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Abstract. Bland–Altman plots can be useful in paired data settings such as
measurement-method comparison studies. A Bland–Altman plot has differences,
percentage differences, or ratios on the y axis and a mean of the data pairs on the
x axis, with 95% limits of agreement indicating the central 95% range of differ-
ences, percentage differences, or ratios. This range can vary with the mean. We
introduce the community-contributed blandaltman command, which uniquely in
Stata can 1) create Bland–Altman plots featuring ratios in addition to differences
and percentage differences, 2) allow the limits of agreement for ratios and percent-
age differences to vary as a function of the mean, and 3) add confidence intervals,
prediction intervals, and tolerance intervals to the plots.

Keywords: gr0094, blandaltman, Bland–Altman plot, limits of agreement, agree-
ment, baplot, batplot, concord, prediction, tolerance, interval, ratio, percentage
difference

1 Introduction
When paired data arise from two different measurement techniques, for example, a
new method A and a conventional method B, the data can be plotted as in figure 1a
to visualize the correlation between the two methods. However, this plot is not the
best for clearly showing the differences between the methods (Bland and Altman 1986).
Bland and Altman (1986, 1999) introduced a plot for visualizing agreement that plots
the difference between data pairs versus their arithmetic mean (figure 1b). This is
known as the Bland–Altman plot, and it can be used in other paired data settings such
as measurement repeatability (Bland and Altman 1986, 1999) or longitudinal studies
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(Kirkwood and Sterne 2003). Variants of the Bland–Altman plot have ratios or per-
centage differences on the y axis and may have the geometric mean of data pairs on
the x axis (Dewitte et al. 2002). Note that in geometric terms, the Bland–Altman plot
rotates figure 1a clockwise by 45° and linearly rescales the axes. Figure 1b shows the
data inside the gray box on figure 1a.

According to Bland and Altman (1999), 95% limits of agreement (LOA) provide an
interval within which 95% of differences between measurements are expected to lie. If
these limits are not too large (this is a contextual consideration in light of the intended
use of the measurement method), then the methods can be considered interchangeable.
Assuming differences are normally distributed, the LOA can be calculated using the
mean and standard deviation (SD) of the paired differences (as mean ±1.96 SD), and
they are routinely added to a Bland–Altman plot as a pair of horizontal lines toward
the top and bottom of the data cloud.

However, horizontal LOA are “meaningful only if we can assume the bias [the mean
difference] and variability [the SD of the difference] are uniform throughout the range
of measurement, assumptions which can be checked graphically” (Bland and Altman
1999). In figure 1b, the mean difference changes little as the mean of data pairs varies,
but the SD of the difference increases steeply with the mean of data pairs, so the data
cloud is shaped like a left-pointing arrowhead. Bland and Altman (1999) suggest that
this arrowhead pattern is the most common departure from the assumptions underlying
horizontal LOA. In this instance, the LOA need to reflect the varying SD. The plot
shows LOA calculated assuming that the SD increases linearly with the mean of data
pairs, using the regression-based approach of Bland and Altman (1999) to adjust for
nonconstant means or SDs of differences.
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Figure 1. (a) Plot of two methods for measuring retinol-binding-protein-4 (µmol/L)
from Brindle et al. (2017), with the line of equality. (b) Bland–Altman plot featuring
differences with regression-based estimates of 95% LOA (thin gray solid lines) and mean
difference or “bias” (dashed line). The boxes show how rotating (a) clockwise by 45°
and rescaling the axes leads to (b).

Log transformation often leads to the mean and SD of differences being constant,
which in turn justifies using horizontal LOA. Figure 2a shows the same data as figure 1a
but with the axes scaled logarithmically. Figure 2b is the corresponding Bland–Altman
plot, where ratios (A/B) are plotted on the y axis and the geometric mean of the data
pairs is plotted on the x axis. Both axes are scaled logarithmically. Plotted this way,
the rotational symmetry between the plot of raw data and the Bland–Altman plot is
preserved.

Bland–Altman plots can also have percentage differences on the y axis, where the
percentage difference is defined by dividing a difference by the arithmetic mean of the
data pairs and multiplying by 100%. These percentage differences (which can range
from −200% to +200%) are often plotted against the arithmetic mean of the data pairs
(Dewitte et al. 2002). Other ways of defining percentage differences are possible (Cole
and Altman 2017). Dividing a difference by the logarithmic mean of the data pairs was
recommended by economists (Törnqvist, Vartia, and Vartia 1985), and multiplying by
100% produces a percentage difference that can be calculated simply as 100(lnA− lnB)
(Cole 2000). These percentage differences (which can range from −∞ to +∞) could be
plotted instead of ratios on the y axis of figure 2b, and rotational symmetry could thus
be preserved.
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Figure 2. (a) Log-log plot of two methods for measuring retinol-binding-protein-4
(µmol/L) from Brindle et al. (2017) with the line of equality. (b) Bland–Altman plot
featuring ratios with estimates of horizontal 95% LOA (thin gray solid lines) and the
geometric mean of ratios (dashed line). The boxes show how rotating (a) clockwise by
45° and rescaling the axes leads to (b).

Stata has no official Bland–Altman plot command, but there are several community-
contributed commands. None of them create Bland–Altman plots with ratios, and
only the agree command (Doménech and Sesma 2021) gives percentage differences.
For differences, batplot (Mander 2005) and biasplot (Taffé et al. 2017) can draw
regression-based LOA for datasets with one measurement per method per subject and for
those with several measurements for the reference method per subject. The commands
concord (Steichen and Cox 1998), baplot (Seed 2000), kappaetc (Klein 2018), agree
(Doménech and Sesma 2021), and rmloa (Linden 2021) present only horizontal LOA.

Bland and Altman (1986, 1999) recommended calculating 95% confidence intervals
for LOA. Yet surprisingly, none of the commands cited above displays confidence intervals
on the plot.1 Some authors have recommended prediction and tolerance intervals (TIs)
(Ludbrook 2010; Vock 2016; Carkeet and Goh 2018; Francq, Berger, and Boachie 2020).

In this article, we introduce the blandaltman command, which uniquely in Stata can
1) create Bland–Altman plots featuring ratios in addition to differences and percentage
differences, 2) allow LOA for ratios and percentage differences to vary with the mean
of data pairs, and 3) add confidence intervals, prediction intervals (PIs), and TIs to the
plots. We show how, by offering variants of Bland–Altman plots, the command can help
decide how best to present LOA for measurement-method comparison studies based on
how close to horizontal the regression-based LOA are.

1. Confidence intervals are reported in the nongraphical output using agree.
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The rest of the article is organized as follows: Section 2 presents the blandaltman
command, syntax, and options; section 3 shows the command in action; and section 4
concludes.

2 The blandaltman command
2.1 Description

blandaltman produces Bland–Altman plots featuring differences, ratios, or percentage
differences on the y axis. By default, regression-based estimates of bias and LOA appear
on the plot to show how the distribution of differences, ratios, or percentage differences
varies with the mean of data pairs. See the appendix for details. Horizontal lines for
bias and LOA can be produced instead.

Summary statistics are provided in the output. The distribution of differences and
percentage differences are summarized by mean and SD, and these are used to calculate
horizontal LOA. The distribution of ratios is summarized by geometric mean (GMean)
and geometric SD (Limpert and Stahel 2011). These can be calculated by antilogging
the mean and SD of differences in log-transformed data. For ratios, all calculations are
done using log-transformed data before results such as LOA are antilogged.

Confidence intervals for the bias and LOA can also be displayed, as well as a PI and
(up to three) TIs (see appendix for details), assuming the distribution of differences,
ratios, or percentage differences does not vary with the mean of data pairs.

2.2 Syntax

blandaltman varA varB
[

if
] [

in
]
, plot(plot_type)

[
horizontal noregloa

noregbias hloa hbias level(#) predinterval ticonfidence(#)

ticonfidence2(#) ticonfidence3(#) cibias ciloa cilevel(#)

scopts(scatter_options) regloaopts(tw_function_options)
regbiasopts(tw_function_options) loaopts(tw_function_options)
biasopts(tw_function_options) piopts(tw_function_options)
tiopts(tw_function_options) tiopts2(tw_function_options)
tiopts3(tw_function_options) ciloaopts(tw_pcarrowi_options)
cibiasopts(tw_pcarrowi_options) addplot(plot . . .

[
|| plot . . .

[
. . .
] ]
)

twoway_options
]
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2.3 Options

plot(plot_type) creates the plot and is required. plot_type is any combination of the
following:

plot_type y axis x axis

difference A−B (A+B)/2
ratio A/B* GMean(A,B)*
percentlmean 100(A−B)/LMean(A,B) = 100(lnA− lnB) GMean(A,B)*
percentmean 100(A−B)/{(A+B)/2} (A+B)/2*

* Axis has a logarithmic scale.

Multiple plots are created if several plot types are chosen.

GMean(A,B) = (A×B)1/2 is the geometric mean.

LMean(A,B) = (A − B)/(lnA − lnB) if A 6= B, and LMean(A,B) = A if A = B is
the logarithmic mean (Cole 2000).

Only positive-valued data are used with the options ratio and percentlmean. With
the exception of A = B = 0, data pairs where A ≥ 0 and B ≥ 0 are used with the
percentmean option.

horizontal displays horizontal rather than regression-based LOA and bias. This is
equivalent to specifying noregloa noregbias hloa hbias.

noregloa prevents display of regression-based LOA.

noregbias prevents display of regression-based bias and LOA.

hloa displays horizontal LOA.

hbias displays horizontal bias. This option is assumed whenever horizontal LOA or a
PI or a TI is requested.

level(#) specifies the level, as a percentage, for #% LOA, #% PI, and #% TI with a
percent confidence as specified in ticonfidence(). The default is level(95).

predinterval displays (horizontal) lines for a level percent PI.

ticonfidence(#) displays (horizontal) lines for a level percent TI with #% confidence.

ticonfidence2(#) displays (horizontal) lines for a second level percent TI with #%
confidence.

ticonfidence3(#) displays (horizontal) lines for a third level percent TI with #%
confidence.

cibias displays a percent confidence interval, as specified in cilevel(), for horizontal
bias. This option requires that horizontal or hbias also be specified.
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ciloa displays (exact) percent confidence intervals, as specified in cilevel(), for hor-
izontal LOA. This option requires that horizontal or hloa also be specified.

cilevel(#) specifies the level, as a percentage, for confidence intervals for the bias and
LOA. The default is cilevel(95).

scopts(scatter_options) alters the display of the scatterplot. scatter_options are any
of the options allowed with scatter; see [G-2] graph twoway scatter.

tw_function_options are any of the options allowed with twoway function; see
[G-2] graph twoway function.

regloaopts(tw_function_options) alters the display of the regression-based LOA.

regbiasopts(tw_function_options) alters the display of the regression-based bias.

loaopts(tw_function_options) alters the display of the horizontal LOA.

biasopts(tw_function_options) alters the display of the horizontal bias line.

piopts(tw_function_options) alters the display of the PI.

tiopts(tw_function_options) alters the display of the first TI.

tiopts2(tw_function_options) alters the display of the second TI.

tiopts3(tw_function_options) alters the display of the third TI.

tw_pcarrowi _options are any of the options allowed with twoway pcarrowi; see
[G-2] graph twoway pcarrowi.

ciloaopts(tw_pcarrowi_options) alters the display of the confidence interval for the
LOA.

cibiasopts(tw_pcarrowi_options) alters the display of the confidence interval for the
bias.

addplot(plot . . .
[
|| plot . . .

[
. . .
] ]
) adds other plots to the Bland–Altman plot; see

[G-3] addplot_option.

twoway_options are any of the options documented in [G-3] twoway_options.

3 Examples
This section illustrates blandaltman in action. The first example shows how the esti-
mated LOA on a Bland–Altman plot vary throughout the range of measurement. The
second example shows how to add confidence intervals, a PI, and TIs to a plot.
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3.1 Laboratory measurements: Exploring how LOA vary throughout
the range of measurement

Brindle et al. (2017) described the simultaneous assessment of seven micronutrient and
inflammation status biomarkers via a multiplex immunoassay method in a population of
pregnant women. Results from their seven-plex assay were compared with conventional
immunoassay results onN = 206 plasma samples. We focus on retinol-binding-protein-4
(figure 1a), a surrogate biomarker for vitamin A deficiency, where low levels indicate de-
ficiency. For simplicity, we generate variables named A and B to represent measurements
obtained using the new and conventional methods, respectively.

. use labmeasures
(Brindle et al. 2017 PLoS ONE 12(10): e0185868; doi: 10.1371/journal.pone.0185868)
. generate A = plexrbp4µmoll
. generate B = nimanurbp4µmoll
. blandaltman A B, plot(difference ratio percentlmean percentmean)

(see output in appendix )

The above line of syntax produces the four Bland–Altman plots shown in figure 3. As
seen in figure 3a, the estimated LOA for differences are far from horizontal. In contrast,
the estimated LOA for ratios (figure 3b) and percentage differences (figures 3c and 3d)
are close to horizontal, so horizontal LOA would be justified. Note that figures 3b
and 3c are equivalent (they differ only in their y-axis labeling). Figure 3d looks similar
to figure 3c but plots a different definition of percentage difference against a different
mean.
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Figure 3. Bland–Altman plots featuring (a) differences, (b) ratios, (c) percentage differ-
ences using the logarithmic mean as denominator, and (d) percentage differences using
the arithmetic mean as denominator. Each plot shows regression-based estimates of
LOA (gray solid lines) and bias (dashed line). (b) and (c) are equivalent plots, while (d)
is different.

The values for horizontal LOA are displayed when the option horizontal is specified:

. blandaltman A B, plot(ratio percentlmean percentmean) horizontal

A: A
B: B

PERCENTAGE DIFFERENCES (using Mean as denominator)...
Calculation N Mean SD Interval(s)
100*(A-B)/[(A+B)/2] 206 -10.07663 17.10901

95% limits of agreement: -43.60967 23.45642

PERCENTAGE DIFFERENCES (using Logarithmic Mean as denominator)...
Calculation N Mean SD Interval(s)
100*(A-B)/LMean(A,B) 206 -10.16367 17.29902

95% limits of agreement: -44.06912 23.74177

RATIOS...
Calculation N GMean GSD Interval(s)
A/B 206 .9033576 1.188854

95% limits of agreement: .6435914 1.267971
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LOA from both definitions of percentage difference will often be very similar, as is
the case here. Assuming that both percentage differences are approximately normally
distributed and ratios are approximately lognormally distributed, there is little to choose
between the three LOA above. Convention or personal preference may be the deciding
factor in selecting one.

The previous code produces three Bland–Altman plots with horizontal LOA, one of
which is shown in figure 4. It features percentage differences (using arithmetic mean as
the denominator) on the y axis and arithmetic mean on the x axis, which is a popular
choice in bioanalytical method validation studies (Dewitte et al. 2002). By default,
the x axis is scaled logarithmically, which helps to space the data out more evenly.
However, if users want a linear scale instead, they can specify the option xscale(nolog).
Assuming that these percentage differences are approximately normally distributed, LOA
are estimated to be −44% and +23%.
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Figure 4. Bland–Altman plot featuring percentage differences (using arithmetic mean
as denominator) assuming horizontal 95% LOA (gray solid lines) and bias (dashed line)

For control over the labeling of axes, the xlabel() and ylabel() options can be
specified. For example, in our plots featuring ratios (figures 2b and 3b), we specified
ylabel(0.6 (0.2) 1.6). See Cox (2018, 2020) for other ways of labeling log-scaled
axes.
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3.2 Peak expiratory flow rate data: Adding confidence intervals, PI,
and TIs

To demonstrate their method, Bland and Altman (1986) measured peak expiratory flow
rate in 17 persons using both a Wright flow meter and a mini-Wright flow meter. Like
them and others (Ludbrook 2010; Carkeet 2015; Vock 2016), we use the first measure-
ment by each method. Figure 5 shows the data on an (overly busy) Bland–Altman plot.
Bland and Altman saw no obvious relation between differences and means and assumed
differences were normally distributed. They estimated2 95% LOA to be −2.1 ± 2 × 38.8
l/min.

Figure 5 illustrates the various intervals that blandaltman can produce—see the
appendix and the references in this section for the meaning of prediction and TIs. The
figure was created with the following syntax:

. use pefr, clear
(Bland and Altman (1986) Lancet 327: 307--10.)
. blandaltman Wright Mini, plot(difference) horizontal
> ciloa cibias predinterval ticonfidence(95)
> loaopts(lc(gs11) lp(solid)) ciloaopts(mc(gs11) lc(gs11) lp(solid))
> piopts(lc(gs1) lp(dash_dot))
> tiopts(lc(gs1) lp(dot))
> legend(on order(2 "Bias (& 95% CI)"
> 4 "95% limits of agreement (& exact 95% CI)"
> 6 "95% prediction interval"
> 8 "95% tolerance interval with 95% confidence") rowgap(*.7) cols(1))

A: Wright Wright peak expiratory flow rate (l/min)
B: Mini Mini Wright peak expiratory flow rate (l/min)

DIFFERENCES...
Calculation N Mean SD Interval(s)
A-B 17 -2.117647 38.76513

95% limits of agreement: -78.09591 73.86061
95% prediction interval: -86.67853 82.44323

95% tolerance interval with 95% confidence: -113.4634 109.2281
95% CI (LLOA): -124.1608 -53.09493
95% CI (ULOA): 48.85964 119.9255

95% CI (Mean diff.): -22.04884 17.81354

2. Factors 2 and 1.96, respectively, are used in their 1986 and 1999 articles.
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Figure 5. Bland–Altman plot of two methods measuring peak expiratory flow rate
(l/min), illustrating the variety of intervals that blandaltman can produce. No author
has suggested using all of these intervals.

We now report which of these intervals different authors have recommended and how
they can be implemented with blandaltman. Bland and Altman (1999) recommended
estimates of 95% LOA and 95% confidence intervals for LOA, and this advice features in
reporting standards (Gerke 2020). Royston and Matthews (1991) considered methods to
provide a best estimate of an interval containing the central 95% of a distribution. They
considered the interval bounded by mean ± 1.96 SD (that is, LOA) to be a good estimate,
and they viewed a 95%-expectation TI (equivalent to a 95% PI) to be of questionable
value, as they did a 95% TI with ≥90% confidence.

A few authors prefer not to present estimates of LOA (Ludbrook 2010; Vock 2016;
Carkeet and Goh 2018; Francq, Berger, and Boachie 2020). Some prefer a 95% PI
instead (Ludbrook 2010; Francq, Berger, and Boachie 2020), but not Vock (2016), who
argued this is rarely appropriate. Others prefer a 95% TI with 50% confidence (Carkeet
and Goh 2018).
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Vock (2016) encouraged reporting a 95% TI with 95% confidence, as did Ludbrook
(2010).3 Francq, Berger, and Boachie (2020) thought this interval may be too large (see
table A1 for how intervals depend on sample size) and suggested a 95% TI with 80% or
90% confidence might be presented if needed. Carkeet and Goh (2018) recommended
reporting a 95% TI with 2.5% confidence and a 95% TI with 97.5% confidence.

The following syntax creates Bland–Altman plots with intervals recommended by
the above-mentioned authors:

. blandaltman Wright Mini, plot(difference) name(Bland_Altman, replace)
> horizontal ciloa
> legend(on order(2 "Bias" 4 "95% limits of agreement (& exact 95% CI)")
> cols(1))

(output omitted )
. blandaltman Wright Mini, plot(difference) name(Ludbrook, replace)
> noreg hbias predinterval ticonfidence(95)
> legend(on order(2 "Bias" 4 "95% prediction interval"
> 6 "95% tolerance interval with 95% confidence") cols(1))

(output omitted )
. blandaltman Wright Mini, plot(difference) name(Francq_et_al, replace)
> noreg hbias predinterval ticonfidence(80)
> legend(on order(2 "Bias" 4 "95% prediction interval"
> 6 "95% tolerance interval with 80% confidence") cols(1))

(output omitted )
. blandaltman Wright Mini, plot(difference) name(Vock, replace)
> noreg hbias ticonfidence(95)
> legend(on order(2 "Bias" 4 "95% tolerance interval with 95% confidence")
> cols(1))

(output omitted )
. blandaltman Wright Mini, plot(difference) name(Carkeet_Goh, replace)
> noreg hbias ticonfidence(2.5) ticonfidence2(50) ticonfidence3(97.5)
> legend(on order(2 "Bias" 4 "95% tolerance interval with 2.5% confidence"
> 6 "95% tolerance interval with 50% confidence"
> 8 "95% tolerance interval with 97.5% confidence") cols(1))

(output omitted )

4 Conclusion
The blandaltman command should help Stata users when assessing agreement in mea-
surement-method comparison studies to follow the advice of Bland and Altman (1999)
by visually assessing how estimated LOA vary throughout the range of measurement and
by reporting corresponding confidence intervals. The command is also flexible enough
to allow users to follow recommendations of other authors involving the presentation
of a PI or a TI. More generally, in other paired data settings, the command could help
users decide whether to summarize differences, ratios, or percentage differences defined
in one of two ways.

3. Vock (2016) also considered an interval formed by the outer confidence limits for the LOA as an
alternative.
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6 Programs and supplemental materials
To install the software files as they existed at the time of the publication of this article,
type

. net sj 23-3

. net install gr0094 (to install program files, if available)

. net get gr0094 (to install ancillary files, if available)

To install the latest version of software files, type

. ssc install blandaltman (to install program files)

. net get blandaltman (to install ancillary files)
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A Appendix
A.1 Calculation and reporting of regression-based estimates for bias

and 95% LOA

The approach described in Bland and Altman (1999, sec 3.2) for differences can be
written as follows:

A linear regression is used to estimate how the mean of differences (MeanY ) varies
linearly with the mean of the data pairs. A second linear regression is used to estimate
how the SD of differences (SDY ) varies linearly with the mean of the data pairs. These
two relationships are then combined to estimate LOA (95% LOAY ) that vary linearly
with an average of the data pairs.

Equivalently, for a Bland–Altman plot of differences against means, use Y = A−B
and X = (A+B)/2 in the more general approach we outline below.

MeanY (or bias)

Fit a linear regression of Y on X:

. regress Y X

The resulting regression equation estimates the mean of Y as a linear function of X:

MeanY = b0 + b1X
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SDY

First, obtain the residuals from the above regression:

. predict resid, resid

Second, calculate the absolute values of the residual and adjust by multiplying by√
π/2: (Given a value of X, it is assumed that residuals are normally distributed with

SD σ, and therefore the mean of absolute residuals is σ
√

2/π.)

. generate adj_abs_resid = abs(resid) * sqrt(_pi/2)

Third, fit a linear regression of adj_abs_resid on X:

. regress adj_abs_resid X

The resulting regression equation estimates the SD of Y as a linear function of X:

SDY = b2 + b3X

Estimated 95% LOA for Y

95% LOAY = MeanY ± 1.96 SDY

= b0 + b1X ± 1.96(b2 + b3X)

that is,

lower limit of agreement (LLOA) = b0 − 1.96b2 + (b1 − 1.96b3)X

upper limit of agreement (ULOA) = b0 + 1.96b2 + (b1 + 1.96b3)X

For a Bland–Altman plot of ratios against geometric means, we apply the approach to
log-transformed data but express relationships in terms of ratios and geometric means.
We use

Y = lnA− lnB = ln(A/B) = ln(Ratio)
X = (lnA+ lnB)/2 = ln{GMean(A,B)}

For a Bland–Altman plot of percentage differences 100(lnA− lnB)% against geomet-
ric means, we use

Y = 100(lnA− lnB)

X = (lnA+ lnB)/2 = ln{GMean(A,B)}

For a Bland–Altman plot of percentage differences 100(A−B)/{(A+B)/2}% against
arithmetic means, we use

Y = 100(A−B)/{(A+B)/2}
X = ln{(A+B)/2} = ln{Mean(A,B)}
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The following output relates to section 3.1:

. blandaltman plexrbp4µmoll nimanurbp4µmoll,
> plot(difference percentmean percent lmean ratio)

A: plexrbp4µmoll 7-Plex RBP4 (µmol/L)
B: nimanurbp4µmoll NiMaNu RBP4 (µmol/L)

DIFFERENCES...
Calculation N Mean SD Interval(s)
A-B 206 -.1022816 .2013955

. regress difference mean
Source SS df MS Number of obs = 206

F(1, 204) = 1.51
Model .061142301 1 .061142301 Prob > F = 0.2204

Residual 8.25368545 204 .040459242 R-squared = 0.0074
Adj R-squared = 0.0025

Total 8.31482775 205 .040560135 Root MSE = .20114

__000002 Coefficient Std. err. t P>|t| [95% conf. interval]

__000003 -.0445447 .0362355 -1.23 0.220 -.1159888 .0268994
_cons -.0559129 .0402386 -1.39 0.166 -.1352497 .023424

-> regression-based bias: -.0559129 + -.0445447 × Mean(A,B)

. regress adj_abs_resid mean
Source SS df MS Number of obs = 206

F(1, 204) = 48.97
Model 1.22288054 1 1.22288054 Prob > F = 0.0000

Residual 5.09388346 204 .024970017 R-squared = 0.1936
Adj R-squared = 0.1896

Total 6.31676401 205 .030813483 Root MSE = .15802

__00000C Coefficient Std. err. t P>|t| [95% conf. interval]

__000003 .1992128 .0284665 7.00 0.000 .1430865 .2553392
_cons -.027725 .0316114 -0.88 0.381 -.0900519 .0346019

-> regression-based SD: -.027725 + .1992128 × Mean(A,B)
-> regression-based 95% LLOA: -.0015729 + -.4349947 × Mean(A,B)
-> regression-based 95% ULOA: -.1102529 + .3459053 × Mean(A,B)

PERCENTAGE DIFFERENCES (using Mean as denominator)...
Calculation N Mean SD Interval(s)
100*(A-B)/[(A+B)/2] 206 -10.07663 17.10901
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. regress percentmean ln_mean
Source SS df MS Number of obs = 206

F(1, 204) = 0.10
Model 29.4792833 1 29.4792833 Prob > F = 0.7518

Residual 59977.7646 204 294.00865 R-squared = 0.0005
Adj R-squared = -0.0044

Total 60007.2439 205 292.718263 Root MSE = 17.147

__000005 Coefficient Std. err. t P>|t| [95% conf. interval]

__00000A 1.027934 3.246288 0.32 0.752 -5.372644 7.428513
_cons -10.04945 1.197744 -8.39 0.000 -12.411 -7.687909

-> regression-based bias: -10.04945 + 1.027934 × ln(Mean(A,B))

. regress adj_abs_resid ln_mean
Source SS df MS Number of obs = 206

F(1, 204) = 1.33
Model 239.33826 1 239.33826 Prob > F = 0.2503

Residual 36737.0171 204 180.083417 R-squared = 0.0065
Adj R-squared = 0.0016

Total 36976.3554 205 180.372465 Root MSE = 13.42

__00000E Coefficient Std. err. t P>|t| [95% conf. interval]

__00000A 2.928957 2.540644 1.15 0.250 -2.080331 7.938246
_cons 16.74617 .9373909 17.86 0.000 14.89795 18.59439

-> regression-based SD: 16.74617 + 2.928957 × ln(Mean(A,B))
-> regression-based 95% LLOA: -42.87134 + -4.712716 × ln(Mean(A,B))
-> regression-based 95% ULOA: 22.77244 + 6.768585 × ln(Mean(A,B))

PERCENTAGE DIFFERENCES (using Logarithmic Mean as denominator)...
Calculation N Mean SD Interval(s)
100*(A-B)/LMean(A,B) 206 -10.16368 17.29902

. regress percentlmean ln_gmean
Source SS df MS Number of obs = 206

F(1, 204) = 0.24
Model 72.0980071 1 72.0980071 Prob > F = 0.6247

Residual 61275.3688 204 300.369455 R-squared = 0.0012
Adj R-squared = -0.0037

Total 61347.4668 205 299.255936 Root MSE = 17.331

__000006 Coefficient Std. err. t P>|t| [95% conf. interval]

__000009 1.609633 3.285436 0.49 0.625 -4.868133 8.087398
_cons -10.1131 1.211925 -8.34 0.000 -12.5026 -7.723594

-> regression-based bias: -10.1131 + 1.609633 × ln(GMean(A,B))
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. regress adj_abs_resid ln_gmean
Source SS df MS Number of obs = 206

F(1, 204) = 0.78
Model 145.256099 1 145.256099 Prob > F = 0.3771

Residual 37812.2272 204 185.354055 R-squared = 0.0038
Adj R-squared = -0.0011

Total 37957.4833 205 185.158455 Root MSE = 13.614

__00000G Coefficient Std. err. t P>|t| [95% conf. interval]

__000009 2.284716 2.58087 0.89 0.377 -2.803884 7.373317
_cons 16.89376 .9520259 17.75 0.000 15.01669 18.77084

-> regression-based SD: 16.89376 + 2.284716 × ln(GMean(A,B))
-> regression-based 95% LLOA: -43.22427 + -2.868329 × ln(GMean(A,B))
-> regression-based 95% ULOA: 22.99807 + 6.087595 × ln(GMean(A,B))

RATIOS...
Calculation N GMean GSD Interval(s)
A/B 206 .9033576 1.188854

. regress ln_ratio ln_gmean
Source SS df MS Number of obs = 206

F(1, 204) = 0.24
Model .007209808 1 .007209808 Prob > F = 0.6247

Residual 6.12753704 204 .030036946 R-squared = 0.0012
Adj R-squared = -0.0037

Total 6.13474685 205 .029925594 Root MSE = .17331

__000008 Coefficient Std. err. t P>|t| [95% conf. interval]

__000009 .0160963 .0328544 0.49 0.625 -.0486813 .080874
_cons -.101131 .0121192 -8.34 0.000 -.125026 -.0772359

-> regression-based GMean Ratio: .9038146 × GMean(A,B)^ .0160963

. regress adj_abs_resid ln_gmean
Source SS df MS Number of obs = 206

F(1, 204) = 0.78
Model .014525613 1 .014525613 Prob > F = 0.3771

Residual 3.7812229 204 .018535406 R-squared = 0.0038
Adj R-squared = -0.0011

Total 3.79574851 205 .018515846 Root MSE = .13614

__00000I Coefficient Std. err. t P>|t| [95% conf. interval]

__000009 .0228472 .0258087 0.89 0.377 -.0280388 .0737332
_cons .1689376 .0095203 17.75 0.000 .1501669 .1877084

-> regression-based GSD Ratio: 1.184046 × GMean(A,B)^ .0228472
-> regression-based 95% LLOA Ratio: .6490518 × GMean(A,B)^-.0286833
-> regression-based 95% ULOA Ratio: 1.258576 × GMean(A,B)^ .060876

The output for ratios uses the fact that exp[α + βln{GMean(A,B)}] = exp(α) ×
GMean(A,B)β .
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A.2 Confidence intervals for LOA, PI, and TIs

Here we detail the calculation of confidence intervals for LOA and the calculation and
meaning of prediction and TIs produced by blandaltman.

We assume differences (or percentage differences or log ratios) y = {y1, y2, . . . , yn}
are randomly sampled from a normal distribution with mean µ, SD σ, and cumulative
distribution function F . We denote the sample size n, the sample mean y, and the
sample SD s.

95% confidence intervals for LOA

Bland and Altman (1999) viewed y ± 1.96s as estimates of

LLOA = µ− 1.96σ (that is, 2.5th percentile of population)
ULOA = µ+ 1.96σ (that is, 97.5th percentile of population)

They acknowledged that the sampling error affects the estimates of µ, σ, and LOA
and proposed calculating a 95% confidence interval for LOA. They described approximate
methods assuming the sample size is large. However, there exists an exact method based
on the noncentral t distribution (Carkeet 2015; Shieh 2018), which is implemented in
blandaltman.4 The formulas are

ULOA : y + kinner × s to y + kouter × s

LLOA : y − kouter × s to y − kinner × s

where

kinner = tn−1,1.96
√
n,0.025

√
1

n

kouter = tn−1,1.96
√
n,0.975

√
1

n

and the quantities tn−1,1.96
√
n,0.025 and tn−1,1.96

√
n,0.975 are the 0.025 and 0.975 quan-

tiles of the noncentral t distribution with n − 1 degrees of freedom and noncentrality
parameter 1.96

√
n. In contrast to the approximate confidence intervals, these exact

confidence intervals will not appear symmetric about the LOA.

4. While this method is currently not implemented in centile (see [R] centile), it is now implemented
in the recently revised community-contributed command tolerance (Chatfield 2021).
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PI

A two-sided 95% PI for a single future observation yn+1 (Vardeman 1992; Meeker,
Hahn, and Escobar 2017) is a random interval [L(y), U(y)] constructed such that

Prob{L < yn+1 < U} = 0.95

That is, if the process of 1) gathering a sample of size n, 2) constructing a 95% PI, and
3) gathering one additional yn+1 is repeated infinitely many times, then 95% of the PIs
will contain yn+1.

The 95% PI is calculated as y ± kPI × s, where

kPI = tn−1,0.975

√
1 +

1

n

and the quantity tn−1,0.975 is the 0.975 quantile of the Student’s t distribution with n−1
degrees of freedom.

TIs

TIs are statistical intervals that contain at least a specified percentage of a pop-
ulation, either 1) on average or 2) with a stated confidence (Vangel 2005; Vardeman
1992).

1) 95% expectation TI

A two-sided 95% expectation TI is a random interval [L(y), U(y)] constructed such
that

E{F (U)− F (L)} = 0.95

That is, if the process of a) gathering a sample of size n, b) constructing a 95%
expectation TI, and c) calculating what percentage of the population is contained
by the interval is repeated infinitely many times, then the mean (that is, expected)
percentage will be 95%.

Mathematically, it is equivalent to the above-mentioned 95% PI.

2) 95% TI with C% confidence

A two-sided 95% TI with C% confidence is a random interval [L(y), U(y)] con-
structed such that

Pr{F (U)− F (L) ≥ 0.95} = C%

That is, if the process of a) gathering a sample of size n, b) constructing a 95%
TI with C% confidence, and c) calculating what percentage of the population is
contained by the interval is repeated infinitely many times, then C% of these
intervals will contain at least 95% of the population.
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There is no closed-form expression. blandaltman calculates an approximate two-
sided 95% TI with C% confidence (Howe 1969): y ± kTI × s, where

kTI = 1.96

√√√√(1 + 1

n

)(
n− 1

χ2
n−1,1−C/100

){
1 +

n− 3− χ2
n−1,1−C/100

2(n+ 1)
2

}

and the quantity χ2
n−1,1−C/100 is the (1−C/100) quantile of a χ2 distribution with n−1

degrees of freedom.

Table A1. Factors used to calculate i) a 95% confidence interval for LOA, ii) a 95% PI,
and iii) approximate 95% TIs with C% confidence. Intervals are calculated as described
in section A.2.

n (i) kinner, kouter (ii) kPI (iii) kTI
C = 50 C = 95

10 1.16, 3.80 2.37 2.13 3.41
20 1.36, 3.01 2.14 2.04 2.76
50 1.55, 2.53 2.03 1.99 2.38
100 1.66, 2.34 1.99 1.98 2.23
∞ 1.96, 1.96 1.96 1.96 1.96




