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Abstract. Large healthcare databases are increasingly used for research investi-
gating the effects of medications. However, a key challenge is capturing hard-to-
measure concepts (often relating to frailty and disease severity) that can be cru-
cial for successful confounder adjustment. The high-dimensional propensity score
has been proposed as a data-driven method to improve confounder adjustment
within healthcare databases and was developed in the context of administrative
claims databases. We present hdps, a suite of commands implementing this ap-
proach in Stata that assesses the prevalence of codes, generates high-dimensional
propensity-score covariates, performs variable selection, and provides investigators
with graphical tools for inspecting the properties of selected covariates.
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1 Introduction
Large healthcare databases, such as electronic health records (EHRs), have become
widely used for investigating the benefits and harms of medications (Stürmer et al.
2006). These data have the potential to answer important questions surrounding the
long-term and rare effects of medications. However, confounding bias is often a ma-
jor concern and can result in misleading conclusions being drawn (Brookhart et al.
2010; Freemantle et al. 2013). Confounding bias is the systematic difference between
a group of patients receiving treatment and a relevant comparative group (Brookhart
et al. 2010). In large healthcare databases, these differences are often due to a complex
combination of factors relating to both clinician-prescribing behavior and patient-level
variables (for example, surrounding disease severity) (Brookhart et al. 2010). To over-
come confounding bias, investigators must identify and appropriately adjust for a set of
confounders that sufficiently mitigate confounding bias (Brookhart et al. 2010).

Confounder adjustment is often achieved using outcome regression: modeling the
relationship between an outcome variable and a treatment (or exposure) variable con-
ditional on a set of confounders. However, analysis based on the propensity score (PS)
is often preferred in the context of large healthcare databases given the ability to sum-
marize a large amount of confounder information in one score (Rosenbaum and Rubin
1983; Jackson, Schmid, and Stuart 2017). PS analysis involves modeling the treatment
allocation process using a set of observed variables to estimate the conditional proba-
bility of initiating the treatment under investigation. There are several methods (for
example, weighting or matching methods) for estimating treatment effects based on the
estimated PSs. Williamson et al. (2012) and Austin (2011) provide general introduc-
tions to the concepts behind PS analysis. Brookhart et al. (2006) discuss the types
of variables to be included in PS models, indicating that all confounders and risk fac-
tors should be included. Finally, indications for PS analysis and current practice in
pharmacoepidemiology are discussed by Jackson, Schmid, and Stuart (2017).

As with outcome regression models, the key assumption of no unmeasured confound-
ing is required to yield unbiased treatment-effect estimates from PSmethods (Williamson
et al. 2012). However, in large healthcare databases, successful adjustment for confound-
ing often relies on capturing concepts, such as frailty, that are hard to measure (even in
controlled settings, for example, randomized controlled trials) (Schneeweiss et al. 2009).

The high-dimensional propensity-score (HDPS) algorithm has been proposed as an
extension to PS methodology, designed to maximize capture of hard-to-measure or oth-
erwise unmeasured concepts in large healthcare databases (Schneeweiss et al. 2009).
The HDPS is a semiautomated data-driven approach for generating and selecting poten-
tial features (typically codes captured as part of the routine recording of clinical and
administrative information) measured prior to treatment initiation that are likely to be
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informative of disease severity and frailty (Schneeweiss et al. 2009). HDPS approaches
aim to optimize confounder control in a given setting by adjusting for several hundred
of these data-derived covariates. The benefits of these approaches have been illustrated
in many settings, resulting in their popularity as methods for confounder adjustment in
pharmacoepidemiological studies (Schneeweiss 2018). Furthermore, while implementa-
tions of HDPS exist in SAS and R, these approaches have yet to be formally implemented
in Stata (Rassen et al. 2020; Lendle 2017).

We introduce hdps, a suite of commands for performing the HDPS procedure and
investigating properties of the selected covariates (Schneeweiss et al. 2009; Wyss et al.
2018a). These commands allow investigators to specify commonly used tuning pa-
rameters surrounding key decisions in the HDPS, for example, the method of covariate
prioritization and number of covariates selected (Schneeweiss et al. 2009; Patorno et al.
2014; Wyss et al. 2018b). Additionally, recent modifications tailoring the HDPS for use in
U.K. EHRs are also implemented (Tazare et al. 2020). We demonstrate how to conduct
the HDPS procedure and perform a PS analysis with the selected covariates.

2 HDPS
Information in large healthcare databases is typically stored in the form of discrete
codes, of which there can be thousands. Codes capture various aspects of the healthcare
system and (while the exact information will vary between databases) will often include
information on clinical diagnoses and prescribed medications. In some cases, laboratory
test result data and hospital admission and discharge information may also be available
(Schneeweiss and Avorn 2005).

The HDPS is a multistep algorithm that transforms codes recorded in a healthcare
database into covariates to be included within a PS analysis. The codes considered
during the HDPS procedure are recorded prior to treatment initiation to avoid inad-
vertent adjustment for covariates on the causal pathway from treatment to outcome
(Schneeweiss et al. 2009). This assessment window is usually defined during the one
year prior to treatment initiation. The steps of the HDPS are summarized as follows
(figure 1), and more detailed methodological guidance is available in articles by Rassen
et al. (2022) and Tazare et al. (2022):

1. Data dimensions: Specify the data to be used for deriving data-driven covari-
ates. Typically, this involves separating information in the healthcare database
into multiple datasets, capturing different aspects of clinical care or coding in-
formation. In U.K. EHRs, we may separate codes pertaining to clinical, referral,
hospitalization, and prescription information. While codes can be used directly,
investigators may, where possible, exploit hierarchical coding systems to aggregate
code information (Le et al. 2013). For example, when using International Classifi-
cation of Disease 10th edition (ICD10) codes, investigators may group information
at the four-digit, three-digit, or chapter granularity level. Le et al. (2013) high-
light that aggregation may improve the performance of the HDPS in settings with
smaller cohort sizes, rare outcome incidence, or low exposure prevalence.
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2. Prevalence filter: Identify the most prevalent codes in each dimension (typically,
200 are chosen) (Schneeweiss et al. 2009). This step is optional, and instead all
codes can be assessed for potential inclusion.

3. Assess recurrence: For each code identified in the previous step, generate up to
three binary covariates based on how frequently patients have a particular code
recorded in the aforementioned assessment window:

Once =

{
1 if code recorded ≥ once
0 otherwise

Sporadic =

{
1 if code recorded ≥ median
0 otherwise

Frequent =

{
1 if code recorded ≥ upper quartile
0 otherwise

Recent work by Tazare et al. (2020) implementing the HDPS in U.K. EHRs ex-
tends the bottom frequency category to capture information recorded “Ever” in
a patient’s history. For codes originating from data dimensions where this extra
information is used, the “Once” variable is replaced by

Ever =


1 if code recorded anytime in patient’s history

(prior to treatment initiation)
0 otherwise

4. Prioritize covariates: Prioritize the set of binary covariates to identify those
most important for confounder adjustment.

• Bross formula: Typically, this prioritization is performed using the Bross
formula to define a multiplicative bias term (Bross 1966; Schneeweiss et al.
2009; Wyss et al. 2018a) as

BiasM =
PC1(RRCD − 1) + 1

PC0(RRCD − 1) + 1

where RRCD is the covariate-outcome risk ratio and PC1 and PC0 are the
prevalence of the covariate in the treated and untreated, respectively. Co-
variates are ranked in descending order by |log(BiasM)|, with higher numbers
indicating greater potential for contributing to confounding bias.

• Exposure based: Rassen et al. (2011) have shown that, in studies of few
treated patients or few outcome events, prioritizing covariates based solely
on the covariate-exposure relationship can perform well compared with the
Bross formula.
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5. Select covariates: From the set of prioritized covariates, a subset is chosen
for inclusion in the PS model. This is a key decision in the HDPS procedure,
and depending on the setting, results can vary considerably (Patorno et al. 2014;
Wyss et al. 2018b). Typically, 200 or 500 covariates are selected (Schneeweiss et al.
2009; Schneeweiss 2018); however, these numbers are arbitrary, and we recommend
testing the sensitivity of results to this decision.

6. Diagnostic tools: In any PS analysis, it is important to assess covariate balance
and perform diagnostics (Austin 2009; Granger et al. 2020). For HDPS analyses, it
is additionally important to understand the covariates selected by identifying po-
tentially influential covariates and investigating covariate balance (Franklin et al.
2015; Patorno et al. 2014).

7. PS analysis: The final step is performing a standard PS analysis. The first stage
is to estimate the PS, usually via a logistic regression modeling the treatment vari-
able on a set of covariates. In the HDPS setting, this set of covariates includes 1) a
set of “investigator” covariates identified based on clinical knowledge and 2) the
set of selected HDPS covariates. The second stage involves estimating treatment
effects from an outcome model, incorporating the PS using adjustment, matching,
weighting, or stratification (Williamson et al. 2012).
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Figure 1. Summary of a generic implementation of the HDPS algorithm, identifying the
top 200 most prevalent codes per dimension and selecting the top 500 Bross-ranked
HDPS covariates. Steps highlighted in gray represent those implemented in the hdps
package. Abbreviations: Dim., dimension.
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3 The hdps commands
3.1 Data formats

The hdps suite uses two types of input datasets: a cohort dataset and at least one data
dimension.

• Cohort dataset: One observation per patient that includes at least a patient
identifier (stored in all datasets as a string variable), a binary treatment variable,
and a binary outcome variable (both stored as numeric variables). We show the
first 10 observations from an example dataset below:

. list patid trt outcome in 1/10

patid trt outcome

1. 1000 1 0
2. 1001 1 0
3. 1002 1 1
4. 1003 0 1
5. 1004 1 0

6. 1005 1 1
7. 1006 1 0
8. 1007 1 1
9. 1008 1 1

10. 1009 0 0

• Data dimensions: A long-format dataset containing codes recorded during the
HDPS assessment window for all patients in the cohort. A separate dataset should
be prepared for each data dimension. This dataset will often be many observations
per patient per code. We show the first 10 observations for an example patient,
highlighting multiple recordings for codes within the assessment window.

. list in 1/10

patid code

1. 1000 M75
2. 1000 R06
3. 1000 I25
4. 1000 M75
5. 1000 L40

6. 1000 I25
7. 1000 R42
8. 1000 K59
9. 1000 K59

10. 1000 R06

• Ever dimensions: If “Ever” information (as described in section 2, step 3) is
being assessed for a given data dimension, a secondary dataset should be provided.
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These data will be in long format and contain codes recorded in a patient’s entire
history (prior to treatment initiation). Because we want to capture the presence
only of a specific code, this dataset should be one observation per patient per
code. Note that, to reduce the size of this dataset, users may wish to remove any
code already recorded during the assessment window.

. list in 1/5

patid code

1. 1000 B35
2. 1000 D64
3. 1000 E11
4. 1000 R06
5. 1000 V89

3.2 The hdps setup command

The hdps setup command declares the data dimensions and key variables used through-
out the HDPS procedure, further specifying the directory for outputted datasets. Set the
current directory to a folder containing all necessary data, and load the cohort dataset
into memory.

3.2.1 Syntax

hdps setup dimension
[

dimension . . .
]
, save(string) study(string)

patid(varname) exposure(varname) outcome(varname)

dimension is specified for each data dimension required, using the following syntax:

(filename, varname
[
ever

]
)

3.2.2 Dimension syntax

filename specifies the filename for the data dimension.

varname specifies the variable in the data dimension containing codes. Note that this
is a required term and must be the first term specified.

ever optionally specifies that the recurrence assessment for the dimension should incor-
porate “Ever” information. Where ever is specified for a particular dimension, the
“Ever” dimension must be named filename_ever, and the variable containing codes
must be named varname.
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3.2.3 Overall options

save(string) specifies a directory where output files will be saved. save() is required.

study(string) specifies a study name that serves as a prefix on all output files. study()
is required.

patid(varname) specifies the variable containing the patient identifiers in the cohort
dataset and data dimensions. patid() is required.

exposure(varname) specifies the binary treatment or exposure variable. exposure()
is required.

outcome(varname) specifies the binary outcome variable. outcome() is required.

3.2.4 Output

A summary is reported displaying the specifications for the declared data dimensions.
hdps setup saves a dataset called study_cohort_info.dta containing the patient iden-
tifier, treatment, and outcome variables.

3.3 The hdps prevalence command

hdps prevalence performs step 2 of the HDPS algorithm, identifying the most prevalent
codes within each data dimension and calculating distribution cutoffs used to assess code
recurrence. Additionally, for each patient, the command assesses the total frequency of
each selected code. To run hdps prevalence, you must have previously specified data
dimensions using hdps setup.

3.3.1 Syntax

hdps prevalence, {top(#) | nofilter}

3.3.2 Options

One of the following options must be specified:

top(#) specifies the number of codes to be selected from each dimension.

nofilter calculates distribution cutoffs and patient frequencies for all available codes.
This follows recommendations by Schuster, Pang, and Platt (2015) suggesting that
a prevalence filter can result in the omission of codes important for confounder
adjustment, with a low marginal prevalence.
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3.3.3 Output

The number of codes successfully selected from each dimension is reported in the Results
window. Two datasets are outputted: 1) a summary of the codes selected, reporting the
median and upper quartile, used as cutoffs for defining the binary covariates generated
(study_feature_prevalence.dta); and 2) the per-patient code totals for each code
selected (study_patient_totals.dta).

3.4 The hdps recurrence command

The hdps recurrence command performs step 3 of the HDPS, creating binary covariates
based on the cutoffs described in section 2. hdps recurrence requires the two datasets
created by the hdps prevalence command. This is presented as a separate command
because of the possible computational burden in settings with many dimensions or
patients.

3.4.1 Syntax

hdps recurrence

3.4.2 Output

The total number of binary HDPS covariates generated is returned in the Results window.
The full set of covariates is outputted in a dataset called study_hdps_covariates.dta.

3.5 The hdps prioritize command

Finally, the hdps prioritize command is used to prioritize and perform variable se-
lection on the set of covariates created by the hdps recurrence command (section 2;
steps 4 and 5).

3.5.1 Syntax

hdps prioritize, method(string) top(numlist)
[
zerocell

]
3.5.2 Options

method(string) specifies the method of covariate prioritization. Available methods are
bross or exposure, as outlined in section 2. method() is required.

top(numlist) specifies the number of covariates to be selected. To obtain multiple
datasets varying the number of covariates selected, you can provide a list of integers,
for example, top(200 500). top() is required.
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zerocell applies a correction of 0.1 to cells used in the calculation of the Bross. As
described by Rassen et al. (2011), covariates cannot be considered for inclusion if
the components of the Bross formula are undefined or equal to 0. In settings with
few outcomes, this is particularly likely to affect RRCD. Applying this correction
therefore allows computation of these values and for covariates to remain under
consideration.

3.5.3 Output

The hdps prioritize command outputs a dataset containing the data used to calculate
the ranking information for each of the HDPS covariates (study_bias_info.dta). Addi-
tionally, a dataset containing the selected number of covariates (k) for each scenario spec-
ified in the top() option is outputted in the form study_hdps_covariates_top_k.dta.

3.6 The hdps graphics command

The hdps graphics command is a stand-alone command for graphically assessing the
properties of covariates generated and selected by the HDPS procedure. There are three
graphical diagnostic tools available (illustrated in section 4).

• Bross inspects the distribution of ranked Bross values used for covariate priori-
tization (Patorno et al. 2014). This plot requires specifying variables containing
the bias ranking values and the numerical rank of covariates (abs_log_bias and
rank; the variables are available in study_bias_info.dta).

• Prevalence investigates covariate balance by comparing the prevalence in the
two treatment groups (Franklin et al. 2015). This plot requires specifying vari-
ables containing these two prevalences (pc1 and pc0; the variables are available
in study_bias_info.dta).

• Strength compares the relationship between covariate-exposure (ce_strength)
and covariate-outcome (cd_strength) associations; the variables are available in
study_bias_info.dta.

3.6.1 Syntax

hdps graphics varlist
[

if
]
, type(string)

[
dimension(varname) pr(#)

graph_options
]

where varlist corresponds to variables required by a specific plot type, as described
above.
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3.6.2 Options

type(string) specifies one of three plot types: bross, prevalence, or strength (de-
scribed above). Only one type can be specified at a time. type() is required.

dimension(varname) specifies a numeric variable identifying the dimension a covariate
is derived from. Note that this option is required only for type(prevalence) and
type(strength).

pr(#) specifies a prevalence ratio. The prevalence ratio and its reciprocal will be
plotted as dashed lines. The default is to plot prevalence ratios of 2 and 0.5. Note
that pr() is an option only for type(prevalence).

graph_options are any of the options documented in [G-3] twoway_options.

3.7 Stored results

The hdps suite stores the following results to e() throughout the HDPS procedure (ex-
cluding graphics commands):

Macros
e(dimx) filename for dimension x
e(codex) name of variable containing codes in dimension x
e(dimx_ever) filename for “Ever” dimension x
e(codex_ever) name of variable containing codes in “Ever” dimension x
e(out__) outcome variable name
e(exp__) exposure variable name
e(patid__) patient identifier variable name
e(save__) file path for directory where output files are saved
e(study__) study name prefix for output files

4 Example using simulated data
4.1 Simulated data

To illustrate the hdps suite, we use a simulated cohort study design, representative of
pharmacoepidemiological studies that use HDPS approaches (summarized in figure 2).
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Figure 2. Example cohort study illustrating the setting in which the HDPS algorithm is
traditionally applied

We have simulated a cohort dataset containing a patient identifier (patid), a binary
treatment variable (trt: 1 “Study Drug” 0 “Comparator Drug”), a binary outcome
variable (outcome: 1 “Yes” 0 “No”), and a set of nine confounders to mimic a priori
investigator identified variables. Additionally, two HDPS data dimensions were simulated
capturing clinical (ICD-10 codes) and prescription (British National Formularly codes)
features based on marginal prevalences observed in a previous study applying HDPS in
U.K. EHRs (Tazare et al. 2020). For the clinical data dimension, we have simulated an
“Ever” dimension capturing whether an individual has a record for a particular code in
his or her entire history (that is, irrespective of whether it occurs in the HDPS covariate
assessment window).

These simulated datasets do not attempt to fully capture the complexity of a spe-
cific data source. Instead, they have been designed to illustrate the commands and
expected data structures. For illustrative purposes, these data have been simulated
so that confounding bias will be removed only after inclusion of several data-derived
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HDPS covariates that would be omitted in a standard analysis. Therefore, we expect
the treatment effect to move toward the null after adjustment for the HDPS covariates.

Throughout the following tutorial, we focus on an HDPS analysis with the follow-
ing tuning parameters: 1) a prevalence filter selecting the top 100 features from each
dimension, 2) prioritization using the Bross formula, and 3) selection of the top 100
covariates for inclusion in the PS model.

4.2 HDPS procedure

First, ensure that the current working directory includes the cohort dataset and relevant
data dimensions. Load the cohort dataset containing the outcome, trt, and patid
variables required for the HDPS procedure. We use the hdps setup command to declare
these variables and the two data dimensions, specifying the ever option for the clinical
dimension.

. use cohort
(Artificial cohort data for HDPS suite)
. hdps setup (clinical_dim, icd10 ever)
> (therapy_dim, bnf),
> patid(patid)
> exp(trt)
> out(outcome)
> study(example)
> save(../output/)
Data dimensions identified (code variable):

Dimension 1: clinical_dim (icd10)
Dimension 2: therapy_dim (bnf)

Note: 'ever' option specified at least once
Ever dimensions:

Dimension 1: clinical_dim_ever (icd10)
Output folder:
../output/

Next, we use the hdps prevalence command to identify the top 100 most prevalent
features from each of the data dimensions. Note that we successfully select 100 features
from each dimension.

. hdps prevalence, top(100)
Identifying most prevalent features:
Selecting top 100 from each dimension

Dimension 1: Completed: selected 100 features
Dimension 2: Completed: selected 100 features

Incorporating 'ever' information:
Dimension 1: Completed

Output files:
(1) example_feature_prevalence.dta
(2) example_patient_totals.dta
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We then run the hdps recurrence command, which assesses the frequency of pa-
tient feature recording to define as many as three binary covariates for each feature,
using the cutoffs previously described. Note that the 200 features identified using hdps
prevalence results in 600 binary HDPS covariates.

. hdps recurrence
Loading data:
Completed
Generating HDPS covariates and assessing feature recurrence:
Progress: 0%...20%...40%...60%...80%...Completed
Number of binary HDPS covariates created:
600
Output file:
(1) example_hdps_covariates.dta

Next, we use the hdps prioritize command to select the most important covariates
for confounder adjustment. In this instance, we create two datasets containing the top
50 and top 100 covariates based on the Bross formula. While the primary analysis
focuses on the model selecting 100 covariates, this shows how easily we can obtain
multiple datasets for testing the sensitivity of our results to the number of covariates
chosen.

. hdps prioritize, method(bross) top(50 100)
Ranking HDPS covariates:
Prioritizing using the Bross formula:
Progress: 0%...20%...40%...60%...80%...Completed
Forming hd-PS cohort(s) based on top ranked covariates:
Selecting: 50, and 100.
Output files:
(1) example_bias_info.dta
(2) example_hdps_covariates_top_50.dta
(3) example_hdps_covariates_top_100.dta

We can now use the hdps graphics command to investigate the properties of the
covariates generated and selected.

Having loaded example_bias_info.dta, we first investigate the distribution of rank-
ing scores used to prioritize the covariates. This can be achieved by specifying the bross
option and providing the ranking score variable and rank number variable, as below. We
note from figure 3 that there are several high-ranking covariates with relatively larger
ranking scores, indicating the possible importance for confounder adjustment.
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. use ../output/example_bias_info, clear
(example study bias information)
. generate dimension = substr(code,1,2)
. encode dimension, generate(dim)
. hdps graphics abs_log_bias rank if rank<=100, type(bross)
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15
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)|
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Rank of empirically selected covariate

Figure 3. Distribution of absolute log Bross bias values for each of the top 100 HDPS
covariates

Next, we investigate covariate balance by plotting covariate prevalence in the study
drug and comparator drug groups (Franklin et al. 2015). Figure 4 shows similar preva-
lence in the two groups while also highlighting which dimension covariates were derived
from. The dashed lines represent prevalence ratios of 2 and 0.5 to visually highlight
covariates with large imbalances between the treatment groups.
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. hdps graphics pc1 pc0 if rank<=100, type(prevalence)
> dim(dim)
> legend(order(1 "Clinical" 2 "Prescription")
> title("Data dimensions", size(*0.8))
> cols(3)
> rows(1)
> )
> ytitle("Prevalence in study drug users")
> xtitle("Prevalence in comparator drug users")
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Figure 4. Prevalence of the top 100 HDPS covariates by treatment group. The diagonal
line indicates equal prevalence in both groups, and the dashed lines show prevalence
ratios of 0.5 and 2.0. The different symbols highlight which dimension the covariate was
derived from.

Finally, we inspect the relationship between the strength of covariate-exposure and
covariate-outcome associations. In PS analysis, the inclusion of covariates strongly re-
lated to the treatment but unrelated to the outcome are known to increase variance
Brookhart et al. (2006). Figure 5 can help indicate variables that empirically have
these characteristics. Investigators may wish to perform sensitivity analyses assessing
the impact of including these variables on the resulting treatment effects and confidence
intervals.
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. hdps graphics ce_strength cd_strength if rank<=100,
> type(strength)
> dim(dim)
> legend(order(1 "Clinical" 2 "Prescription")
> title("Data dimensions", size(*0.8))
> )
> ytitle("Strength of covariate-treatment association")
> xtitle("Strength of covariate-outcome association")
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Figure 5. Comparison of the covariate-exposure and covariate-outcome associations
for the top 100 Bross-ranked HDPS covariates. The different symbols highlight which
dimension the covariate was derived from.

4.3 Investigator PS analysis

In the HDPS literature, investigators often first perform a PS analysis using only the set
of covariates identified by the investigators. This provides a useful baseline to compare
the performance of subsequent models incorporating the HDPS covariates.
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We begin by loading the cohort dataset and describing the variables.

. use cohort, clear
(Artificial cohort data for HDPS suite)
. describe
Contains data from cohort.dta
Observations: 10,000 Artificial cohort data for HDPS

suite
Variables: 12 9 Apr 2021 18:43

Variable Storage Display Value
name type format label Variable label

patid str5 %9s Patient Identifier
age float %9.0g Age at cohort entry
female float %9.0g femalelab

Female
ses float %9.0g lowmedhigh

Socio-Economic Status
smoke float %9.0g smokelab Smoking status
alc float %9.0g lowmedhigh

Alcohol consumption
bmicat float %9.0g bmilab Categorised Body Mass Index
nsaid_rx float %9.0g yesno Previous NSAID prescription
cancer float %9.0g yesno History of Cancer
hyper float %9.0g yesno History of Hypertension
trt float %9.0g
outcome float %9.0g

Sorted by: patid

To estimate the PS, we fit a logistic regression, modeling the treatment variable on
the set of nine confounders. While other methods such as matching and stratification
are available, we focus on incorporating the PS using inverse probability of treatment
weights, which are generated below (Austin 2011; Williamson and Forbes 2014).
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. logit trt age female ses smoke alc bmicat nsaid_rx cancer hyper
Iteration 0: Log likelihood = -6595.9125
Iteration 1: Log likelihood = -6589.5645
Iteration 2: Log likelihood = -6589.5637
Iteration 3: Log likelihood = -6589.5637
Logistic regression Number of obs = 10,000

LR chi2(9) = 12.70
Prob > chi2 = 0.1768

Log likelihood = -6589.5637 Pseudo R2 = 0.0010

trt Coefficient Std. err. z P>|z| [95% conf. interval]

age -.0015863 .0026061 -0.61 0.543 -.0066941 .0035215
female -.046352 .0424815 -1.09 0.275 -.1296142 .0369102

ses .0228782 .0389346 0.59 0.557 -.0534322 .0991886
smoke -.0659094 .0694756 -0.95 0.343 -.2020791 .0702602

alc .0887163 .0663556 1.34 0.181 -.0413384 .2187709
bmicat .0049882 .046912 0.11 0.915 -.0869576 .0969341

nsaid_rx -.0454822 .0451712 -1.01 0.314 -.1340161 .0430518
cancer .0544823 .0518726 1.05 0.294 -.0471861 .1561507
hyper -.0875655 .0421824 -2.08 0.038 -.1702414 -.0048895
_cons .6215302 .1473132 4.22 0.000 .3328016 .9102589

. predict pscore, pr

. generate wts = 1/ps if trt == 1
(3,712 missing values generated)
. replace wts = 1/(1-ps) if trt == 0
(3,712 real changes made)

Next we use a weighted logistic regression model to estimate the treatment odds
ratio (OR). We apply robust standard errors to acknowledge the lack of independence
in the weighted population (Hernán, Brumback, and Robins 2000). However, note that
the variance should theoretically account for the estimation of the PS. Our models do
not account for this, so the confidence intervals will be slightly conservative (Williamson
et al. 2012; Williamson, Forbes, and White 2014).

While we have focused on a binary outcome, these methods can similarly be applied
for a time-to-event outcome. The binary outcome indicator would be used throughout
the HDPS procedure to select the HDPS covariates. In the PS analysis, the outcome
model would be the appropriate survival model.

. logistic outcome i.trt [pw=wts], vce(robust)
Logistic regression Number of obs = 10,000

Wald chi2(1) = 5.26
Prob > chi2 = 0.0219

Log pseudolikelihood = -13720.103 Pseudo R2 = 0.0004

Robust
outcome Odds ratio std. err. z P>|z| [95% conf. interval]

1.trt 1.100317 .0458824 2.29 0.022 1.013966 1.194022
_cons 1.206206 .0398105 5.68 0.000 1.130649 1.286813

Note: _cons estimates baseline odds.
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For the investigator analysis, we obtain some evidence supporting an increased risk
of the outcome in those receiving the study drug compared with those receiving the
comparator drug (OR 1.10; 95% confidence interval: [1.01 to 1.19]).

4.4 HDPS analysis

We now illustrate how to incorporate the selected HDPS covariates into a PS analysis.

Ensure the cohort dataset is still loaded into memory. The first step is to either drop
or rename the previous pscore and wts variables because we will now reestimate the PS.
We need to merge the generated set of 100 HDPS covariates to the cohort dataset using
the patient identifier (patid). As before, we fit a logistic regression model to estimate
the PS and now additionally include the HDPS covariates in this model (the prefixes
d1 and d2 represent covariates derived from the clinical and prescription dimensions,
respectively). For brevity, we suppress the output from the logistic regression model
containing 109 covariates. However, it is important to inspect large models, especially
in small samples, where covariates might perfectly predict treatment allocation. Fur-
thermore, note that when you adjust for several hundred HDPS covariates, it may be
necessary to increase the maximum matrix size in Stata; for more details, see help
matsize.

. drop pscore wts

. merge 1:1 patid using "../output/example_hdps_covariates_top_100.dta",
> assert(match) nogen

Result Number of obs

Not matched 0
Matched 10,000

. logit trt age female ses smoke alc bmicat nsaid_rx cancer hyper d1* d2*
(output omitted )
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We now estimate the PS and generate new inverse probability of treatment weights
before estimating the treatment effect using a weighted logistic regression model.

. predict pscore, pr

. generate wts = 1/ps if trt == 1
(3,712 missing values generated)
. replace wts = 1/(1-ps) if trt == 0
(3,712 real changes made)
. logistic outcome i.trt [pw=wts], vce(robust)
Logistic regression Number of obs = 10,000

Wald chi2(1) = 0.35
Prob > chi2 = 0.5513

Log pseudolikelihood = -13712.248 Pseudo R2 = 0.0000

Robust
outcome Odds ratio std. err. z P>|z| [95% conf. interval]

1.trt 1.025467 .0432824 0.60 0.551 .9440489 1.113907
_cons 1.261751 .042279 6.94 0.000 1.181548 1.347398

Note: _cons estimates baseline odds.

For the HDPS analysis, we observe that the inclusion of the HDPS covariates has led
to a result closer to the expected null association (OR 1.03; 95% confidence interval:
[0.94 to 1.11]).

As previously mentioned, the number of covariates selected is a key decision in the
HDPS procedure, and we recommend testing the sensitivity of results to this decision.
The analysis outlined above can easily be repeated for a different set of covariates by
updating the merge file.

5 Conclusions
In this article, we have introduced the hdps suite of commands for applying the HDPS
algorithm in Stata. This suite consists of five commands for generating, prioritizing,
and visualizing the properties of HDPS covariates. We have illustrated these commands
using simulated data and demonstrated how to incorporate the resulting HDPS covariates
within a PS analysis.

For illustrative purposes, the analysis presented is based on data simulated with a
relatively simple structure. In practice, there will be complex relationships between the
codes identified, and investigators will often specify many more data dimensions. The
plasmode framework has become a popular method for simulating data more reflective
of large healthcare databases and is often used to evaluate the performance of methods
in this setting (Franklin et al. 2014).

The main benefit of HDPS methods is seen in settings where information recorded
within the healthcare database is likely to be strongly correlated to key confounders that
are hard to measure. However, in settings with a well-established or basic confounding
structure, the HDPS is not likely to outperform traditional PS or outcome regression
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methods. Furthermore, it is important to acknowledge that unmeasured confounding
may remain an issue even after adjustment for HDPS covariates.

Methodological work surrounding HDPS methods continues to develop rapidly, and
any new features in the hdps suite will aim to reflect best practices as they become
apparent. A recent review by Schneeweiss (2018) summarizes key areas of development.
One topic of growing interest surrounds the possible benefits of combining HDPS and
machine learning approaches (Tian, Schuemie, and Suchard 2018; Franklin et al. 2015;
Karim, Pang, and Platt 2018; Schneeweiss et al. 2017). For example, in other high-
dimensional data contexts, machine learning techniques have performed well at selecting
important variables compared with conventional methods (Belloni, Chernozhukov, and
Hansen 2014).

The hdps suite will be updated and developed, and we would welcome suggestions
for improvements and new features. We are also interested in how the data manage-
ment commands presented might be used to create data-driven covariates in alternative
contexts, for example, prediction modeling (Franklin et al. 2016).
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7 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 23-3

. net install st0725 (to install program files, if available)

. net get st0725 (to install ancillary files, if available)

The hdps suite is hosted and maintained on GitHub (for details, see Haghish [2020])
and can be installed as follows: 1) install the github package, and 2) install hdps from
the hosted GitHub repository.

. net install github, from("https://haghish.github.io/github/")

. github install johntaz/hdps

The data and analysis code used throughout are available on GitHub:
http://www.github.com/johntaz/HDPS-Stata-Demo/.

http://www.github.com/johntaz/HDPS-Stata-Demo/
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