

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal (2023)
23, Number 4, pp. 1045–1056 DOI: 10.1177/1536867X231212439

Improving flexibility and ease of matrix
subsetting: The submatrix command

Daniele Spinelli
Department of Statistics and Quantitative Methods

University of Milano–Bicocca
Milan, Italy

daniele.spinelli@unimib.it

Abstract. Matrix manipulation in Stata can be a time-consuming and tedious
task, especially when it is necessary to subset or rearrange elements from large
matrices based on nonconsecutive elements. Compared with Mata, these tasks
require more time, more code, and sometimes more complex output. The purpose
of this article is to introduce submatrix, a command to manipulate matrix elements
using row (and column) names, numbers, and equations.

Keywords: pr0077, submatrix, row names, column names, permutation vectors

1 Introduction
The use of matrices in statistics and econometrics is extensive. For instance, many
spatial regression models require large contiguity matrices (Anselin 1988), while inter-
generational mobility analysis and Markov models are based on transition matrices. In
Stata, matrices are used for many purposes, spanning from the storage of regression
coefficients and descriptive statistics to the construction of design matrices for regres-
sion. Matrix manipulation is also a useful tool for data entry, recoding of categorical
variables, and creating categorical variables from continuous variables based on given
thresholds (Cox 2012).

In the regression framework, models may have long coefficient vectors and large
variance–covariance matrices, but research interest is often focused on a few coefficients.
For example, in causal inference (Cunningham 2021), an event-study regression model
including the interaction between the treatment variable and the time variable may also
include a large set of control variables. However, scholars may be more interested in the
former because it conveys information about the treatment effect and the parallel trends
assumption. Another application in which regressions may produce large matrices is in
discrete choice models (multinomial logistic regression, conditional logistic regression),
for which coefficients are often estimated at the alternative level (Train 2009). Such
situations involve the estimation of a large coefficient vector, but most attention is
devoted to a subset of coefficients related to the treatment variable and its interactions
(causal inference) or to some of the alternatives in the choice set.

However, when it is necessary to subset or rearrange elements of large matrices, the
task of matrix manipulation can be time consuming and tedious. This is especially the

© 2023 StataCorp LLC pr0077

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X231212439&domain=pdf&date_stamp=2023-12-21

1046 submatrix

case in Stata, in which these tasks require more time and code and sometimes produce
more complex output compared with Mata. This is because, in the Stata environment,
subscripting multiple elements of a matrix is allowed only when the elements are consecu-
tive. For example, displaying the first three columns of a matrix A can be achieved with
the command matlist A[1 .. rowsof(A), 1 .. 3]. However, displaying the first,
fifth, and seventh columns of the same matrix requires using the command matlist
(A[1 .. rowsof(A), 1], A[1 .. rowsof(A), 5], A[1 .. rowsof(A), 7]), which
involves three instances of subscripting the columns of A; the inclusion of all the rows
is also repeated three times. In addition, Stata allows subsetting matrices based on
column and row names; however, this feature is limited to one name at a time.

The purpose of this article is to address these issues by introducing submatrix, a
community-contributed command that supports nonadvanced users in the advanced ex-
traction of submatrices from Stata matrices. The submatrix command subsets matrices
from multiple nonconsecutive rows or columns using number or name subscripting. This
command is particularly suitable for users who are not familiar with Mata because it in-
troduces permutation vectors in the Stata environment exploiting numlist; this feature
is already available in Mata and allows easier and faster matrix subscripting. Fur-
thermore, submatrix allows replication, rearrangement, and deletion of elements from
matrices.

The remainder of this article is structured as follows. Section 2 presents the syntax
of submatrix; section 3 illustrates the use of submatrix in the contexts of panel-data
regression, intergenerational mobility, and discrete choice models; section 4 concludes.

2 Syntax
The syntax of submatrix is

submatrix matname, subsetting_options
[

other_options
]

where matname is an existing matrix. Users are required to specify at least one of the
subsetting_options (see section 2.1).

2.1 Subsetting options

These options will be combined to define the criteria for subsetting matname. The
options allow repeated arguments.

rownames(string) controls the names of the rows to be kept from matrix matname. It
exits with an error if the row names of matname do not contain all the elements of
string unless the ignore option is used (see help matrix_subscripting). Double
quotes may be used to enclose strings that contain spaces.

D. Spinelli 1047

droprownames(string) controls the names of the rows to be dropped from matrix mat-
name. It exits with an error if the row names of matname do not contain all the ele-
ments of string unless the ignore option is used (see help matrix_subscripting).
Double quotes may be used to enclose strings that contain spaces.

colnames(string) controls the names of the columns to be kept from matrix matname.
It exits with an error if the column names of matname do not contain all the elements
of string unless the ignore option is used (see help matrix_subscripting). Double
quotes may be used to enclose strings that contain spaces.

dropcolnames(string) controls the names of the columns to be dropped from matrix
matname. It exits with an error if the column names of matname do not contain
all the elements of string unless ignore is used (see help matrix_subscripting).
Double quotes may be used to enclose strings that contain spaces.

rownum(numlist) controls the numbers of the rows to be kept from matrix matname. It
exits with an error if any of the numbers in numlist are larger than the row number
of matname unless ignore is specified.

droprownum(numlist) controls the numbers of the rows to be dropped from matrix
matname. It exits with an error if any of the numbers in numlist are larger than the
row number of matname unless ignore is specified.

colnum(numlist) controls the numbers of the columns to be kept from matrix matname.
It exits with an error if any of the numbers in numlist are larger than the column
number of matname unless ignore is specified.

dropcolnum(numlist) controls the numbers of the columns to be dropped from matrix
matname. It exits with an error if any of the numbers in numlist are larger than the
column number of matname unless ignore is specified.

2.2 Other options

rowvarlist requests submatrix treat the names in rownames() and droprownames() as
varlist. This option enables factor-variable expansion and the use of the * character
for matching one or more characters.

colvarlist requests submatrix treat the names in colnames() and dropcolnames() as
varlist. This option enables factor-variable expansion and the use of the * character
for matching one or more characters.

namesfirst prioritizes subsetting based on rownames() and colnames() rather than
using rownum() and colnum() first.

ignore requests that submatrix ignore any out-of-range element from matname. It
affects rownames(), droprownames(), colnames(), dropcolnames(), rownum(),
droprownum(), colnum(), and dropcolnum(). Using this option forces submatrix
to return a result anyway.

1048 submatrix

2.3 Stored results

submatrix stores the following in r():

Matrices
r(mat) subset of matname based on the subsetting options

3 Examples
This section overviews the use of submatrix in practice. The examples address the
use of submatrix in a simulated context and in the frameworks of longitudinal data
regression, intergenerational mobility, and discrete choice models.

3.1 Introductory example

This example illustrates the use of submatrix in the situation introduced in section 1.
The aim is to extract nonconsecutive columns of a matrix (columns 1, 5, and 7). Us-
ing submatrix, there are three ways to isolate the target columns. The first one uses
the option colnum(1 5 7), the second drops irrelevant columns by using the option
dropcolnum(2(1)4 6), and the third targets the names of the columns of interest (op-
tion colnames(c1 c5 c7)).

. matrix A = (1,3,4,6,7,8,10 \ 1,3,4,6,7,8,10)

. submatrix A, colnum(1 5 7)

. matlist r(mat)
c1 c5 c7

r1 1 7 10
r2 1 7 10

. submatrix A, dropcolnum(2(1)4 6)

. matlist r(mat)
c1 c5 c7

r1 1 7 10
r2 1 7 10

. submatrix A, colnames(c1 c5 c7)

. matlist r(mat)
c1 c5 c7

r1 1 7 10
r2 1 7 10

D. Spinelli 1049

3.2 Extracting submatrices from large matrices

Consider a situation in which a user is interested in a few elements of a large matrix
with column (or row) names and, possibly, column (or row) equations. Furthermore,
the matrix is large enough that the user does not precisely know the column numbers
of certain elements. This may be the case in a regression with a large set of interactions
and control variables (for example, an event study).

For instance, a slightly modified between-effects regression (see output below) from
the examples in help xtreg would result in 250 estimated coefficients (and standard
errors, p-values, etc.) stored in r(table), a 9 × 250 matrix. Such an output may be
overwhelming to read. In this section, xtreg is launched quietly to avoid excessive
tables.

. webuse nlswork
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)
. quietly xtreg ln_wage grade age c.age#c.age ttl_exp c.ttl_exp#c.ttl_exp tenure
> c.tenure#c.tenure 2.race not_smsa south i.year##(i.msp i.ind_code), be
. return list
matrices:

r(table) : 9 x 250

Frequently, users are interested in a few coefficients. In keeping with the exam-
ple above, a user aiming to visually inspect the subset of coefficients and p-values
attached to tenure, south, and i.msp#i.year (interactions only) would extract the
estimates after reading their names in xtreg, coeflegend. Because tenure, south,
and i.msp#i.year are not consecutive in the specification of xtreg (and in r(table)),
the user would run the matlist command three times. In the solution below, the mul-
tiple matlist calls contain the rows of r(table), including the coefficients and p-values
stacked columnwise. The p-values can be calculated from the _b and _se expressions,
but this approach would take more time or would involve loops. The task can also be
completed using Mata.

. quietly xtreg, coeflegend

. matlist (r(table)["b", "tenure" .. "c.tenure#c.tenure"] \ r(table)["pvalue",
> "tenure" .. "c.tenure#c.tenure"]) ', twidth(20)

b pvalue

tenure .0466337 2.40e-15
c.tenure#c.tenure -.001749 7.95e-06

. matlist (r(table)["b", "south"] \ r(table)["pvalue", "south"])', twidth(20)
b pvalue

south -.0917312 5.16e-21

1050 submatrix

. matlist (r(table)["b", "69.year#1.msp" .. "88.year#1.msp"] \
> r(table)["pvalue", "69.year#1.msp" .. "88.year#1.msp"]) ', twidth(20)

b pvalue

69.year#1.msp .095698 .2939081
70o.year#0b.msp 0 .

70.year#1.msp -.0551427 .5053928
71o.year#0b.msp 0 .

71.year#1.msp .0236377 .753153
72o.year#0b.msp 0 .

72.year#1.msp -.0217592 .8050339
73o.year#0b.msp 0 .

73.year#1.msp -.0215855 .7933671
75o.year#0b.msp 0 .

75.year#1.msp -.1747825 .0295381
77o.year#0b.msp 0 .

77.year#1.msp -.1260273 .1385197
78o.year#0b.msp 0 .

78.year#1.msp .0364713 .7034566
80o.year#0b.msp 0 .

80.year#1.msp -.1614655 .1039684
82o.year#0b.msp 0 .

82.year#1.msp .0579287 .558361
83o.year#0b.msp 0 .

83.year#1.msp -.1123775 .2198865
85o.year#0b.msp 0 .

85.year#1.msp -.1046524 .1894012
87o.year#0b.msp 0 .

87.year#1.msp -.0228685 .7756839
88o.year#0b.msp 0 .

88.year#1.msp -.0001004 .998787

In the last part of the output above, the base levels for the factor variables (that is,
70o.year#0b.msp, 71o.year#0b.msp, etc.) are shown in the matrix to avoid excessive
coding. Removing the base levels prevents the column names of the selected variables
of r(table) from being consecutive. To overcome this obstacle, users might use a loop
or individually code each of the 14 calls to matlist related to the levels of year. The
latter solution takes longer to code and is more difficult to troubleshoot. In the output
below, the loop-based solution is displayed.

foreach t of numlist 69(1)73 75 77 78 80 82 83 85 87 88 {
matrix target = nullmat(target)\ (r(table)["b", "`t'.year#1.msp"]\ ///

r(table)["pvalue", "`t'.year#1.msp"])'
}
matlist target, twidth(20)

D. Spinelli 1051

3.2.1 Solution using submatrix

The rows related to coefficients and p-values are listed in the rownames() option, and
the columns related to variables (tenure, south, and i.msp#i.year) are parsed by the
colnames() option. Additionally, the colvarlist option forces submatrix to treat the
arguments of colnames() and dropcolnames() as a varlist. This instruction expands
the factor variables in the interaction i.year#1.msp. Although the amount of code
is not drastically smaller than in the other method, the output is more readable and
compact.

. webuse nlswork
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)
. quietly xtreg ln_wage grade age c.age#c.age ttl_exp c.ttl_exp#c.ttl_exp tenure
> c.tenure#c.tenure 2.race not_smsa south i.year##(i.msp i.ind_code), be
. matrix results = r(table)
. submatrix results, rownames(b pvalue) colnames(tenure c.tenure#c.tenure south
> i.year#1.msp) colvarlist ignore
. matlist r(mat)', twidth(20)

b pvalue

tenure .0466337 2.40e-15
c.tenure#c.tenure -.001749 7.95e-06

south -.0917312 5.16e-21
69.year#1.msp .095698 .2939081
70.year#1.msp -.0551427 .5053928
71.year#1.msp .0236377 .753153
72.year#1.msp -.0217592 .8050339
73.year#1.msp -.0215855 .7933671
75.year#1.msp -.1747825 .0295381
77.year#1.msp -.1260273 .1385197
78.year#1.msp .0364713 .7034566
80.year#1.msp -.1614655 .1039684
82.year#1.msp .0579287 .558361
83.year#1.msp -.1123775 .2198865
85.year#1.msp -.1046524 .1894012
87.year#1.msp -.0228685 .7756839
88.year#1.msp -.0001004 .998787

3.3 Removing rows and columns from a matrix

This example requires the use of igmobil (Savegnago 2016), a community-contributed
command that can be installed by executing the command net install st0437. Con-
sider a situation in which a user is interested in most of the elements of a matrix stored
in memory. Such a situation may arise in the field of intergenerational mobility, in
which transition matrices are often used. In keeping with Savegnago (2016), I gen-
erate a dataset with two income variables across two generations (dad and son). I
then use igmobil to calculate intergenerational mobility indicators and the transition
matrix based on vigintiles of the income distributions of parents and children. This
matrix provides the probability that a child’s income falls in vigintile k given that his
or her parental income was in vigintile j. The transition matrix is stored in the matrix
transition (20× 20), and I assume that the user is particularly interested in the tran-

1052 submatrix

sitions among the top five and bottom five vigintiles (the extremes) of the distribution.
In other words, the aim is to study the switching probabilities from low-income classes
(parent) to high-income classes (child) and vice versa. To obtain the desired matrix in
Stata, the user must subset transition four times.

. matrix drop _all

. matrix C = (.25, .5*.25 \ .5*.25, .25)

. set seed 12345

. drawnorm u0 u1, n(2000) cov(C)
(obs 2,000)
. generate son = exp(u1)
. generate dad = exp(u0)
. drop u*
. matrix drop C
. quietly igmobil son dad, matrix(transition) classes(20)

Single-stage Indices
Transition matrix Indices (based on 20 quantiles)
Inequality related Indices

. matrix dir
transition[20,20]

. matrix transition2 = (transition[1..5, 1..5], transition[1..5, 16..20]) \
> (transition[16..20, 1..5], transition[16..20, 16..20])
. matlist transition2

c1 c2 c3 c4 c5

r1 .23 .13 .09 .08 .12
r2 .13 .14 .1 .04 .07
r3 .16 .1 .12 .05 .09
r4 .16 .1 .15 .11 .05
r5 .04 .1 .07 .07 .08
r16 0 0 .02 .02 .05
r17 0 .02 .01 .04 .02
r18 0 .02 .02 .01 .02
r19 0 .01 .01 0 .02
r20 .01 0 0 .01 .02

c16 c17 c18 c19 c20

r1 .01 0 0 0 .01
r2 0 .03 .03 .02 .01
r3 .01 .02 0 0 0
r4 .04 .01 .01 .02 .01
r5 .04 .04 .03 0 0
r16 .12 .04 .12 .08 .04
r17 .11 .06 .07 .05 .09
r18 .11 .11 .11 .11 .11
r19 .05 .08 .13 .11 .14
r20 .06 .06 .09 .14 .29

3.3.1 Solution using submatrix

The required submatrix can be obtained by deleting from transition the rows and
columns from 6 to 15. This can be achieved by combining the dropcolnum() and

D. Spinelli 1053

droprownum() options. Compared with the native Stata solution, this strategy is more
flexible because the extremes of the columns and rows to drop can be changed more
easily. For example, a user wanting to study the four extreme vigintiles can simply
change the numlist in dropcolnum() from 6(1)15 to 5(1)16.

. submatrix transition, dropcolnum(6(1)15) droprownum(6(1)15)

. matlist r(mat)
c1 c2 c3 c4 c5

r1 .23 .13 .09 .08 .12
r2 .13 .14 .1 .04 .07
r3 .16 .1 .12 .05 .09
r4 .16 .1 .15 .11 .05
r5 .04 .1 .07 .07 .08
r16 0 0 .02 .02 .05
r17 0 .02 .01 .04 .02
r18 0 .02 .02 .01 .02
r19 0 .01 .01 0 .02
r20 .01 0 0 .01 .02

c16 c17 c18 c19 c20

r1 .01 0 0 0 .01
r2 0 .03 .03 .02 .01
r3 .01 .02 0 0 0
r4 .04 .01 .01 .02 .01
r5 .04 .04 .03 0 0
r16 .12 .04 .12 .08 .04
r17 .11 .06 .07 .05 .09
r18 .11 .11 .11 .11 .11
r19 .05 .08 .13 .11 .14
r20 .06 .06 .09 .14 .29

3.4 Selecting rows and removing columns at the same time

This example shows more complex subsetting of transition (introduced in section 3.3).
The option dropcolnum() is used to remove the columns from 1 to 7 and from 14 to 20,
while rows 5, 10, 15, and 20 are selected based on their names using the rownames()
option. This situation assumes that the user is focused on the probability that a child
belongs to the middle class (from the 8th to the 13th vigintile) conditional on a parent
belonging to specific income quantiles.

. submatrix transition, dropcolnum(1(1)7 14(1)20) rownames(r5 r10 r15 r20)

. matlist r(mat)
c8 c9 c10 c11 c12 c13

r5 .06 .08 .07 .04 .06 .05
r10 .09 .04 .03 .03 .03 .05
r15 .04 .06 .07 .06 .03 .08
r20 .01 .01 .03 .04 .04 .04

1054 submatrix

3.5 Extracting and re-sorting submatrices using equation names

The options colnames() and rownames() are used to subset matrix b, which is obtained
from a multinomial logit model. In the framework of discrete choice models, users are
often interested in coefficients (marginal utilities) related to single variables or to single
choices. In this example, the categorical dependent variable is the insurance status
(indemnity, prepaid, uninsured), and the covariates are age, sex, ethnicity, and site (see
help mlogit). The base outcome is no insurance. The semicolon character is used
in the dropcolnames() option to indicate the equation and retrieve all the elements
whose status is not uninsured (the base outcome, for which all coefficients are zero by
construction). The colnames() option is used to retrieve the coefficients of age and
male. The resulting matrix is saved in b1 and then re-sorted using submatrix.

. matrix drop _all

. webuse sysdsn1, clear
(Health insurance data)
. mlogit insure age male nonwhite i.site, base(3)
Iteration 0: Log likelihood = -555.85446
Iteration 1: Log likelihood = -534.67443
Iteration 2: Log likelihood = -534.36284
Iteration 3: Log likelihood = -534.36165
Iteration 4: Log likelihood = -534.36165
Multinomial logistic regression Number of obs = 615

LR chi2(10) = 42.99
Prob > chi2 = 0.0000

Log likelihood = -534.36165 Pseudo R2 = 0.0387

insure Coefficient Std. err. z P>|z| [95% conf. interval]

Indemnity
age .0077961 .0114418 0.68 0.496 -.0146294 .0302217
male -.4518496 .3674867 -1.23 0.219 -1.17211 .268411

nonwhite -.2170589 .4256361 -0.51 0.610 -1.05129 .6171725

site
2 1.211563 .4705127 2.57 0.010 .2893747 2.133751
3 .2078123 .3662926 0.57 0.570 -.510108 .9257327

_cons 1.286943 .5923219 2.17 0.030 .1260134 2.447872

Prepaid
age -.0039489 .0115994 -0.34 0.734 -.0266832 .0187855
male .1098438 .3651883 0.30 0.764 -.6059122 .8255998

nonwhite .7577178 .4195759 1.81 0.071 -.0646357 1.580071

site
2 1.324599 .4697954 2.82 0.005 .4038165 2.245381
3 -.3801756 .3728188 -1.02 0.308 -1.110887 .3505358

_cons 1.556656 .5963286 2.61 0.009 .387873 2.725438

Uninsure (base outcome)

. matrix b = e(b)

D. Spinelli 1055

. submatrix b, dropcolnames("Uninsure:") colnames(age male)

. matlist r(mat)
Indemnity Prepaid Indemnity Prepaid

age age male male

y1 .0077961 -.0039489 -.4518496 .1098438
. matrix b1 = r(mat)
. submatrix b1, colnames(Indemnity: Prepaid:)
. matlist r(mat)

Indemnity Prepaid
age male age male

y1 .0077961 -.4518496 -.0039489 .1098438

4 Conclusion
The submatrix command can be used to subset existing matrices based on nonconsec-
utive elements. A useful development from StataCorp would be to incorporate permu-
tation vectors and matrix subscripting based on multiple row (or column) names in the
syntax of the matrix command. This could allow users to exclude the first column from
a matrix AA by typing matrix BB = AA[1 .. rows(AA), -1] in the command window
or by selecting nonconsecutive rows using row names with the command matrix BB =
AA[r1 r9, 1 .. rowsof(AA)].

5 Acknowledgments
I thank the editor, an anonymous referee, and Flavio Porta for helpful comments. Any
remaining errors are mine.

6 Programs and supplemental material
To install the software files as they existed at the time of the publication of this article,
type

. net sj 23-4

. net install st0077 (to install program files, if available)

. net get st0077 (to install ancillary files, if available)

7 References
Anselin, L. 1988. Spatial Econometrics: Methods and Models. Dordrecht: Kluwer.
https://doi.org/10.1007/978-94-015-7799-1.

Cox, N. J. 2012. Speaking Stata: Matrices as look-up tables. Stata Journal 12: 748–758.
https://doi.org/10.1177/1536867X1201200413.

https://doi.org/10.1007/978-94-015-7799-1
https://doi.org/10.1177/1536867X1201200413

1056 submatrix

Cunningham, S. 2021. Causal Inference: The Mixtape. New Haven, CT: Yale University
Press. https://doi.org/10.12987/9780300255881.

Savegnago, M. 2016. igmobil: A command for intergenerational mobility analysis in
Stata. Stata Journal 16: 386–402. https://doi.org/10.1177/1536867X1601600207.

Train, K. E. 2009. Discrete Choice Methods with Simulation. 2nd ed. Cambridge:
Cambridge University Press. https://doi.org/10.1017/CBO9780511805271.

About the author

Daniele Spinelli is a postdoc research fellow at the Department of Statistics and Quantitative
Methods at the University of Milano–Bicocca.

https://doi.org/10.12987/9780300255881
https://doi.org/10.1177/1536867X1601600207
https://doi.org/10.1017/CBO9780511805271

