
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

The Stata Journal (2023)
23, Number 3, pp. 799–812 DOI: 10.1177/1536867X231196349

Estimating text regressions using txtreg_train

Carlo Schwarz
Bocconi University

Milano, Italy
carlo.schwarz@unibocconi.it

Abstract. In this article, I introduce new commands to estimate text regres-
sions for continuous, binary, and categorical variables based on text strings. The
command txtreg_train automatically handles text cleaning, tokenization, model
training, and cross-validation for lasso, ridge, elastic-net, and regularized logis-
tic regressions. The txtreg_predict command obtains the predictions from the
trained text regression model. Furthermore, the txtreg_analyze command facil-
itates the analysis of the coefficients of the text regression model. Together, these
commands provide a convenient toolbox for researchers to train text regressions.
They also allow sharing of pretrained text regression models with other researchers.

Keywords: dm0112, txtreg_train, txtreg_predict, txtreg_analyze, text regres-
sions, machine learning, text analysis

1 Introduction
In recent years, natural language processing (NLP) has risen to increased prominence
in the social sciences. This rise was driven not only by increases in computing power
and data availability but also by the enormous amount of previously unaccessible infor-
mation that is contained in text form. A widely used approach in NLP is so-called text
regressions (see Gentzkow, Kelly, and Taddy [2019] for a discussion of articles). Text
regressions use the words in texts as predictors (X) for an outcome (y). The great flex-
ibility of this approach comes from its applicability to any form of text data and allows
for the automatic prediction of outcome variables. Text regressions are also often used
to impute variables in new datasets. For example, it is possible to hand code a subset
of data and then extend the coding to the entire dataset. Alternatively, text regressions
can learn relationships between an outcome and text in one dataset and create a new
outcome variable for other data for which this information is lacking.

In this article, I introduce three commands for text regressions. First, txtreg_train
trains text regression models and then stores them for later use or for sharing with
other researchers. Second, the txtreg_predict command predicts outcomes based on
pretrained models. Last, txtreg_analyze facilitates the analysis of the coefficients of
the text regression model. This enables the investigation of relationships between words
and the outcome variable that the text regression has derived.

In this way, the commands extend the NLP capabilities of Stata. Among others,
Stata already can calculate the Levenshtein distance (Barker and Pöge 2012), per-
form latent Dirichlet allocation (Schwarz 2018), and perform latent semantic analysis
(Schwarz 2019). The closest related commands are the txttool command by Williams

© 2023 StataCorp LLC dm0112

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X231196349&domain=pdf&date_stamp=2023-09-22

800 Text regressions

and Williams (2014) and the ngram command by Schonlau, Guenther, and Sucholutsky
(2017), both of which can tokenize text for use in statistical analysis. The presented
commands provide at least three advantages. First, they utilize Stata’s Python integra-
tion, which was introduced in Stata 16 and enables the use of highly optimized Python
packages.1 Second, the commands provide an integrated pipeline that should be suit-
able for the most frequent uses of text regressions. Last and most importantly, the
commands provide an easy way to store trained text regression models. Because the
extrapolation of outcome variables beyond the training data is one of the most frequent
uses of text regressions, this opens up new applications. The stored text regression
models can also be shared with other researchers without sharing the underlying raw
data.

The rest of the article proceeds as follows. Section 2 provides a short introduction
to text regressions. Section 3 describes the commands. Section 4 illustrates the use of
text regressions for the prediction of citations. Section 5 concludes.

2 Predicting numerical variables using text
Consider a setting in which a researcher wants to predict a dependent variable (y) based
on information contained in a string variable. Text regressions approach this problem
by using the words in the text strings as the predictor variables (X). More specifically,
text regressions minimize the mean squared deviation from a dependent variable y based
on the observations i ∈ N ,

min
βj∈RV

1

N

N∑
i=1

yi −
V∑

j=1

βj × wi,j

2

(1)

where wi,j are the individual text features and βj are the regression coefficients of the
text regression. The text features are constructed from the text string by creating a
bag-of-words representation, which represents the text as a document-n-gram-matrix
W. The term “n-grams” refers to continuous sequences of n-words from the original
text string, where n indicates the length of the sequence. Hence, 1-grams (unigrams)
are simply the sets of words that appear in the text. Similarly, 2-grams (bigrams) and
3-grams (trigrams) are the sets of two- and three-word phrases that appear in the text.
The dimensions of the matrix W are N ×V , where N is the number of observations and
V is the size of the vocabulary (that is, the number of unique n-grams). The entries
wi,v in W represent the number of times an n-gram v ∈ V appears in observation i ∈ N :

1. Because the commands use Stata’s Python integration, they require at least Stata 16 to run. The
commands further require a working Python installation. A Python installation that includes the re-
quired packages is, for example, Anaconda. In particular, the commands rely on the Numpy v1.21.5,
Scikit v1.0.2 (Pedregosa et al. 2011), Pandas v1.4.4 (The Pandas Development Team 2020), and
NLTK v1.21.5 (Bird, Klein, and Loper 2009) packages.

https://www.anaconda.com/products/individual

C. Schwarz 801

W︸︷︷︸
N×V

=

w1,1 · · · w1,V

...
. . .

...
wN,1 · · · wN,V


Because the matrix W will form the main input for the text regression, it is important to
decide which n-grams should be included in the matrix. The following three steps have
become standard in text regressions. First, very frequent words (stopwords) that add
little to the meaning of texts (for example, “I”, “he”, or “and”) are removed upfront. Fre-
quently, thresholds are also used for the minimum and maximum numbers of occurrences
of n-grams across different observations. Second, words are reduced to their morphologi-
cal roots using a process called stemming. For example, stemming will change “walking”
and “walked” to “walk” so that these words represent the same unigram. Last, the ma-
trix W is often reweighted using term frequency-inverse document frequency (tf–idf),
which replaces wi,v by tf–idf(wi,v) = {1+ log(wi,v)}× [log{(1+N)/(1+nv)}+1], where
nv is the number of observations in which the n-gram v appears. The tf–idf reweight-
ing reduces the weights of n-grams that appear in many observations and therefore
contribute less to the meaning of texts.

While we could estimate a text regression using (1), it should be apparent that
the dimensions of matrix W can become very large because of the growing size of the
vocabulary, particularly when trigrams are used. It is also common that V > N ,
which makes it impossible to estimate an ordinary least-squares regression. Even in
cases where V < N , it might not be advisable to estimate an ordinary least-squares
regression, because the regression might fit idiosyncratic features of the training data.
To overcome these limitations, the machine learning literature uses regularization and k-
fold cross-validation (see Hastie, Tibshirani, and Friedman [2009] for additional details).
Regularization implies the inclusion of an additional term in the cost function C [see (1)],
which incorporates a penalty for the size of the coefficients βj . The most frequently used
regularized regression models and their respective penalties are lasso (λ

∑V
j=1 |βj |), ridge

(λ
∑V

j=1 β
2
j), and elastic net (λ1

∑V
j=1 |βj |+ λ2

∑V
j=1 β

2
j). The user-chosen parameters

λi specify the strength of regularization.2 The optimal regularization strength, in turn,
is chosen using k-fold cross-validation. This process involves randomly splitting the data
into k slices. The model is then trained on k − 1 slices, and the model’s performance
is evaluated on the remaining data slice, for example, the model’s R2. The model with
the best out-of-sample performance determines the optimal regularization strength. In
other words, the regularization strength is chosen such that the text regression model
best explains the variation in unseen data.

2. When the dependent variable y is binary or categorical, it is similarly possible to include regular-
ization terms in logistic or multinomial logistic regression models.

802 Text regressions

3 Implementation
This section describes how the txtreg_train, txtreg_predict, and txtreg_analyze
commands automate the training of text regressions in Stata. If no pretrained model is
used, the user should start with the txtreg_train command.

3.1 Training of text regression using txtreg_train

The txtreg_train command handles the training of text regression models. The user
needs to specify the dependent variable and the predictor variable. The dependent
variable can be continuous, binary, or categorical, while the predictor variable should
always be a string variable. The rest of the training process is automatically handled
by the command. In particular, the command performs the following steps:

1. The command cleans the text and creates the document-n-gram-matrix. If speci-
fied, the command will remove stopwords, stem the text, and use tf–idf reweight-
ing.

2. Afterward, the data are split into a training sample (90%) and a test sample
(10%).

3. The text regression model is trained on the training sample, and the optimal
regularization strength is chosen using 10-fold cross-validation.

4. The command reports the optimal regularization strength and the out-of-sample
performance of the text regression based on the test sample.

The provided options control the text preparation process and the training of the model.

3.1.1 Syntax

txtreg_train depvar stringvar using filename
[
, model(string)

regularization(string) regu_range(string) seed(integer) tfidf stem

stem_lang(string) stopwords(string) ngrams(integer) min_freq(integer)
max_freq(real) max_voc(integer)

]
using filename specifies the path and the name for storing the trained text regression
model. If using is not specified, a file called txtreg_model.pkl will be generated in
the current working directory.

3.1.2 Options

model(string) specifies whether a least-squares or a logistic regression will be used to
train the model. Least-squares regression is used by specifying reg. To use logistic

C. Schwarz 803

regression, specify logit. By default, a least-squares regression will be used. The
command will automatically train a multinomial logistic model if the dependent
variable is categorical and logit is specified.

regularization(string) specifies which form of regularization should be used. The
options are lasso, ridge, or elasticnet. The default is regularization(ridge).

regu_range(string) specifies which values of the regularization parameter will be tested
in the 10-fold cross-validation. The string should give the start and end values sep-
arated by a comma. The default is regu_range("0.1,1") so that values between
0.1 and 1 in steps of 0.1 are used. In least-squares regressions, larger values im-
ply stronger regularization. For logistic regression, smaller values imply stronger
regularization.3

seed(integer) specifies the seed for the random-number generator, which, among oth-
ers, determines the splits for the cross-validation. By default, the random-number
generator starts from its previous state.

3.1.3 Text cleaning options

tfidf specifies whether tf–idf should be used. If so, the document-n-gram-matrix is
reweighted by tf–idf before training the text regression model.

stem specifies whether the words should be stemmed before fitting the text regres-
sion model. This will reduce the words to their morphological roots (for example,
“walked” to “walk”). The stemming implementation relies on Python’s NLTK pack-
age (Bird, Klein, and Loper 2009).

stem_lang(string) specifies the language of the text strings so that the appropriate
stemmer can be used. For a list of supported languages, see the NLTK website.4 The
default language is stem_lang("english"). This option is needed only if stem is
used.

stopwords(string) specifies a list of words to exclude from the text regression. Usually,
highly frequent words such as “I” and “you” are removed from the text because these
words do not help with the classification of the documents. Predefined stopword lists
for different languages are available online (see https: // code.google.com/archive/
p/stop-words/).

ngrams(integer) specifies which order of n-grams should be included in the text regres-
sion. For example, specifying ngrams(2) implies the use of unigrams and bigrams.
ngrams(3) additionally uses trigrams. By default, only unigrams are used.

3. In the case of elastic-net regularization, the two λ parameters are set jointly through the use of a
mixing parameter. The mixing parameter of lasso to ridge regularization is set to 0.5, such that
the elastic-net penalty will be 0.5× λ

∑V
j=1 |βj |+ 0.5× λ

∑V
j=1 β

2
j .

4. https://www.nltk.org/_modules/nltk/stem/snowball.html

https://code.google.com/archive/p/stop-words/
https://code.google.com/archive/p/stop-words/
https://www.nltk.org/_modules/nltk/stem/snowball.html

804 Text regressions

min_freq(integer) allows the removal of words that appear in few documents. Words
that appear in fewer documents than integer will be excluded from the text regres-
sion. The default is min_freq(0).

max_freq(real) allows the removal of words that appear frequently in documents.
Words that appear in more than a proportion of real ∈ [0, 1] of the documents.
The default is max_freq(1).

max_voc(integer) specifies the maximum number of n-grams to be included in the text
regression. By default, the vocabulary will not be restricted.

3.1.4 Output

The txtreg_train command generates a new file containing the trained text regression
model. The filename and path are specified in using. If using is not specified, a file
called txtreg_model.pkl will be generated in the current working directory.

3.2 Making use of trained text regression models with txtreg_predict

After one either trains a text regression model using txtreg_train or obtains a pre-
trained text regression model, one can use the txtreg_predict command to predict
the outcome variable. For the prediction of the outcome, txtreg_predict uses text
strings as the predictor variable. The advantage of this separation between the training
and prediction processes is that it is possible to 1) apply the predicted citation model
to a dataset different from the training data and 2) share the trained model with other
researchers. The syntax of txtreg_predict is shown below.

3.2.1 Syntax

txtreg_predict indepvar using filename
[
, name_new_var(string) stem

stem_lang(string)
]

using filename specifies the location and the name of the pretrained text regression
model.

3.2.2 Options

name_new_var(string) specifies the name of the variable created by txtreg_predict.
The user should ensure that name_new_var() is not yet used in the dataset. The
default is name_new_var("predict_").

stem specifies whether the words should be stemmed before estimation of the text re-
gression model. This will reduce the words to their morphological roots (for example,
“walked” to “walk”). The option should be specified if the pretrained text regression
model uses stemming.

C. Schwarz 805

stem_lang(string) specifies the language of the text strings. For a list of supported
languages, see https://www.nltk.org/_modules/nltk/stem/snowball.html.

3.2.3 Output

txtreg_predict creates a new variable with the name specified by name_new_var()
containing the predictions from the text regression model.

3.3 Analyzing text regression with txtreg_analyze

When one uses text regressions, it is important to ensure that the derived relationships
between n-grams and the outcome are sensible. This can be achieved by analyzing the
coefficients of the text regression model. This is facilitated by the txtreg_analyze
command. The syntax is shown below.

3.3.1 Syntax

txtreg_analyze using filename

using filename specifies the location and the name of the pretrained text regression
model.

3.3.2 Output

txtreg_analyze replaces the dataset that is currently in memory. The new dataset
contains the n-grams and the estimated coefficients from the text regression.

4 Example: Predicting citations based on article titles
This section provides an example of the use of text regressions for the prediction of cita-
tions of scientific articles. This example is motivated by Iaria, Schwarz, and Waldinger
(2022), who use predicted citations to control for observable differences between male-
and female-authored scientific articles to measure gender gaps in citations. First, the
authors train a text regression model based on the titles and the citations of articles
written by men. Second, they create a measure of predicted citations for all articles,
that is, how many citations we would expect an article to receive based on its title if
it was written by a man. Finally, this predicted citation measure is used to control for
differences in citations between male- and female-authored articles that occur because
of the fact that women potentially work on different topics.

https://www.nltk.org/_modules/nltk/stem/snowball.html

806 Text regressions

4.1 Model training

The example dataset consists of 100,000 observations. Each observation represents one
scientific article with its title and the number of citations. First, the data are loaded, and
the citation variable is transformed in two different ways (log and binary). Afterward,
the txtreg_train command is called. The example shows the use of txtreg_train to
train least-squares and logistic regressions with different regularization terms.

. **

. **#* 1) Load data

. **

. use wos_all_cite_prediction_example

. * generate log citations for regression

. generate WOS_TOTAL_ln = ln(1+WOS_TOTAL)

. * generate dummy for logit

. generate WOS_TOTAL_d = WOS_TOTAL>0

. * define list of stopwords

. global stopwords "a able about across after all almost also am among an and
> any are as at be because been but by can cannot could dear did do does either
> else ever every for from get got had has have he her hers him his how however
> i if in into is it its just least let like likely may me might most must my
> neither no nor not of off often on only or other our own rather said say says
> she should since so some than that the their them then there these they this
> tis to too twas us wants was we were what when where which while who whom
> why will with would yet you your"
. **
. **#* 2) Train text regression using txtreg_train
. **
. **#* 2a)
. txtreg_train WOS_TOTAL_ln title using "./models/predicted_citation_lasso.pkl",
> model("reg") regularization("lasso") regu_range(0.00005,0.0001) ngrams(2)
> seed(1502) tfidf stem stem_lang("english") stopwords("$stopwords")
> min_freq(3) max_freq(0.3) max_voc(5000)
Step 1/4 :Loading Data from Stata
Stemming text
Step 2/4 :Tokenizing Data
Tfidf is used
Step 3/4 :Training Model (This may take some time)
Score Fold 0 (Regularization=0.000050): 0.120290
Score Fold 1 (Regularization=0.000056): 0.132191
Score Fold 2 (Regularization=0.000061): 0.109037
Score Fold 3 (Regularization=0.000067): 0.117784
Score Fold 4 (Regularization=0.000072): 0.123905
Score Fold 5 (Regularization=0.000078): 0.119950
Score Fold 6 (Regularization=0.000083): 0.109066
Score Fold 7 (Regularization=0.000089): 0.113498
Score Fold 8 (Regularization=0.000094): 0.122939
Score Fold 9 (Regularization=0.000100): 0.117839

C. Schwarz 807

*************** Model Parameters ****************

Parameters of tokenizer:
TfidfVectorizer(max_df=0.3, max_features=5000, min_df=3, ngram_range=(1, 2),

stop_words={'a', 'able', 'about', 'across', 'after', 'all',
'almost', 'also', 'am', 'among', 'an', 'and', 'any',
'are', 'as', 'at', 'be', 'because', 'been', 'but',
'by', 'can', 'cannot', 'could', 'dear', 'did', 'do',
'does', 'either', 'else', ...},

sublinear_tf=True)

Dimensions of document-n-gram-matrix:
(100000, 5000)

Parameters of trained model:
Lasso(alpha=5.555555555555556e-05, random_state=5057)

Chosen regularization strength:
5.555555555555556e-05
Model Score: 0.122109

Step 4/4 :Saving Model
. **#* 2b)
. txtreg_train WOS_TOTAL_ln title using "./models/predicted_citation_ridge.pkl",
> model("reg") regularization("ridge") regu_range(0.5,2) ngrams(2) seed(5184)
> tfidf stem stem_lang("english") stopwords("$stopwords") min_freq(3)
> max_freq(0.3) max_voc(5000)

(output omitted)
. **#* 2c)
. txtreg_train WOS_TOTAL_ln title using
> "./models/predicted_citation_elasticnet.pkl",
> model("reg") regularization("elasticnet") regu_range(0.00005,0.0001)
> ngrams(2) seed(7469) tfidf stem stem_lang("english") stopwords("$stopwords")
> min_freq(3) max_freq(0.3) max_voc(5000)

(output omitted)
. **#* 2d)
. txtreg_train WOS_TOTAL_d title using
> "./models/predicted_citation_logit_ridge.pkl",
> model("logit") regularization("ridge") regu_range(1,10) ngrams(2)
> seed(2134) tfidf stem stem_lang("english") stopwords("$stopwords") min_freq(3)
> max_freq(0.3) max_voc(5000)

(output omitted)

During the training process, txtreg_train reports the individual steps that were
performed. In the first step, the data are loaded from Stata, and the command reports
whether the text strings are stemmed. The second step involves the creation of the
document-n-gram-matrix. In each case, unigrams and bigrams are extracted from the
text after the removal of stopwords and stemming.5 Furthermore, the document-n-
gram-matrix is reweighted using tf–idf. In this way, txtreg_train automatically han-
dles the preparation of the titles for the machine learning.

5. To speed up the model training, I restricted the vocabulary to the 5,000 most frequent n-grams.

808 Text regressions

In step 3, txtreg_train reports the regularization strength that is used to train
each fold and the resulting out-of-sample performance. If least-squares regressions are
used, the performance score is the out-of-sample R2 of the text regression. In the case
of logistic regressions, the out-of-sample F1-score is reported. At the end of the model
training, the command reports the parameters of the vectorizer, which generates the
document-n-gram-matrix and the parameters of the final model, including the chosen
regularization strength and the out-of-sample performance score. For logistic regres-
sions, the command also reports the confusion matrix (a matrix showing the actual
versus predicted outcomes). In the last step, the model is then saved in the specified
location.

4.2 Making use of pretrained models

To show the potential of the txtreg_train, txtreg_predict, and txtreg_analyze
commands for data sharing, I provide a text regression model that was pretrained on
over 24 million articles in the fields of medicine, biology, physics, math, and chemistry
for the years 1900–2010 based on the ISI Web of Science using a ridge regression. I use
the following line of code:6

. txtreg_train WOS_TOTAL_ln title using "./models/predicted_citation_all.pkl",
> model("reg") regularization("ridge") regu_range("0.1,100") ngrams(2)
> seed(1502) tfidf stem stem_lang("english") stopwords("$stopwords")
> min_freq(100) max_freq(0.3) max_voc(200000)

The total training of this model took 2.5 hours. The model achieves an out-of-sample
R2 of 0.24. The txtreg_predict command can be used to load this model and generate
a new variable containing the predicted citations. While the training of the model can
take a long time and be computationally intensive, the prediction is usually far quicker.
In the example, the prediction took less than a minute, most of which is needed to stem
the text strings.

. **

. **#* 3) Predict outcome using txtreg_predict

. **

. txtreg_predict title using "./models/predicted_citation_all.pkl",
> name_new_var("predicted_citation") stem stem_lang("english")
Loading Data from Stata
Loading Model: ./models/predicted_citation_all.pkl
Stemming text
. * plot binscatter of predicted versus actual citations
. binscatter WOS_TOTAL_ln predicted_citation, n(100)
> xtitle("ln(1+predicted citations)", margin(top))
> ytitle("ln(1+citations)", margin(right)) graphregion(color(white))
> lcolor(dkorange) ylabel(,angle(0))

After the command runs, the predicted_citation variable is added to the dataset.
It is easy to show that the predicted citations are highly correlated with the actual

6. This pretrained model is available on the author’s website at https: // www.carloschwarz.eu /
programming.

https://www.carloschwarz.eu/programming
https://www.carloschwarz.eu/programming

C. Schwarz 809

citations using a binscatter plot (see figure 1) created with the binscatter command
(Stepner 2013). The strong positive relationship suggests that the trained model per-
forms very well. In the example, the original data already contained information on
the citations. The pretrained citation prediction model could alternatively be used to
either generate predicted citations for datasets where citations are unknown or create
proxies of scientific influence for other text data sources.

0

1

2

3

4

ln
(1

+
ci

ta
tio

ns
)

0 1 2 3 4

ln(1+predicted citations)

Figure 1. Predicted versus actual citations.
notes: This figure shows a binscatter of log(1+ number of predicted citations) and
the log(1+ number of citations). The number of citations is based on the ISI Web of
Science.

4.3 Analyzing model coefficients

Last, we can use the txtreg_analyze command to investigate if the model also identi-
fies intuitive relationships between n-grams and citations, that is, which n-grams have
the largest predictive power for the outcome variable. This is achieved by specify-
ing txtreg_analyze and the model path. Note that txtreg_analyze will replace the
dataset that is currently in memory. The new dataset has one row for each n-gram in
the vocabulary V and a variable containing the regression coefficient that is associated
with each n-gram. It is then straightforward to obtain the most predictive n-grams by
simply sorting the coefficients by size.

810 Text regressions

. **

. **#* 4) Analyze coefficients using txtreg_analyze

. **

. txtreg_analyze using "./models/predicted_citation_all.pkl"
Loading Model: ./models/predicted_citation_all.pkl

variable ngram was strL now str42
(10,181,950 bytes saved)

. * list n-grams that are most predictive of high citations

. gsort -coef

. list ngram coef if _n<=10

ngram coef

1. microrna 3.6021672
2. graphen 3.5425722
3. meta analysi 3.1363898
4. random trial 3.1193311
5. cut edge 3.0505555

6. topolog insul 3.0193791
7. organ framework 3.0116175
8. arabidopsi 2.9907779
9. energi harvest 2.9237333
10. mice lack 2.8591241

The 10 n-grams with the largest coefficients provide insights into which articles
receive many citations. For example, the word “meta-analysis” appears. This makes
intuitive sense because meta-analyses are often highly cited. Interestingly, articles that
use the n-gram “cutting edge” in their title receive more citations, as do articles using
“randomized trials”. Similarly, the n-grams “microRNA”, “graphen”, and “mice lack”
all represent research topics of considerable interest. Because the model was trained
for all subjects and years combined, the 10 most frequent words do not show the full
scope of associations learned by the model. In Iaria, Schwarz, and Waldinger (2022), the
predicted citation model is trained separately by cohort and subject, and the authors
show that highly intuitive relationships emerge.

5 Conclusions
This article described new commands that train text regression models in Stata. Aside
from enabling quick training of text regressions, the txtreg_train, txtreg_predict,
and txtreg_analyze commands provide researchers with the opportunity to share
their pretrained models. All models trained by txtreg_train can be loaded using
the txtreg_predict and txtreg_analyze commands. The commands thereby further
the use of text-based prediction across the community of Stata users. Note that text
regressions obviously can suffer from the same endogeneity problems as any other re-
gression model. The coefficients from the model therefore should not be interpreted as
the “causal” effect of using a specific word. Further, txtreg_train, txtreg_predict,
and txtreg_analyze are limited to penalized linear regression models. While these
models have the great advantage that they are easy to train and that their coefficients

C. Schwarz 811

are easy to interpret, more complex deep-learning-based models usually achieve greater
predictive accuracy.

6 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 23-3

. net install dm0112 (to install program files, if available)

. net get dm0112 (to install ancillary files, if available)

7 References
Barker, M., and F. Pöge. 2012. strdist: Stata module to calculate the Levenshtein
distance, or edit distance, between strings. Statistical Software Components S457547,
Department of Economics, Boston College. https://ideas.repec.org/c/boc/bocode/
s457547.html.

Bird, S., E. Klein, and E. Loper. 2009. Natural Language Processing With Python:
Analyzing Text With the Natural language Toolkit. Sebastopol, CA: O’Reilly.

Gentzkow, M., B. Kelly, and M. Taddy. 2019. Text as data. Journal of Economic
Literature 57: 535–574. https://doi.org/10.1257/jel.20181020.

Hastie, T., R. Tibshirani, and J. Friedman. 2009. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. 2nd ed. New York: Springer. https: //doi.
org/10.1007/978-0-387-84858-7.

Iaria, A., C. Schwarz, and F. Waldinger. 2022. Gender gaps in academia: Global
evidence over the twentieth century. http://doi.org/10.2139/ssrn.4150221.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
et al. 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research 12: 2825–2830. https://doi.org/10.48550/arXiv.1201.0490.

Schonlau, M., N. Guenther, and I. Sucholutsky. 2017. Text mining with n-gram vari-
ables. Stata Journal 17: 866–881. https://doi.org/10.1177/1536867X1801700406.

Schwarz, C. 2018. ldagibbs: A command for topic modeling in Stata using la-
tent Dirichlet allocation. Stata Journal 18: 101–117. https: // doi.org / 10.1177 /
1536867X1801800107.

. 2019. lsemantica: A command for text similarity based on latent semantic
analysis. Stata Journal 19: 129–142. https://doi.org/10.1177/1536867X19830910.

Stepner, M. 2013. binscatter: Stata module to generate binned scatterplots. Statistical
Software Components S457709, Department of Economics, Boston College. https:
//ideas.repec.org/c/boc/bocode/s457709.html.

https://ideas.repec.org/c/boc/bocode/s457547.html
https://ideas.repec.org/c/boc/bocode/s457547.html
https://doi.org/10.1257/jel.20181020
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
http://doi.org/10.2139/ssrn.4150221
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.1177/1536867X1801700406
https://doi.org/10.1177/1536867X1801800107
https://doi.org/10.1177/1536867X1801800107
https://doi.org/10.1177/1536867X19830910
https://ideas.repec.org/c/boc/bocode/s457709.html
https://ideas.repec.org/c/boc/bocode/s457709.html

812 Text regressions

The Pandas Development Team. 2020. Python Pandas. https: // doi.org / 10.5281 /
zenodo.3509134.

Williams, U., and S. P. Williams. 2014. txttool: Utilities for text analysis in Stata.
Stata Journal 14: 817–829. https://doi.org/10.1177/1536867X1401400407.

About the author

Carlo Schwarz is an assistant professor at Bocconi University. His research interests are in
the fields of applied microeconomics and political economy, with a focus on text analysis and
machine learning (https://carloschwarz.eu/).

https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1177/1536867X1401400407
https://carloschwarz.eu/

