

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

Published by
DFG Research Unit 2569 FORLand

https://www.forland.hu-berlin.de

A
gricultural Land M

arkets – Efficiency and R
egulation

FORLand Technical Paper 03 (2024)

Application of Deep Learning to
Emulate an Agent-Based Model

Ruth Njiru, Franziska Appel, Changxing Dong, Alfons Balmann

In light of the dynamic challenges facing agricultural land markets, the
conventional analytical frameworks fall short in capturing the intricate
interplay of strategic decisions and evolving complexities. This
necessitates the development of a novel method, integrating deep learning
into Agent-based Modelling, to provide a more realistic and nuanced
understanding of land market dynamics, enabling informed policy
assessments and contributing to a comprehensive discourse on
agricultural structural change. In this paper, different deep learning models
are tested and evaluated, as emulators of AgriPoliS (Agricultural Policy
Simulator). AgriPoliS is an agent-based model used to model the evolution
of structural change in agriculture resultant on the change in the policy
environment. This study is part of preliminary works towards integrating
deep learning methods and predictions with AgriPoliS to capture strategic
decision making and actions of agents in land markets. The paper tests
the models on their suitability, computational requirements and run-time
complexities. The output from AgriPoliS serves as the input features for
the deep learning models. Models are evaluated using a combination of
coefficient of determination (R2 score), mean absolute error, visual displays
and runtime. The models were able to replicate the variable of interest with
a high degree of accuracy with R2 score of more than 90%. The CNN was
the most suited for replicating the data. Through this work, we learned the
required complexities, computational and training efforts needed to
integrate deep learning and AgriPoliS to capture strategic decision-
making.
Keywords: Agent-Based Model, Deep Neural Networks, predictions
JEL Code: Q15, C45

https://www.forland.hu-berlin.de/

2

1. Introduction

Amidst evolving dynamics in agricultural land markets, concerns about concentration and
pricing have prompted regulatory proposals. Traditional methodological approaches struggle
to capture strategic interactions and dynamic complexities. To address this, we propose fusing
Deep Learning (DL), a subset of Machine Learning (ML) into Agent-based Modelling. DL excel
in pattern recognition and strategic decision-making, offering a novel approach to enhance the
realism of agent behaviours. This approach aims to provide a more nuanced understanding
of land market dynamics and the potential impacts of regulatory interventions.

Agent-Based Modelling developed popularity in recent years for simulating complex and
dynamic behavioural systems (Crooks & Heppenstall, 2012). It is a deductive-inductive
process which begins with a set of assumptions and rules to produce simulated data which is
then analysed to address emergent phenomena (An, 2012). An Agent-Based Model (ABM)
consists of a group of decision-making entities called agents. The agents are autonomous,
active and heterogenous in their decision making by following a set of behavioural rules or
satisfying specific goals (e.g. profit maximization). They interact with other agents and with
their environment while taking decisive action. They also can adapt/learn in their goal
satisfying quest (Bonabeau, 2002; Epstein, 1999; Heppenstall et al., 2011; Macal & North,
2005; Railsback & Grimm, 2019)

The applications of ABM in the agricultural domain include their usage as farm level models
that consider the interaction between farms, heterogeneity in farm behaviour, resource use
changes, response to agricultural policy changes, etc. (Kremmydas et al., 2018). Some
notable applications include AgriPoliS (Agricultural Policy Simulator) used to model the impact
of agricultural policy change on the structure of agriculture within a specific region (Happe et
al., 2006), MPMAS (Mathematical Programming-based Multi-Agent Systems) which combines
bio-physical models and economic models to simulate household reactions to land use
changes (Schreinemachers & Berger, 2011), RegMAS (Regional Multi-Agent Simulator) to
simulate the effects of agricultural policies on income, land use and farm structures (Lobianco
& Esposti, 2010), and the aporia framework for modelling the impact of decisions of farm
managers on land use systems (Murray-Rust et al., 2014).

In recent years, several studies have explored the integration of ML techniques within ABM to
enhance agent behaviour (Brearcliffe & Crooks, 2021). Augustijn et al. (2019) summarizes the
integrations based on the stage in which ML is incorporated in the Agent-Based Modelling
process; using the output of the ML model as the input to the ABM, using the ML model to
predict agent behaviour within the ABM or using the output from the ABM in ML model for
validation. Studies envision that use of ML techniques can lead to a better understanding of
ABM output and through the integration of ML with ABM, generate models that can replicate
the behaviour of ABMs with a high degree of precision and lower running time (Angione et al.,
2020; Lamperti et al., 2018). Running ABMs in most cases is a time-consuming process with
simulation times ranging from a few hours to even days on end. van der Hoog (2017) in a
prospectus suggests that the ability of ML models to imitate the agents’ behaviour has
promising implications specifically for ABMs that produce time series data with long-term
dependencies. However, this integration is still in its evolutionary phase and there is a lot of
groundwork to cover.

3

In AgriPoliS, the focal ABM, we envision to integrate Deep Neural Networks (DNNs), the key
component of DL, predictions to shape the agents’ decision-making and subsequent action.
DNNs are effective through their ability to learn complex patterns from inputted data and infer
their own conclusions (Goodfellow et al., 2016). Angione et al. (2020), also demonstrated that
DNNs outperformed other ML models in emulating ABM. DNNs techniques have also been
applied successfully to analyse time series data due to the ability to capture temporal
dependencies. This is important for AgriPoliS since it captures the evolution of farms over a
25-year period. The overall vision in our work is to generate artificially intelligent agents who
make smarter decisions on farm production, investment, rental markets and exit/no exit
decision. The generation of smarter agents would affect structural change through strategic
interactions between farms and strategic responses to complexities.

A particular challenge for training the DNNs is the availability of data for the learning process.
Because empirical data is neither available nor suitable, we generate data by following the
“doppelgänger approach” described by van der Hoog (2019). The idea of the doppelgänger
approach is to run a number of identical simulations with alternative decisions models, i.e., for
each scenario there is one version with the standard myopic optimization (which also can
provide benchmarks) and one version with a learning DNN. In this setting, scenarios have to
be understood as variations in the initialization of the model. The specific development of
AgriPoliS DNN will begin with a static farm-level approach, which serves to identify reasonable
structures, interfaces for the DNN to the agent’s decision, and initializations of the DNN.
Practically, we train the DNN to make reasonable decisions on farm exit, investments, and
land rentals for a farm agent in a certain state, period, and environment with specific
information. Following the “doppelgänger approach” the benchmark for such a reasonable
decision can be the myopic optimization of the farm within the standard AgriPoliS model.
Therefore, we apply supervised training in this first step. This innovative methodology not only
enhances the predictive power of the model but also offers insights into the strategic behaviour
of agents in response to varying market conditions, thereby enriching our understanding of
land market dynamics.

In light of this, in this study we seek to understand how DNNs work, suitability of method,
computational requirements and time complexities to run them. We hence test different DNNs
algorithms as computational models of AgriPoliS. The output from AgriPoliS serves as the
input features for the DNNs. The DNNs algorithms are chosen based on their ability to emulate
the whole panel data output structure of AgriPoliS and also the ability to capture temporal
dependencies generated by AgriPoliS since it captures the evolution of farms over a 25-year
period. The DNNs are then evaluated based on their performance. We also capture the
training time required to run the models. For this study, we begin by focusing on a single
variable of interest to emulate i.e. profit since the main objective of agents in AgriPoliS is to
maximize profit. We also demonstrate how DNNs can be adapted to emulate multiple
variables.

This paper is organised as follows: Section 2 provides an overview of AgriPoliS and an
overview of DNNs. Section 3 describes the materials and methods used to emulate the ABM
using DNNs. Section 4 presents the results from the training process. Section 5 deals with the
discussion, conclusion and outlook.

4

2. Overview of ABM and DL

a. AgriPoliS

AgriPoliS is used to simulate the effect of diverse policies on farm structural change within a
region over a certain period of time (Balmann, 1997; Happe et al., 2006). An overview of,
including documentations, source code and manual is available on AgriPoliS. The focal agents
in AgriPoliS are the farm agents. They are modelled to closely represent the typology of farms
as would be observed in the region of interest. Each agent makes production, investments,
land rental decisions and exit/not exit decisions on the farm for maximization of household
income for family farms and maximization of profit in case of corporate farms. The farm agent
can also adjust their decisions in response to changes in their environment and actions of the
other agents (Happe, 2004).

The AgriPoliS environment is created using data representing the aggregate regional
capacities, organization and the economic indicators of regional farms. Data sources include
European Union’s Farm Accountancy Data Network (FADN), handbook data on farming
practices (e.g., for Germany, Association for Technology and Construction in
Agriculture(KTBL)), farm structural survey (FSS), farm data and/or expert knowledge
(Sahrbacher & Happe, 2008). Key information defined prior to initialization include production
activities, investment options, financing and labour.

The model is usually initialized with 15-20 typical representative farms. Using mixed-integer
programming, the agents decide on production, investment and farm exit with the aim of
maximizing their profit (corporate farms) or household income (family farms). The model
typically runs over 25 iteration/years (Sahrbacher et al., 2012). This to account for generation
change where the farm is handed over to the next generation of farmers.

In AgriPoliS, farms grow through renting additional land in the land rental market. The farms
interact through the land market where they compete against each other by bidding for plots
of land under auction. The farms present bids to the land rental market. The bids reflect the
shadow price (additional benefit of renting the land), the spatial location of the plot (calculated
by the transport cost between the farm plots and the plots available for rent) and a fixed land
rental coefficient which represents the share of the bid that will go to the land owner. The agent
with the highest bid receives the plot. The auction is held in an iterative manner until all the
plots are allocated. The agents then decide on investment and what to produce.

At the end of the iteration/year, the financial statements are generated which inform the farms
on whether to continue and/or exit farming. The farm then prepares his bid for the following
year and subsequent decisions are made over 25 iterations. Figure 1 shows the framework
for the farm agents. For every iteration/year, AgriPoliS produces farm investment data (e.g.
stables, land, machinery), farm production data (e.g. level of crop yields, livestock units
produced), farm standard indicators data (e.g. profit, equity capital, change in equity), sector
data (number of farms, amount of used land) and sector prices data.

https://www.agripolis.org/agripolis

5

Figure 1: Simplified representational framework for AgriPoliS

Source: Own figure

b. Overview of DL

DL is an area of ML that stems from the workings of the neurons in the brain. The fundamentals
of DL are the Artificial Neural Networks (ANN). ANN are made up of the input layer, hidden
layer(s) and output layer consisting of neurons which act as the data processing units
(Goodfellow et al., 2016; LeCun et al., 2015). ANN can either be shallow i.e. having only one
hidden layer between the input and output layer or deep where there are multiple hidden
layers. For simplicity and consistency, we use the term Deep Neural Networks (DNNs) in the
description of DL. The architecture of the DNNs is made up of the input layer which feeds the
data into the DNN, the hidden layers act as the computational centre while the output layer
does the predictions (Figure 2). The layers are fully connected with each neuron in one layer
connected with a weight to every neuron in the next layer.

6

Figure 2: A simple representation of a DNN

Source: Own figure based on (Goodfellow et al., 2016)

The artificial neuron is a mathematical function that takes the input (x) and multiplies it by a
value known as weight (w) (DNNs algorithms work through a process known as optimization,
i.e. learning from the data by minimizing the error between the predicted and the actual values
using a loss function i.e. finding w and b that minimize the loss function. The optimization
algorithm (optimizer) modifies the weight and learning rate to reduce the overall loss and
improve the accuracy while the loss function evaluates how well the model is predicting.
During training there is a forward propagation step which computes the output. This output is
the propagated backwards to compute the gradients/derivatives of the loss function
(Rumelhart et al., 1986). The gradients help in minimizing the deviations between the actual
output and the predicted output. The choice of the best optimizers is dependent upon the task
at hand and amount of data available. The most common optimizers are Stochastic Gradient
Descent (SGD), Mini-Batch Gradient Descent, Adagrad, RMSProp, AdaDelta and Adam
(Goodfellow et al., 2016). The choice of the loss function is dependent on whether the goal is
predicting a categorical value e.g. employment status or a numeric value e.g. amount of
income. There are different loss functions but the most common when dealing with numerical
values are the Mean Absolute Error (MAE) and Mean Squared Error (MSE). The choice of the
cost function and optimizers is made before starting the process of training the DNN

Figure 3). The weights are an indication of the importance associated with the inputs. At this
stage a bias term (b) is then added which helps the model to best fit the given data by adjusting
the output with the weighted sum of the inputs in the neuron. They are then transformed into
output through activation function (a). Most activation functions are non-linear to capture

7

patterns in the data better. The choice of the activation function is dependent on the DNNs’
goal (Chollet, 2021). The activation function then passes the value to all the neurons in the
next layer or it returns it as the final value (𝑦𝑦�) when it is passed from the last hidden layer.

DNNs algorithms work through a process known as optimization, i.e. learning from the data
by minimizing the error between the predicted and the actual values using a loss function i.e.
finding w and b that minimize the loss function. The optimization algorithm (optimizer) modifies
the weight and learning rate to reduce the overall loss and improve the accuracy while the
loss function evaluates how well the model is predicting. During training there is a forward
propagation step which computes the output. This output is the propagated backwards to
compute the gradients/derivatives of the loss function (Rumelhart et al., 1986). The gradients
help in minimizing the deviations between the actual output and the predicted output. The
choice of the best optimizers is dependent upon the task at hand and amount of data available.
The most common optimizers are Stochastic Gradient Descent (SGD), Mini-Batch Gradient
Descent, Adagrad, RMSProp, AdaDelta and Adam (Goodfellow et al., 2016). The choice of
the loss function is dependent on whether the goal is predicting a categorical value e.g.
employment status or a numeric value e.g. amount of income. There are different loss
functions but the most common when dealing with numerical values are the Mean Absolute
Error (MAE) and Mean Squared Error (MSE). The choice of the cost function and optimizers
is made before starting the process of training the DNN
Figure 3: Representation of a Neuron in a DNN

Source: Own figure

Another key consideration is that there are different types of DL models and the choice of the
model is dependent of the data type, data structure, data amount and the goal to be achieved.
DL techniques are divided into 3 major classes: supervised learning, unsupervised learning
and reinforcement learning. Supervised learning works well with labelled data and has a pre-
defined output for prediction tasks. It is mainly used for classification and regression.
Unsupervised learning is used for unstructured data for structuring or pattern identification. It
can be classified into two categories; clustering and association. In reinforcement learning the
agent acts which leads to a change in their environment. The agent consequently uses the
newly acquired state to determine the next action with the goal of maximizing reward (Vasilev
et al., 2019).

For this study, we employed supervised learning. There are different models under supervised
learning but only a few can capture the temporal dependencies in the AgriPoliS model. To that
effect, we choose to focus on DNNs models that would be able to better emulate the cross-

8

sectional time series nature of AgriPoliS. The DNNs models chosen were; Recurrent Neural
Network (RNN), Convolution Neural Network (CNN), Long-Short Term Memory (LSTM),
Bidirectional Long-Short-Term Memory (Bi-LSTM), Gated Recurrent Unit (GRU) (LeCun et al.,
2015). A brief introduction of the models is supplied below:

RNN is used for modelling sequential data. The output from the previous layers act as the
input to the current layers. They contain a hidden state that can remember information about
the sequence. This feature makes it useful for time series prediction. Unfortunately, they suffer
from gradient vanishing problems where the gradients tend towards zero and exploding
gradients where the gradients become too large making it unsuitable for very long sequences.
RNNs been applied in Natural Language Processing (NLP), sequence to sequence learning
and speech recognition (LeCun et al., 2015).

LSTM, an advancement over RNN, has the ability to learn long term dependencies and was
developed to deal with the problem of vanishing gradients by a data filtration system which
discards irrelevant data and only retain relevant data for use in subsequent steps (Hochreiter
& Schmidhuber, 1997). The key idea behind the LSTM is the cell state where the choice for
information retention or discard is done through structures known as gates. Information flows
through the three main gates. The first gate is the forget gate which makes a choice on whether
to keep or discard information. Once, the choice is made, the retained information passes
through the input gate to the cell state. In the cell state, the data is processed and new
information added to it. It then passes to the output gate. The information from the output gate
is sent as input to the next cell state. LSTMs have been applied in NLP, machine translation
and time series prediction (Hua et al., 2019). Another modification is the Bi-LSTM, which can
reverse the direction flow of information i.e. information can flow both forward and backwards.
By combining information in both directions its able to produce more meaningful output.

Another variation of the RNN is the GRU which has 2 gates i.e. the reset gate that filters the
information which needs to be forgotten and is directly connected to the previous state. It also
contains the update gate which filter the information that will be used in the future (Cho et al.,
2014; Yamak et al., 2019).

CNN is also another DNNs model that captures both spatial and temporal dependencies by
extracting and learning valuable features of the time series task. Although the CNN was
originally designed for image processing, they can be adapted for data processing by changing
the output layer. CNNs are able process 1D (time series data, sequences), 2D (images or
audio) and 3D (videos and images) data. They consist of a convolution layer, pooling layer
and fully connected layer. A variation of the CNN is the CNN-LSTM model which combines
CNN for feature extraction and then LSTM for time series prediction (Jin et al., 2020).

3. Methodology

In the study, we follow the “doppelgänger approach” by van der Hoog (2017). We first
generated training data in AgriPoliS by running identical simulations with variations in the
initialization of the model i.e. different scenarios. We then tested the ability of different DNNs
to emulate the behaviour of standard AgriPoliS agents. In this study, we applied a supervised
learning approach to test different DNNs to emulate one output variable i.e. profit in AgriPoliS.
We also adapted the code to show the potential for multi-output variables replication by
replicating three variables. The models were chosen based their ability to deal with the cross-
sectional time series nature of the AgriPoliS output. RNN, CNN, LSTM, Bi-LSTM, CNN-LSTM

9

and GRU were tested and evaluated. Figure 4 shows the framework for the implementation of
the work as discussed in the sections:
Figure 4: Methodology for replication of AgriPoliS profit using DNNs.

Source: Own figure

a. AgriPoliS data generation

The first step in the study was to generate the simulated data to be used to train the DNNs.
AgriPoliS was randomly initialized with 205 farms/agents over a 25- iteration period to
generate data. One iteration corresponds to one production year. To ensure robustness, there
were 100 simulation runs using different initializations. This resulted in 20,500 farms measured
over 25-iterations for use in model training. The simulated data was then split into the training

10

set and validation set during the data processing phase. For carrying out model evaluation
and to deliver unbiased results, we generated test data of 30 simulation runs separately
resulting in 6,150 farms. The key variables used are shown in Table 1.
Table 1:Selected AgriPoliS output farm level key variables used as the input features in the

training of the DNNs

Variable unit Description
Output variables
Profit € The difference between the revenue received from the livestock

and crop production and the cost of production (inputs,
machinery, labour)

Input variables
Labour labour

unit
The amount of manpower expressed in hours that goes in the
production process. Labour can either be family labour, fixed
labour or variable labour.

Land ha Used for livestock and crop production. The land is either owned
or rented and is further distinguished between arable land and
grassland.

Investments count The number of fixed assets distinguished by type which are used
for production. Examples include stables, milk parlours,
machinery.

Rent € Amount of money paid for the use of rented land obtained from
the land rental market. Distinguished between arable land and
grassland.

Liquidity € The available cash to cater for the running costs of the farm
Borrowed
capital

€ The amount of short term or long-term credit taken by the farm to
meet its obligation. The cost of the capital is interest

Products count Total units of livestock (fattening pigs, broilers) and crops (wheat,
barley, sugar beets, potatoes) produced.

Depreciation € The wear and tear from use of the fixed assets.

b. Data processing

The data processing was performed in Python 3.9.7. The output from the AgriPoliS simulations
was used as the input features for the DNNs. The data processing and training was done
purely on a CPU to allow for model comparison. Prior to training the DNNs, the data had to be
processed into a form suitable for the DNNs. The agents were recoded to generate a unique
identifier which composed of the farm_ID and the simulation run0F

1. Due to the nature of the
data being panel data, it was indexed using the unique identifier and the iteration period.

The simulated data set consisting of 20,500 farm agents was split into a train set and validation
set in 70%:30% ratio ending up with 14,350 farm agents in the train set while 6,150 farm
agents were in the validation set. The test set consisted of 6150 farms generated separately
to avoid instances where the farm agents end up in both the training and test set. Since the
main objective of agents in AgriPoliS is to maximize profit, the variable that the DNNs will

1 For Example, 187R60 denotes the farm whose farm_ID is 187 that is generated in simulation run 60.

11

emulate is profit. The code was also modified and adapted to replicate three variables with
just minimal changes to the code.

The input features were then normalized using the MinMaxScaler (Aggarwal, 2018). The goal
of normalization is to change the values to a common scale without altering the differences in
the range of values to ensure faster convergence, more stable and easier learning process.
For example, the revenue ranges from -240,000 to 500,000 while the age of the farm ranges
from 32 years to 95 years. The revenue would influence the result more due to its larger value.
The normalization transferred the features range to values between 0 and 1. Prior to usage,
the panel data was transformed into a supervised learning series using the algorithm as
initiated by Brownlee (2017) and adapted by Shi (2020). This creates columns of lag values
and columns of forecast values. The input data was then reshaped into 3-dimensional data
(samples, time steps and features) which is the recommended format for use by the DNN
architectures.

c. Data training

After the data was processed, the training set was used to train the different models. Multiple
simulations were done to determine the optimal hyperparameters to use. Hyperparameters
control the learning process to correctly map the input features to the target variable i.e. the
number of hidden layers, optimizer, activation function, loss function, number of epochs, batch
size, kernel size. For the models we used the Adam (adaptive moment estimation) optimizer
that works well with time series data (Kingma & Ba, 2014). We used a small learning rate of
1e-5 since larger rates were causing the model to converge too quickly to a sub-optimal
solution. There was no improvement in performance with smaller than 1e-5 running rate. ReLu
(Rectified Linear Unit) activation function was applied with a batch size of 32. Batch size
defines the number of training examples that will be propagated through the network before
updating the model weights. It affects the stability of the training process. Since the models
were ran on CPU, application of a smaller batch size worked better for all the models. We
used MAE to compute the loss function and generate the loss curve. We also applied early
stopping which stopped training process once the loss function stopped improving to avoid
overfitting. To further counter overfitting we repeated the simulations to the LSTM, Bi-LSTM
and the GRU while applying dropout. Dropout works by randomly dropping out some units
during training to counter overfitting (Srivastava et al., 2014).

An additional note is that DNNs are stochastic i.e. they initialize using random weights thereby
producing different results. While random initialization is the best fit for getting good
approximations, it concomitantly does little for getting reproducible results. Due to that, it was
necessary to run the models several times while doing hyperparameter tuning to get the best
results. Afterwards, we used a random seed to achieve reproducible results (Brownlee, 2016).
We also recorded the time it took to run the models and generated the loss curves for all the
models to identify how well the data learnt during training.

d. Data predictions

Predicted profit values from the different models were generated from the model using the test
data as shown below and then attached to the test data file.

y�i = model. predict(yi) (1)

𝑦𝑦�𝑖𝑖 are the predicted profit values.

𝑦𝑦𝑖𝑖 are the AgriPoliS (actual) profit values.

12

The mean values for both the predicted profit and the actual profit values were plotted against
each other to generate the comparison graph. The predicted profit values obtained from the
models were also plotted against the AgriPoliS profit values using the scatter plots. In a scatter
plot, the distance of a predicted value from a 45% angle line indicates how well or poorly the
prediction performed.

e. Metrics and evaluations

To evaluate the different DNNs approaches, and based on the structure of the profit variable,
we used Mean Absolute Error (MAE), Root Mean Squared error (RMSE) and the R2 score as
the metrics of choice. The MAE calculates the mean absolute average distance between the
predicted profit and the actual values as shown below:

MAE = 1
N
∑ |yi − y�i|N
i=1 (2)

y�i are the predicted profit values.

yi are the AgriPoliS (actual) profit values.

We also computed the Root Mean Squared Error (RMSE) which calculates the square root of
the mean average distance between the predicted profit values and the actual profit values
below:

RMSE = �∑ (yi−y�i)2N
i=1

n
 (3)

𝑦𝑦�𝑖𝑖 are the predicted profit values.

𝑦𝑦𝑖𝑖 are the AgriPoliS (actual) profit values.

We also normalized the MAE and RMSE results after computing the MAE. Since the profit
variable is a continuous variable and the range varies from (-239,000-491,879), it is necessary
to normalize the results to enable comparison over the models. We chose to normalize by
taking the difference between the maximum (ymax) and the minimum values (ymin) (Otto,
2019). The values lie between 0 and 1. Values closer to 0 indicate a better fit.

NormMAE = MAE
(ymax−ymin)

 (4)

NormRMSE = RMSE
(ymax−ymin)

 (5)

The R2 score which is also known as the coefficient of determination was also utilized. It
measures the variation explained by the relationship between the input features and the
dependent variable. A score of 1 would indicate that the model was able to fully replicate the
dependent variable, while a score of 0 would indicate a complete failure to replicate the
dependent variable (Unterthiner et al., 2020).

R2 = 1 − ∑ (y�i−yi)2N
i=1

∑ (yi− y�i)2N
i=1

 (6)

𝑦𝑦�𝑖𝑖 are the predicted profit values.

𝑦𝑦𝑖𝑖 are the actual profit values

𝑦𝑦�𝑖𝑖 are the mean profit values.

13

4. Results

In this section, we present the results of the training the DNNs. Data generation with AgriPoliS
roughly took around 6 hours. In total, 6 DNNs were successfully tested on their suitability and
ability to emulate the output (profit) from AgriPoliS. The DNNs were assessed on their R2
score, MAE, RMSE and runtimes. In Figure 5, we present the MAE loss curves for all the
models. The loss curve is a good first indication of how well the model learnt by comparing
the curves for both training and validation set over time.
Figure 5: Loss curves for all the DNN models

The CNN, CNN-LSTM and RNN seem to fit well on the validation data. On the contrary, the
GRU slightly overfit the data while the LSTM and Bi-LSTM overfit on a higher magnitude. We
repeated the simulations with the LSTM, Bi-LSTM and GRU and manually tested different
dropout rates until the overfitting was reduced to a minimal level (Figure 6).

14

Figure 6: Loss curve using dropout to reduce overfitting

The next step was to compare the metrics for the different models. In Table 2, the DNNs were
able to efficiently replicate the profit variable in AgriPoliS with a high degree of precisions as
shown by the R2 values of more than 90%. A comparison of the metrics shows that the CNN
and the CNN-LSTM were the best performing models. CNN-LSTM was the best performance
in terms of R2 with a score of 91.4% and the lowest RMSE value (23,409.03). The CNN
performed well based on the MAE value (5,482.34) but had the 2nd lowest R2 score. In terms
of computational time, the GRU was the fastest model followed closely by the CNN. Although
dropout reduced overfitting, it came at the cost of longer running time as observed by
comparing the models before after applying drop out. It was also quite expensive in
computation due to manually testing different dropout values. We ran the models on CPU,
however running the models on GPU should also result in stupendous reduction in run time.
Table 2: Comparisons of metrics from different DNNs architectures

Model Bi-LSTM Bi-LSTM CNN CNN-
LSTM GRU GRU LSTM LSTM Simple

RNN
Dropout - 0.04 - - - 0.015 - 0.02 -

R2 0.913 0.912 0.903 0.914 0.911 0.908 0.90 0.91 0.904

MAE 7803.91 7991.45 5482.34 6980.44 6398.20 6520.83 8351.70 7306.105 5525.33

Norm_MAE 0.011 0.011 0.007 0.010 0.010 0.009 0.011 0.010 0.008

RMSE 23579.12 23798.22 24876.41 23409.39 23878.63 24258.31 23877.25 24116.59 24799.10

Norm_RMSE 0.032 0.032 0.034 0.032 0.033 0.022 0.033 0.033 0.034

Runtime 580s 836S 293s 324s 248s 533s 406s 446s 355s

15

We also supplemented the results with visual displays comparing profit predictions to the
AgriPoliS values to check how the data fit through the iterations. Due to the large number of
farms, Figure 7, Figure 8 and Figure 9 only present the comparison of the average profit
predictions to the average AgriPoliS values for the CNN, LSTM and LSTM with dropout.
Figure 7: Comparison between the average predicted values and the average AgriPoliS

values for CNN model

Figure 8: Comparison between the average predicted values and the average AgriPoliS

values for LSTM model

16

Figure 9: Comparison between the average predicted values and the average AgriPoliS
values for LSTM model with dropout

The average prediction in the CNN models were a close approximation to the AgriPoliS values.
There is a clear disparity between the predictions and AgriPoliS values for the LSTM over
time. The average predictions in the LSTM model fluctuated over time. From year 1 -15 the
predicted values were higher than the actual values and were lower for the remainder of the
year. This demonstrated that the LSTM was overfitting. This is further reinforced by looking at
the loss curve for the LSTM in Figure 4. This shows that the LSTM was not a good fit for the
data. For the GRU, CNN-LSTM and Bi-LSTM, the predicted values were lower in the last
iteration (iteration 24) and were navigating towards zero. Based on these charts, it appears
that the CNN was the best fit because it gave quite consistent results from iteration to iteration.

We also compared scatter plots between the predicted values and the AgriPoliS values at
each iteration. In this section, we present only the scatter plots for iteration 24 (Figure 10).
Additional scatter plots for iteration 0 and iteration 10 are presented in the Appendix. A look
at the scatter plot shows that the CNN and the RNN models were able to predict the data well
while the rest of the models did not predict the data well.

17

Figure 10: Scatter plots showing the predicted values (y-axis) versus AgriPoliS values (x-axis) at iteration (year 24)

18

19

a) Adaptation of CNN for Multi-Output predictions

The earlier parts focused on only a single variable to replicate. It is possible to replicate more
than one variable with minimal changes to the code. Hyper parameter tuning would also need
to be carried out to fit the best model fit for the data. In this section we adapted the code to
replicate 3 variables: profit, change in equity and revenue. Figure 11, Figure 12 and Figure 13
show the predicted and actual values for the 3 variables (profit, income and revenue).
Figure 11: Comparison between the average predicted profit values and the average

AgriPoliS profit values (Multioutput)

Figure 12: Comparison between the average predicted income values and the average

AgriPoliS income values (Multioutput).

20

Figure 13: Comparison between the average predicted change in equity values and the

average AgriPoliS change in equity values (Multioutput).

5. Summary and Discussion

In this paper, we explored and tested different DNNs architectures on their ability to replicate
the ABM. The work presented in the paper is limited to simulated data generated from
AgriPoliS and only focused on DNNs which have had the most promise in the use of cross-
sectional time series data. We focused majorly it to one single variable of interest i.e. profit.
We also demonstrated it is possible for multiple variables by extending it to three variables of
interest. This could form the basis for future work e.g. in generating surrogate models.

From the results, we can conclude that DNNs models were able to replicate the AgriPoliS data
with a high degree of accuracy as seen in the coefficient of determination score. A
comprehensive comparison of the MAE, R2 score and the visual displays indicates that the
CNN was the most suited for replicating the data. The mean profit predictions were also quite
close to the mean profit values at every iteration as compared to the other models. For the
GRU, CNN-LSTM and Bi-LSTM, the predicted values were lower in the last iteration (iteration
24) and were navigating towards zero. Based on Abduljabbar et al. (2021) and Plaster and
Kumar (2019), the LSTM and its variants work better with longer predictive time horizon than
shorter predictive horizon. This might be a plausible explanation why the predictions were
lower in the LSTM, CNN-LSTM and Bi-LSTM.

Although the results focused more on the output, it is noteworthy that hyperparameter
optimization took a considerable amount of work. Hyperparameters such as the learning rate,
number of layers, batch size and dropout rate had to be manually tested to find the best fit as
there is not a single ‘one fits all’ scenario. The computation time required to run the model was
significantly lower than the computational time to run the ABM while using the CPU. However,
the computation might be biased since the ABM and the DNN use different programming
languages. In future work, we envision to use a GPU which would considerably improve
running time.

21

6. Conclusion and Outlook

The work presented in this paper followed the “doppelgänger” approach by van der Hoog
(2017). We generated training data from AgriPoliS and tested the ability of different DNNs to
emulate the behaviour of standard AgriPoliS agents. Although the DNNs could mimic the
behaviour of the agents, they were not equipped in capturing behaviour of strategic relevance
such as focusing on the long-run performance of the farm instead of short-term profit-
maximizing behaviour, strategic interactions with neighbouring farms and capability to learn
and adapt to counter changes in the environment that would lead to increased efficiency,
resilience against shocks and increased competitiveness. Nevertheless, this approach
provided profound insights to guide our subsequent steps to model strategic behaviour of
agents in AgriPoliS.

To that effect, we will implement Deep Reinforcement Learning (DRL) which uses DNNs in
their architecture to enable formulation of strategic bids in the land markets to maximize the
farm agents’ long-term profitability. DRL agents would interact with the AgriPoliS environment
directly through a framework of states. actions, transitions and rewards. The training process
for the DRL refines the agents’ policies through the repeated interactions with the environment.
The actions of the DRL agents would also impact other agents in the region through their
competition in land markets. This necessitates an interface where the DRL agents’
environment interacts with the AgriPoliS environment, thereby enabling concurrent
competition in the land markets. This has an implication in that we are not able to use custom
made DRL environments such as gym and thus have to design our environment which
interlinked the DRL and AgriPoliS. The DRL would feed strategic bids to AgriPoliS and the
results of the bid after investments, production and farm accounting has taken place would be
transmitted back to the DRL agents to modify behaviour and then transmitted back to AgriPoliS
thus capturing strategic behaviour and highlighting the role of strategic interaction between
farms

References
Abduljabbar, R. L., Dia, H., & Tsai, P.-W. (2021). Development and evaluation of bidirectional LSTM freeway traffic forecasting models

using simulation data. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-03282-z.
Aggarwal, C. C. (2018). Neural networks and deep learning. Springer, 10, 978-973.
An, L. (2012). Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecological modelling,

229, 25-36. https://doi.org/10.1016/j.ecolmodel.2011.07.010.
Angione, C., Silverman, E., & Yaneske, E. (2020). Using Machine Learning to Emulate Agent-Based Simulations. arXiv:2005.02077.

https://doi.org/10.48550/arXiv.2005.02077.
Augustijn, E.-W., Kounadi, O., Kuznecova, T., & Zurita-Milla, R. (2019). Teaching Agent-Based Modelling and Machine Learning in an

integrated way. GeoComputation 2019. https://auckland.figshare.com/articles/Teaching_Agent-
Based_Modelling_and_Machine_Learning_in_an_integrated_way/9848804

Balmann, A. (1997). Farm-based modelling of regional structural change: A cellular automata approach. European Review of Agricultural
Economics, 24(1), 85-108. https://doi.org/10.1093/erae/24.1.85.

Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the national
academy of sciences, 99(suppl 3), 7280-7287. https://doi.org/10.1073/pnas.082080899.

Brearcliffe, D. K., & Crooks, A. (2021). Creating Intelligent Agents: Combining Agent-Based Modeling with Machine Learning. Proceedings
of the 2020 Conference of The Computational Social Science Society of the Americas, Cham. https://doi.org/10.1007/978-3-030-
83418-0_3.

Brownlee, J. (2016). Deep learning with Python: develop deep learning models on Theano and TensorFlow using Keras. Machine
Learning Mastery.

Brownlee, J. (2017). How to convert a time series to a supervised learning problem in Python. Retrieved 23/05/2022 from
https://machinelearningmastery.com/convert-time-series-supervised-learning-problem-python/.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase
representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
https://doi.org/10.48550/arXiv.1406.1078.

Chollet, F. (2021). Deep learning with Python. Simon and Schuster.

https://doi.org/10.1038/s41598-021-03282-z
https://doi.org/10.1016/j.ecolmodel.2011.07.010
https://doi.org/10.48550/arXiv.2005.02077
https://auckland.figshare.com/articles/Teaching_Agent-Based_Modelling_and_Machine_Learning_in_an_integrated_way/9848804
https://auckland.figshare.com/articles/Teaching_Agent-Based_Modelling_and_Machine_Learning_in_an_integrated_way/9848804
https://doi.org/10.1093/erae/24.1.85
https://doi.org/10.1073/pnas.082080899
https://doi.org/10.1007/978-3-030-83418-0_3
https://doi.org/10.1007/978-3-030-83418-0_3
https://machinelearningmastery.com/convert-time-series-supervised-learning-problem-python/
https://doi.org/10.48550/arXiv.1406.1078

22

Crooks, A. T., & Heppenstall, A. J. (2012). Introduction to Agent-Based Modelling. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty
(Eds.), Agent-Based Models of Geographical Systems (pp. 85-105). Springer Netherlands. https://doi.org/10.1007/978-90-481-8927-
4_5.

Epstein, J. M. (1999). Agent-based computational models and generative social science. Complexity, 4(5), 41-60.
https://doi.org/10.1002/(SICI)1099-0526(199905/06)4:5%3C41::AID-CPLX9%3E3.0.CO;2-F.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
Happe, K. (2004). Agricultural policies and farm structures - Agent-based modelling and application to EU-policy reform Leibniz Institute of

Agricultural Development in Transition Economies (IAMO), Halle (Saale)].
http://ageconsearch.umn.edu/record/14945/files/st040030.pdf.

Happe, K., Kellermann, K., & Balmann, A. (2006). Agent-based analysis of agricultural policies: an illustration of the agricultural policy
simulator AgriPoliS, its adaptation and behavior. Ecology and society, 11(1). https://www.jstor.org/stable/26267800.

Heppenstall, A. J., Crooks, A. T., See, L. M., & Batty, M. (2011). Agent-based models of geographical systems. Springer Science &
Business Media. http://dx.doi.org/10.22004/ag.econ.120248.

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780.
https://doi.org/10.1162/neco.1997.9.8.1735.

Hua, Y., Zhao, Z., Li, R., Chen, X., Liu, Z., & Zhang, H. (2019). Deep learning with long short-term memory for time series prediction. IEEE
Communications Magazine, 57(6), 114-119. https://doi.org/10.1109/MCOM.2019.1800155.

Jin, X., Yu, X., Wang, X., Bai, Y., Su, T., & Kong, J. (2020). Prediction for Time Series with CNN and LSTM. In R. Wang, Z. Chen, W.
Zhang, & Q. Zhu, Proceedings of the 11th International Conference on Modelling, Identification and Control (ICMIC2019) Singapore.
https://doi.org/10.1007/978-981-15-0474-7_59.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
https://doi.org/10.48550/arXiv.1412.6980.

Kremmydas, D., Athanasiadis, I. N., & Rozakis, S. (2018). A review of agent based modeling for agricultural policy evaluation. Agricultural
Systems, 164, 95-106. https://doi.org/10.1016/j.agsy.2018.03.010.

Lamperti, F., Roventini, A., & Sani, A. (2018). Agent-based model calibration using machine learning surrogates. Journal of Economic
Dynamics and Control, 90, 366-389. https://doi.org/10.1016/j.jedc.2018.03.011.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539.
Lobianco, A., & Esposti, R. (2010). The Regional Multi-Agent Simulator (RegMAS): An open-source spatially explicit model to assess the

impact of agricultural policies. Computers and electronics in agriculture, 72(1), 14-26. https://doi.org/10.1016/j.compag.2010.02.006.
Macal, C. M., & North, M. J. (2005). Tutorial on agent-based modeling and simulation. Proceedings of the Winter Simulation Conference,

2005., https://doi.org/10.1109/WSC.2005.1574234.
Murray-Rust, D., Robinson, D. T., Guillem, E., Karali, E., & Rounsevell, M. (2014). An open framework for agent based modelling of

agricultural land use change. Environmental Modelling & Software, 61, 19-38. https://doi.org/10.1016/j.envsoft.2014.06.027.
Otto, S. A. (2019). How to normalize the RMSE [Blog post]. https://www.marinedatascience.co/blog/2019/01/07/normalizing-the-rmse/#.
Plaster, B., & Kumar, G. (2019). Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms, 12(10),

203. https://doi.org/10.3390/a12100203.
Railsback, S. F., & Grimm, V. (2019). Agent-based and individual-based modeling: a practical introduction. Princeton university press.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-

536. https://doi.org/10.1038/323533a0.
Sahrbacher, C., & Happe, K. (2008). A methodology to adapt AgriPoliS to a region.

http://www.agripolis.de/documentation/adaptation_v1.pdf.
Sahrbacher, C., Sahrbacher, A., Kellermann, K., Happe, K., Balmann, A., Brady, M., Schnicke, H., Ostermeyer, A., Schönau, F., & Dong,

C. (2012). AgriPoliS: An ODD-Protocol. http://www.iamo.de/agripolis/documentation/ODD_AgriPoliS.pdf.
Schreinemachers, P., & Berger, T. (2011). An agent-based simulation model of human–environment interactions in agricultural systems.

Environmental Modelling & Software, 26(7), 845-859. https://doi.org/10.1016/j.envsoft.2011.02.004.
Shi, H. (2020). COVID-19 Global Data -Time Series Panel Data with LSTM. https://melaniesoek0120.medium.com/covid-19-global-data-

time-series-prediction-with-lstm-recurrent-neural-networks-f7825c4a1f6f.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks

from overfitting. The journal of machine learning research, 15(1), 1929-1958. https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84904163933&partnerID=40&md5=b865fd654b3befc5d829dbe5d42b80c3.

Unterthiner, T., Keysers, D., Gelly, S., Bousquet, O., & Tolstikhin, I. (2020). Predicting neural network accuracy from weights. arXiv preprint
arXiv:2002.11448. https://doi.org/10.48550/arXiv.2002.11448.

van der Hoog, S. (2017). Deep learning in (and of) agent-based models: A prospectus. arXiv preprint arXiv:1706.06302.
https://doi.org/10.48550/arXiv.1706.06302.

Vasilev, I., Slater, D., Spacagna, G., Roelants, P., & Zocca, V. (2019). Python Deep Learning: Exploring deep learning techniques and
neural network architectures with Pytorch, Keras, and TensorFlow. Packt Publishing Ltd.

Yamak, P. T., Yujian, L., & Gadosey, P. K. (2019). A comparison between arima, lstm, and gru for time series forecasting. Proceedings of
the 2019 2nd International Conference on Algorithms, Computing and Artificial Intelligence, https://doi.org/10.1145/3377713.3377722.

https://doi.org/10.1007/978-90-481-8927-4_5
https://doi.org/10.1007/978-90-481-8927-4_5
https://doi.org/10.1002/(SICI)1099-0526(199905/06)4:5%3C41::AID-CPLX9%3E3.0.CO;2-F
http://ageconsearch.umn.edu/record/14945/files/st040030.pdf
https://www.jstor.org/stable/26267800
http://dx.doi.org/10.22004/ag.econ.120248
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/MCOM.2019.1800155
https://doi.org/10.1007/978-981-15-0474-7_59
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1016/j.agsy.2018.03.010
https://doi.org/10.1016/j.jedc.2018.03.011
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.compag.2010.02.006
https://doi.org/10.1109/WSC.2005.1574234
https://doi.org/10.1016/j.envsoft.2014.06.027
https://www.marinedatascience.co/blog/2019/01/07/normalizing-the-rmse/%23
https://doi.org/10.3390/a12100203
https://doi.org/10.1038/323533a0
http://www.agripolis.de/documentation/adaptation_v1.pdf
http://www.iamo.de/agripolis/documentation/ODD_AgriPoliS.pdf
https://doi.org/10.1016/j.envsoft.2011.02.004
https://melaniesoek0120.medium.com/covid-19-global-data-time-series-prediction-with-lstm-recurrent-neural-networks-f7825c4a1f6f
https://melaniesoek0120.medium.com/covid-19-global-data-time-series-prediction-with-lstm-recurrent-neural-networks-f7825c4a1f6f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84904163933&partnerID=40&md5=b865fd654b3befc5d829dbe5d42b80c3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84904163933&partnerID=40&md5=b865fd654b3befc5d829dbe5d42b80c3
https://doi.org/10.48550/arXiv.2002.11448
https://doi.org/10.48550/arXiv.1706.06302
https://doi.org/10.1145/3377713.3377722

23

Appendix

Figure 14: Predicted (y-axis) versus actual (x-axis) for LSTM

24

Figure 15: Predicted (y-axis) versus actual (x-axis) for LSTM (dropout=0.02)

25

Figure 16: Predicted (y-axis) versus actual (x-axis) for Bi-LSTM

26

Figure 17: Predicted (y-axis) versus actual (x-axis) for Bi-LSTM((dropout=0.04)

27

Figure 18 Predicted (y-axis) versus actual (x-axis) for CNN-LSTM

28

Figure 19: Predicted (y-axis) versus actual (x-axis) forCNN

29

Figure 20: Predicted (y-axis) versus actual (x-axis) for GRU

30

Figure 21: Predicted (y-axis) versus actual (x-axis) for GRU(dropout (0.015)

31

Figure 22 Predicted (y-axis) versus actual (x-axis) for RNN

32

Figure 23: DNN models’ architecture
Bi-LSTM

LSTM

33

CNN-LSTM

CNN

34

GRU

Simple RNN

35

Further Information

Contact Acknowledgements

Ruth Njiru (njiru@iamo.de) - corresponding author
Franziska Appel (appel@iamo.de)
Changxing Dong (dong@iamo.de)
Alfons Balmann (balmann@iamo.de)
All authors are at Leibniz Institute of Agricultural
Development in Transition Economies (IAMO), Department
of Structural Development of Farms and Rural Areas,
Theodor-Lieser-Str. 2, D-06120 Halle (Saale).

Financial support from the German Research Foundation
(DFG) through Research Unit 2569 “Agricultural Land
Markets – Efficiency and Regulation” is gratefully
acknowledged. The authors would also like to thank
IAMO's IT-team for their patient and constructive support.

	Ruth Njiru, Franziska Appel, Changxing Dong, Alfons Balmann
	1. Introduction
	2. Overview of ABM and DL
	a. AgriPoliS
	b. Overview of DL

	3. Methodology
	a. AgriPoliS data generation
	b. Data processing
	c. Data training
	d. Data predictions
	e. Metrics and evaluations

	4. Results
	a) Adaptation of CNN for Multi-Output predictions

	5. Summary and Discussion
	6. Conclusion and Outlook
	References
	Appendix
	Further Information
	Contact
	Acknowledgements

