
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

The Stata Journal (2023)
23, Number 3, pp. 625–657 DOI: 10.1177/1536867X231195286

mpitb: A toolbox for multidimensional poverty
indices

Nicolai Suppa
Centre for Demographic Studies

Autonomous University of Barcelona
Bellaterra, Spain
nsuppa@ced.uab.es

and
Oxford Poverty and Human Development Initiative

University of Oxford
Oxford, U.K.

Abstract. In this article, I present mpitb, a toolbox for multidimensional poverty
indices (MPIs). The package mpitb comprises several subcommands to facilitate
specification, estimation, and analyses of MPIs and supports the popular Alkire–
Foster framework to multidimensional poverty measurement. mpitb offers several
benefits to researchers, analysts, and practitioners working on MPIs, including
substantial time savings (for example, because of lower data management and
programming requirements) while allowing for a more comprehensive analysis at
the same time. Aside from various convenience functions, mpitb also provides
low-level tools for advanced users and programmers.

Keywords: st0723, mpitb, mpitb assoc, mpitb ctyselect, mpitb estcot, mpitb est,
mpitb gafvars, mpitb refsh, mpitb rframe, mpitb set, mpitb setwgts, mpitb show,
mpitb stores, multidimensional poverty, Alkire–Foster method, MPI

1 Introduction
Currently, measures of multidimensional poverty are popular in both academia and
practice. Extending previous research on unidimensional poverty measures, several
measures of multidimensional poverty have been proposed and axiomatically explored
in the literature; for overviews, see, for example, Aaberge and Brandolini (2015) and
Alkire et al. (2015).

Multidimensional measurement approaches to poverty seek to directly capture crit-
ical shortfalls in different dimensions of human well-being, such as health, education,
or social participation. Thereby, multidimensional poverty measures aim beyond an
exclusive focus on monetary or material metrics in the resource space. The dual-cutoff-
counting approach proposed by Alkire and Foster (2011) is particularly popular and
underlies the global multidimensional poverty index (MPI), which is jointly published
by the United Nations Development Programme and the Oxford Poverty and Human
Development Initiative (UNDP-OPHI 2021); for related analyses, see, for instance, Jindra
and Vaz (2019) and Alkire et al. (2021). Moreover, official poverty measures in more
than thirty countries are based on this method.

© 2023 StataCorp LLC st0723

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X231195286&domain=pdf&date_stamp=2023-09-22

626 A toolbox for MPIs

Ideally, poverty measures involve methods simple enough to be communicable to
the wider public. From a technical point of view, quantities of interest are usually easy
to estimate because they are often averages of some sort (for example, using mean).
Furthermore, previous Stata packages such as DASP (Abdelkrim and Duclos 2007) and
mpi (Pacifico and Poege 2017) already support the estimation of selected quantities of
multidimensional poverty measurement.

A challenge in applied work, however, emerges on the data management side, be-
cause usually a huge amount of estimates has to be produced, analyzed, archived, and
presented. For preparing a measure of multidimensional poverty for a single country
in a single year, it is not uncommon to accumulate some 2,000 point estimates dur-
ing the course of a project, let alone a cross-country analysis of poverty changes over
time (COT). This particular challenge is where mpitb seeks to support researchers and
practitioners alike.

mpitb has been developed to facilitate the production process of the global MPI.
Indeed, the present toolbox has been developed in tandem with a new workflow for
the global MPI (Suppa 2022). Consequently, measures and quantities that can be esti-
mated or produced out of the box by mpitb are closely aligned with the needs of the
global MPI. Because of fundamental commonalities in multidimensional poverty mea-
surement and analyses, most features can be expected to support researchers, analysts,
and practitioners in their particular projects, too.

Specifically, mpitb offers several benefits to analysts of multidimensional poverty,
including substantial time savings on the results data management side of the work
and a considerable reduction of the programming needs required for a comprehensive
analysis. Thereby, the toolbox allows analysts and researchers to focus on indicator
construction, measure specification, and the very analysis of the results. This toolbox
encourages the adoption of a streamlined workflow, which may help highlight errors and
improve the replicability of the results.

On the technical side, mpitb supports the estimation of key quantities of the Alkire–
Foster (AF) framework, their standard errors (which may account for complex survey
design), and their disaggregation by subgroups. Unlike previous packages, mpitb sup-
ports the estimation of COT out of the box (including changes by subgroups) and pro-
vides various convenience functions ranging from indicator weight calculation based on
dimensional weights (or vice versa) to an optional annualization of change estimates.

Finally, mpitb also contains a set of low-level tools, which are of particular interest
for advanced users who wish to analyze custom quantities and programmers who wish
to implement their own subroutines.

The remainder of this article is organized as follows: Section 2 introduces key quan-
tities of multidimensional poverty that the toolbox can estimate. Section 3 briefly intro-
duces selected tools and their syntax, and section 4 provides some examples. Section 5
concludes.

N. Suppa 627

2 Measuring multidimensional poverty
In this section, I briefly introduce key quantities of the AF approach of multidimensional
poverty to facilitate subsequent explanations. For a more comprehensive presentation,
see Alkire et al. (2015, chap. 5).

First, let the society under consideration contain i = 1, . . . , N individuals and let
d = 1, . . . , D be the relevant well-being achievements for poverty measurement. In-
dividuals have observable nonnegative achievements yid. Individuals are considered
deprived in d if their achievement in d falls short of the critical deprivation threshold,
or, formally, yid < zd. The D deprivation indicators reflect these shortcomings. In
practice, deprivation indicators are often grouped into dimensions. In the global MPI,
for instance, ten indicators are organized in three dimensions (health, education, living
standards), where the health dimension comprises two deprivation indicators: nutrition
and child mortality. A household is considered deprived in the nutrition indicator if
any person under 70 years of age is undernourished and deprived in the child mortality
indicator if a child under 18 has died in the household in the five-year period preceding
the survey (see Alkire, Kanagaratnam, and Suppan [2022b] for further details). While
multidimensional poverty measures may identify individuals or households as deprived
or poor, data constraints often lead to an identification at the household level.

The objective of many multidimensional poverty measures is to identify multiply
deprived individuals or households. After assigning relative weights wd ∈ [0, 1] with∑

d wd = 1 to all indicators, one may obtain the deprivation score as ci =
∑

d wd1(yid <
zd), where 1(·) is the indicator function. The deprivation score ranges from 0 to 1,
the maximum possible amount of deprivations. Applying the cross-dimensional poverty
cutoff k ∈ (0, 1] to this deprivation score, one can specify how much multiple deprivation
a household (or individual) must experience to be identified as (multidimensionally)
poor. Let Q = {i|ci ≥ k} be the set of all poor people, and let q be the number of poor
people. According to the global MPI, for instance, a household is considered poor if it
experiences 1/3 or more of the maximum possible deprivations. Unlike the deprivation
score, the censored deprivation score ignores deprivations of the nonpoor by replacing
their deprivation scores with 0s.

Quantities commonly estimated in this framework include i) the headcount ratio
H = q/N , which is the proportion of people with a weighted deprivation count higher
than the threshold k; ii) the intensity A = 1/q

∑
i∈Q ci, which is the average deprivation

among the poor; and iii) the adjusted headcount ratio, denoted as M0 or MPI, which
may be obtained as the mean of the censored deprivation score or as M0 = H ×A.

Further, several indicator-specific measures are of particular interest. First, the
uncensored or raw headcount ratios, defined as hd = 1/N

∑
i 1(yid < zd), report the

proportion of the population deprived in a particular indicator. Second, the censored
headcount ratios, defined as hd(k) = 1/N

∑
i∈Q 1(yid < zd), report the proportion of

the population that is deprived in a particular indicator and (multidimensionally) poor
at the same time. Third, the absolute contribution of an indicator to M0 follows from
the dimensional breakdown property satisfied by M0. More specifically, the adjusted

628 A toolbox for MPIs

headcount ratio may also be computed as M0 =
∑

d wdhd(k), where wdhd(k) may be
referred to as the absolute contribution of indicator d to M0. Fourth, the percentage
contribution of an indicator is the absolute contribution normalized by the value of M0.

Another important feature of the AF framework is that all quantities may be dis-
aggregated for various subpopulations, such as subnational regions or age groups (as-
suming the underlying survey design permits this analysis). More specifically, let the
population be partitioned into l = 1, . . . , L subgroups, where the size of each subgroup
is denoted as Nl. Then all the above introduced (sub)indices may also be expressed as
a population-weighted average, such as H =

∑
l(Nl/N)Hl, for instance.

Finally, where data permits, COT are of particular interest (Alkire, Roche, and Vaz
2017b); see Alkire et al. (2015, chap. 9.2) for a textbook presentation. COT may be
computed for an initial period t1 and final period t2, where M0(t1) and M0(t2) denote
the respective levels of the adjusted headcount ratio on both periods. Results may be
reported as absolute or relative changes. The absolute rate of change for the adjusted
headcount ratio is ∆M0 = ∆M0(t2) − ∆M0(t1), whereas its relative rate of change
is δM0 = {M0(t2) − M0(t1)}/{M0(t1)} × 100. Often, annualized rates of change are
easier to analyze; they may be obtained as ∆M0 = {M0(t2) − M0(t1)}/{t2 − t1} and
δM0 = {[{M0(t2)}/{M0(t1)}]1/(t2−t1) − 1} × 100, respectively.

As indicated above, the full specification of such a measure requires several para-
metric choices that are normative decisions because they have to balance different needs
(data availability, policy relevance, etc.) and, moreover, involve value judgments (see
Alkire et al. [2015, chap. 6]). Therefore, it is important to flag those decisions accord-
ingly, and there is also an interest in documenting the extent to which these choices
may affect outcomes. Recall that M0, H, A, and hd(k) depend on zd, wd, and k. Con-
sequently, a fair amount of alternative specifications is usually estimated and studied
as well, including alternative deprivation thresholds, dropping or removing a specific
deprivation indicator altogether, alternative (cross-dimensional) poverty cutoffs, and
different weighting schemes.

3 Syntax
In this section, I present the syntaxes of the tools included in mpitb. The main func-
tionality is provided in a user-friendly way via the high-level tools mpitb set and mpitb
est; see sections 3.1 and 3.2, respectively. Sections 3.3 and 3.4 present mpitb refsh
and mpitb ctyselect, which facilitate related cross-country analyses. The mpitb pro-
gram also includes low-level tools that may be particularly useful for advanced users
and programmers. These tools include mpitb show, mpitb setwgts, mpitb gafvars,
mpitb rframe, mpitb stores, mpitb estcot, and mpitb assoc; see sections 3.5–3.11.

N. Suppa 629

3.1 mpitb set

mpitb set specifies the deprivation indicators for an MPI and stores this specification
with the currently loaded dataset. Several specifications may be stored with one dataset.

3.1.1 Syntax

mpitb set
[
, name(mpiname) d1(varlist

[
, subopt

]
) . . . d10(varlist

[
, subopt

]
)

description(text) clear replace
]

3.1.2 Options

name(mpiname) specifies the name of a particular MPI or, more precisely, its indicator
selection. Internally, mpiname also serves as an ID, and short names are recom-
mended (at most 10 characters are permitted).

d1(varlist
[
, subopt

]
)–d10(varlist

[
, subopt

]
) assign the variables in varlist as depri-

vation indicators to dimensions 1–10. Short variable names are recommended (at
most 10 characters are permitted). A total of 10 dimensions is permitted. The
following subopt may optionally be set:

name(dimname) specifies dimname as the name for a particular dimension. Short
names are recommended (at most 6 characters are permitted). If name() is not
set, then dimensions are generically named d1, d2, etc.

description(text) allows the user to add extra information about the particular MPI
to the data. This text may help to distinguish different specifications.

clear removes all information on MPIs stored with the current data.

replace replaces the information for the specified MPI.

3.2 mpitb est

mpitb est estimates indices and subindices of multidimensional poverty for one or
more parameterizations. Deprivation indicators have to be declared by mpitb set be-
forehand. mpitb est estimates levels, levels over time, and COT at the aggregate level
and for subgroups. mpitb est provides standard errors and confidence intervals for
most quantities and may take complex survey design into account.

Results may be coherently saved to disk or collected in frames (see [D] frames).
mpitb est may create key variables for the AF framework and a variable identifying
the underlying sample (which takes, for example, item nonresponses into account).

630 A toolbox for MPIs

3.2.1 Syntax

mpitb est
[

if
] [

in
]
, name(mpiname)

[
klist(numlist) weights(wgts

[
sopt

]
)

measures(mlist) indmeasures(imlist) indklist(numlist) aux(auxlist)
cotmeasures(mlist) cotoptions(olist) cotk(numlist) cotyear(varname)
dtasave(filename

[
, replace

]
) lframe(name

[
, replace

]
) lsave(filename

[
,

replace
]
) cotframe(name

[
, replace

]
) cotsave(filename

[
, replace

]
)

over(varlist
[
, sopts

]
) tvar(varname) svy addmeta(metalist) skipgen gen

replace double noestimate
]

3.2.2 Measures and parameters

name(mpiname) specifies the name of the MPI to be estimated (which also serves as ID).
name() is required.

klist(numlist) specifies the (cross-dimensional) poverty cutoff(s) in percentage points.
Valid values are integers between 1 and 100. One or more values may be specified.

weights(wgts
[

sopt
]
) specifies the weighting scheme(s), where wgts may be one of the

following:

equal applies an equal-nested weighting scheme, which assigns equal weights to all
dimensions and, within dimensions, equal weights to all indicators.

dimw(numlist) allows the user to set arbitrary weighting schemes for dimensions.
Weighting schemes may be set using decimal numbers from 0–1. Naturally, the
number of weights must match the number of dimensions, and weights must sum
up to 1. The order of dimensions corresponds to the order used in mpitb set.
Indicator weights within dimensions receive equal weights.

indw(numlist) allows the user to set arbitrary weighting schemes for indicators.
Weighting schemes may be set using decimal numbers from 0–1. Naturally, the
number of weights must match the number of indicators, and weights must sum
up to 1. The order of indicators corresponds to the order used in mpitb set.

sopt is name(wgtsname), which allows the user to assign names to particular weight-
ing schemes. name() is required with indw() but is optional with equal and dimw().

measures(mlist) specifies the list of permitted measures, which may include M0, H, A,
or all.

indmeasures(imlist) specifies the list of permitted indicator-specific measures, which
may include hdk (censored headcount ratios), actb (absolute contribution), pctb
(percentage contribution), or all.

N. Suppa 631

indklist(numlist) allows the user to choose a different set of poverty cutoffs for
indicator-specific measures to avoid unnecessarily long estimations for numbers of
lower priority. Unless explicitly set, indklist() equals klist().

aux(auxlist) specifies the list of permitted auxiliary measures, which may include hd, mv,
N, or all. hd provides the uncensored deprivation headcount ratios. mv includes the
share of missing values at the indicator level and the retained sample at the aggregate
level; the retained sample will be reported with and without sampling weights (if
svy is set). N is the effective sample size, that is, the number of observations with
nonmissing information on all indicators.

3.2.3 Changes over time

cotmeasures(mlist) specifies the list of permitted COT measures, which may include
M0 (the adjusted headcount ratio), H (the headcount ratio), A (the intensity), hd
(uncensored headcount ratios), hdk (censored headcount ratios), or all.

cotoptions(olist) specifies the options for COT, which may include any combination
of the following:

total estimates change over the total period of observation, that is, from the first
year of observation to the last year of observation.

insequence estimates all consecutive (that is, year-to-year) changes.[
no
]
ann produces or suppresses annualized COT. ann is activated by default. Specify

noann to skip the estimation of annualized changes.[
no
]
raw produces or suppresses the raw, that is, nonannualized, COT. raw is acti-

vated by default. Specify noraw to skip the estimation of raw changes.

cotk(numlist) specifies the poverty cutoffs for the COT estimation.

cotyear(varname) specifies the variable to be used for the annualization, which is
usually a year variable where decimal digits are permitted.

3.2.4 Results

dtasave(filename
[
, replace

]
) saves the microdata after creating the variables of the

AF framework. This can be particularly useful when mpitb est is run within a loop
over countries. replace replaces the existing dataset.

lframe(name
[
, replace

]
) saves the levels estimates into a result frame under the

specified name. This option can be useful for adding further custom estimates before
saving all results to disk (see mpitb stores for adding estimates of custom quantities
to the result frame). replace replaces the existing frame.

lsave(filename
[
, replace

]
) saves the levels estimates into the specified .dta file.

replace replaces the existing dataset.

632 A toolbox for MPIs

cotframe(name
[
, replace

]
) saves the change estimates into a result frame under

the specified name. This option can be useful for adding further custom estimates
before saving all results to disk (see mpitb stores for adding estimates of custom
quantities to the result frame). replace replaces the existing frame.

cotsave(filename
[
, replace

]
) saves the change estimates into the specified .dta file.

replace replaces the existing dataset.

3.2.5 Other

over(varlist
[
, sopts

]
) specifies to disaggregate by several variables. By default, quan-

tities for the subgroups are estimated for the same measure and parameters as the
aggregate quantities. Suboptions help to avoid unnecessarily long estimations for
numbers of lower priority; available sopts are the following:

klist(numlist) allows the user to choose a different set of poverty cutoffs for disag-
gregations.

indklist(numlist) allows the user to choose a different set of poverty cutoffs for
disaggregations of indicator-specific measures.

nooverall requests that no aggregate (or national-level) estimates be produced.
This option may be useful for organizing results across different files.

tvar(varname) specifies the integer time variable (indicating survey rounds).

svy requests estimation for complex survey design of microdata as specified by svyset.
By default, the data are assumed to be obtained through simple random sampling,
which is rarely used in practice.

addmeta(metalist) allows the user to add metadata to every estimate produced. A
common application would be to add the ISO country code. metalist is specified as
follows:

macname = content
[

macname2 = content2
[
. . .
]]

skipgen requests to skip the step of generating all variables of the AF framework. This
can save runtime if variables have already been created by a previously run mpitb
est. A common application is to save different results into a single file. However,
it is up to the user to ensure that all needed variables do exist and that the results
files are coherently augmented.

gen requests to keep all variables for cross-checks or additional calculations. The default
behavior of mpitb est is to remove all generated variables (for example, deprivation
scores or poverty status) upon completion of the estimations.

replace replaces potentially existing variables.

double generates nonbyte variables as double, which improves the precision with which,
for example, the deprivation score is stored as a variable. The default is float.

N. Suppa 633

noestimate requests to skip the entire estimation process. This saves time if only the
generated variables are of interest.

3.3 mpitb refsh

mpitb refsh creates or updates the reference sheet, a key feature of the global MPI
workflow. The reference sheet contains basic information about the countries covered
by the current project. The reference sheet may be used to i) control estimation and
other production routines efficiently, ii) merge external data easily, and iii) reduce the
amount of information that estimates are passed through the estimation routine. See
the workflow for more details.

Essentially, mpitb refsh examines all microdatasets in the specified folder and col-
lects certain information (data characteristics or variables). Afterward, mpitb refsh
creates the reference sheet comprising this information for each country.

3.3.1 Syntax

mpitb refsh using filename, id(name) {path(string) | file(filename)}
[
clear

newfiles update(clist) sid(sid) keep(namelist) char(clist) depind(dlist)
gentvar(year)

]
3.3.2 Options

id(name) specifies the identifier of a particular dataset and is usually an ISO country
code. By default, name is assumed to be a variable name; if, however, the option
char(clist) is set, name may be a data characteristic. The reference sheet will
contain at least one observation for each ID (or dataset). id() is required.

path(path) specifies the path to the cleaned microdataset. Note that path must be
specified as, for example, folder/subfolder, using slashes (/) and not backslashes (\).
Either path() or file() is required.

file(filename) specifies the filename of the cleaned microdataset. This option may
not be combined with options path(), newfiles, or update(). Either file() or
path() is required.

clear examines every .dta file in the specified path and replaces any potentially existing
reference sheet. Usually, this option is the most convenient.

newfiles searches for new files in the specified path and adds them to the reference
sheet if encountered. The old entries for this country will be replaced. This option
is rarely used.

update(clist) updates the reference sheet for the listed countries. Usually, clist is coun-
try codes and refers to values of the variable specified in id(). This option is rarely
used.

634 A toolbox for MPIs

sid(sid) specifies a secondary ID for subgroups within a country (or dataset) and is
usually the subnational region variable. Unlike most other subgroups, coding and
labels of regions tend to vary across countries. The reference sheet will contain one
observation for each region of a given country.

If mpitb refsh encounters a region variable containing only missing values, it only
adds a single entry for this country to the reference sheet; a dataset is entirely skipped
if the specified variable is not found at all. This convention allows the distinction
of countries for which the survey does not allow subnational disaggregation from
countries that are not supposed to be included in a particular analysis.

keep(namelist) specifies variables in the microdataset that are to be kept and stored
in the reference sheet. These variables are assumed to be constant across all obser-
vations in the microdataset (and missing values will be ignored). This option allows
further information to be passed from the microdata files to the reference sheet (and
from there to the results file). Useful variables may be country codes, survey names,
or years. However, it is often preferable to use the char() option.

char(clist) specifies a list of data characteristics (see [P] char) of the microdata that
will be retained and added as variables to the reference sheet.

depind(dlist) collects information on the listed deprivation indicators. If this option is
specified, mpitb refsh adds the number of indicators found in each dataset and the
names of missing indicators.

gentvar(year) generates an integer time variable, which identifies the data rounds for
each country based on the variable (or characteristic) year.

3.4 mpitb ctyselect

mpitb ctyselect selects one or more countries from the reference sheet and returns
their country codes. varname is required and contains the name of the variable that
holds the country codes. With mpitb ctyselect, one may conveniently control loops
for estimations or other steps in the production process. Called without options, mpitb
ctyselect returns all country codes found in the reference sheet.

3.4.1 Syntax

mpitb ctyselect varname
[

if
] [

in
] [

, select(ctylist) rexp(regex)
]

3.4.2 Options

select(ctylist) specifies a list of specific country codes. Technically, it simply refers to
values of varname, which could be string or numeric.

rexp(regex) selects country codes based on regular expressions applied to varname.

N. Suppa 635

3.4.3 Stored results

mpitb ctyselect stores the following in r():

Macros
r(ctylist) list of countries
r(Nctylist) number of countries

3.5 mpitb show

mpitb show displays information about MPIs stored with the current data that may
include name, description, dimensions, and indicators of a particular MPI, as specified
with mpitb set. If weights have already been set by mpitb setwgts or mpitb est,
this information is also shown.

3.5.1 Syntax

mpitb show
[
, name(mpiname) list

]
3.5.2 Options

name(mpiname) specifies the name of a particular MPI to be displayed in more detail.

list lists the name and description for all the available MPI specifications.

3.6 mpitb setwgts

mpitb setwgts calculates and sets the weighting scheme for a particular MPI specifica-
tion. First, it calculates indicator weights for given dimensional weights or vice versa,
depending on what the user provided. Then, mpitb setwgts stores both sets of weights
for a particular MPI with the active dataset.

mpitb setwgts is intended for advanced users and programmers who wish to imple-
ment their own tools of analysis. For conventional analyses, one may access all relevant
functionality of mpitb setwgts from mpitb est.

3.6.1 Syntax

mpitb setwgts, name(mpiname) wgtsname(wname)
{dimw(numlist) | indw(numlist)}

[
store

]

636 A toolbox for MPIs

3.6.2 Options

name(mpiname) specifies the name of the MPI for which the weights are to be set.
name() is required.

wgtsname(wname) specifies a name to be assigned to the chosen weighting scheme.
Because weighting schemes are critical parameters, wname will be attached to ev-
ery estimation. Short and concise names are strongly encouraged. wgtsname() is
required.

dimw(numlist) specifies the weighting scheme for dimensions. The number of weights
must equal the number of dimensions, as provided by mpitb set. Either dimw() or
indw() must be specified.

indw(numlist) specifies the weighting scheme for indicators. The number of weights
must equal the number of indicators, as provided by mpitb set. Either indw() or
dimw() must be specified.

store stores the weighting scheme as characteristics for the particular MPI with the
data for later reference.

3.6.3 Stored results

mpitb setwgts stores the following in r():

Macros
r(cmd) command name of last r() posting
r(wgtsname) name of weighting scheme
r(misind) missing indicator
r(wgts_dep) indicator weights
r(wgts_dim) dimensional weights
r(dim_names) names of dimensions
r(dep_vars_act) indicators actually found (not completely missing)

Matrices
r(wgts_dim_m) matrix of dimensional weights
r(wgts_dep_m) matrix of indicator weights

3.7 mpitb gafvars

mpitb gafvars generates variables of the AF framework. Specifically, it creates censored
and uncensored deprivation scores and creates binary variables identifying i) the poor
and ii) the poor and deprived in a particular indicator. The default is to generate only
the censored deprivation score and the binary poverty status indicator.

mpitb gafvars is intended for advanced users and programmers. Note that mpitb
est also provides a gen option to generate the underlying variables.

N. Suppa 637

3.7.1 Syntax

mpitb gafvars, indvars(varlist) indw(numlist) wgtsid(name)
{klist(numlist) | cvector}

[
indicator replace double

]
3.7.2 Options

indvars(varlist) specifies the underlying deprivation indicator variables. indvars() is
required.

indw(numlist) specifies the indicator weights. The number of weights must equal the
number of indicators, as provided by mpitb set. indw() is required.

wgtsid(name) sets a name for the weighting scheme, which will also be used in variable
names. wgtsid() is required.

klist(numlist) specifies the cutoffs for which the variables are to be generated. Either
klist() or cvector must be specified.

cvector generates a variable containing the (uncensored) deprivation score. Either
cvector or klist() must be specified.

indicator generates variables for indicator-specific quantities (for example, censored
headcount ratios).

replace replaces potentially existing variables.

double generates nonbyte variables as double; the default is float.

3.8 mpitb rframe

mpitb rframe prepares the result frames in which custom estimates may be stored and
is intended for advanced users and programmers who wish to store custom quantities
in separate result frames. Note that mpitb est may create result frames as well.

Result frames contain the variables needed for storing the core estimate, including
b, se, ll, ul, pval, and tval. Result frames also contain variables holding meta infor-
mation about content and context of an estimate, including wgts, measure, indicator,
k, subg, spec, loa, and ctype. Finally, result frames may have additional variables
depending on their type. There are three types of result frames:

1. Result frames for level estimates, which is the default.

2. Result frames for level estimates over time, which additionally includes a (integer)
time variable.

3. Result frames for estimates of COT. This frame type includes additional variables
describing the start and end point of the observation period underlying the change
estimate.

638 A toolbox for MPIs

3.8.1 Syntax

mpitb rframe, frame(name)
[
replace double t cot add(name) ts

]
3.8.2 Options

frame(name) specifies the name of the frame in which to store results. If the frame
already exists, it will be automatically replaced. frame() is required.

replace replaces a potentially existing frame.

double generates core variables of the estimate (for example, b and se) as type double.
The default is to generate float variables.

t prepares the results frame for harmonized-over-time levels. Specifically, the (integer)
time variable t is added to the results frame.

cot prepares the results frame for storing COT. Specifically, the variables t0, t1, yt0,
yt1, and ann are added to the results frame.

add(name) adds name as a value for the extra variable.

ts adds a timestamp for the underlying dataset and for the estimation time.

3.9 mpitb stores

mpitb stores stores results of an estimation into the results frame. Stored information
includes the core of an estimate (for example, point estimate and standard error) and
meta information describing content and context of the estimate (for example, measure,
indicator, and level of analysis). mpitb stores stores estimates of both levels and
changes.

mpitb stores is intended for advanced users and programmers who wish to add
results of a custom estimation to their results frame. Estimates of standard quantities
(for example, adjusted headcount ratio or intensity) are automatically stored by mpitb
est.

3.9.1 Syntax

mpitb stores, frame(name) loa(name) measure(name) spec(name)[
ctype(integer) k(numlist) indicator(name) wgts(name) tvar(varname)

t0(value) t1(value) yt0(year) yt1(year) ann(value) subg(numlist)
add(string) ts

]

N. Suppa 639

3.9.2 Options

frame(name) specifies the name of the frame where results are stored. frame() is
required.

loa(name) specifies the level of analysis to which the estimate refers. loa() is required.

measure(name) specifies the name of the measure to which the estimate refers.
measure() is required.

spec(name) specifies the name of the specification to which the estimate refers. spec()
is required.

ctype(integer) specifies the “change type” of the estimate to store. ctype() is 0 for
“levels”, 1 for “absolute changes”, and 2 for “relative changes”.

k(numlist) specifies the underlying poverty cutoff.

indicator(name) specifies the underlying indicator.

wgts(name) specifies the underlying weighting scheme.

tvar(varname) specifies the time variable, which identifies the different survey rounds
in the data. This option is needed if you wish to store level estimates over several
survey rounds (harmonized-over-time data). In particular, this option is not needed
to store estimates of COT.

t0(value) specifies the initial period of a change according to the integer time variable.

t1(value) specifies the final period of a change according to the integer time variable.

yt0(year) specifies the year of t0() and may contain decimal digits.

yt1(year) specifies the year of t1() and may contain decimal digits.

ann(value) specifies whether the change estimate to be stored is annualized (1) or not
(0).

subg(numlist) specifies the level of the subgroup variable.

add(string) adds string as a value for the extra variable specified by the add(name)
option of mpitb rframe.

ts adds timestamps for the underlying dataset and for the estimation time.

3.10 mpitb estcot

mpitb estcot is intended for advanced users and programmers who wish to add change
estimates of a custom quantity to their results frame. mpitb estcot estimates COT for
a single custom quantity. For a more comprehensive estimation of COT of standard
quantities, see mpitb est.

640 A toolbox for MPIs

Estimated changes may be absolute or relative and, moreover, annualized or raw.
Standard errors and confidence intervals are provided. Changes may also be estimated
by subgroups and, where data permit, for all consecutive years (that is, year-to-year
changes) and the total change (that is, from the first to the last period of observation).

mpitb estcot assumes that the levels over time have been previously estimated
using, for instance, mean . . ., over(t), where t is the time variable.

3.10.1 Syntax

mpitb estcot, frame(name) tvar(varname) year(varname) measure(name)
spec(name) {insequence | total}

[
subgvar(varname)

[
no
]
raw

[
no
]
ann

stores_options
]

3.10.2 Options

frame(name) specifies the name of the frame where to store results. Result frame may
be created using mpitb est or mpitb rframe. frame() is required.

tvar(varname) specifies the time variable, which identifies the different rounds of the
survey in the data. tvar() is required.

year(varname) specifies the variable used for the annualization, which is usually a year
variable where decimal digits are permitted. year() is required.

measure(name) specifies the name of measures for which changes are estimated. Es-
sential meta information must be stored with any estimate; measure() is required.

spec(name) specifies the name of the specification for which changes are estimated.
Essential meta information must be stored with any estimate; spec() is required.

insequence specifies to produce all consecutive (that is, year-to-year) changes. Either
insequence or total must be specified.

total specifies to produce the overall change, that is, from the first to the last period
of observation. Either total or insequence must be specified.

subgvar(varname) specifies the variable identifying the subgroups.[
no
]
raw produces or suppresses the raw (nonannualized) COT. raw is activated by

default. Specify noraw to skip the estimation of raw changes.[
no
]
ann produces or suppresses annualized COT. ann is activated by default. Specify

noann to skip the estimation of annualized changes.

stores_options are any other mpitb stores options.

N. Suppa 641

3.11 mpitb assoc

mpitb assoc calculates association measures for deprivation indicators. Currently sup-
ported are Cramér’s V and the redundancy measures R0. For further details and the
formula, see Alkire et al. (2015, chap. 7.3).

3.11.1 Syntax

mpitb assoc
[

if
] [

in
] [

weight
]
, {depind(varlist) | name(name)}

3.11.2 Options

depind(varlist) specifies the deprivation indicators for which the association measures
are to be calculated. Either depind() or name() must be specified.

name(name) specifies the name of an MPI specification from which to take the indica-
tors for the association measure calculation. Either name() or depind() must be
specified.

3.11.3 Stored results

mpitb assoc stores the following in r():

Macros
r(N) number of observations

Matrices
r(R0) redundancy measure
r(CV) Cramér’s V

r(hd) uncensored headcount ratios

4 Examples
This section provides examples for i) the basic one year for one country setting, ii) how to
avoid unneeded estimations, iii) how to add estimates for alternative weighting schemes
and indicator selections, iv) how to estimate both levels and COT where data permits,
and v) the basic setup for a cross-country analysis. The underlying datasets are shipped
with mpitb as ancillary files.

642 A toolbox for MPIs

Example 1: A single year for a single country

For the first examples, we use syn_cdta.dta, which is “cleaned” synthetic data pro-
viding already binary deprivation indicators and which follows the common household
survey structure. For the present example, we further restrict this dataset to its first
round.

. use syn_cdta if t == 1

. summarize
Variable Obs Mean Std. dev. Min Max

d_nutr 7,439 .2521844 .4342958 0 1
d_cm 7,500 .0629333 .2428592 0 1

d_satt 7,484 .3178781 .4656829 0 1
d_educ 7,500 .2993333 .4579966 0 1
d_elct 7,500 .3976 .4894346 0 1

d_sani 7,500 .2384 .4261334 0 1
d_wtr 7,500 .2737333 .4459035 0 1
d_hsg 7,500 .4177333 .4932186 0 1

d_ckfl 7,500 .1484 .3555197 0 1
d_asst 7,500 .2829333 .4504543 0 1

area 7,500 .5989333 .4901471 0 1
region 7,500 10.53347 5.808389 1 20
stratum 7,500 1055.853 580.8484 100 2005

psu 7,500 1055856 580848.3 100000 2005005
weight 7,500 1 0 1 1

year 7,500 2010 0 2010 2010
t 7,500 1 0 1 1

Specifically, this dataset contains ten deprivation indicators, two variables for which we
wish to disaggregate our MPI estimates (area, region), three variables providing infor-
mation about the underlying survey design (psu, weight, stratum), and two variables
providing information for each survey round (year, t).

MPIs are frequently estimated using household survey data. To account for their
complex survey design, it is convenient to rely on Stata’s suite of survey data commands;
see [SVY] svy and [SVY] svy estimation. For the present example, first use svyset
to specify the primary sampling unit, the strata, and the sampling weight for each
observation; see [SVY] svyset for details.

N. Suppa 643

. svyset psu [pw=weight], strata(stratum)
Sampling weights: weight

VCE: linearized
Single unit: missing

Strata 1: stratum
Sampling unit 1: psu

FPC 1: <zero>

For real-world data, the documentation of the respective dataset provides the rel-
evant information. Next we specify indicators similar to the global MPI, which are
organized in three dimensions (health, education, and living standards). We use mpitb
set to assign indicators to dimensions and to provide names both for dimensions (hl,
ed, ls) and for the entire specification (trial01).

. mpitb set, name(trial01) d1(d_cm d_nutr, name(hl)) d2(d_satt d_educ, name(ed))
> d3(d_elct d_wtr d_sani d_hsg d_ckfl d_asst, name(ls)) description(pref. spec)

Now assume the task is to estimate for the indicator selection trial01 all aggregate
(M0, H, and A) and indicator-specific measures (hd, hd(k), and absolute and percentage
contributions). Further, let the preferred weighting scheme be the equal-nested one—
that is, equal weights for all dimensions and equal indicator weights within dimensions—
and let k = 20%, 33%, and 50% be of particular interest. Finally, we wish to obtain
disaggregations by subnational regions and by area (that is, urban versus rural) and to
account for the complex survey design. Hence, we issue mpitb est as follows:

. mpitb est, name(trial01) measures(all) indmeasures(all) aux(hd) klist(20 33 50)
> weights(equal) svy lframe(myresults, replace) over(region area)

Specification
Name: trial01.
Weighting scheme: equal.
Description: pref. spec

Dimension 1: hl 0.3333 (d_cm d_nutr)
Dimension 2: ed 0.3333 (d_satt d_educ)
Dimension 3: ls 0.3333 (d_elct d_wtr d_sani d_hsg d_ckfl d_asst)

Indicator 1: d_cm 0.1667
Indicator 2: d_nutr 0.1667
Indicator 3: d_satt 0.1667
Indicator 4: d_educ 0.1667
Indicator 5: d_elct 0.0556
Indicator 6: d_wtr 0.0556
Indicator 7: d_sani 0.0556
Indicator 8: d_hsg 0.0556
Indicator 9: d_ckfl 0.0556
Indicator 10: d_asst 0.0556

No missing indicator was found.

644 A toolbox for MPIs

Estimation
accumulated estimates (levels): 19 (national main completed)
accumulated estimates (levels): 109 (national indicators completed)
accumulated estimates (levels): 489 (region completed)
accumulated estimates (levels): 2289 (region indicators completed)
accumulated estimates (levels): 2347 (area completed)
accumulated estimates (levels): 2527 (area indicators completed)
(note: frame myresults not found)

Result frames & files
Level frame (myresults): Estimates overview

Number of subgroups:
area: 2
region: 20

level of analysis
measure area nat region

A 6 3 60
H 6 3 60
M0 6 3 60

actb 60 30 600
hd 20 10 200

hdk 60 30 600
pctb 60 30 600
popsh 2 20

Number of parameters:
k: 3 (20 33 50)
wgts: 1 (equal)
spec: 1 (trial01)

mpitb est reports progress and results along three tabs. The first tab summarizes
the underlying specification including the indicators, dimensions, and weights. The
second tab shows the progress during the estimation procedures and details the numbers
of so-far-accumulated estimates. The final tab provides a summary of the produced
result frames or files, including the number of estimates, the type of measures estimated,
and the respective level of analysis.

N. Suppa 645

In the command above, we instructed mpitb est to store all results into a frame (see
[D] frames) by using the lframe() option. All produced result files or frames follow a
specific structure, which we now briefly explore.

. cwf myresults

. describe
Contains data
Observations: 2,529

Variables: 14

Variable Storage Display Value
name type format label Variable label

b float %5.4f point estimate
se float %5.4f standard error
ll float %5.4f CI lower bound
ul float %5.4f CI upper bound
pval float %4.2f p-value
tval float %4.2f t-value
loa str10 %10s level of analysis
measure str10 %10s measure
indicator str10 %10s indicator
spec str10 %10s name of specification
wgts str10 %10s weighting scheme
k float %9.0g poverty cutoff
ctype byte %8.0g ctype type of change
subg int %8.0g subgroup

Sorted by:
Note: Dataset has changed since last saved.

The key feature of this structure is that each observation represents an estimate.
The core of each estimate includes the point estimate and its standard error (variables
b and se), and the remaining meta variables specify the content for each estimate. See
Suppa (2022) for a further discussion and Suppa and Kanagaratnam (2023) for details
on the result files of the global MPI.

The result file may be conveniently explored using basic commands such as tab,
list, or tabdisp. For instance, to see which measures are available for each level of
analysis (loa), type

. tabulate measure loa
level of analysis

measure area nat region Total

A 6 3 60 69
H 6 3 60 69
M0 6 3 60 69

actb 60 30 600 690
hd 20 10 200 230
hdk 60 30 600 690

pctb 60 30 600 690
popsh 2 0 20 22

Total 220 109 2,200 2,529

646 A toolbox for MPIs

To directly inspect particular estimates and their standard errors, such as all aggre-
gate measures at the national level for the preferred poverty cutoff, type

. list measure b se if inlist(measure,"M0","H","A") & loa == "nat" & k == 33,
> noobs

measure b se

H 0.3352 0.0055
M0 0.1424 0.0025
A 0.4248 0.0019

Often, it is convenient to have a variable for each level of analysis. These may be
generated, for instance, as follows:

. recode subg (0=0 "rural") (1=1 "urban") if loa == "area", generate(area)
(0 differences between subg and area)
. label variable area area

If we were interested in comparing censored and uncensored headcount ratios be-
tween urban and rural areas, a quick tabdisp provides first insights.

. tabdisp indicator measure area if inlist(measure,"hd","hdk")
> & !mi(area) & inlist(k,33,.), cellvar(b)

area and measure
rural urban

indicator hd hdk hd hdk

d_asst 0.2795 0.1258 0.2856 0.1235
d_ckfl 0.1540 0.0732 0.1437 0.0624

d_cm 0.0681 0.0527 0.0595 0.0422
d_educ 0.2980 0.1872 0.3002 0.1895
d_elct 0.4007 0.1688 0.3954 0.1668
d_hsg 0.4044 0.1604 0.4273 0.1805
d_nutr 0.2416 0.1617 0.2595 0.1720
d_sani 0.2584 0.1134 0.2259 0.0943
d_satt 0.3208 0.2057 0.3148 0.1935
d_wtr 0.2728 0.1285 0.2744 0.1251

Note that tabdisp already allows construction of more-complex tables and even
more through the revised table command; see [R] table. However, in this example, we
will not cover proper labeling.

Example 2: Avoiding unnecessary estimations

In example 1, we stored the results in a frame. For examples 2 and 3, we will
collect all estimates in files in a dedicated folder, which we call results, before we later
combine them into a single file. This folder may be created using

. mkdir results

N. Suppa 647

For multidimensional poverty measures, varying parameters may quickly make the
numbers of estimates go through the roof. Having a clear sense of the priorities helps
to guide any such analysis. Therefore, mpitb allows the user to reduce the number of
estimates as needed.

For example, it is common to explore numbers for M0, H, and A at the aggregate
level for some 10 different values of the poverty cutoff over the entire domain of k, result-
ing in 30 estimates. Assuming an MPI with 10 deprivation indicators, the estimation of
three indicator-specific measures for these values of k would add another 300 estimates
at the aggregate level. For a country with 15 regions, another 1,500 estimates would
have to be added on the subnational level.

To purposefully reduce the number of estimates, mpitb allows the user to specify
different ranges of k for different layers of the analysis. By default, the range specified
through option klist() is applied to all measures and levels of analysis. However,
option indklist() allows specification of a separate range for the indicator-specific
measures, whereas the over() option accepts suboption klist() to restrict the range
of alternative parameters for disaggregations. Consider the following example, which
only differs in the mpitb est command:

. use syn_cdta if t == 1, clear

. svyset psu [pw=weight], strata(stratum)
(output omitted)

. mpitb set, name(trial01) description(preferred spec)
> d1(d_cm d_nutr, name(hl))
> d2(d_satt d_educ, name(ed))
> d3(d_elct d_wtr d_sani d_hsg d_ckfl d_asst, name(ls))
. mpitb est, name(trial01) measures(all) indmeas(all) aux(hd) svy
> klist(1 10 20 33 40 (10) 100) over(region area, klist(20 33 50) indklist(30))
> indklist(20 33 40) weight(equal) lsave(results/trial01, replace)

(output omitted)
. describe using results/trial01, short
Contains data
Observations: 1,232 13 Dec 2022 11:51

Variables: 14
Sorted by:

First, note that we now use the lsave() option to store the results immediately
to disk. Moreover, describe tells us that the use of indklist() and the over()
suboptions klist() and indklist() results in some 1,200 estimates instead of 8,600,
thereby saving estimation time and simplifying the subsequent analysis.1

1. More precisely, 3 aggregate and 3 indicator-specific measures for 10 indicators amount to 33 esti-
mates per k (11) and level of analysis (23: national, urban, rural, and 20 subnational regions). More-
over, 10 uncensored headcounts (which do not depend on k) may be added for each level of analysis
and 22 population shares may be added for all subgroups. All in all, (33×11+10)×23+22 = 8601
would have to be estimated.

648 A toolbox for MPIs

Example 3: Adding alternative weights and indicator selections

So far, our results feature only a single weighting scheme. The toolbox allows setting
alternative weights in different ways. To set custom dimensions-specific weights (with
equal weights within dimensions), say, 50% for health and 25% for the other two, use
the dimw(numlist) option as follows:

. mpitb est, name(trial01) measures(all) klist(33)
> weights(dimw(.5 .25 .25) name(health50))
> lsave(results/health50, replace) svy

(output omitted)
. mpitb est, name(trial01) measures(all) klist(33)
> weights(dimw(.25 .5 .25) name(educ50))
> lsave(results/educ50, replace) svy

(output omitted)
. mpitb est, name(trial01) measures(all) klist(33)
> weights(dimw(.25 .25 .5) name(livst50))
> lsave(results/livstd50, replace) svy

(output omitted)

As seen above, one may similarly specify the alternative weighting schemes educ50 and
livstd50.

Sometimes, one may wish to assign custom indicator weights (for example, equal
indicator weights). Option indw(numlist) allows this as follows:

. mpitb est, name(trial01) measures(all) klist(33)
> lsave(results/ind_equal, replace)
> weights(indw(.1 .1 .1 .1 .1 .1 .1 .1 .1 .1) name(ind_equal)) svy

(output omitted)

Finally, to consider alternative indicator choices, such as without the deprivation
indicator for electricity (d_elct), we first use mpitb set to set this specification, which
we call trial02, and we then estimate the desired quantities.

. mpitb set, name(trial02) d1(d_cm d_nutr, name(hl))
> d2(d_satt d_educ, name(ed))
> d3(d_wtr d_sani d_hsg d_ckfl d_asst, name(ls)) description(w/o electricity)
. mpitb est, name(trial02) measures(all) klist(33) weights(equal) svy
> lsave(results/trial02, replace)

(output omitted)

This approach allows us to conveniently analyze the effects of i) dropping or adding
single indicators, ii) alternative deprivation thresholds for one or more of the indicators,
and iii) radically different indicator selections.

In this example, all results have been saved into a particular file each time mpitb
est has been run. Often, it is convenient to assemble a single comprehensive result file.
One way to achieve this is to append (see [D] append) all files as explicitly specified by
a list. (For appending all files of a folder, see example 5.)

N. Suppa 649

. clear

. save results/results, replace emptyok
(dataset contains 0 observations)
(file results/results.dta not found)
file results/results.dta saved
. local flist trial01 trial02 health50 educ50 livstd50 ind_equal
. foreach f in `flist' {

2. append using results/`f', nolabel
3. }

. save results/results, replace
file results/results.dta saved

We now can explore our comprehensive results file as detailed above by using basic
Stata commands such as tab or list.

Example 4: Several years for a single country
This section will illustrate how to estimate both levels and COT for all measures.

Doing so requires repeated surveys for the same country, that is, at least repeated cross-
sectional data. A convenient way to organize such data is to have an identifier for each
survey round and to append the microdatasets. In the sample data syn_cdta.dta, the
time variable t may be 1 or 2. As before, we first load and svyset the data before we
specify our preferred indicators:

. use syn_cdta, clear

. svyset psu [pw=weight], strata(stratum)
(output omitted)

. mpitb set, name(trial01) description(preferred spec)
> d1(d_cm d_nutr, name(hl))
> d2(d_satt d_educ, name(ed))
> d3(d_elct d_wtr d_sani d_hsg d_ckfl d_asst, name(ls))

If we were just interested in the estimation of the levels for the above specified
measures in both years, we could simply add the tvar(t) option to the above mpitb est
commands. The toolbox, however, also offers direct estimation of COT. The following
command, for example, estimates not only the levels but also the COT for all specified
measures, parameters, and levels of analysis.

. mpitb est, name(trial01) measures(all) klist(1 33 50) weight(equal)
> lframe(myresults, replace) svy over(region)
> cotmeasures(M0 H A) cotframe(mycot, replace) tvar(t) cotyear(year)

(output omitted)

Note again that this command stores frames and not files. Moreover, a dedicated
frame for change estimates must be specified because required data structure for saving
change estimates somewhat differs. More specifically, a change estimate is character-
ized by two points of time (a beginning and an end point), contains an absolute or
relative change, and may be annualized (see also Suppa [2022] on this).2 The required
2. The mpitb stores option ann() instructs the toolbox to provide annualized in addition to raw

changes.

650 A toolbox for MPIs

information on the duration of the period of observation is obtained from the option
cotyear().

The level estimates are now stored in the frame myresults and may be conveniently
inspected using list. To see, for instance, aggregate estimates of the headcount ratio
for all k and t, proceed as follows:

. frame myresults : sort t k

. frame myresults : list measure wgts t k b se if
> measure == "H" & loa == "nat", noobs sepby(t)

measure wgts t k b se

H equal 1 1 0.9575 0.0024
H equal 1 33 0.3352 0.0055
H equal 1 50 0.0818 0.0032

H equal 2 1 0.9205 0.0030
H equal 2 33 0.2308 0.0047
H equal 2 50 0.0411 0.0023

The frame containing the results for COT may be explored in a similar fashion.

. frame mycot : list measure wgts ann t0 t1 k ctype b se if measure == "H"
> & loa == "nat" & ann == 0, noobs sepby(k)

measure wgts ann t0 t1 k ctype b se

H equal 0 1 2 1 abs -0.0370 0.0038
H equal 0 1 2 1 rel -3.8665 0.3960

H equal 0 1 2 33 abs -0.1044 0.0074
H equal 0 1 2 33 rel -31.1428 1.8322

H equal 0 1 2 50 abs -0.0407 0.0040
H equal 0 1 2 50 rel -49.7432 3.4710

Example 5: A single year for several countries

A cross-country analysis may benefit even more from a careful folder structure. All
cleaned microdatasets to be used in the estimation process are assumed to be stored
in a dedicated folder that contains nothing else. The present example features three
countries, and their datasets are stored in the folder cdta. Moreover, all outputs shall
be stored in the results folder.

. dir cdta, wide
syn_abc_cdta.dta syn_def_cdta.dta syn_ghi_cdta.dta

The first step is to compile the reference sheet, which will contain survey-constant
information, such as the survey name (for example, “DHS”), the year (for example,

N. Suppa 651

“2015–2016”), and the names of subnational regions. The reference sheet may be used
i) to control estimation and other production routines efficiently, ii) for easily merging
external data, and iii) to reduce the amount of information that estimates are passed
through the estimation routine. For more information on the reference sheet and its
role in the global MPI workflow, see Suppa (2022).

The tool mpitb refsh first extracts the relevant information from each microdataset
and then compiles this information into a single .dta file. mpitb refsh expects the
path where the microdata are located and an ID to distinguish different countries. By
default, the id(name) option expects the name of a variable but, if option char(clist)
is set, also accepts the name of a data characteristic. Data characteristics are more
efficient to store information that is constant for all observations in a given dataset; see
[P] char for more details on data characteristics. The datasets of this example carry
a data characteristic named ccty, which contains the ISO country code. Additionally,
these datasets also feature data characteristics such as survey and year.

. clear all

. mpitb refsh using results/refsh, clear id(ccty) sid(region) path(cdta)
> char(ccty ccnum survey year cty)

(output omitted)
. list ccty region region_name survey year fname in 1/5, noobs sepby(ccty)

ccty region region_name survey year fname

GHI . DHS 2015 syn_ghi_cdta

DEF 3 DEF - region 3 MICS 2018-2019 syn_def_cdta
DEF 8 DEF - region 8 MICS 2018-2019 syn_def_cdta
DEF 11 DEF - region 11 MICS 2018-2019 syn_def_cdta
DEF 15 DEF - region 15 MICS 2018-2019 syn_def_cdta

If issued without the sid() option, mpitb refsh would simply create a file with one
observation per country.

By default, mpitb refsh reports region codes (region) and names (region_name)
but also stores the filename (fname) and timestamps of the microdataset. Because
survey datasets of some countries may not allow disaggregation by regions, mpitb refsh
creates a single entry for countries for which the region variable only contains missing
values. Note, however, that this variable has to exist in the microdataset.

It is convenient to have the reference sheet in a frame immediately at hand.

. mkf rs

. frame rs: use results/refsh, clear
(GMPI reference sheet. Compiled on 13 Dec 2022)

652 A toolbox for MPIs

To perform an estimation across countries, first select the countries from the ref-
erence sheet by using mpitb ctyselect, which only expects the name of the variable
containing the country codes. By default, mpitb ctyselect returns all available coun-
tries, but one may choose specific subsets using manually specified country codes, world
regions, or regular expressions.

The following loop iterates over all the selected countries, first loading the micro-
data according to the filename in the reference sheet, then svysetting the data, then
specifying the indicators of the MPI, and finally estimating as desired.

. frame rs: mpitb ctyselect ccty
Note: 3 countries selected: ABC DEF GHI.
. foreach cty in `r(ctylist)' {

2. frame rs : qui levelsof fname if ccty == "`cty'", loc(fname) clean
3. use `"cdta/`fname'"', clear
4. svyset psu [pw=weight], strata(stratum) singleunit(centered)
5. mpitb set, name(mympi) d1(d_cm d_nutr, name(hl))

> d2(d_satt d_educ, name(ed))
> d3(d_elct d_wtr d_sani d_hsg d_ckfl d_asst, name(ls))

6. mpitb est, name(mympi) measures(all) klist(33) weight(equal)
> lsave(results/`cty'_results, replace) over(region)
> svy addmeta(ccty=`cty')

7. }
(output omitted)

In the cross-country context, it is convenient to store results country-wise in files,
by using the lsave() option. Moreover, the addmeta(metalist) option of mpitb est
allows storage of the country code for each estimate as a meta variable (ccty) into
the results file. To subsequently combine the country-specific files into a single result
file, one may simply append all files stored in a single folder and potentially satisfy a
particular filename pattern, as illustrated below.

. clear

. save results/results, replace emptyok
(dataset contains 0 observations)
file results/results.dta saved
. local flist : dir "results/" files "*_results.dta"
. foreach f in `flist' {

2. append using results/`f', nolabel
3. }

Finally, one may add region names as provided by the reference sheet to the results
file as follows:

. generate region = subg if loa == "region"
(9 missing values generated)
. frlink m:1 ccty region, frame(rs)

(6 observations in frame default unmatched)
. frget region_name, from(rs)
(9 missing values generated)

(1 variable copied from linked frame)
. save results/results, replace
file results/results.dta saved

N. Suppa 653

Depending on the scale and the specific features of a particular project, it may be
preferable to have both a results_raw.dta that contains only the appended data and
a separate, more polished results.dta that additionally contains all the labeling as
needed for the analysis or deliverable production.

Having a comprehensive cross-country results file allows the user to easily explore
a wealth of data. For example, how do all three countries perform in key measures for
the preferred parameterization?

. tabdisp ccty measure if loa == "nat" & inlist(k,33,.), cellvar(b)

measure
ccty A H M0

ABC 0.4248 0.3352 0.1424
DEF 0.4070 0.2308 0.0940
GHI 0.4070 0.2308 0.0940

Drawing on the labeling information collected by mpitb refsh also provides more
informative analyses of subnational regions.

. tabdisp region_name measure if loa == "region" & inlist(k,33,.)
> & ccty == "ABC", cellvar(b) left

measure
name in c-data A H M0 popsh

ABC - region 1 0.4264 0.3654 0.1558 0.0545
ABC - region 10 0.4337 0.3764 0.1632 0.0479
ABC - region 11 0.4359 0.3079 0.1342 0.0511
ABC - region 12 0.4187 0.3235 0.1355 0.0503
ABC - region 13 0.4226 0.3103 0.1312 0.0507
ABC - region 14 0.4253 0.3536 0.1504 0.0487
ABC - region 15 0.4289 0.3198 0.1372 0.0496
ABC - region 16 0.4160 0.3362 0.1398 0.0468
ABC - region 17 0.4211 0.3190 0.1343 0.0531
ABC - region 18 0.4261 0.2882 0.1228 0.0537
ABC - region 19 0.4125 0.3631 0.1498 0.0496
ABC - region 2 0.4314 0.3162 0.1364 0.0472
ABC - region 20 0.4255 0.3256 0.1385 0.0521
ABC - region 3 0.4299 0.3500 0.1505 0.0484
ABC - region 4 0.4367 0.3010 0.1315 0.0514
ABC - region 5 0.4223 0.3432 0.1449 0.0502
ABC - region 6 0.4261 0.3664 0.1561 0.0488
ABC - region 7 0.4178 0.3220 0.1345 0.0514
ABC - region 8 0.4176 0.3380 0.1411 0.0486
ABC - region 9 0.4240 0.3900 0.1654 0.0459

654 A toolbox for MPIs

5 Conclusions
mpitb seeks to facilitate the work of both academics and practitioners of multidimen-
sional poverty measurement. Because the toolbox has been developed in the context of
the global MPI, it is also tailored to its needs, whether in terms of the underlying data,
the quantities produced out of the box, or the related forms of analysis. Multidimen-
sional poverty measurement and analysis is, however, an active field of research, where
new measures, analyses, and other methodological innovations are still proposed and
discussed. mpitb may already be useful for such endeavors and take some load off of
researchers working these topics.

The very nature of mpitb as a toolbox seeks to allow for further features, novel
analyses, and additional tools being added in the future. One natural extension is to
implement the estimation of other poverty indices proposed in the literature (for exam-
ple, Bourguignon and Chakravarty [2003] and Bossert, Chakravarty, and D’Ambrosio
[2013], among many others); see Alkire et al. (2015) and Aaberge and Brandolini (2015)
for a discussion of some of them. Likewise, adding support for novel complementary
measures within the AF framework, for example, for the analysis of inequality among
the poor (Alkire and Foster 2019) seems natural. Extensions along these lines may be
implemented directly into mpitb est.

Other types of analyses, however, may require one or more tools on their own, such as
a panel-data-based analysis within the AF framework (for example, Alkire et al. [2017a],
Suppa [2018]). Standalone tools may also be needed for the analysis of pairwise robust
comparisons, which examines country orderings in terms of their poverty indices (Alkire
and Santos 2014; Alkire et al. 2022a), or the recently proposed modeling framework for
computing projections of multidimensional poverty (Alkire et al. Forthcoming).

Aside from the implementation of genuine methodological innovations, one may also
consider convenience tools, which, for instance, help to compare different measures
using specific tabulations or visualizations during the trial stage. Future developments,
however, depend on many factors, including user needs, further progress in research,
and available resources.

6 Acknowledgments
Because this toolbox was developed in the context of several releases of the global MPI
since 2018, its development benefited from many helpful discussions with the wider
OPHI team, ranging from specific aspects of the estimation to user needs. Code, doc-
umentation, or article benefited in particular from comments made by Jakob Dirksen,
Stephen Jenkins, Ricardo Nogales, and an anonymous reviewer for the Stata Journal.
Finally, countless discussions with Usha Kanagaratnam, who is leading the global MPI
since 2018, have been essential for both identifying the overall workflow and packaging
parts of the code into this toolbox. The author also gratefully acknowledges funding
from the ”la Caixa” foundation (LCF/PR/SR20/52550004).

N. Suppa 655

7 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 23-3

. net install st0723 (to install program files, if available)

. net get st0723 (to install ancillary files, if available)

mpitb is developed on gitlab (https: // gitlab.com/nsuppa /mpitb) and published
under the MIT license. Experienced problems and feature requests may be reported
using the issue tracker.

8 References
Aaberge, R., and A. Brandolini. 2015. Multidimensional poverty and inequality. In
Vol. 2 of Handbook of Income Distribution, ed. A. B. Atkinson and F. Bourguignon,
141–216. Amsterdam: North-Holland. https: // doi.org / 10.1016 /B978-0-444-59428-
0.00004-7.

Abdelkrim, A., and J.-Y. Duclos. 2007. DASP: Distributive analysis Stata package.
http://dasp.ecn.ulaval.ca/.

Alkire, S., M. Apablaza, S. R. Chakravarty, and G. Yalonetzky. 2017a. Measuring
chronic multidimensional poverty. Journal of Policy Modeling 39: 983–1006. https:
//doi.org/10.1016/j.jpolmod.2017.05.020.

Alkire, S., and J. Foster. 2011. Counting and multidimensional poverty measurement.
Journal of Public Economics 95: 476–487. https://doi.org/10.1016/ j.jpubeco.2010.
11.006.

. 2019. The role of inequality in poverty measurement. OPHI Working Paper 126,
University of Oxford. https://www.ophi.org.uk/wp-content/uploads/OPHIWP126_
2.pdf.

Alkire, S., J. Foster, S. Seth, M. Santos, J. Roche, and P. Ballión. 2015. Multidi-
mensional Poverty Measurement and Analysis. Oxford: Oxford University Press.
https://doi.org/10.1093/acprof:oso/9780199689491.001.0001.

Alkire, S., U. Kanagaratnam, R. Nogales, and N. Suppa. 2022a. Revising the global
multidimensional poverty index: Empirical insights and robustness. Review of Income
and Wealth 68: S347–S384. https://doi.org/10.1111/roiw.12573.

Alkire, S., U. Kanagaratnam, and N. Suppan. 2022b. The Global Multidimensional
Poverty Index (MPI) 2022 country results and methodological note. OPHI Methodolog-
ical Note 52, University of Oxford. https://ophi.org.uk/mpi-methodological-note-52/.

Alkire, S., R. Nogales, N. N. Quinn, and N. Suppa. 2021. Global multidimensional
poverty and COVID-19: A decade of progress at risk? Social Science and Medicine
291: 114457. https://doi.org/10.1016/j.socscimed.2021.114457.

https://gitlab.com/nsuppa/mpitb
https://doi.org/10.1016/B978-0-444-59428-0.00004-7
https://doi.org/10.1016/B978-0-444-59428-0.00004-7
http://dasp.ecn.ulaval.ca/
https://doi.org/10.1016/j.jpolmod.2017.05.020
https://doi.org/10.1016/j.jpolmod.2017.05.020
https://doi.org/10.1016/j.jpubeco.2010.11.006
https://doi.org/10.1016/j.jpubeco.2010.11.006
https://www.ophi.org.uk/wp-content/uploads/OPHIWP126_2.pdf
https://www.ophi.org.uk/wp-content/uploads/OPHIWP126_2.pdf
https://doi.org/10.1093/acprof:oso/9780199689491.001.0001
https://doi.org/10.1111/roiw.12573
https://ophi.org.uk/mpi-methodological-note-52/
https://doi.org/10.1016/j.socscimed.2021.114457

656 A toolbox for MPIs

. Forthcoming. On track or not? Projecting the Global Multidimensional Poverty
Index. Journal of Development Economics. https://doi.org/10.1016/j.jdeveco.2023.
103150.

Alkire, S., J. M. Roche, and A. Vaz. 2017b. Changes over time in multidimensional
poverty: Methodology and results for 34 countries. World Development 94: 232–249.
https://doi.org/10.1016/j.worlddev.2017.01.011.

Alkire, S., and M. E. Santos. 2014. Measuring acute poverty in the developing world:
Robustness and scope of the multidimensional poverty index. World Development 59:
251–274. https://doi.org/10.1016/j.worlddev.2014.01.026.

Bossert, W., S. R. Chakravarty, and C. D’Ambrosio. 2013. Multidimensional poverty
and material deprivation with discrete data. Review of Income and Wealth 59: 29–43.
https://doi.org/10.1111/j.1475-4991.2012.00519.x.

Bourguignon, F., and S. Chakravarty. 2003. The measurement of multidimensional
poverty. Journal of Economic Inequality 1: 25–49. https: // doi.org / 10.1023 / A:
1023913831342.

Jindra, C., and A. Vaz. 2019. Good governance and multidimensional poverty: A
comparative analysis of 71 countries. Governance 32: 657–675. https://doi.org/10.
1111/gove.12394.

Pacifico, D., and F. Poege. 2017. Estimating measures of multidimensional poverty with
Stata. Stata Journal 17: 687–703. https://doi.org/10.1177/1536867X1701700309.

Suppa, N. 2018. Transitions in poverty and its deprivations. An analysis of mul-
tidimensional poverty dynamics. Social Choice and Welfare 51: 235–258. https:
//doi.org/10.1007/s00355-018-1114-8.

. 2022. The production process of the Global MPI. Mimeo, Oxford Poverty and
Human Development Initiative (OPHI), University of Oxford.

Suppa, N., and U. Kanagaratnam. 2023. The Global Multidimensional Poverty Index:
Harmonised level estimates and their changes over time. OPHI Research in Progress,
Oxford Poverty and Human Development Initiative (OPHI).

UNDP-OPHI. 2021. Global Multidimensional Poverty Index 2021: Unmasking disparities
by Ethnicity, Caste and Gender. Special publication, United Nations Development
Programme (UNDP) and Oxford Poverty and Human Development Initiative (OPHI).
https: // ophi.org.uk / wp-content / uploads / UNDP_OPHI_GMPI_2021_Report_
Unmasking.pdf.

https://doi.org/10.1016/j.jdeveco.2023.103150
https://doi.org/10.1016/j.jdeveco.2023.103150
https://doi.org/10.1016/j.worlddev.2017.01.011
https://doi.org/10.1016/j.worlddev.2014.01.026
https://doi.org/10.1111/j.1475-4991.2012.00519.x
https://doi.org/10.1023/A:1023913831342
https://doi.org/10.1023/A:1023913831342
https://doi.org/10.1111/gove.12394
https://doi.org/10.1111/gove.12394
https://doi.org/10.1177/1536867X1701700309
https://doi.org/10.1007/s00355-018-1114-8
https://doi.org/10.1007/s00355-018-1114-8
https://ophi.org.uk/wp-content/uploads/UNDP_OPHI_GMPI_2021_Report_Unmasking.pdf
https://ophi.org.uk/wp-content/uploads/UNDP_OPHI_GMPI_2021_Report_Unmasking.pdf

N. Suppa 657

About the author

Nicolai Suppa is a postdoctoral researcher at the Centre for Demographic Studies, a CERCA
research center (Generalitat de Catalunya) at the Autonomous University of Barcelona. He
is also Research Associate with the Oxford Human Development Initiative (OPHI) at the
University of Oxford, a member of EQUALITAS, and Fellow at the Global Labor Organization.
His research interests include measurement and analysis of multidimensional poverty, subjective
well-being, the capability approach, unemployment, and applied econometrics.

