
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


The Stata Journal (2023)
23, Number 4, pp. 942–982 DOI: 10.1177/1536867X231212433

Leverage, influence, and the jackknife in
clustered regression models: Reliable inference

using summclust

James G. MacKinnon
Queen’s University
Kingston, Canada

mackinno@queensu.ca

Morten Ørregaard Nielsen
Aarhus University
Aarhus, Denmark
mon@econ.au.dk

Matthew D. Webb
Carleton University
Ottawa, Canada

matt.webb@carleton.ca

Abstract. We introduce a new command, summclust, that summarizes the cluster
structure of the dataset for linear regression models with clustered disturbances.
The key unit of observation for such a model is the cluster. We therefore propose
cluster-level measures of leverage, partial leverage, and influence and show how
to compute them quickly in most cases. The measures of leverage and partial
leverage can be used as diagnostic tools to identify datasets and regression designs
in which cluster–robust inference is likely to be challenging. The measures of
influence can provide valuable information about how the results depend on the
data in the various clusters. We also show how to calculate two jackknife variance
matrix estimators efficiently as a by-product of our other computations. These
estimators, which are already available in Stata, are generally more conservative
than conventional variance matrix estimators. The summclust command computes
all the quantities that we discuss.

Keywords: st0733, summclust, clustered data, cluster–robust variance estimator,
CRVE, grouped data, high-leverage clusters, influential clusters, jackknife, partial
leverage, robust inference

1 Introduction
It is now standard in many fields of economics and other disciplines to use cluster–
robust inference for the parameters of linear regression models. In the most common
case, each of the N observations is assigned to one of G disjoint clusters, which might
correspond to, for example, families, schools, villages, hospitals, firms, industries, years,
cities, counties, or states. The assignment of observations to clusters is assumed to
be known, and observations in different clusters are assumed to be independent, but
any pattern of heteroskedasticity or dependence is allowed within each cluster. Under
these assumptions, a cluster–robust variance matrix (CRVE) yields asymptotically valid
t tests, Wald tests, and confidence intervals. However, even when N is very large,
the resulting inferences may be unreliable when G is not large or the clusters are not
sufficiently homogeneous.

The literature on cluster–robust inference has grown rapidly recently. Cameron and
Miller’s (2015) article is a classic survey article. Conley, Gonçalves, and Hansen (2018)
survey a broader class of methods for dependent data. MacKinnon, Nielsen, and Webb
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(2023a) offer a comprehensive guide to empirical practice. As it discusses, there are two
situations in which cluster–robust t tests and Wald tests are at risk of overrejecting to
an extreme extent, even when G is not small. The first is when one or a few clusters are
much larger than the rest, and the second is when the only “treated” observations belong
to just a few clusters; Djogbenou, MacKinnon, and Nielsen (2019) discuss the first case,
and MacKinnon and Webb (2017a,b, 2018) discuss the second. In both of these cases,
one cluster (or a few of them) has high leverage, in that omitting this cluster has the
potential to change the ordinary least-squares (OLS) estimates substantially. When that
actually happens, a cluster is said to be influential.

The concepts of leverage and influence are normally applied at the observation level
(Belsley, Kuh, and Welsch 1980), but they are equally applicable at the cluster level.
Just as high-leverage observations can make heteroskedasticity-robust inference unreli-
able (Chesher 1989), so, too, can high-leverage clusters make cluster–robust inference
unreliable. Just as highly influential observations may lead us to suspect that there is
something wrong with the model or the data, so, too, may highly influential clusters.
Any situation in which a few clusters have high leverage or high influence should be
worrying.

There are at least two different concepts of leverage. The usual one focuses on fitted
values or, equivalently, residuals. A cluster is said to have high leverage if removing
it has the potential to greatly change the fitted values for that cluster. The second
concept is partial leverage (Cook and Weisberg 1980). A cluster is said to have high
partial leverage for the jth coefficient if removing that cluster has the potential to greatly
change the estimate of the jth coefficient. We discuss both concepts in section 2.1.

Whether a cluster has high leverage, has high partial leverage, or is influential
can depend on the sample in rather complicated ways. We provide a new command,
summclust, that implements computationally efficient ways to identify high-leverage and
influential clusters and provides several statistics that collectively summarize the cluster
structure of the dataset. These can be useful for detecting cases in which cluster–robust
inference may not be reliable. Our leverage and influence calculations also allow us to
compute two cluster jackknife variance matrix estimators, which we refer to as CV3 and
CV3J, at little additional cost. These estimators are already available in Stata by using
either the vce(jackknife) option or the jackknife prefix. Recent work (Hansen 2022;
MacKinnon, Nielsen, and Webb 2023c) suggests that CV3 and CV3J generally perform
better in finite samples than more widely used CRVEs; see section 7.

The remainder of the article is organized as follows. The next section begins with
a brief review of cluster–robust inference for linear regression models. Then section 2.1
introduces our new measures of leverage, partial leverage, and influence at the cluster
level. Section 2.2 shows how our results can be used to compute the CV3 and CV3J

jackknife variance matrix estimators. Section 2.3 discusses what quantities are reported
by summclust and should, at least in some cases, be reported by the investigator.
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Section 3 provides a detailed description of the summclust command, which com-
putes these variance estimators and diagnostic measures. The command uses the fol-
lowing syntax:

summclust varlist, cluster(varname)
[

options
]

summclust has many options and can even be used by itself to fit a linear regression
model with clustered disturbances. The last few sections of the article illustrate the
use of summclust and provide evidence on the value of the measures that it calculates.
Section 4 presents an empirical illustration in which measures of leverage, partial lever-
age, and influence are highly informative. Section 4 discusses several special cases in
which some or all of these measures can be determined analytically. Section 6 briefly
discusses two-way clustering, where summclust can be valuable even though it is not
explicitly designed to handle this case. Section 7 describes some simulation experiments
that suggest that it may be desirable to report many of the quantities calculated by
summclust, and section 8 concludes.

2 Clustering, leverage, influence, and the jackknife
We focus on the linear regression model

yg =Xgβ + ug, g = 1, . . . , G (1)

where the data have been divided into G disjoint clusters. The gth cluster has Ng

observations, so the sample size is N =
∑G

g=1Ng. In (1), Xg is an Ng × k matrix
of regressors, β is a k-vector of coefficients, yg is an Ng-vector of observations on the
regressand, and ug is an Ng-vector of disturbances (or error terms). Of course, the Xg

may be stacked into an N × k matrix X, and likewise the yg and ug may be stacked
into N -vectors y and u so that (1) can be rewritten as y =Xβ + u.

Dividing the sample into clusters becomes meaningful only if we make assumptions
about the disturbance vectors ug and, consequently, the score vectors sg =X>

g ug. For
a correctly specified model, E(sg) = 0 for all g. We further assume that

E(sgs
>
g ) = Σg and E(sgs

>
g′) = 0, g, g′ = 1, . . . , G, g′ 6= g (2)

where Σg is the symmetric, positive semidefinite variance matrix of the scores for the
gth cluster. The second assumption in (2) is crucial. It says that the scores for every
cluster are uncorrelated with the scores for every other cluster. We take the number of
clusters G and the allocation of observations to clusters as given. The important issue
of how to choose the clustering structure, perhaps by testing for the correct level of
clustering, is discussed in detail in MacKinnon, Nielsen, and Webb (2023b).
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The OLS estimator of β is

β̂ =
(
X>X

)−1
X>y = β0 +

(
X>X

)−1
X>u

where the second equality depends on the assumption that the data are actually gener-
ated by (1) with true value β0. It follows that

β̂ − β0 =
(
X>X

)−1
G∑

g=1

X>
g ug =

(
G∑

g=1

X>
gXg

)−1 G∑
g=1

sg (3)

From the rightmost expression in (3), we see that the distribution of β̂ depends on
the disturbance subvectors ug only through the distribution of the score vectors sg.
Asymptotic inference commonly uses the empirical score vectors ŝg =X>

g ûg, in which
the ug are replaced by the residual subvectors ûg, to estimate the variance matrix
of the sg. This should work well if the sum of the sg, suitably normalized, is well
approximated by a multivariate normal distribution with mean zero and if the sg are
well approximated by the ŝg. However, asymptotic inference can be misleading when
either of these approximations is poor.

It follows immediately from (3) that an estimator of the variance of β̂ may be based
on the usual sandwich formula,

(
X>X

)−1

(
G∑

g=1

Σg

)(
X>X

)−1 (4)

The natural way to estimate (4) is to replace the Σg matrices by their empirical coun-
terparts, that is, the ŝgŝ>g . If, in addition, we multiply by a correction for degrees of
freedom, we obtain the cluster–robust variance estimator, or CRVE,

CV1 :
G(N − 1)

(G− 1)(N − k)
(X>X)−1

(
G∑

g=1

ŝgŝ
>
g

)(
X>X

)−1 (5)

This is by far the most widely used CRVE in practice, and it is the default one imple-
mented in Stata; alternatives to this estimator will be discussed in section 2.2. When
G = N , the CV1 estimator reduces to the familiar HC1 estimator (MacKinnon and White
1985), which is robust only to heteroskedasticity of unknown form.

The fundamental unit of inference for clustered observations is not the observation
but the cluster; this is evident from (3), (4), and (5). The asymptotic theory for cluster–
robust inference has been analyzed by Djogbenou, MacKinnon, and Nielsen (2019) and
Hansen and Lee (2019) under the assumption that G→ ∞. The quality of the asymp-
totic approximation depends on the number of clusters G and the heterogeneity of the
score vectors (MacKinnon, Nielsen, and Webb 2023a). The more the distributions of
the scores vary across clusters, the worse the asymptotic approximation will likely be.
Heterogeneity can arise from variation in cluster sizes or from variation in the distri-
butions of the disturbances, the regressors, or both. As we discuss in sections 2.1, 2.3,
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and 7, leverage, partial leverage, and summary statistics based on them provide useful
measures of heterogeneity across clusters.

Inference about β is typically based on cluster–robust t statistics and Wald statistics.
If βj denotes the jth element of β and β0j is its value under the null hypothesis, then
the appropriate t statistic is

tj =
β̂j − β0j

s.e.(β̂j)

where β̂j is the OLS estimate and s.e.(β̂j) is the square root of the jth diagonal element
of (5). Under extremely strong assumptions (Bester, Conley, and Hansen 2011), it can
be shown that tj asymptotically follows the t(G−1) distribution. Conventional inference
in Stata and other programs is based on this distribution.

As the articles cited in the second paragraph of section 1 discuss, inference based on
tj and the t(G − 1) distribution can be unreliable when G is small or the clusters are
severely heterogeneous. This is true to an even greater extent for Wald tests of two or
more restrictions (Pustejovsky and Tipton 2018). The measures of leverage and partial
leverage at the cluster level that we introduce in the next section may help to identify
the sort of heterogeneity that is likely to make inference unreliable.

Instead of using the t(G−1) distribution, we can obtain both p-values for tj and con-
fidence intervals for βj by using the wild cluster restricted (WCR) bootstrap (Cameron,
Gelbach, and Miller 2008). It can sometimes provide much more reliable inferences than
the conventional approach; see section 7. Roodman et al. (2019) describe a computa-
tionally efficient implementation of this method in the package boottest. MacKinnon,
Nielsen, and Webb (2023c) propose new versions of the wild cluster bootstrap that in-
volve transforming the empirical scores. When G is reasonably large and the clusters are
not very heterogeneous, inferences based on the WCR bootstrap and inferences based on
CV1 t statistics combined with the t(G−1) distribution will often be very similar. When
they differ noticeably, neither should be relied upon without further investigation.

Section 2.2 discusses two CRVEs, which we refer to as CV3 and CV3J, that are both
based on the cluster jackknife. In practice, these estimators are often extremely sim-
ilar. CV3 and CV3J tend to yield more reliable inferences in finite samples than does
CV1, especially when the clusters are quite heterogeneous; see section 7 and MacKin-
non, Nielsen, and Webb (2023c). Based on this simulation evidence, we recommend
computing either CV3 or CV3J essentially always. This is easy to do using summclust.

2.1 Identifying high-leverage and influential clusters

At the observation level, there are three classic measures of heterogeneity, namely, lever-
age, partial leverage, and influence (Belsley, Kuh, and Welsch 1980; Chatterjee and Hadi
1986). In this section, we propose analogous measures at the cluster level.
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Measures of leverage at the observation level are based on how much the residual
for observation i changes when that observation is omitted from the regression. If hi
denotes the ith diagonal element of the “hat matrix”H = PX =X(X>X)−1X>, then
omitting the ith observation changes the ith residual from ûi to ûi/(1 − hi). Because
0 < hi < 1, this delete-one residual is always larger in absolute value than ûi. The factor
by which the delete-one residual exceeds ûi increases with hi. Because the average of the
hi is k/N , observations with values of hi substantially larger than k/N may reasonably
be said to have high leverage.

Dropping the gth cluster when we estimate β yields the delete-one-cluster estimate
β̂(g). Using β̂(g) in place of β̂ changes the residual vector for the gth cluster from ûg

to û(g)
g . These delete-one-cluster residual vectors can be written in two ways:

û(g)
g = yg −Xgβ̂

(g) = (I−Hg)
−1ûg

In the rightmost expression above,

Hg =Xg(X
>X)−1X>

g

is the Ng × Ng diagonal block of H that corresponds to cluster g. The matrix Hg is
the cluster analog of the scalar hi. Of course, it is not feasible to report the Hg. In
fact, when any of the clusters are sufficiently large, even computing and storing these
matrices may be challenging. As a measure of leverage, we therefore suggest using a
matrix norm of the Hg. Specifically, we suggest the scalar

Lg = Tr (Hg) = Tr
(
X>

gXg(X
>X)−1

)
(6)

When the gth cluster contains just one observation, say, the ith, then Lg = hi. Thus,
in this special case, the leverage measure that we are proposing reduces to the usual
measure of leverage at the observation level.

The trace in (6) is the nuclear norm of the matrix Hg. In general, the nuclear norm
of a matrix A is the sum of the singular values of A. When A is symmetric and positive
semidefinite, the singular values are equal to the eigenvalues, which are nonnegative.
Because the trace of any square matrix is equal to the sum of the eigenvalues, the trace
of a symmetric and positive semidefinite matrix is also its nuclear norm. In principle,
we could report any norm of theHg matrices, but the nuclear norm is particularly easy
to compute. Also, because it is linear, we can sum over g and take the sum inside the
norm just as if the Hg were scalars. Because

∑G
g=1X

>
gXg = X>X, this result means

that G−1
∑G

g=1 Tr(Hg) = k/G, which is analogous to the result that the average of the
hi over all observations is k/N .

High-leverage clusters can be identified by comparing the Lg with k/G, their average.
If Lh is substantially larger than k/G for some cluster h, then cluster h may be said to
have high leverage. Just how much larger Lh must be is a matter of judgment. A cluster
with Lh = 2k/G probably does not qualify, but a cluster with Lh = 5k/G probably
does. Cluster h can have high leverage because Nh is considerably larger than G/N ,
the matrix Xh is somehow extreme relative to the other Xg matrices, or both. We can
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compare the leverage of any two clusters by forming ratios. For example, if L1 = 3 and
L2 = 1, then we can say that the first cluster has three times the leverage of the second
cluster.

The leverage measure we suggest in (6) shows the potential impact of a specified
cluster on residuals and fitted values but not on any particular regression coefficient.
When interest focuses on just one such coefficient, say, the jth, it may be more inter-
esting to calculate the partial leverage of each cluster. The concept of partial leverage
was introduced, for individual observations, in Cook and Weisberg (1980). Let

x́j =

{
I−X[j]

(
X>

[j]X[j]

)−1

X>
[j]

}
xj

where xj is the vector of observations on the jth regressor and X[j] is the matrix
of observations on all the other regressors. Thus, x́j denotes xj after all the other
regressors have been partialed out. The partial leverage of observation i is simply the
ith diagonal element of the matrix x́j(x́

>
j x́j)

−1x́>
j , which is just x́2ji/(x́>

j x́j), where x́2ji
is the ith element of x́j .

The analogous measure of partial leverage for cluster g is

Lgj =
x́>
gjx́gj

x́>
j x́j

(7)

where x́gj is the subvector of x́j corresponding to the gth cluster. This is what (6)
reduces to if we replace X and Xg by x́j and x́gj , respectively. It is easy to calculate
the partial leverage for every cluster for any coefficient of interest. The average of the
Lgj is evidently 1/G, so if cluster h has Lhj >> 1/G, it has high partial leverage for the
jth coefficient. Moreover, as we will see in section 7, the empirical distribution of the
Lgj across clusters seems to provide useful diagnostic information.

Young (2022) derives a measure of cluster-level leverage for the first-stage regression
used to obtain a linear instrumental-variables estimator. That article calls Lgj the
group g “share of coefficient leverage” for instrument j and then uses the maximum of
the Lgj over all the instruments excluded from the structural equation as a measure
of the leverage of cluster g. Using simulations based on 1,309 instrumental-variables
regressions from 30 published articles, Young finds that inference is much less reliable
for models where one or two clusters have high leverage in the first-stage regression than
for models where no clusters do so.

One possible consequence of heterogeneity is that the estimates may change a lot
when certain clusters are deleted. It can therefore be illuminating to delete one cluster
at a time to see how influential each cluster is. To do this computationally efficiently,
summclust first computes the cluster-level matrices and vectors

X>
gXg and X>

g yg, g = 1, . . . , G (8)

These are then used to construct X>X and X>y, and the vector of least-squares
estimates when cluster g is deleted is computed as

β̂(g) =
(
X>X −X>

gXg

)−1 (
X>y −X>

g yg
)

(9)
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Unless k is extremely large, it should generally not be expensive to compute β̂(g) for
every cluster using (9). summclust simply has to invert G matrices, each of them k×k,
and then multiply each of those matrices by a k-vector.

Especially when they vary a lot, the β̂(g) can reveal a great deal about the sample. In
addition, as we shall see in section 2.2, they may be used to calculate jackknife variance
matrices. When there is a parameter of particular interest, say, βj , it may be a good
idea to report the β̂(g)

j for g = 1, . . . , G in either a histogram or a table. By default,
summclust creates several figures with these and other cluster-level statistics. If β̂(h)

j

differs greatly from β̂j for some cluster h, then cluster h is evidently influential.

In a few extreme cases, there may be a cluster h for which it is impossible to compute
β̂
(h)
j . This will happen, for example, when the regressor corresponding to βj is a treat-

ment dummy and cluster h is the only treated one. This is an extreme example of the
problem of few treated clusters, and inferences based on either the t(G−1) distribution
or the WCR bootstrap are likely to be completely unreliable in this case (MacKinnon
and Webb 2017a, 2018, 2020).

Identifying influential clusters by comparing the β̂(g) with β̂ is very similar to iden-
tifying influential observations using the classic methods discussed in Belsley, Kuh, and
Welsch (1980) and Chatterjee and Hadi (1986); for an interesting recent extension, see
Broderick, Giordano, and Meager (2023). Unlike the leverage measures, the β̂(g)

j may
be either positive or negative, must depend on the yg, and necessarily vary across clus-
ters. They may sometimes reveal features of the model or dataset that require further
investigation. Perhaps the model does not seem to apply to some clusters, or perhaps
there are measurement errors or observations that have been miscoded.

Regression models often include cluster fixed effects. When one of the regressors is a
fixed-effects dummy for cluster g, the matrices X>

gXg and X>X −X>
gXg are singular.

This will cause the calculation in (9) to fail unless a generalized inverse routine, such
as the invsym() function in Mata, is used. Although summclust uses this function, it
also provides options to avoid the problem and save some computer time by partialing
out the fixed-effects dummies prior to computing the cluster-level matrices and vectors
in (8); see section 3.

Partialing out cluster fixed effects means replacing X and y by X̃ and ỹ, the de-
viations from their cluster means. For example, the element of ỹ corresponding to the
jth observation in the gth cluster is yg,j −N−1

g

∑Ng

i=1 yg,i. The gth subvector of ỹ is ỹg,
and the gth submatrix of X̃ is X̃g. Because there is just one fixed effect per cluster, ỹg
depends solely on yg and X̃g depends solely on Xg. The calculations in (6) and (9) are
now based on X̃>X̃, X̃>ỹ, the X̃>

g X̃g, and the X̃>
g ỹg. Importantly, the sum of the Lg

is now equal to the number of columns in X̃ instead of the number of columns in X.
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2.2 Two jackknife variance matrix estimators

Although the CV1 variance estimator defined in (5) is very widely used, it often does not
have good finite-sample properties. Two alternative CRVEs, which are usually known as
CV2 and CV3, were proposed in Bell and McCaffrey (2002). They are the cluster analogs
of the heteroskedasticity-consistent estimators HC2 and HC3, which are appropriate when
the ui are independent. These names were coined in MacKinnon and White (1985), who
proposed HC3 as a jackknife variance estimator. In the remainder of this section, we
focus on CV3 because CV2 is not a jackknife estimator and is not amenable to the
computational methods that we propose; see Imbens and Kolesár (2016), Pustejovsky
and Tipton (2018), and Niccodemi et al. (2020). Stata 18 added the ability to rapidly
calculate CV2 standard errors, using the option vce(hc2 clustvar). Simulations in
MacKinnon, Nielsen, and Webb (2023c) suggest that CV2 is preferred to CV1 but that
CV3 is almost always preferred to CV2.

CV3 can be written in several ways. One of them is

CV3 :
G− 1

G

(
X>X

)−1

(
G∑

g=1

s̈gs̈
>
g

)(
X>X

)−1 (10)

where the modified score vectors s̈g are defined as

s̈g =X>
g M

−1
gg ûg

Here Mgg = INg −Xg(X
>X)−1X>

g is the diagonal block corresponding to the gth
cluster of the projection matrix MX , which satisfies û =MXu. Although computing
CV3 using (10) works well when all the Ng are very small, it becomes expensive, or
perhaps computationally infeasible, when one or more of the Ng is large. The problem
is that an Ng ×Ng matrix needs to be stored and inverted for every cluster. Niccodemi
et al. (2020) propose a method that is much faster for large clusters, versions of which
apply to both CV2 and CV3. However, recognizing that CV3 is a jackknife estimator
makes a method available that is even simpler and usually faster.

There are actually two cluster jackknife estimators of Var(β̂). The simplest is prob-
ably

CV3J :
G− 1

G

G∑
g=1

(
β̂(g) − β

)(
β̂(g) − β

)>
(11)

where β is the sample mean of the β̂(g), which were defined in (9). The expression
in (11) is the cluster analog of the usual jackknife variance matrix estimator given in
MacKinnon and White [1985, (11)]. Each of the β̂(g) is obtained by deleting a cluster
instead of an observation, and the summation is over clusters instead of observations.
If β in (11) is replaced by β̂, we instead obtain

CV3 :
G− 1

G

G∑
g=1

(
β̂(g) − β̂

)(
β̂(g) − β̂

)>
(12)
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This version of CV3 is numerically identical to the one in (10) (MacKinnon, Nielsen,
and Webb 2023c, sec. 3). Unless all the clusters are very small, computing CV3 using
(12) is much faster than using (10); timings are reported in MacKinnon, Nielsen, and
Webb (2023c).

Many discussions of jackknife variance estimation follow Efron (1979) and use β as in
(11), but others, including Bell and McCaffrey (2002), use β̂ as in (12). Although these
two jackknife variance estimators are asymptotically the same, they are rarely equal
because CV3 minus CV3J is a positive semidefinite matrix. In practice, however, they
tend to be very similar (MacKinnon, Nielsen, and Webb 2023c), and there seems to be
no good reason to expect either CV3 or CV3J to perform better in general. Interestingly,
the original HC3 estimator proposed in MacKinnon and White (1985) is actually the
analog of CV3J. The modern version of HC3, which is the analog of CV3, seems to be
due to Davidson and MacKinnon (1993, chap. 16). This version of HC3 is normally
computed by dividing each residual by the corresponding diagonal element ofMX , and
the factor of (N − 1)/N is usually (but incorrectly) omitted.

The factor of (G − 1)/G in both (11) and (12) is designed to compensate for the
tendency of the β̂(g) to be too spread out. This factor is the analog of the usual fac-
tor of (N − 1)/N for a jackknife variance matrix at the individual level. It implicitly
assumes that all clusters are the same size and perfectly balanced, with disturbances
that are independent and homoskedastic. In this special case, the estimators CV3 and
CV3J would be identical and unbiased (Bell and McCaffrey 2002). These estimators are
already available in Stata. When used with the cluster() option, the vce(jackknife)
option computes CV3J standard errors, and the vce(jackknife, mse) option computes
CV3 standard errors. Because it is specialized for linear regression models, the imple-
mentation in summclust is much faster.

Both jackknife estimators may readily be used to compute cluster–robust t statistics.
Because there are G terms in the summation, it seems natural to compare these with
the t(G − 1) distribution, as usual. These procedures should almost always be more
conservative than t tests based on the widely used CV1 estimator. In an important
recent article, Hansen (2022) shows that CV3 has much better worst-case theoretical
properties than CV1. This strongly suggests that t statistics based on CV3 are likely
to yield lower rejection frequencies than ones based on CV1. The simulation results
in section 7 and in MacKinnon, Nielsen, and Webb (2023c) are consistent with this
conjecture.

When a model includes fixed effects, some care must be taken when computing CV3

and CV3J. As noted in section 2.1, it is computationally attractive to partial out fixed
effects prior to calculating β̂. However, if we were to partial out any arbitrary regressors
prior to computing the delete-one-cluster estimates in (9), then the computed β̂(g) would
depend on the values of the partialed-out regressors for the full sample, including those
in the gth cluster. Consequently, the values of CV3 and CV3J will be incorrect if we
partial out any regressor that affects more than one cluster (such as industry-level fixed
effects with firm-level clustering). The regressors that are partialed out must be cluster
fixed effects or fixed effects at a finer level (such as firm-level fixed effects with industry-
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level clustering), because each of them affects only one cluster. See the discussion of
the absorb() and fevar() options in section 3.

The vector β can be identified for the full sample but not when one cluster is deleted.
For example, consider the coefficient on a dummy variable that takes on nonzero values
only for observations in the gth cluster. This coefficient cannot be identified when
cluster g is omitted. In such a case, the matrix X>X −X>

gXg in (9) is singular, and
CV3 and CV3J cannot be computed using an ordinary matrix inverse. However, because
summclust uses the invsym() function in Stata, which implements a generalized inverse,
the offending element of β̂(g) is simply replaced by 0. The command therefore checks
whether any of the β̂(g) coefficients of interest are equal to 0 and issues a warning when
they are; see section 3.

There may be more than one set of fixed effects that are invariant at the cluster level.
For example, imagine an analysis of students’ test scores where the researcher wants to
control for both school and neighborhood fixed effects and cluster the standard errors at
the state level. In this case, neither of Stata’s built-in regress and areg commands can
produce an estimate of CV3 because the fixed effects for schools and neighborhoods in
state g cannot be identified when state g is omitted. However, summclust can produce
such an estimate.

2.3 What should be reported

We believe that investigators should routinely compute the Lg. They should also com-
pute the Lgj for any coefficients of particular interest. In some cases, the Lg and the
Lgj will be roughly proportional to the Ng (the cluster sizes). That in itself would be
informative. It may be even more interesting, however, to find that the relative size of
Lg or Lgj for some clusters g is much larger or much smaller than the relative size of
Ng.

When there are few clusters, it is easy enough to look at all the Ng, β̂(g)
j , Lg, and

Lgj to see whether any clusters are unusually large, are unusually influential, or have
unusually high leverage or partial leverage. Once G exceeds 10 or 12, however, it may
be more informative to report summary statistics or to plot these quantities. The
summclust command always reports the minimum, first quartile, median, mean, third
quartile, and maximum of the Ng and the Lg. It also reports these quantities for the Lgj

and the β̂(g)
j for the specified regressor j, and by default it provides a figure containing

four scatterplots of the Lg and the Lgj against the Ng and the β̂(j); see sections 3 and 4.

Another possibility is to report a few summary statistics, as summclust also does.
Consider a generic (positive) quantity ag, which might denote any of Ng, Lg, or Lgj

for g = 1, . . . , G. It seems plausible that inference may be unreliable when any of the
ag vary substantially across clusters, and we provide some evidence to support this
conjecture in section 7.
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There are many measures of how much the distribution of the ag differs from what
it would be in the perfectly balanced case. One of these is the scaled variance

Vs(a•) =
1

(G− 1)a2

G∑
g=1

(ag − a)2 (13)

where the argument a• denotes the entire set of ag for g = 1, . . . , G and a denotes the
arithmetic mean, which is N/G for the Ng, k/G for the Lg, and 1/G for the Lgj . These
are all positive numbers, so it is reasonable to scale by their squares. Larger values of
Vs imply that the ag are more variable across clusters, relative to their mean. We could
report either Vs or its square root, which is often called the coefficient of variation. In
the perfectly balanced case, Vs = 0. By default, summclust reports the coefficient of
variation for the cluster sizes, the leverages, the partial leverages, and the β̂(g)

j .

Another possibility, although valid only for positive quantities, is to report one or
more alternative sample means. The more these differ from the arithmetic mean, the
more heterogeneous the clusters must be. Three common alternatives to the arithmetic
mean are the harmonic, geometric, and quadratic means:

aharm =

(
1

G

G∑
g=1

1/ag

)−1

, ageo =

(
G∏

g=1

ag

)1/G
, and aquad =

(
1

G

G∑
g=1

a2g

)1/2
Unless all the ag are the same, the harmonic and geometric means will be less than the
arithmetic mean a, and the quadratic mean (which has the same form as the root mean
squared error of an estimator) will be greater than a. summclust optionally reports all
three of these alternative means, along with the ratio of each of them to a. The three
ratios provide scale-free measures of cluster heterogeneity; the closer they are to 1, the
more homogeneous the clusters are.

Another way to quantify the heterogeneity of the cluster sizes and the regressors is
to calculate G∗, the “effective number of clusters,” as proposed in Carter, Schnepel, and
Steigerwald (2017). The value of G∗ depends on the coefficient j for which it is being
computed and on a parameter ρ to be discussed below, so we denote it G∗

j (ρ). It is
defined as

G∗
j (ρ) =

G

1 + Γj(ρ)
, Γj(ρ) =

1

G

G∑
g=1

{
γgj(ρ)− γj(ρ)

γj(ρ)

}2
, γj(ρ) =

1

G

G∑
g=1

γgj(ρ) (14)

where 0 ≤ ρ ≤ 1 and the γgj(ρ) are given by

γgj(ρ) = e
>
j (X

>X)−1X>
g Ωg(ρ)Xg(X

>X)−1ej , g = 1, . . . , G (15)

Here ej is a k-vector with 1 in the jth position and 0 everywhere else, so e>j (X>X)−1

is the jth row of (X>X)−1, and Ωg(ρ) is an Ng × Ng matrix with 1 on the principal
diagonal and ρ everywhere else. It is easy to see that

Ωg(ρ) = ριι> + (1− ρ)I (16)
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where ι is an Ng-vector of 1s and I is an Ng ×Ng identity matrix. Note that Γj(ρ) is
just the scaled variance of the γgj(ρ); compare (13).

The parameter ρ may be interpreted as the intracluster correlation coefficient for a
model with cluster-level random effects. Because ρ is unknown, Carter, Schnepel, and
Steigerwald (2017) suggest calculating G∗

j (1) as a sort of worst case. However, when
there are cluster-level fixed effects or fixed effects at a finer level nested within clusters,
they will absorb all the intracluster correlation. Thus, it does not make sense to specify
ρ > 0 in either of these cases. It does seem natural to use G∗

j (0), however, because the
amount of intracluster correlation that remains in models with cluster fixed effects is
often quite small.

From (15) and (16), we see that

X>
g Ωg(ρ)Xg = ρ(ι>Xg)

>(ι>Xg) + (1− ρ)X>
g Xg (17)

This result makes it inexpensive to compute the γgj(ρ) for any value of ρ by first
computing them for ρ = 0 and ρ = 1. The needed equations are

γgj(0) = w
>
j X

>
g Xgwj

γgj(1) = (ι>Xgwj)
>(ι>Xgwj)

γgj(ρ) = ργgj(1) + (1− ρ)γgj(0)

(18)

where wj is the jth column of (X>X)−1. After we obtain the γgj(ρ) from (18), it is
trivial to compute G∗

j (ρ) using (14). Evidently, G∗
j (ρ) is always less than G. When it

is much smaller than G, it can provide a useful warning.

Suppose that we have partialed out cluster fixed effects prior to computing G∗
j (ρ).

Then the first term on the right-hand side of (17) should theoretically be a zero matrix
because every column of Xg should add to zero. In practice, however, the limitations
of floating-point arithmetic mean that this matrix will actually contain extremely small
positive numbers. This will cause the computation of G∗

j (ρ) to be numerically unstable.
When the fixed effects are not partialed out, similar but more complicated numerical
issues arise.

The command clusteff, discussed in Lee and Steigerwald (2018), is designed to
calculate G∗

j (ρ), with ρ = 0.9999 rather than ρ = 1 by default to avoid numerical
instabilities. However, the only version of this command that we have used does so in a
computationally inefficient way that does not use (18). When any of the Ng is large, it
can take a very long time or even fail because Stata runs out of memory. For example,
it failed with some of the samples in MacKinnon, Nielsen, and Webb (2023a).

Like Vs(a•) and the alternative sample means for measures of leverage and partial
leverage discussed above, G∗

j (ρ) is sensitive not only to variation in cluster sizes but
also to other features of the Xg matrices. But it is not sensitive to heteroskedasticity
or to any other features of the disturbances. summclust computes G∗

j (0), G∗
j (1), and

(optionally)G∗
j (ρ) for a specified covariate. However, when there are cluster fixed effects,

or fixed effects nested within clusters, it computes only G∗
j (0). For example, it will not
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compute G∗
j (ρ) for ρ 6= 0 whenever there are state-level fixed effects and clustering at

the region level.

The quantity G∗
j (0) is very closely related to Vs(L•j), where L•j denotes the entire

set of Lgj , for g = 1, . . . , G. The γg(0) defined in (15) and (18) are equal to the Lgj

defined in (7) divided by x́>
j x́j . Because this makes the γg(0) proportional to the

Lgj , Vs(L•j) is numerically identical to Γ(0); compare (13) and the middle equation in
(14). Thus, we see from the first equation in (14) that G∗

j (0) is simply a monotonically
decreasing function of the scaled variance of our measures of partial leverage at the
cluster level. When Vs(L•j) is large, G∗

j (0) is necessarily much smaller than G.

3 The summclust command
In this section, we describe the summclust command, which calculates many statistics
to help assess cluster heterogeneity and also provides CV3 and CV3J standard errors.
The command does not rely on any other Stata commands, but it does require a version
of Stata that provides Mata’s panelsum() function (version 13 or later).

We first present an overview of the summclust command, followed by a simple illus-
tration using nlswork.dta.

3.1 Syntax and options

3.1.1 Syntax

summclust varlist, cluster(varname)
[

options
]

varlist specifies the dependent variable, the independent variable of interest, and other
(binary or continuous) independent variables. At least one additional regressor must be
specified. Time-series operators and factor variables are not permitted.
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options Description

* cluster(varname) clustering variable, for which the number of unique values
equals G

fevar(varlist) create fixed effects for each of the specified variables, using
i.varname

absorb(varname) partial out the variable varname before computing other
statistics; this option should be used only for variables that
are nested within the specified clusters; it can often be
computationally faster than using fevar() and should be
used when there are cluster-level fixed effects to avoid
singular omit-one-cluster samples caused by those fixed
effects; in cases with an extremely large number of fixed
effects, summclust may run into memory issues; if so, one
can use the Stata prefix jackknife with the
community-contributed command reghdfe (Correia 2014)

jackknife calculate the jackknife variance estimator CV3J in addition
to CV3

addmeans display the alternative sample means of the Ng, Lg, Lgj ,
and β̂(g)

j , as described in section 2.3; for the Ng, Lg,
and Lgj , it reports the harmonic, geometric, and quadratic
means, as well as the ratio of each of them to the arithmetic
mean; for the β̂(g)

j , which can be negative, only the quadratic
mean and its ratio are reported because the harmonic and
geometric means are not defined for negative numbers

gstar calculate the effective number of clusters G∗(0) and, when
there are no cluster (or subcluster) fixed effects, G∗(1) as
well

rho(scalar) calculate the effective number of clusters, G∗(rho), in
addition to G∗(0) and G∗(1); this option can be used with
or without the gstar option; the value of rho must be
between 0 and 1; the program ends with an error message
when an invalid value for rho is entered; if it is not valid to
display G∗(rho) because of variables that are invariant
within clusters, it reports that G∗(rho) cannot be computed
and displays only G∗(0); there is no reason to use the gstar
option when this option is used

table display the cluster-by-cluster values of cluster size, leverage,
partial leverage, and the delete-one-cluster coefficient
estimate; if G > 52, then the unformatted matrix is
displayed instead of a table

Continued on next page
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options Description

sample(string) allow for sample restrictions; the arguments for this option
are whatever would follow the if in a standard regress
command; for instance, to restrict the analysis to individuals
25 years of age or older based on a variable age,
sample(age>=25) should be added to the list of options

nograph suppress creation of the figure, which is otherwise shown by
default

regtable display a full table of regression output, similar to Stata’s
regress table, but with jackknife standard errors; it reports
CV3 standard errors by default, but it instead reports CV3J

standard errors when the jackknife option is also specified;
if k > 52, then the unformatted matrix is displayed instead
of a table

* cluster() is required.

3.1.2 Description

summclust is a stand-alone command for summarizing cluster variability in several ways.
It always calculates measures of cluster-level influence and leverage, and it optionally
calculates the effective number of clusters. It also always reports CV1 and CV3 standard
errors for one coefficient, and it optionally reports a CV3J standard error as well. If
requested, it can calculate additional measures of cluster-level heterogeneity. Unless
it is told not to, it produces a figure that can help identify the source of cluster-level
heterogeneity. Finally, it can optionally produce a full table of regression results with
CV3 standard errors.

By default, summclust calculates the CV3 standard error based on (10). With well-
behaved samples, this should match the standard error calculated using Stata’s na-
tive jackknife: regress y x, cluster(group) or regress y x, cluster(group)
vce(jackknife) commands. However, many samples are not well behaved, in that the
regressor matrices for some of the omit-one-cluster subsamples may not have full rank.
We will refer to such subsamples, rather informally, as “singular subsamples”.

Whenever there are singular subsamples, summclust calculates two standard errors.
One of these drops the singular subsamples as the native Stata commands do. The
other uses a generalized inverse. summclust provides guidance as to which standard
error is likely to be more reliable. When regtable is specified and singular subsamples
are present, two versions of the regression table are displayed. Similarly, if jackknife
is specified and there are singular subsamples, four different standard errors are shown,
either CV3 or CV3J, combined with either the generalized inverse or one that drops the
singular subsamples.

nograph suppresses creation of the figure, which is otherwise shown by default. The
figure shows four scatterplots: leverage against observations per cluster, partial leverage
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against observations per cluster, leverage against omit-one-cluster coefficients, and par-
tial leverage against omit-one-cluster coefficients. This figure can be quite informative,
but it is computationally costly to produce. We recommend invoking this option after
the figure has been inspected.

When jackknife is specified, regtable uses the CV3J estimates to produce the
regression table. Otherwise, CV3 estimates are used.

3.2 Illustration with nlswork

To illustrate summclust’s functionality and syntax, we consider a simple example using
nlswork.dta, which contains a sample of women who were 14–26 years of age in 1968
from the National Longitudinal Survey of Young Working Women. For this exercise,
we restrict the sample to individuals who are 20 to 40 years old.

We estimate a simple Mincer regression using nlswork.dta to see whether there is
a marriage premium for wages. The variable msp is equal to 1 if the person is married
and cohabits with their spouse and equal to 0 otherwise. For this example, we cluster
by industry. The following code opens the dataset and estimates the regression using
Stata’s regress command:

webuse nlswork
keep if inrange(age,20,40)
regress ln_wage i.grade i.age i.birth_yr union race msp, cluster(ind)

The output from the command above provides CV1 standard errors. Alternatively, we
can estimate CV3 and CV3J standard errors using this code:

regress ln_wage i.grade i.age i.birth_yr union race msp, cluster(ind) ///
vce(jackknife, mse)

regress ln_wage i.grade i.age i.birth_yr union race msp, cluster(ind) ///
vce(jackknife)

When either of these commands is run, Stata displays the warning Note: One or more
parameters could not be estimated in 2 jackknife replicates; standard-error
estimates include only complete replications.

The coefficient on msp and two or three standard errors can also be obtained using
summclust. The basic command is

summclust ln_wage msp union race, fevar(grade age birth_yr) cluster(ind)

This code results in the default output from summclust, which is mostly contained in
two tables. The first one includes the coefficient on the second variable in the varlist (in
this case msp), the CV1 and CV3 standard errors for this coefficient, and the associated
t statistics, p-values, and confidence intervals. In this case, summclust also displays a
warning about singular subsamples and thus produces two Regression Output tables.
The standard errors in the table that drops singular subsamples match those produced
natively in Stata.
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(output omitted )
Cluster summary statistics for msp when clustered by ind_code.
There are 17395 observations within 12 ind_code clusters.

(output omitted )

Regression Output
s.e. Coeff Sd. Err. t-stat P value CI-lower CI-upper

CV1 -0.026940 0.008248 -3.2663 0.0075 -0.045093 -0.008787
CV3 -0.026940 0.011150 -2.4161 0.0342 -0.051481 -0.002399

Regression Output -- Dropping Singular Omit-One-Cluster Subsamples

s.e. Coeff Sd. Err. t-stat P value CI-lower CI-upper
CV3 -0.026940 0.006701 -4.0200 0.0030 -0.042099 -0.011780

In the first table for this example, the CV1 and CV3 standard errors are noticeably
different, with the latter being considerably larger. However, in the second table, where
the two singular subsamples are dropped, the CV3 standard error becomes much smaller.

The Cluster Variability table from summclust (below) provides insight into what
is happening. It reports summary statistics forNg, Lg, Lgj , and β̂(g)

j . Whenever singular
subsamples are dropped, two sets of statistics are shown for β̂(g)

j . The first (second-last
column) uses all the jackknife subsamples with a generalized inverse standard error.
The second (final column) uses only the nonsingular subsamples. We can see that the
largest value of β̂(g)

j is considerably smaller (and therefore more different from the other
values) when none of the subsamples is dropped. This explains why the CV3 standard
error is larger in the first table above than in the second one.

Cluster Variability
Statistic Ng Leverage Partial L. all bet~g kept be~g

min 35.00 0.085945 0.000700 -0.032772 -0.032772
q1 144.50 0.633594 0.004399 -0.027655 -0.027917

median 905.00 2.794231 0.038554 -0.026891 -0.027082
mean 1449.58 4.583333 0.083333 -0.026398 -0.027571

q3 2112.50 6.190322 0.105043 -0.025268 -0.026587
max 5736.00 17.008305 0.353148 -0.019198 -0.024202

coefvar 1.19 1.166238 1.320154 0.131277 0.074100

It is evident from this table that the clusters are extremely heterogeneous. The largest
cluster contains almost one-third of the sample and is 167 times the size of the smallest.
There are also extreme differences in both leverage and partial leverage across clusters.
The ratio of the largest to the smallest value is 198 for leverage and 504.5 for partial
leverage. The sum of the leverages is 12 × 4.583333 = 55, which is the number of
estimated coefficients. Although both sets of β̂(g)

j vary quite a bit, dropping one cluster
never changes the sign of the coefficient.

The option fevar() is used when there are factor variables, which would be specified
as i.varname in conventional Stata syntax. In the above example, the arguments to
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fevar() are grade, age, and birth_yr. For each argument, a set of temporary dummy
variables is created. These dummy variables are included in the regression, and there is
no constant term if they are present.

The sample code above does not illustrate several additional options. The most
important of these is the absorb() option, which operates like fevar(). It treats its
argument, a single variable, as an additional factor variable to include in the set of
regressors. absorb(varname) can be used when including i.varname in a regression
would result in many fixed effects. Speed can often be increased, perhaps substantially,
by partialing out the absorbed fixed effects from the dependent and all the independent
variables. It is advisable to use absorb() rather than fevar() whenever their argument
corresponds to a set of cluster fixed effects because the elements of β̂(g) that correspond
to the fixed effects cannot be identified in that case; see section 2.1.

The absorb() option should be used with care. Partialing out fixed effects is valid
for the measures of leverage and influence and for the jackknife variance matrices only
when the absorbed variable yields fixed effects that can be partialed out on a cluster-
by-cluster basis. That is, absorb() should be used only for straight cluster fixed effects
or for fixed effects at a finer level, such as state × year fixed effects for a panel with
clustering at the state level. It is not valid to partial out fixed effects that are not
limited to one cluster. In that case, the β̂(g) and quantities based on them would be
different for the original data and the data after partialing out because the partialed-out
observations for the gth cluster would depend on other clusters as well. Accordingly,
summclust checks to ensure that the clustering variable is invariant within each value of
the absorbed variable. When it is not invariant, a warning is displayed, and the values
of Lg, Lgj , β̂(g)

j , CV3, and CV3J are not available.

To see the difference between fevar() and absorb(), we can estimate an expanded
regression that includes industry fixed effects. Consider the following two commands:

summclust ln_wage msp union race, cluster(ind) fevar(grade age birth_yr ind)
summclust ln_wage msp union race, cluster(ind) fevar(grade age birth_yr) ///

absorb(ind)

For the command that uses fevar() for all the categorical variables, some of the out-
put is

Regression Output
s.e. Coeff Sd. Err. t-stat P value CI-lower CI-upper

CV1 -0.018955 0.007014 -2.7025 0.0206 -0.034392 -0.003517
CV3 -0.018955 0.007586 -2.4987 0.0296 -0.035651 -0.002258

Because every one of the jackknife subsamples is singular, only the results based on the
generalized inverse are reported. In contrast, when absorb() is used for the industry
fixed effects, the corresponding output is instead
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Regression Output
s.e. Coeff Sd. Err. t-stat P value CI-lower CI-upper

CV1 -0.018955 0.007014 -2.7025 0.0206 -0.034392 -0.003517
CV3 -0.018955 0.007586 -2.4987 0.0296 -0.035651 -0.002258

Regression Output -- Dropping Singular Omit-One-Cluster Subsamples

s.e. Coeff Sd. Err. t-stat P value CI-lower CI-upper
CV3 -0.018955 0.004173 -4.5418 0.0014 -0.028396 -0.009514

These two tables highlight a key reason for using absorb(). Because only two of the
jackknife subsamples are singular, summclust can report both standard errors. Observe
that when all 12 jackknife samples are used, the standard errors are the same regardless
of whether industry fixed effects are specified using fevar() or absorb().

Using the fevar() option leads to the output below for the measures of cluster
variability:

Cluster Variability
Statistic Ng Leverage Partial L. beta no g

min 35.00 1.079703 0.000276 -0.021394
q1 144.50 1.617131 0.003970 -0.020316

median 905.00 3.752372 0.033630 -0.019050
mean 1449.58 5.500000 0.083333 -0.018880

q3 2112.50 7.066207 0.092329 -0.018852
max 5736.00 17.728424 0.382133 -0.012367

coefvar 1.19 0.957329 1.422090 0.126464

Using the absorb() option leads instead to the output below:

Cluster Variability
Statistic Ng Leverage Partial L. all bet~g kept be~g

min 35.00 0.079703 0.000700 -0.021394 -0.021394
q1 144.50 0.617131 0.004399 -0.020316 -0.020601

median 905.00 2.752372 0.038554 -0.019050 -0.019281
mean 1449.58 4.500000 0.083333 -0.018880 -0.019538

q3 2112.50 6.066207 0.105044 -0.018852 -0.019028
max 5736.00 16.728424 0.353143 -0.012367 -0.016767

coefvar 1.19 1.170068 1.320148 0.126464 0.061639

The β̂(g)
j when all clusters are retained are identical for both options. But because there

are two singular subclusters, there are two versions of the β̂(g)
j for the fevar() results.

The leverage estimates are also smaller when we use the absorb() option. Recall
that, for the original model with no industry fixed effects, the leverages summed to 55.
In the first case just above, where the industry fixed effects are included as regressors in
fevar(), the regression has 66 coefficients, and so the leverages sum to 12× 5.5 = 66.
In the second case, where the industry fixed effects are partialed out using absorb(),
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the regression has 54 coefficients, and so the leverages sum to 12× 4.5 = 54. Thus, for
the first case each of the leverages is greater than the corresponding one for the second
case by precisely 1.

3.2.1 Examples

In the examples that follow, we include the nograph option to reduce computational
time.

This example illustrates the jackknife and table options:

summclust ln_wage msp union race, cluster(ind) fevar(grade age birth_yr) ///
nograph jackknife table

Regression Output
s.e. Coeff Sd. Err. t-stat P value CI-lower CI-upper

CV1 -0.026940 0.008248 -3.2663 0.0075 -0.045093 -0.008787
CV3 -0.026940 0.011150 -2.4161 0.0342 -0.051481 -0.002399
CV3J -0.026940 0.011004 -2.4482 0.0324 -0.051160 -0.002720

In addition to the two standard tables, there is the following table:

Cluster by Cluster Statistics
ind_code Ng Leverage Partial L. beta no g

1 119 0.581881 0.002825 -0.026959
2 35 0.085945 0.000700 -0.027206
3 170 0.685307 0.005341 -0.026823
4 3451 12.753229 0.241651 -0.021861
5 974 2.448713 0.114532 -0.024202
6 2626 7.815303 0.095555 -0.027393
7 1599 4.565341 0.048163 -0.026587
8 513 2.494440 0.018808 -0.029519
9 836 3.131195 0.028945 -0.032772
10 114 0.336320 0.003457 -0.027917
11 5736 17.008305 0.353148 -0.019198
12 1222 3.094021 0.086874 -0.026333

This table makes it easy to see whether the high leverage clusters are also the largest
clusters. That is clearly the case here. After the program runs, this table is stored as
the Mata matrix scall.

To obtain summary statistics on the four (or five) measures of cluster variability, we
can use the addmeans option:

summclust ln_wage msp union race, cluster(ind) fevar(grade age birth_yr) ///
nograph addmeans
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This command produces the following table:

Alternative Sample Means and Ratios to Arithmetic Mean
Ng Leverage Partial L. all bet~g kept be~g

Harmonic Mean 206.576 0.608440 0.004988 . .
Harmonic Ratio 0.143 0.132751 0.059853 . .
Geometric Mean 623.091 2.042731 0.025557 . .
Geometric Ratio 0.430 0.445687 0.306684 . .
Quadratic Mean 2193.268 6.870062 0.134308 0.026605 0.027654
Quadratic Ratio 1.513 1.498923 1.611699 -1.007868 -1.003015

Once again, we see that there is extreme variability across the clusters. This is partic-
ularly noticeable for the ratio of the harmonic mean to the arithmetic mean, which is
between 0.060 and 0.143 for the cluster size, leverage, and partial leverage measures.
Recall that these ratios would be close to 1 if the clusters were relatively homogeneous.
This table is stored in Mata’s memory as bonus.

To obtain estimates of the effective number of clusters, we can use either the gstar
option or the rho() option. The former displays G∗

j (0) and G∗
j (1). The latter requires

a specified value of ρ and displays G∗
j (0) and G∗

j (1) along with G∗
j (ρ). When there are

fixed effects at the cluster or subcluster level, only G∗
j (0) is reported.

For the nlswork example, the first option may be called as

summclust ln_wage msp union race, cluster(ind) fevar(grade age birth_yr) ///
nograph gstar

This yields

Effective Number of Clusters
-----------------------------
G*(0) = 5.495
G*(1) = 1.376
-----------------------------

The second option, using ρ = 0.5 as an illustration, may be called as

summclust ln_wage msp union race, cluster(ind) fevar(grade age birth_yr) ///
nograph rho(0.5)

This yields

Effective Number of Clusters
-----------------------------
G*(0) = 5.495
G*(.5) = 1.433
G*(1) = 1.376
-----------------------------

In this example, the effective number of clusters is clearly substantially less than the ac-
tual number of clusters. This provides more evidence that inference using the CV1 stan-
dard error together with the t(G− 1) distribution is likely to be unreliable. These three
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quantities can be accessed in Mata’s memory as gstarzero, gstarrho, and gstarone,
respectively.

By using the regtable option, one can display a modified version of the regres-
sion table that is similar to the default output from Stata’s regress command. The
command is

summclust ln_wage msp union race, cluster(ind) fevar(grade age birth_yr) ///
nograph regtable

When there are singular subsamples, two versions of this table will be displayed. In this
example, the table is quite long, so we do not reproduce it here.

3.3 List of stored results

All the results that are displayed as output can also be found in Mata’s memory. To
access one of these after running summclust, simply add the following line:

mata: object_name

The object_name can take one of the following values:

cvstuff: This matrix stores the table with the title Regression Output. It is 2 × 6
when the jackknife option is not used (the default) and 3× 6 when jackknife is
used.

clustsum: The matrix with the measures of cluster variability.

scall: This matrix stores the G × 4 table created by the table option with the title
Cluster by Cluster Statistics.

bonus: This 6× 4 matrix contains the alternative sample means and their ratios to the
arithmetic mean created by the addmeans option.

cnames: The string matrix with the cluster names, to match with elements in scall.
This matrix is calculated only when the option table is specified.

gstarzero: This scalar contains G∗(0), created by the gstar or rho() option.

gstarone: This scalar contains G∗(1), created by the gstar or rho() option.

gstarrho: This scalar contains G∗(ρ), created by the rho() option.

regresstab: This matrix contains the table shown when the regtable option is speci-
fied.

Scalars within matrices can be referenced on a cell-by-cell basis. For example, the CV3

standard error is stored in the second row and second column of cvstuff, and to display
it one can enter the following command:

mata: cvstuff[2,2]
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Additionally, several results are available as scalars or matrices in return memory using
r(). The available scalars are

Macros
r(gstarzero) effective number of clusters for the coefficient of interest using ρ = 0
r(gstarrho) effective number of clusters for the coefficient of interest using the

value of ρ specified in rho(ρ)
r(gstarone) effective number of clusters for the coefficient of interest using ρ = 1

r(beta) estimate β̂ for the coefficient of interest
r(cv1se) CV1 standard error for the coefficient of interest
r(cv1t) CV1 t statistic for the coefficient of interest
r(cv1p) p-value for the null hypothesis that β = 0 for the coefficient of interest

using the CV1 standard error
r(cv1lci) lower bound of the 95% confidence interval for β using the CV1 stan-

dard error
r(cv1uci) upper bound of the 95% confidence interval for β using the CV1 stan-

dard error

The standard error, t statistic, p-value, and confidence interval bounds are also available
for the CV3 and CV3J standard errors. To access these, replace “1” in the above with
either “3” or “3J”; for example, the p-value using CV3J is available in cv3Jp. In the
event of singular subsamples, there are two versions of the CV3 or CV3J results. The
ones where singular subsamples have been dropped have a suffix of drop. For instance,
cv3sedrop is used instead of cv3se.

The available matrices are
r(ng) G× 1 matrix contains the number of observations, Ng , for each cluster
r(leverage) G× 1 matrix contains the leverage, Lg , for each cluster
r(partlev) G× 1 matrix contains the partial leverage, Lgj , for each cluster
r(betanog) G× 1 matrix contains the β̂

(g)
j for each cluster

4 Empirical example
We consider an empirical example from Busso and Galiani (2019) that studies an exper-
iment where retail firms were randomly assigned to enter one of 72 different geographic
markets (mercados in Spanish) within the Dominican Republic. After randomization, 21
markets had no entrants and so were in the control group, 18 had one entrant, another
18 had two, and the remaining 15 had three. The primary analysis distinguishes only
between the 51 treated markets and the 21 control markets. The number of observations
(stores) per market varies from 20 to 55.

This example is interesting because conventional wisdom (for example, MacKinnon,
Nielsen, and Webb [2023a]) suggests that, with 72 clusters that do not vary much in size,
and with neither few treated nor few control clusters, inference based on CV1 standard
errors and the t(71) distribution should work well. However, our leverage measures
suggest otherwise, and alternative inference methods yield noticeably different results.
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The model we fit is
Ysd = α+ γZd +Xsdβ + εsd (19)

Here s indexes stores and d indexes markets. The treatment variable Zd equals 1 if
market d is treated (there was entry) and 0 if it was a control (there was no entry). The
coefficient of interest is γ, which measures the causal effect of increased competition on
an outcome Y . We focus on just one of several outcomes, namely, the log of demeaned
prices after treatment. The results from this regression are found in table 5, panel B,
column 4, row 1 of Busso and Galiani (2019). The table states that there are 72 clusters
and 2,025 observations; however, the replication dataset that we use contains just 1,926
observations.

Regression (19) includes 17 control variables in the row vector Xsd. These are the
first lag of the outcome variable, the number of retailers in each district pretreatment,
a lagged quality index, eight province fixed effects, the total district beneficiaries of a
conditional cash transfer program, the percent beneficiaries of that program, the average
income in the market, two market education measures, and a binary indicator for the
urban status of the market. Thus, the total number of regressors is 19.

The OLS estimate of γ, its CV1 standard error, the p-value for a test that γ = 0, and
a 0.95 confidence interval are shown in the first row of table 1. Allowing for different
numbers of reported digits, these estimates accord with the ones in Busso and Galiani
(2019). The estimate of −0.01469 has the expected sign (average prices declined).
However, the p-value is just slightly less than 0.05, and the confidence interval barely
excludes 0.

Table 1. Estimates of the treatment effect

Method γ̂ Standard error p-value Confidence interval

CV1 −0.01469 0.007243 0.0461 [−0.02913, −0.00025]
CV2 −0.01469 0.008078 0.0730 [−0.03080, 0.00142]
CV3 −0.01469 0.009090 0.1105 [−0.03281, 0.00343]
CV3J −0.01469 0.009087 0.1104 [−0.03281, 0.00343]
WRC-C bootstrap −0.01469 0.0891 [−0.03121, 0.00243]
WCR-S bootstrap −0.01469 0.0913 [−0.03121, 0.00254]

notes: There are N = 1926 observations and G = 72 clusters. The two WCR bootstraps use
B = 999,999 and a seed of 56,829,046. WRC-C is the classic WCR bootstrap of Cameron, Gelbach,
and Miller (2008), and WCR-S is the “score” variant proposed in MacKinnon, Nielsen, and Webb
(2023c). It involves transforming the restricted empirical scores in a way based on the jackknife,
but it still uses CV1. The bootstrap results were obtained using version 4.2.0 of boottest.
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We next use the summclust command to calculate the cluster-level characteristics
of the model and dataset. Some key ones are reported in table 2. It is evident that
cluster sizes are well balanced, varying from 20 to 55, with the first and third quartiles
equal to 24 and 27. However, both the leverages Lg and the partial leverages Lg1 vary
considerably. The former range from 0.1308 to 0.7378, and the latter from 0.0001 to
0.0642. The coefficients of variation are 0.3887 and 1.0598, respectively. The latter is
moderately large, although not enormous. The two values of G∗ are slightly smaller
than G/2, which also suggests that the sample is not well balanced.

Table 2. Leverage and partial leverage for γ̂

Statistic Ng Leverage Partial leverage γ̂(g)

Minimum 20 0.130842 0.000099 −0.017550
First quartile 24 0.204104 0.003166 −0.015089
Median 26 0.235813 0.009001 −0.014791
Mean 26.75 0.263889 0.013889 −0.014663
Third quartile 27 0.292042 0.020926 −0.014070
Maximum 55 0.737797 0.064242 −0.010723
Coef. of variation 0.21 0.388686 1.059813 0.074061

notes: There are N = 1926 observations and G = 72 clusters. The effective numbers
of clusters are G∗

γ(0) = 34.16 and G∗
γ(1) = 33.33.

The coefficient of variation of the γ̂(g) is small because most of them do not vary
much. However, the most extreme values are notable. The estimate of γ, which is
−0.01469, could be as small as −0.01755 or as large as −0.01072 if just 1 out of the 72
clusters was dropped.

These results suggest that CV1, the default CRVE, may not be particularly reliable
in this case. We therefore consider five alternative procedures. The second, third, and
fourth rows of table 1 report the CV2, CV3, and CV3J standard errors, along with the
p-values and confidence intervals associated with them. The CV2 p-value is noticeably
larger than the CV1 one and suggests that the estimate is not significant at the 0.05
level. The CV3 and CV3J rows are almost identical. At 0.1105, the CV3 p-value does not
even allow us to reject the null at the 0.10 level. The fifth and six rows of table 1 report
two WCR bootstrap p-values and the associated 0.95 confidence intervals. At 0.0891 and
0.0913, these are a bit smaller than the jackknife ones, but they clearly do not allow us
to reject the null hypothesis at the 0.05 level.

In view of the reasonably large number of clusters and the fact that cluster sizes
do not vary much, the large discrepancy between the results for CV1 and the other
procedures may seem surprising. However, it is not all that surprising when we note
how much the leverages and, especially, the partial leverages vary.

By default, summclust produces a figure like figure 1, with its title created by the
program using the name of the clustering variable, in this case mercado. This figure plots
both leverage and partial leverage against the number of observations per cluster and
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also against the omit-one-cluster coefficients. These four subfigures may help to reveal
the source of cluster-level heterogeneity. For this example, neither the large leverages
nor the large partial leverages come exclusively from clusters with many observations
or extreme omit-one-cluster coefficients.
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Cluster Specific Statistics For 72 mercado Clusters

Figure 1. Example summclust figure. notes: A figure like this is always produced
unless the nograph option is specified. It plots both leverage and partial leverage
against cluster size and against the omit-one-cluster coefficients for, in this case, 72
clusters specified by a variable called mercado.

To explore what is driving the differences in partial leverage, we create an additional
scatterplot. Figure 2 plots partial leverage against the number of observations per clus-
ter, with different symbols depending on whether a given market (cluster) was treated.
The figure has two interesting features. The first is that the three rather large clusters
have fairly small partial leverage. The second is that the 12 clusters with the highest
partial leverage are all control markets. The first result is quite surprising because large
clusters often have high leverage. But figure 2 makes it clear that there is, in general, no
simple relationship between cluster sizes and partial leverage. The second result is not
so surprising, because only 21 out of the 72 clusters are controls. Many of the control
clusters presumably have high partial leverage because control clusters are relatively
rare. See (32) in section 5.4 for an explanation.
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Figure 2. Partial leverage versus cluster size. notes: The figure plots partial leverage
against cluster size for 72 clusters. An X marks a treated cluster, and a circle marks a
control cluster.

5 Simple analytical examples
In this section, we discuss several simple examples in which we can calculate our mea-
sures of leverage and influence analytically. These examples are quite revealing.

5.1 Estimation of the mean

Finding the sample mean is equivalent to performing a least-squares regression in which
the only regressor is xi = 1 for all i = 1, . . . , N . In this case, it is easy to see that
X>

gXg = Ng and X>X = N . Therefore,

Lg = Tr (Hg) =
Ng

N
=

Ng∑G
h=1Nh

(20)

In this simple case, cluster leverage is exactly proportional to cluster size. In other
cases, we can interpret leverage as a generalization of cluster size that also accounts for
other types of heterogeneity.
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Evidently, β̂ = y = N−1
∑G

g=1Ngyg, where y and yg denote the sample average for
the full sample and for cluster g, respectively. This expression can be rewritten as

β̂ =

G∑
g=1

Ng

N
yg =

G∑
g=1

Lgβ̂g (21)

so that β̂ is seen to be a weighted average of the G estimates β̂g = yg, with the weight
for each cluster equal to its leverage. Similarly, we find that

β̂(g) =
N

N −Ng

∑
h6=g

Lhβ̂h (22)

where the first factor simply makes up for the fact that we are summing over G − 1
clusters instead of G as in (21). Subtracting (21) from (22), we conclude that

β̂(g) − β̂ =
Ng

N

(
β̂(g) − β̂g

)
= Lg

(
β̂(g) − β̂g

)
(23)

Therefore, cluster g will be influential whenever omitting it yields an estimate β̂(g) that
differs substantially from the estimate β̂g for cluster g itself, especially when cluster g
also has high leverage.

5.2 Single regressor plus constant

Consider a regression design with one regressor, xi, and a constant term. Then

X>
gXg =

[
Ng

∑Ng

i=1 xg,i∑Ng

i=1 xg,i
∑Ng

i=1 x
2
g,i

]
, (X>X)−1 =

1

N2σ̂2
x

[ ∑N
i=1 x

2
i −

∑N
i=1 xi

−
∑N

i=1 xi N

]

where σ̂2
x denotes the sample variance of the xi. After some algebra, we find that

Lg =
Ng

Nσ̂2
x

{
σ̂2
x + σ̂2

x,g + (xg − x)
2
}

(24)

where xg and σ̂2
x,g denote the sample mean and sample variance of the xi within cluster g.

Expression (24) is a straightforward generalization of (20). The last two terms within
the large braces are the sample variance of the xg,i within cluster g and the square of
the difference between xg and x. The sum of these terms is the sample variance of the
xg,i around x within cluster g. Thus, cluster g will have high leverage when the variance
of the xg,i around x within that cluster is large relative to the variance σ̂2

x for the full
sample. If everything except cluster sizes were perfectly balanced, Lg would evidently
reduce to 2Ng/N .

The partial leverage for x is just

Lg2 =
Ng

{
σ̂2
x,g + (xg − x)

2
}

Nσ̂2
x

(25)
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the total variation around x within cluster g divided by the total variation within the
sample. If everything except cluster sizes were perfectly balanced, it would reduce to
Ng/N .

5.3 One regressor plus fixed effects

Suppose there is one regressor, xi, and there are cluster-level fixed effects, which have
been partialed out. In this case, we can write all quantities as deviations from their
cluster averages, and there is no distinction between leverage and partial leverage. Then
X̃>

g X̃g =
∑Ng

i=1(xg,i − xg)
2 = Ngσ̂

2
x,g. Similarly, X̃>X̃ =

∑G
g=1Ngσ̂

2
x,g is the average

variance of the xi across all clusters. We find that

Lg =
Ngσ̂

2
x,g∑G

h=1Nhσ̂2
x,h

(26)

which is again a straightforward generalization of (20). The leverage of cluster g is
proportional to Ng times the variance of the xg,i around xg. Thus, for example, doubling
the variance of the xg,i has the same effect on leverage as doubling Ng.

In this case, using (26), we easily see that

β̂ =

∑G
g=1Ngσ̂xy,g∑G
g=1Ngσ̂2

x,g

=

G∑
g=1

Lg
σ̂xy,g
σ̂2
x,g

=

G∑
g=1

Lgβ̂g (27)

where σ̂xy,g = (1/Ng)
∑Ng

i=1(xg,i − xg)(yg,i − yg) is the sample covariance of xi and yi
within cluster g. The rightmost expressions in (21) and (27) are identical. In both cases,
β̂ is seen to be a weighted average of the G cluster estimates, with the weight for each
cluster equal to its leverage.

When cluster g is omitted, we obtain

β̂(g) =

∑
h6=g Nhσ̂xy,h∑
h6=g Nhσ̂2

x,h

=

∑
h6=g Lhβ̂h∑
h6=g Lh

(28)

which would specialize to (22) if (20) were true. As before, β̂(g) is a weighted average
of the β̂h, with weights proportional to the Lg, which in this case are also the partial
leverages. Subtracting (27) from (28), we find that

β̂(g) − β̂ = Lg

(
β̂(g) − β̂g

)
(29)

which is formally identical to the rightmost expression in (23), although of course Lg is
defined in (26), not (20). Cluster g will be influential whenever β̂(g) differs substantially
from the estimate β̂g for cluster g itself, especially when cluster g also has high leverage.
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5.4 Treatment model with a constant term

Now we specialize section 5.2 to the case in which the single regressor is a treatment
dummy denoted by di. Let dg and d denote the proportion of treated observations in
cluster g and in the sample, respectively. Then (24) becomes

Lg =
Ng

N

(
dg

d
+

1− dg

1− d

)
(30)

The first factor here is the relative size of the gth cluster. The second factor depends
on how much dg differs from d. When dg = d, we see that Lg = 2Ng/N . Otherwise, the
first term inside the parentheses causes leverage to be high whenever dg is large relative
to d, and the second term causes leverage to be high whenever dg is small relative to d.
As d increases for a given dg, the first term becomes smaller relative to the second term.
Thus, the gth cluster will tend to be influential when it has either a large proportion of
treated observations and the overall proportion is small or a small proportion of treated
observations and the overall proportion is large.

We can also obtain the partial leverage of the treatment dummy for this case. Ex-
pression (25) simply becomes

Lg2 =
Ng

N

(
dg

d
+
d− dg

1− d

)
(31)

Once again, the first factor is the relative size of the gth cluster. The second factor
reduces to 1 when dg = d, so that Lg2 = Ng/N in that special case.

We can further specialize (30) and (31) to models in which the treatment is applied
at the cluster level. Suppose that all observations in clusters g = 1, . . . , G1 are treated
and no observations in the G0 = G−G1 control clusters from G1 + 1 to G are treated.
Then we find that dg = 1 for g = 1, . . . , G1 and dg = 0 for g = G1 + 1, . . . , G. Inserting
these into (30) shows that

Lg =


Ng

N
1
d

for g = 1, . . . , G1,

Ng

N
1

1−d
for g = G1 + 1, . . . , G

(32)

Inserting them into (31) shows that

Lg2 =


Ng

N
d+1
d

for g = 1, . . . , G1,

Ng

N
d

1−d
for g = G1 + 1, . . . , G

Thus, any cluster tends to have high leverage if Ng/N is large. A treated cluster has
high leverage and partial leverage if d is small. Conversely, a control cluster has high
leverage and partial leverage if d is large.
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5.5 Treatment with fixed effects

Finally, we consider the case of cluster-level fixed effects, where treatment is randomly
applied at the individual level. This is a special case of section 5.3. We cannot consider
cluster fixed effects with cluster-level treatment, because the treatment dummy would
be invariant within clusters. We specialize (26) and find that

Lg =
Ngdg

(
1− dg

)∑G
h=1Nhdh

(
1− dh

) (33)

Thus, as before, the leverage of cluster g, relative to the average for the other clusters,
is proportional to its size, Ng. It also depends on the proportion of treated observations
in the cluster. The maximum (relative) leverage for cluster g occurs at dg = 1/2 and is
symmetric around 1/2. The result (29) continues to hold. It tells us that cluster g will
be influential when its leverage (33) is large and β̂(g) differs greatly from β̂g.

6 Two-way clustering
Up to this point, we have focused on one-way clustering. However, it is also important
to compute measures of leverage, partial leverage, and influence when there is clustering
in two or more dimensions (Cameron, Gelbach, and Miller 2011). In the simplest and
most commonly encountered case, where there is two-way clustering, we recommend
computing the usual one-way measures of leverage, partial leverage, and influence for
each of the two clustering dimensions. This requires calling summclust twice.

When the number of clusters in either dimension is small or when the data are
seriously unbalanced in either dimension, conventional inference based on a two-way
version of CV1, together with the t

(
min(G − 1,H − 1)

)
distribution, can be seriously

unreliable. MacKinnon, Nielsen, and Webb (2021) therefore suggest using the usual
two-way CV1 estimator and applying the original WCR bootstrap to the dimension with
the fewest clusters or the most unbalanced clusters. Simulation evidence suggests that
this often provides more reliable inferences than the t distribution, but these inferences
may still be problematic.

It may also be interesting to calculate measures of leverage, partial leverage, and
influence for the intersection of the two clustering dimensions, especially when the num-
ber of nonempty intersections is not large. This means calling summclust a third time.
Suppose there are two clustering dimensions, with G clusters in the first dimension and
H clusters in the second. Then the number of intersection clusters is at most GH, but it
can be smaller if some of the intersection clusters are empty. To use summclust for the
intersections, we must create a new variable that uniquely identifies each nonempty in-
tersection cluster. Running summclust for this case may be expensive when the number
of nonempty intersections is large, especially if k is also large.

Note that, when summclust is invoked three times for each of two clustering dimen-
sions and their intersection, the CV3 standard error that it reports for each of the three
cases is based on a different pattern of one-way clustering. When two-way clustering is
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appropriate, none of these standard errors is valid. However, what summclust reports
can be used to compute an asymptotically valid variance as

V̂ar2W(β̂j) = V̂arG(β̂j) + V̂arH(β̂j)− V̂arGH(β̂j) (34)

Here β̂j is the OLS estimate of a coefficient of interest, and the three estimated variances
on the right-hand side of (34) are the squares of the CV3 or CV3J standard errors reported
by summclust for clustering dimension G, clustering dimension H, and the intersection
of the two clustering dimensions, respectively.

Asymptotically, the two-way variance Var2W(β̂j) should not be less than either of
the one-way variances. Therefore, if V̂ar2W(β̂j) is less than either V̂arG(β̂j) or V̂arH(β̂j),
it makes sense to replace it by the larger of those two variance estimates. Doing this
also eliminates the risk of having to take the square root of a negative number. The
appropriate t distribution has min(G−1,H−1) degrees of freedom if V̂ar2W(β̂j) is used
and G− 1 or H − 1 degrees of freedom if it is replaced by either V̂arG(β̂j) or V̂arH(β̂j),
respectively. We conjecture that, especially when this is done, the two-way standard
error based on either jackknife estimator will yield more conservative, and generally
more reliable, inferences than the usual two-way standard error based on CV1.

As we discuss in section 3, it is often invalid to partial out fixed effects when comput-
ing a jackknife CRVE. This can be particularly tricky in the case of two-way clustering.
For example, suppose there are G states and H years. Then it may be desirable to
partial out the state fixed effects when computing V̂arG(β̂j) but invalid to partial out
the year fixed effects. Similarly, it may be desirable to partial out the year fixed effects
when computing V̂arH(β̂j) but invalid to partial out the state fixed effects. Finally,
it is invalid to partial out either set of fixed effects when computing V̂arGH(β̂j). The
absorb() option of summclust normally detects cases where partialing out is invalid
and refuses to display jackknife standard errors and several other quantities.

7 Simulation experiments
One of the reasons for calculating leverages and partial leverages is to identify cases in
which inference may be problematic. The objective of the simulation experiments in
this section is to see whether the rejection frequencies for cluster–robust t tests can be
predicted from the features of the X matrix reported by summclust. There are 3,000
cases, each corresponding to a particular X matrix. For each case, we generate 10,000
values of y and use them to estimate rejection frequencies for t tests or bootstrap tests
at the 0.05 level.

In the experiments, there are either 20 clusters and 2,000 observations or 30 clusters
and 3,000 observations. The cluster sizes Ng are determined by a parameter γ ≥ 0, as
follows:

Ng =

[
N

exp(γg/G)∑G
j=1 exp(γj/G)

]
, g = 1, . . . , G− 1
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Here [·] denotes the integer part of its argument, and NG = N −
∑G−1

j=1 Ng. As γ
increases, the cluster sizes become increasingly unbalanced. The value of γ is chosen
randomly from the U[2, 4] distribution, so the cluster sizes tend to greatly vary. When
G = 20, the smallest cluster has between 8 and 32 observations, and the largest has
between 229 and 378. When G = 30, the smallest cluster has between 7 and 32 obser-
vations, and the largest has between 237 and 396.

There are five regressors, one of which is the test regressor, plus a constant term. The
regressors equal either 0 or 1. With probability 1− pc, all the observations in a cluster
are 0. With probability pc, they randomly equal either 0 or 1, both with probability
0.5. Thus, when pc = 1, all variation is at the individual level, and leverage tends to
be proportional to cluster sizes. As pc declines, the samples become more unbalanced.
In the experiments, the values of pc are chosen to be 0.25, 0.30, 0.35, 0.40, 0.50, and
0.60, each for one-sixth of the cases. Smaller values of pc tend to be associated with
larger discrepancies between actual rejection frequencies and 0.05, the nominal level of
the tests.

For each experiment, we obtain 12,000 estimated rejection frequencies. One-quarter
of these are based on CV1 and the t(G − 1) distribution, one-quarter on CV3 and the
t(G − 1) distribution, and one-quarter on each of the WRC-C and WCR-S bootstraps.
To predict these rejection frequencies, we use a generalized additive model based on
smoothing splines; see James et al. (2021, sec. 7.7). The base model can be written as

ri = β0 + f1(Vsi) + f2

(
V

1/2
si

)
+ β1G

∗
i0 + ui (35)

where ri is the rejection frequency for case i. Here Vsi denotes Vs(L•j), the scaled
variance of the partial leverages Lgj for the test regressor for case i, G∗

i0 denotesG∗
j (0) for

the test regressor for case i (recall from section 2.3 that it is a monotonically decreasing
function of the Lgj), and f1(·) and f2(·) are smoothing splines with five degrees of
freedom. Because everything on the right-hand side of (35) is a function of Vsi, this
model is simply using the Vsi to predict the ri in a potentially nonlinear way.

Figure 3 shows the fitted values from (35), which are predicted rejection frequencies,
plotted against the scaled variance of the partial leverages Lgj for four methods of
inference and two sample sizes. Panel (a) shows them for t tests based on both CV1

(solid lines) and CV3 (dashed lines) for G = 20 and G = 30, and panel (b) shows them
for WRC-C and WCR-S bootstrap tests for the same two cases. The model seems to
fit quite well, at least for the asymptotic tests, as can be seen from the values of R2

reported for each of the curves. It also fits well for the bootstrap tests, and in fact it
has smaller residuals for them than for the asymptotic tests. The lower R2 values for
the bootstrap tests simply reflect the fact that there is much less variation to explain.
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Figure 3. Predicted rejection frequencies for asymptotic and bootstrap tests at 0.05
level. notes: Each of the curves shows fitted values from the generalized additive
model (35) that predicts observed rejection frequencies, based on 10,000 replications,
using nonlinear functions of the Vs(L•j); see the text for details. Bootstrap rejection
frequencies are based on B = 399. WRC-C is the classic restricted wild cluster bootstrap,
and WCR-S is the score variant proposed in MacKinnon, Nielsen, and Webb (2023c).

We can see from figure 3 that t tests based on CV1 often overreject to an extreme
degree. For the very smallest values of Vs(L•j), the tests tend to overreject modestly,
with predicted rejection frequencies of 0.058 for G = 20 and 0.055 for G = 30. However,
these then rise quite rapidly and almost linearly. For G = 30, there are four cases (out of
3,000) for which Vs(L•j) > 15. These are not shown in the figure, but the approximately
linear relationship continues to hold, and the fit for these extreme cases is reasonably
good.

In contrast, the t tests based on CV3 tend to underreject for small values of Vs(L•j).
For the very smallest values, the predicted rejection frequencies are 0.033 for G = 20 and
0.039 for G = 30. Although it is not obvious from the figure, the CV3 tests are predicted
to underreject somewhat more than half the time, because, in our experiments, most
values of Vs(L•j) are quite small. As Vs(L•j) increases, rejection frequencies increase,
although for G = 20 they start to decline again once Vs(L•j) exceeds about 9.6. The
predicted rejection frequencies never exceed 0.105 for G = 20 and 0.118 for G = 30. In
a few cases (74 for G = 20 and 5 for G = 30), the matrix that is inverted in (9) was
singular for at least one omit-one-cluster subsample. This happened whenever one of
the regressors took the same value for all observations in G − 1 of the clusters. These
cases were dropped.

Panel (b) of figure 3 shows the fitted values from (35) for WRC-C and WCR-S boot-
strap t tests plotted against the scaled variance of the Lgj . Notice that the scale of the
vertical axis differs greatly from the one in Panel (a). All tests, especially the WCR-S
ones, perform quite well for smaller values of Vs(L•j). Except for WCR-S with G = 30,
however, the rejection-frequency curves are not even close to being linear. This is also
the only case for which the fitted values do not deviate greatly from 0.05 for large values
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of Vs(L•j). In every other case, a large value of Vs(L•j) tends to be associated with
substantial levels of overrejection or underrejection.

It is natural to ask whether we can improve the fit of (35) by adding additional
explanatory variables that are not simply functions of the Vs(L•j). The answer is that
we can. In particular, the variables ageo(L•j) and G∗

j (1) are often significant when they
are added. However, the spline f1(Vsi) always remains highly significant, even when
many other regressors are included. Thus, at least in these experiments, the scaled
variance of the partial leverages, which is the square of their coefficient of variation,
seems to be particularly revealing.

Based on these results, which are of course extremely dependent on the way in which
the regressors are generated, it seems sensible for investigators to look at several different
summary measures for both leverage and partial leverage. That is why summclust
reports several of them. In this case, the most informative summary measure appears
to be the scaled variance, defined in (13), of the partial leverage measures Lgj , defined
in (7), for the regressor of interest. summclust reports the square root of this in the
coefvar line of the Cluster Variability table. In general, cluster–robust inference
seems to be most reliable when the partial leverages do not vary greatly across clusters.

8 Conclusions
We have discussed a new command, summclust, that is designed to summarize the clus-
ter structure of the dataset for a linear regression model with clustered disturbances.
Because the key unit of observation is the cluster, it makes sense to examine measures of
influence, leverage, and partial leverage at the cluster level. These are easy to compute
and are conceptually very similar to the corresponding classic measures at the observa-
tion level (Belsley, Kuh, and Welsch 1980; Chatterjee and Hadi 1986). The summclust
command calculates all of them and also reports several summary statistics.

Our measure of influence at the cluster level can provide valuable information about
how empirical results depend on the data in the various clusters. Investigators should be
wary if dropping one or two clusters changes the results dramatically. However, apart
from such cases, the most interesting quantities that summclust calculates generally
seem to be the partial leverages and measures that summarize their distribution.

It has long been known that cluster–robust inference can be unreliable when the
number of clusters is small. More recent work, including MacKinnon and Webb (2017b,
2018) and Djogbenou, MacKinnon, and Nielsen (2019), has shown that it can also be
severely unreliable when cluster sizes vary a lot or when few clusters are treated in
the context of difference-in-differences and other treatment models. In both of these
cases, leverage and partial leverage tend to vary greatly across clusters. It therefore
seems natural to use our measures of leverage and partial leverage as diagnostic tools
to identify datasets and regression designs in which cluster–robust inference is likely
to be challenging. Simulation results in section 7 suggest that the extent to which
partial leverage varies across clusters can be particularly informative. We believe that
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investigators should always look at the summary statistics reported by summclust and
exercise caution whenever they indicate substantial variation across clusters.

As we discussed in section 2.2, the computations needed for leverage and influence are
very similar to the ones needed to compute cluster jackknife variance matrix estimators.
The summclust command therefore computes two very similar jackknife estimators,
which we refer to as CV3 and CV3J, almost as a by-product of other computations.
These are the same estimators that Stata can produce using the vce(jackknife, mse)
and vce(jackknife) options. However, because summclust is designed explicitly for
linear regression models fit by OLS, it is faster than using these vce options. Moreover,
when summclust is already being used to obtain cluster-level measures of influence and
leverage for diagnostic purposes, the additional cost of computing the jackknife variance
estimators is minimal.

When the number of clusters is reasonably large and the variation of leverage and
partial leverage across clusters is small, we would expect conventional inference based
on CV1 standard errors to perform well. If so, the CV3 standard errors reported by
summclust should be very similar to the CV1 standard errors reported by one of Stata’s
regression commands. When this is the case, there is probably no need for investigators
to worry further about the reliability of their inferences. In many cases, however, the
CV3 and CV1 standard errors will differ noticeably. This happens for the empirical
example in section 4, where there are 72 clusters but partial leverage varies a lot. In
such cases, the CV3 standard errors are almost certain to be more conservative and are
very likely to be more reliable than the CV1 ones.

p-values and confidence intervals that are even more reliable can often be obtained
by using the restricted wild cluster bootstrap, which is implemented natively with
wildbootstrap in Stata 18 and in the package boottest (Roodman et al. 2019). Re-
cent versions of that package implement the WCR-S bootstrap (MacKinnon, Nielsen, and
Webb 2023c) in addition to the classic WRC-C bootstrap. We strongly recommend that
both variants be calculated whenever the CV3 and CV1 standard errors disagree. When
the two bootstrap p-values agree, as they do for the empirical example in section 4, then
it is probably safe to rely on either of them. When they disagree, then neither of them
may be entirely reliable, but we would be inclined to use the one given by the WCR-S
bootstrap.

Up to this point, everything in this section has been based on the assumption that
there is one-way clustering with a known clustering structure. When more than one
level of clustering is plausible, investigators need to choose among them, and this can
be challenging; see the discussions in MacKinnon, Nielsen, and Webb (2023a,b). The
measures of leverage and influence produced by summclust may be helpful in deciding
at what level to cluster.

The current version of summclust is not explicitly designed to handle two-way clus-
tering. However, as we discussed in section 6, it can be called for each clustering dimen-
sion to produce two sets of diagnostic statistics. If it is called three times, once for each
dimension and once for their intersection, then it can also be used to compute two-way
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cluster jackknife variance matrix estimators. At present, however, little is known about
the properties of these estimators.
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10 Programs and supplemental material
To install the software files as they exist at the time of publication of this article, type

. net sj 23-4

. net install st0733 (to install program files, if available)

. net get st0733 (to install ancillary files, if available)

The command summclust can be installed from the Statistical Software Components
archive by typing

. ssc install summclust

or from GitHub by typing

. net install summclust, ///
from("https://raw.githubusercontent.com/mattdwebb/summclust/main/")
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