,574 4,644 369,800 21 831,708
450 1,280,375 0 813,844 0 351,674 4,361 46,048 165,266 1,039 586,788
500 1,526,313 0 1,059,781 0 593,513 263 174,937 48,218 13,747 353,559
550 1,772,250 0 1,305,719 0 839,198 10 381,556 8,900 72,838 166,712
600 2,018,188 0 1,551,656 0 1,085,126 0 619,676 1,081 209,925 57,861
650 2,264,125 0 1,797,594 0 1,331,063 0 864,624 92 412,954 14,593
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Table 8: Sensitivity of Options Pricesto Initial Conditions, 1930-1996

.50 .75 1.0 1.25 1.50
Strike Put Call Put Call Put Call Put Call Put Call
200 335 220,449 0 822,046 0 1,423,978 0 2,025,910 0 2,627,842
250 56,523 30,700 0 576,109 0 1,178,041 0 1,779,973 0 2,381,904
300 272,149 388 502 330,673 0 932,103 0 1,534,035 0 2,135,967
350 517,699 0 28,254 112,488 2.52 686,168 0 1,288,098 0 1,890,030
400 763,636 0 175,874 14,170 670 440,897 0 1,042,160 0 1,644,092
450 1,009,573 0 408,223 582 17,974 212,266 12 796,234 0 1,398,155
500 1,255,510 0 653,588 9 113,047 61,400 837 551,122 0 1,152,217
550 1,501,448 0 899,516 0 306,996 9,411 13,374 317,721 33 906,313
600 1,747,386 0 1,145,454 0 544,298 776 77,173 135,584 1,004 661,346
650 1,993,323 0 1,391,391 0 789,497 37 226,707 35,180 10,968 425,373
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Figure 1:M ean Seasonal Temperature, Toronto, June 1 to August 31
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