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Application of Deep Learning to  
Emulate an Agent-Based Model 

Ruth Njiru, Franziska Appel, Changxing Dong, Alfons Balmann 

In light of the dynamic challenges facing agricultural land markets, the 
conventional analytical frameworks fall short in capturing the intricate 
interplay of strategic decisions and evolving complexities. This 
necessitates the development of a novel method, integrating deep learning 
into Agent-based Modelling, to provide a more realistic and nuanced 
understanding of land market dynamics, enabling informed policy 
assessments and contributing to a comprehensive discourse on 
agricultural structural change. In this paper, different deep learning models 
are tested and evaluated, as emulators of AgriPoliS (Agricultural Policy 
Simulator). AgriPoliS is an agent-based model used to model the evolution 
of structural change in agriculture resultant on the change in the policy 
environment. This study is part of preliminary works towards integrating 
deep learning methods and predictions with AgriPoliS to capture strategic 
decision making and actions of agents in land markets. The paper tests 
the models on their suitability, computational requirements and run-time 
complexities. The output from AgriPoliS serves as the input features for 
the deep learning models. Models are evaluated using a combination of 
coefficient of determination (R2 score), mean absolute error, visual displays 
and runtime. The models were able to replicate the variable of interest with 
a high degree of accuracy with R2 score of more than 90%. The CNN was 
the most suited for replicating the data. Through this work, we learned the 
required complexities, computational and training efforts needed to 
integrate deep learning and AgriPoliS to capture strategic decision-
making.  
Keywords: Agent-Based Model, Deep Neural Networks, predictions 
JEL Code: Q15, C45 
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1. Introduction 

Amidst evolving dynamics in agricultural land markets, concerns about concentration and 
pricing have prompted regulatory proposals. Traditional methodological approaches struggle 
to capture strategic interactions and dynamic complexities. To address this, we propose fusing 
Deep Learning (DL), a subset of Machine Learning (ML) into Agent-based Modelling. DL excel 
in pattern recognition and strategic decision-making, offering a novel approach to enhance the 
realism of agent behaviours. This approach aims to provide a more nuanced understanding 
of land market dynamics and the potential impacts of regulatory interventions. 

Agent-Based Modelling developed popularity in recent years for simulating complex and 
dynamic behavioural systems (Crooks & Heppenstall, 2012). It is a deductive-inductive 
process which begins with a set of assumptions and rules to produce simulated data which is 
then analysed to address emergent phenomena (An, 2012). An Agent-Based Model (ABM) 
consists of a group of decision-making entities called agents. The agents are autonomous, 
active and heterogenous in their decision making by following a set of behavioural rules or 
satisfying specific goals (e.g. profit maximization). They interact with other agents and with 
their environment while taking decisive action. They also can adapt/learn in their goal 
satisfying quest (Bonabeau, 2002; Epstein, 1999; Heppenstall et al., 2011; Macal & North, 
2005; Railsback & Grimm, 2019) 

The applications of ABM in the agricultural domain include their usage as farm level models 
that consider the interaction between farms, heterogeneity in farm behaviour, resource use 
changes, response to agricultural policy changes, etc. (Kremmydas et al., 2018). Some 
notable applications include AgriPoliS (Agricultural Policy Simulator) used to model the impact 
of agricultural policy change on the structure of agriculture within a specific region (Happe et 
al., 2006), MPMAS (Mathematical Programming-based Multi-Agent Systems) which combines 
bio-physical models and economic models to simulate household reactions to land use 
changes (Schreinemachers & Berger, 2011), RegMAS (Regional Multi-Agent Simulator) to 
simulate the effects of agricultural policies on income, land use and farm structures (Lobianco 
& Esposti, 2010), and the aporia framework for modelling the impact of decisions of farm 
managers on land use systems (Murray-Rust et al., 2014). 

In recent years, several studies have explored the integration of ML techniques within ABM to 
enhance agent behaviour (Brearcliffe & Crooks, 2021). Augustijn et al. (2019) summarizes the 
integrations based on the stage in which ML is incorporated in the Agent-Based Modelling 
process; using the output of the ML model as the input to the ABM, using the ML model to 
predict agent behaviour within the ABM or using the output from the ABM in ML model for 
validation. Studies envision that use of ML techniques can lead to a better understanding of 
ABM output and through the integration of ML with ABM, generate models that can replicate 
the behaviour of ABMs with a high degree of precision and lower running time (Angione et al., 
2020; Lamperti et al., 2018). Running ABMs in most cases is a time-consuming process with 
simulation times ranging from a few hours to even days on end. van der Hoog (2017) in a 
prospectus suggests that the ability of ML models to imitate the agents’ behaviour has 
promising implications specifically for ABMs that produce time series data with long-term 
dependencies. However, this integration is still in its evolutionary phase and there is a lot of 
groundwork to cover. 
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In AgriPoliS, the focal ABM, we envision to integrate Deep Neural Networks (DNNs), the key 
component of DL, predictions to shape the agents’ decision-making and subsequent action. 
DNNs are effective through their ability to learn complex patterns from inputted data and infer 
their own conclusions (Goodfellow et al., 2016). Angione et al. (2020), also demonstrated that 
DNNs outperformed other ML models in emulating ABM. DNNs techniques have also been 
applied successfully to analyse time series data due to the ability to capture temporal 
dependencies. This is important for AgriPoliS since it captures the evolution of farms over a 
25-year period. The overall vision in our work is to generate artificially intelligent agents who 
make smarter decisions on farm production, investment, rental markets and exit/no exit 
decision. The generation of smarter agents would affect structural change through strategic 
interactions between farms and strategic responses to complexities. 

A particular challenge for training the DNNs is the availability of data for the learning process. 
Because empirical data is neither available nor suitable, we generate data by following the 
“doppelgänger approach” described by van der Hoog (2019). The idea of the doppelgänger 
approach is to run a number of identical simulations with alternative decisions models, i.e., for 
each scenario there is one version with the standard myopic optimization (which also can 
provide benchmarks) and one version with a learning DNN. In this setting, scenarios have to 
be understood as variations in the initialization of the model. The specific development of 
AgriPoliS DNN will begin with a static farm-level approach, which serves to identify reasonable 
structures, interfaces for the DNN to the agent’s decision, and initializations of the DNN. 
Practically, we train the DNN to make reasonable decisions on farm exit, investments, and 
land rentals for a farm agent in a certain state, period, and environment with specific 
information. Following the “doppelgänger approach” the benchmark for such a reasonable 
decision can be the myopic optimization of the farm within the standard AgriPoliS model. 
Therefore, we apply supervised training in this first step. This innovative methodology not only 
enhances the predictive power of the model but also offers insights into the strategic behaviour 
of agents in response to varying market conditions, thereby enriching our understanding of 
land market dynamics. 

In light of this, in this study we seek to understand how DNNs work, suitability of method, 
computational requirements and time complexities to run them. We hence test different DNNs 
algorithms as computational models of AgriPoliS. The output from AgriPoliS serves as the 
input features for the DNNs. The DNNs algorithms are chosen based on their ability to emulate 
the whole panel data output structure of AgriPoliS and also the ability to capture temporal 
dependencies generated by AgriPoliS since it captures the evolution of farms over a 25-year 
period. The DNNs are then evaluated based on their performance. We also capture the 
training time required to run the models. For this study, we begin by focusing on a single 
variable of interest to emulate i.e. profit since the main objective of agents in AgriPoliS is to 
maximize profit. We also demonstrate how DNNs can be adapted to emulate multiple 
variables. 

This paper is organised as follows: Section 2 provides an overview of AgriPoliS and an 
overview of DNNs. Section 3 describes the materials and methods used to emulate the ABM 
using DNNs. Section 4 presents the results from the training process. Section 5 deals with the 
discussion, conclusion and outlook. 
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2. Overview of ABM and DL 

a. AgriPoliS 

AgriPoliS is used to simulate the effect of diverse policies on farm structural change within a 
region over a certain period of time (Balmann, 1997; Happe et al., 2006). An overview of, 
including documentations, source code and manual is available on AgriPoliS. The focal agents 
in AgriPoliS are the farm agents. They are modelled to closely represent the typology of farms 
as would be observed in the region of interest. Each agent makes production, investments, 
land rental decisions and exit/not exit decisions on the farm for maximization of household 
income for family farms and maximization of profit in case of corporate farms. The farm agent 
can also adjust their decisions in response to changes in their environment and actions of the 
other agents (Happe, 2004). 

The AgriPoliS environment is created using data representing the aggregate regional 
capacities, organization and the economic indicators of regional farms. Data sources include 
European Union’s Farm Accountancy Data Network (FADN), handbook data on farming 
practices (e.g., for Germany, Association for Technology and Construction in 
Agriculture(KTBL)), farm structural survey (FSS), farm data and/or expert knowledge 
(Sahrbacher & Happe, 2008). Key information defined prior to initialization include production 
activities, investment options, financing and labour. 

The model is usually initialized with 15-20 typical representative farms. Using mixed-integer 
programming, the agents decide on production, investment and farm exit with the aim of 
maximizing their profit (corporate farms) or household income (family farms). The model 
typically runs over 25 iteration/years (Sahrbacher et al., 2012). This to account for generation 
change where the farm is handed over to the next generation of farmers. 

In AgriPoliS, farms grow through renting additional land in the land rental market. The farms 
interact through the land market where they compete against each other by bidding for plots 
of land under auction. The farms present bids to the land rental market. The bids reflect the 
shadow price (additional benefit of renting the land), the spatial location of the plot (calculated 
by the transport cost between the farm plots and the plots available for rent) and a fixed land 
rental coefficient which represents the share of the bid that will go to the land owner. The agent 
with the highest bid receives the plot. The auction is held in an iterative manner until all the 
plots are allocated. The agents then decide on investment and what to produce. 

At the end of the iteration/year, the financial statements are generated which inform the farms 
on whether to continue and/or exit farming. The farm then prepares his bid for the following 
year and subsequent decisions are made over 25 iterations. Figure 1 shows the framework 
for the farm agents. For every iteration/year, AgriPoliS produces farm investment data (e.g. 
stables, land, machinery), farm production data (e.g. level of crop yields, livestock units 
produced), farm standard indicators data (e.g. profit, equity capital, change in equity), sector 
data (number of farms, amount of used land) and sector prices data.  

https://www.agripolis.org/agripolis
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Figure 1: Simplified representational framework for AgriPoliS 

 
Source: Own figure 

b. Overview of DL  

DL is an area of ML that stems from the workings of the neurons in the brain. The fundamentals 
of DL are the Artificial Neural Networks (ANN). ANN are made up of the input layer, hidden 
layer(s) and output layer consisting of neurons which act as the data processing units 
(Goodfellow et al., 2016; LeCun et al., 2015). ANN can either be shallow i.e. having only one 
hidden layer between the input and output layer or deep where there are multiple hidden 
layers. For simplicity and consistency, we use the term Deep Neural Networks (DNNs) in the 
description of DL. The architecture of the DNNs is made up of the input layer which feeds the 
data into the DNN, the hidden layers act as the computational centre while the output layer 
does the predictions (Figure 2). The layers are fully connected with each neuron in one layer 
connected with a weight to every neuron in the next layer.  
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Figure 2: A simple representation of a DNN 

 
Source: Own figure based on (Goodfellow et al., 2016) 

The artificial neuron is a mathematical function that takes the input (x) and multiplies it by a 
value known as weight (w) (DNNs algorithms work through a process known as optimization, 
i.e. learning from the data by minimizing the error between the predicted and the actual values 
using a loss function i.e. finding w and b that minimize the loss function. The optimization 
algorithm (optimizer) modifies the weight and learning rate to reduce the overall loss and 
improve the accuracy while the loss function evaluates how well the model is predicting. 
During training there is a forward propagation step which computes the output. This output is 
the propagated backwards to compute the gradients/derivatives of the loss function 
(Rumelhart et al., 1986). The gradients help in minimizing the deviations between the actual 
output and the predicted output. The choice of the best optimizers is dependent upon the task 
at hand and amount of data available. The most common optimizers are Stochastic Gradient 
Descent (SGD), Mini-Batch Gradient Descent, Adagrad, RMSProp, AdaDelta and Adam 
(Goodfellow et al., 2016). The choice of the loss function is dependent on whether the goal is 
predicting a categorical value e.g. employment status or a numeric value e.g. amount of 
income. There are different loss functions but the most common when dealing with numerical 
values are the Mean Absolute Error (MAE) and Mean Squared Error (MSE). The choice of the 
cost function and optimizers is made before starting the process of training the DNN 

Figure 3). The weights are an indication of the importance associated with the inputs. At this 
stage a bias term (b) is then added which helps the model to best fit the given data by adjusting 
the output with the weighted sum of the inputs in the neuron. They are then transformed into 
output through activation function (a). Most activation functions are non-linear to capture 
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patterns in the data better. The choice of the activation function is dependent on the DNNs’ 
goal (Chollet, 2021). The activation function then passes the value to all the neurons in the 
next layer or it returns it as the final value (𝑦𝑦�) when it is passed from the last hidden layer.  

DNNs algorithms work through a process known as optimization, i.e. learning from the data 
by minimizing the error between the predicted and the actual values using a loss function i.e. 
finding w and b that minimize the loss function. The optimization algorithm (optimizer) modifies 
the weight and learning rate to reduce the overall loss and improve the accuracy while the 
loss function evaluates how well the model is predicting. During training there is a forward 
propagation step which computes the output. This output is the propagated backwards to 
compute the gradients/derivatives of the loss function (Rumelhart et al., 1986). The gradients 
help in minimizing the deviations between the actual output and the predicted output. The 
choice of the best optimizers is dependent upon the task at hand and amount of data available. 
The most common optimizers are Stochastic Gradient Descent (SGD), Mini-Batch Gradient 
Descent, Adagrad, RMSProp, AdaDelta and Adam (Goodfellow et al., 2016). The choice of 
the loss function is dependent on whether the goal is predicting a categorical value e.g. 
employment status or a numeric value e.g. amount of income. There are different loss 
functions but the most common when dealing with numerical values are the Mean Absolute 
Error (MAE) and Mean Squared Error (MSE). The choice of the cost function and optimizers 
is made before starting the process of training the DNN 
Figure 3: Representation of a Neuron in a DNN 

 
Source: Own figure 

Another key consideration is that there are different types of DL models and the choice of the 
model is dependent of the data type, data structure, data amount and the goal to be achieved. 
DL techniques are divided into 3 major classes: supervised learning, unsupervised learning 
and reinforcement learning. Supervised learning works well with labelled data and has a pre-
defined output for prediction tasks. It is mainly used for classification and regression. 
Unsupervised learning is used for unstructured data for structuring or pattern identification. It 
can be classified into two categories; clustering and association. In reinforcement learning the 
agent acts which leads to a change in their environment. The agent consequently uses the 
newly acquired state to determine the next action with the goal of maximizing reward (Vasilev 
et al., 2019). 

For this study, we employed supervised learning. There are different models under supervised 
learning but only a few can capture the temporal dependencies in the AgriPoliS model. To that 
effect, we choose to focus on DNNs models that would be able to better emulate the cross-
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sectional time series nature of AgriPoliS. The DNNs models chosen were; Recurrent Neural 
Network (RNN), Convolution Neural Network (CNN), Long-Short Term Memory (LSTM), 
Bidirectional Long-Short-Term Memory (Bi-LSTM), Gated Recurrent Unit (GRU) (LeCun et al., 
2015). A brief introduction of the models is supplied below: 

RNN is used for modelling sequential data. The output from the previous layers act as the 
input to the current layers. They contain a hidden state that can remember information about 
the sequence. This feature makes it useful for time series prediction. Unfortunately, they suffer 
from gradient vanishing problems where the gradients tend towards zero and exploding 
gradients where the gradients become too large making it unsuitable for very long sequences. 
RNNs been applied in Natural Language Processing (NLP), sequence to sequence learning 
and speech recognition (LeCun et al., 2015).  

LSTM, an advancement over RNN, has the ability to learn long term dependencies and was 
developed to deal with the problem of vanishing gradients by a data filtration system which 
discards irrelevant data and only retain relevant data for use in subsequent steps (Hochreiter 
& Schmidhuber, 1997). The key idea behind the LSTM is the cell state where the choice for 
information retention or discard is done through structures known as gates. Information flows 
through the three main gates. The first gate is the forget gate which makes a choice on whether 
to keep or discard information. Once, the choice is made, the retained information passes 
through the input gate to the cell state. In the cell state, the data is processed and new 
information added to it. It then passes to the output gate. The information from the output gate 
is sent as input to the next cell state. LSTMs have been applied in NLP, machine translation 
and time series prediction (Hua et al., 2019). Another modification is the Bi-LSTM, which can 
reverse the direction flow of information i.e. information can flow both forward and backwards. 
By combining information in both directions its able to produce more meaningful output. 

Another variation of the RNN is the GRU which has 2 gates i.e. the reset gate that filters the 
information which needs to be forgotten and is directly connected to the previous state. It also 
contains the update gate which filter the information that will be used in the future (Cho et al., 
2014; Yamak et al., 2019).  

CNN is also another DNNs model that captures both spatial and temporal dependencies by 
extracting and learning valuable features of the time series task. Although the CNN was 
originally designed for image processing, they can be adapted for data processing by changing 
the output layer. CNNs are able process 1D (time series data, sequences), 2D (images or 
audio) and 3D (videos and images) data. They consist of a convolution layer, pooling layer 
and fully connected layer. A variation of the CNN is the CNN-LSTM model which combines 
CNN for feature extraction and then LSTM for time series prediction (Jin et al., 2020). 

3. Methodology 

In the study, we follow the “doppelgänger approach” by van der Hoog (2017). We first 
generated training data in AgriPoliS by running identical simulations with variations in the 
initialization of the model i.e. different scenarios. We then tested the ability of different DNNs 
to emulate the behaviour of standard AgriPoliS agents. In this study, we applied a supervised 
learning approach to test different DNNs to emulate one output variable i.e. profit in AgriPoliS. 
We also adapted the code to show the potential for multi-output variables replication by 
replicating three variables. The models were chosen based their ability to deal with the cross-
sectional time series nature of the AgriPoliS output. RNN, CNN, LSTM, Bi-LSTM, CNN-LSTM 
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and GRU were tested and evaluated. Figure 4 shows the framework for the implementation of 
the work as discussed in the sections: 
Figure 4: Methodology for replication of AgriPoliS profit using DNNs. 

 
Source: Own figure 

a. AgriPoliS data generation  

The first step in the study was to generate the simulated data to be used to train the DNNs. 
AgriPoliS was randomly initialized with 205 farms/agents over a 25- iteration period to 
generate data. One iteration corresponds to one production year. To ensure robustness, there 
were 100 simulation runs using different initializations. This resulted in 20,500 farms measured 
over 25-iterations for use in model training. The simulated data was then split into the training 
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set and validation set during the data processing phase. For carrying out model evaluation 
and to deliver unbiased results, we generated test data of 30 simulation runs separately 
resulting in 6,150 farms. The key variables used are shown in Table 1.  
Table 1:Selected AgriPoliS output farm level key variables used as the input features in the 

training of the DNNs 

Variable unit Description 
Output variables 
Profit € The difference between the revenue received from the livestock 

and crop production and the cost of production (inputs, 
machinery, labour) 

Input variables 
Labour  labour 

unit 
The amount of manpower expressed in hours that goes in the 
production process. Labour can either be family labour, fixed 
labour or variable labour. 

Land ha Used for livestock and crop production. The land is either owned 
or rented and is further distinguished between arable land and 
grassland. 

Investments count The number of fixed assets distinguished by type which are used 
for production. Examples include stables, milk parlours, 
machinery. 

Rent € Amount of money paid for the use of rented land obtained from 
the land rental market. Distinguished between arable land and 
grassland. 

Liquidity € The available cash to cater for the running costs of the farm  
Borrowed 
capital 

€ The amount of short term or long-term credit taken by the farm to 
meet its obligation. The cost of the capital is interest 

Products count Total units of livestock (fattening pigs, broilers) and crops (wheat, 
barley, sugar beets, potatoes) produced. 

Depreciation € The wear and tear from use of the fixed assets. 
 

b. Data processing 

The data processing was performed in Python 3.9.7. The output from the AgriPoliS simulations 
was used as the input features for the DNNs. The data processing and training was done 
purely on a CPU to allow for model comparison. Prior to training the DNNs, the data had to be 
processed into a form suitable for the DNNs. The agents were recoded to generate a unique 
identifier which composed of the farm_ID and the simulation run0F

1. Due to the nature of the 
data being panel data, it was indexed using the unique identifier and the iteration period. 

The simulated data set consisting of 20,500 farm agents was split into a train set and validation 
set in 70%:30% ratio ending up with 14,350 farm agents in the train set while 6,150 farm 
agents were in the validation set. The test set consisted of 6150 farms generated separately 
to avoid instances where the farm agents end up in both the training and test set. Since the 
main objective of agents in AgriPoliS is to maximize profit, the variable that the DNNs will 

                                                
1 For Example, 187R60 denotes the farm whose farm_ID is 187 that is generated in simulation run 60. 
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emulate is profit. The code was also modified and adapted to replicate three variables with 
just minimal changes to the code. 

The input features were then normalized using the MinMaxScaler (Aggarwal, 2018). The goal 
of normalization is to change the values to a common scale without altering the differences in 
the range of values to ensure faster convergence, more stable and easier learning process. 
For example, the revenue ranges from -240,000 to 500,000 while the age of the farm ranges 
from 32 years to 95 years. The revenue would influence the result more due to its larger value. 
The normalization transferred the features range to values between 0 and 1. Prior to usage, 
the panel data was transformed into a supervised learning series using the algorithm as 
initiated by Brownlee (2017) and adapted by Shi (2020). This creates columns of lag values 
and columns of forecast values. The input data was then reshaped into 3-dimensional data 
(samples, time steps and features) which is the recommended format for use by the DNN 
architectures. 

c. Data training 

After the data was processed, the training set was used to train the different models. Multiple 
simulations were done to determine the optimal hyperparameters to use. Hyperparameters 
control the learning process to correctly map the input features to the target variable i.e. the 
number of hidden layers, optimizer, activation function, loss function, number of epochs, batch 
size, kernel size. For the models we used the Adam (adaptive moment estimation) optimizer 
that works well with time series data (Kingma & Ba, 2014). We used a small learning rate of 
1e-5 since larger rates were causing the model to converge too quickly to a sub-optimal 
solution. There was no improvement in performance with smaller than 1e-5 running rate. ReLu 
(Rectified Linear Unit) activation function was applied with a batch size of 32. Batch size 
defines the number of training examples that will be propagated through the network before 
updating the model weights. It affects the stability of the training process. Since the models 
were ran on CPU, application of a smaller batch size worked better for all the models. We 
used MAE to compute the loss function and generate the loss curve. We also applied early 
stopping which stopped training process once the loss function stopped improving to avoid 
overfitting. To further counter overfitting we repeated the simulations to the LSTM, Bi-LSTM 
and the GRU while applying dropout. Dropout works by randomly dropping out some units 
during training to counter overfitting (Srivastava et al., 2014). 

An additional note is that DNNs are stochastic i.e. they initialize using random weights thereby 
producing different results. While random initialization is the best fit for getting good 
approximations, it concomitantly does little for getting reproducible results. Due to that, it was 
necessary to run the models several times while doing hyperparameter tuning to get the best 
results. Afterwards, we used a random seed to achieve reproducible results (Brownlee, 2016). 
We also recorded the time it took to run the models and generated the loss curves for all the 
models to identify how well the data learnt during training. 

d. Data predictions 

Predicted profit values from the different models were generated from the model using the test 
data as shown below and then attached to the test data file. 

y�i = model. predict(yi)       (1) 

𝑦𝑦�𝑖𝑖 are the predicted profit values. 

𝑦𝑦𝑖𝑖 are the AgriPoliS (actual) profit values. 
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The mean values for both the predicted profit and the actual profit values were plotted against 
each other to generate the comparison graph. The predicted profit values obtained from the 
models were also plotted against the AgriPoliS profit values using the scatter plots. In a scatter 
plot, the distance of a predicted value from a 45% angle line indicates how well or poorly the 
prediction performed.  

e. Metrics and evaluations 

To evaluate the different DNNs approaches, and based on the structure of the profit variable, 
we used Mean Absolute Error (MAE), Root Mean Squared error (RMSE) and the R2 score as 
the metrics of choice. The MAE calculates the mean absolute average distance between the 
predicted profit and the actual values as shown below: 

MAE =  1
N
∑ |yi − y�i|N
i=1         (2) 

y�i are the predicted profit values. 

yi are the AgriPoliS (actual) profit values. 

We also computed the Root Mean Squared Error (RMSE) which calculates the square root of 
the mean average distance between the predicted profit values and the actual profit values 
below: 

RMSE = �∑ (yi−y�i)2N
i=1

n
        (3) 

𝑦𝑦�𝑖𝑖 are the predicted profit values. 

𝑦𝑦𝑖𝑖 are the AgriPoliS (actual) profit values. 

We also normalized the MAE and RMSE results after computing the MAE. Since the profit 
variable is a continuous variable and the range varies from (-239,000-491,879), it is necessary 
to normalize the results to enable comparison over the models. We chose to normalize by 
taking the difference between the maximum ( ymax) and the minimum values (ymin)  (Otto, 
2019). The values lie between 0 and 1. Values closer to 0 indicate a better fit. 

NormMAE =  MAE
(ymax−ymin)

       (4) 

NormRMSE =  RMSE
(ymax−ymin)

       (5) 

The R2 score which is also known as the coefficient of determination was also utilized. It 
measures the variation explained by the relationship between the input features and the 
dependent variable. A score of 1 would indicate that the model was able to fully replicate the 
dependent variable, while a score of 0 would indicate a complete failure to replicate the 
dependent variable (Unterthiner et al., 2020).  

R2 =  1 − ∑ (y�i−yi)2N
i=1

∑ (yi− y�i)2N
i=1

        (6) 

𝑦𝑦�𝑖𝑖 are the predicted profit values. 

𝑦𝑦𝑖𝑖 are the actual profit values 

𝑦𝑦�𝑖𝑖 are the mean profit values. 
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4. Results 

In this section, we present the results of the training the DNNs. Data generation with AgriPoliS 
roughly took around 6 hours. In total, 6 DNNs were successfully tested on their suitability and 
ability to emulate the output (profit) from AgriPoliS. The DNNs were assessed on their R2 
score, MAE, RMSE and runtimes. In Figure 5, we present the MAE loss curves for all the 
models. The loss curve is a good first indication of how well the model learnt by comparing 
the curves for both training and validation set over time. 
Figure 5: Loss curves for all the DNN models 

 

 

The CNN, CNN-LSTM and RNN seem to fit well on the validation data. On the contrary, the 
GRU slightly overfit the data while the LSTM and Bi-LSTM overfit on a higher magnitude. We 
repeated the simulations with the LSTM, Bi-LSTM and GRU and manually tested different 
dropout rates until the overfitting was reduced to a minimal level (Figure 6). 
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Figure 6: Loss curve using dropout to reduce overfitting 

 

 

The next step was to compare the metrics for the different models. In Table 2, the DNNs were 
able to efficiently replicate the profit variable in AgriPoliS with a high degree of precisions as 
shown by the R2 values of more than 90%. A comparison of the metrics shows that the CNN 
and the CNN-LSTM were the best performing models. CNN-LSTM was the best performance 
in terms of R2 with a score of 91.4% and the lowest RMSE value (23,409.03). The CNN 
performed well based on the MAE value (5,482.34) but had the 2nd lowest R2 score. In terms 
of computational time, the GRU was the fastest model followed closely by the CNN. Although 
dropout reduced overfitting, it came at the cost of longer running time as observed by 
comparing the models before after applying drop out. It was also quite expensive in 
computation due to manually testing different dropout values. We ran the models on CPU, 
however running the models on GPU should also result in stupendous reduction in run time.  
Table 2: Comparisons of metrics from different DNNs architectures 

Model Bi-LSTM Bi-LSTM CNN CNN-
LSTM GRU GRU LSTM LSTM Simple 

RNN 
Dropout - 0.04 - - - 0.015 - 0.02 - 

R2 0.913 0.912 0.903 0.914 0.911 0.908 0.90 0.91 0.904 

MAE 7803.91 7991.45 5482.34 6980.44 6398.20 6520.83 8351.70 7306.105 5525.33 

Norm_MAE 0.011 0.011 0.007 0.010 0.010 0.009 0.011 0.010 0.008 

RMSE 23579.12 23798.22 24876.41 23409.39 23878.63 24258.31 23877.25 24116.59 24799.10 

Norm_RMSE 0.032 0.032 0.034 0.032 0.033 0.022 0.033 0.033 0.034 

Runtime 580s 836S 293s 324s 248s 533s 406s 446s 355s 
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We also supplemented the results with visual displays comparing profit predictions to the 
AgriPoliS values to check how the data fit through the iterations. Due to the large number of 
farms, Figure 7, Figure 8 and Figure 9 only present the comparison of the average profit 
predictions to the average AgriPoliS values for the CNN, LSTM and LSTM with dropout.  
Figure 7: Comparison between the average predicted values and the average AgriPoliS 

values for CNN model 

 

Figure 8: Comparison between the average predicted values and the average AgriPoliS 

values for LSTM model 
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Figure 9: Comparison between the average predicted values and the average AgriPoliS 
values for LSTM model with dropout 

 

The average prediction in the CNN models were a close approximation to the AgriPoliS values. 
There is a clear disparity between the predictions and AgriPoliS values for the LSTM over 
time. The average predictions in the LSTM model fluctuated over time. From year 1 -15 the 
predicted values were higher than the actual values and were lower for the remainder of the 
year. This demonstrated that the LSTM was overfitting. This is further reinforced by looking at 
the loss curve for the LSTM in Figure 4. This shows that the LSTM was not a good fit for the 
data. For the GRU, CNN-LSTM and Bi-LSTM, the predicted values were lower in the last 
iteration (iteration 24) and were navigating towards zero. Based on these charts, it appears 
that the CNN was the best fit because it gave quite consistent results from iteration to iteration. 

We also compared scatter plots between the predicted values and the AgriPoliS values at 
each iteration. In this section, we present only the scatter plots for iteration 24 (Figure 10). 
Additional scatter plots for iteration 0 and iteration 10 are presented in the Appendix. A look 
at the scatter plot shows that the CNN and the RNN models were able to predict the data well 
while the rest of the models did not predict the data well.  
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Figure 10: Scatter plots showing the predicted values (y-axis) versus AgriPoliS values (x-axis) at iteration (year 24) 
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a) Adaptation of CNN for Multi-Output predictions 

The earlier parts focused on only a single variable to replicate. It is possible to replicate more 
than one variable with minimal changes to the code. Hyper parameter tuning would also need 
to be carried out to fit the best model fit for the data. In this section we adapted the code to 
replicate 3 variables: profit, change in equity and revenue. Figure 11, Figure 12 and Figure 13 
show the predicted and actual values for the 3 variables (profit, income and revenue). 
Figure 11: Comparison between the average predicted profit values and the average 

AgriPoliS profit values (Multioutput) 

 

Figure 12: Comparison between the average predicted income values and the average 

AgriPoliS income values (Multioutput). 

 



20 

Figure 13: Comparison between the average predicted change in equity values and the 

average AgriPoliS change in equity values (Multioutput). 

 

5. Summary and Discussion 

In this paper, we explored and tested different DNNs architectures on their ability to replicate 
the ABM. The work presented in the paper is limited to simulated data generated from 
AgriPoliS and only focused on DNNs which have had the most promise in the use of cross-
sectional time series data. We focused majorly it to one single variable of interest i.e. profit. 
We also demonstrated it is possible for multiple variables by extending it to three variables of 
interest. This could form the basis for future work e.g. in generating surrogate models. 

From the results, we can conclude that DNNs models were able to replicate the AgriPoliS data 
with a high degree of accuracy as seen in the coefficient of determination score. A 
comprehensive comparison of the MAE, R2 score and the visual displays indicates that the 
CNN was the most suited for replicating the data. The mean profit predictions were also quite 
close to the mean profit values at every iteration as compared to the other models. For the 
GRU, CNN-LSTM and Bi-LSTM, the predicted values were lower in the last iteration (iteration 
24) and were navigating towards zero. Based on Abduljabbar et al. (2021) and Plaster and 
Kumar (2019), the LSTM and its variants work better with longer predictive time horizon than 
shorter predictive horizon. This might be a plausible explanation why the predictions were 
lower in the LSTM, CNN-LSTM and Bi-LSTM.  

Although the results focused more on the output, it is noteworthy that hyperparameter 
optimization took a considerable amount of work. Hyperparameters such as the learning rate, 
number of layers, batch size and dropout rate had to be manually tested to find the best fit as 
there is not a single ‘one fits all’ scenario. The computation time required to run the model was 
significantly lower than the computational time to run the ABM while using the CPU. However, 
the computation might be biased since the ABM and the DNN use different programming 
languages. In future work, we envision to use a GPU which would considerably improve 
running time. 
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6. Conclusion and Outlook 

The work presented in this paper followed the “doppelgänger” approach by van der Hoog 
(2017). We generated training data from AgriPoliS and tested the ability of different DNNs to 
emulate the behaviour of standard AgriPoliS agents. Although the DNNs could mimic the 
behaviour of the agents, they were not equipped in capturing behaviour of strategic relevance 
such as focusing on the long-run performance of the farm instead of short-term profit-
maximizing behaviour, strategic interactions with neighbouring farms and capability to learn 
and adapt to counter changes in the environment that would lead to increased efficiency, 
resilience against shocks and increased competitiveness. Nevertheless, this approach 
provided profound insights to guide our subsequent steps to model strategic behaviour of 
agents in AgriPoliS.  

To that effect, we will implement Deep Reinforcement Learning (DRL) which uses DNNs in 
their architecture to enable formulation of strategic bids in the land markets to maximize the 
farm agents’ long-term profitability. DRL agents would interact with the AgriPoliS environment 
directly through a framework of states. actions, transitions and rewards. The training process 
for the DRL refines the agents’ policies through the repeated interactions with the environment. 
The actions of the DRL agents would also impact other agents in the region through their 
competition in land markets. This necessitates an interface where the DRL agents’ 
environment interacts with the AgriPoliS environment, thereby enabling concurrent 
competition in the land markets. This has an implication in that we are not able to use custom 
made DRL environments such as gym and thus have to design our environment which 
interlinked the DRL and AgriPoliS. The DRL would feed strategic bids to AgriPoliS and the 
results of the bid after investments, production and farm accounting has taken place would be 
transmitted back to the DRL agents to modify behaviour and then transmitted back to AgriPoliS 
thus capturing strategic behaviour and highlighting the role of strategic interaction between 
farms  
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Appendix  

Figure 14: Predicted (y-axis) versus actual (x-axis) for LSTM 
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Figure 15: Predicted (y-axis) versus actual (x-axis) for LSTM (dropout=0.02) 
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Figure 16: Predicted (y-axis) versus actual (x-axis) for Bi-LSTM 
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Figure 17: Predicted (y-axis) versus actual (x-axis) for Bi-LSTM((dropout=0.04) 
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Figure 18 Predicted (y-axis) versus actual (x-axis) for CNN-LSTM 
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Figure 19: Predicted (y-axis) versus actual (x-axis) forCNN 
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Figure 20: Predicted (y-axis) versus actual (x-axis) for GRU 
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Figure 21: Predicted (y-axis) versus actual (x-axis) for GRU(dropout (0.015) 
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Figure 22 Predicted (y-axis) versus actual (x-axis) for RNN 
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Figure 23: DNN models’ architecture 
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