%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

1eck for updates

The Stata Journal (2023)
23, Number 2, pp. 386—-401 DOI: 10.1177/1536867X231175265

Igrgtest: Lagrange multiplier test after
constrained maximum-likelihood estimation

Harald Tauchmann
Friedrich-Alexander-Universitdt Erlangen-Niirnberg
Niiremberg, Germany
harald.tauchmann@fau.de

Abstract. Besides the Wald and likelihood-ratio tests, the Lagrange multiplier
test (Rao, 1948, Mathematical Proceedings of the Cambridge Philosophical So-
ciety 44: 50-57; Aitchison and Silvey, 1958, Annals of Mathematical Statistics
29: 813-828; Silvey, 1959, Annals of Mathematical Statistics 30: 389-407) is the
third canonical approach to testing hypotheses after maximum likelihood estima-
tion. While the Stata commands test and lrtest implement the first two, Stata
does not have an official command for implementing the third. The community-
contributed boottest package (Roodman et al., 2019, Stata Journal 19: 4-60)
focuses on methods of bootstrap inference and also implements the Lagrange
multiplier test functionality. In this article, I introduce the new community-
contributed postestimation command lgrgtest, which allows for straightforwardly
using the Lagrange multiplier test after constrained maximum-likelihood estima-
tion. lgrgtest is intended to be compatible with all Stata estimation commands
that use maximum likelihood and allow for the options constraints(), iterate(),
and from(). lgrgtest can also be used after cnsreg.

Keywords: st0712, lgrgtest, test, Irtest, constraint, Lagrange multiplier test, score
test, constraints, maximum likelihood

1 Introduction

Testing hypotheses after model estimation is day-to-day business for any empirical re-
searcher. For Stata users, using Stata’s test command is probably the most obvious
choice for implementing such tests. After maximum likelihood (ML) estimation, test
performs a Wald test. Yet, besides the Wald test, the likelihood-ratio (LR) test and the
Lagrange multiplier (LM) test are further canonical approaches to hypothesis testing
after ML estimation (compare Engle [1984] and Greene [2018, 551-560]). The three
tests take different approaches to evaluating whether imposing restrictions on a model
is warranted by the observed data. The Wald test uses as its criterion the deviation of
the estimated parameter values from the values assumed under the restrictions. The LR
test looks at the loss of log likelihood imposing the restrictions. The LM test considers
the slope of the log-likelihood function at the restricted maximum. Under the null of
the restriction being valid, the three tests are asymptotically equivalent. In the rather
special case of the log-likelihood function being quadratic in all parameters subject to
estimation, they are even numerically identical irrespective of the sample size (Buse
1982; Engle 1984). In general, however, their properties are unknown in finite samples
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and may differ. In applied work, the Wald, LR, and LM tests will hence usually yield
results that are more or less different from one another.

The choice between these different tests is often guided by practical considerations
(compare Greene [2018, 555]). While the LR test requires estimating both the unre-
stricted and the restricted model, the Wald test requires estimating only the unrestricted
model, and the LM test requires estimating only the null model. Imposing restrictions
on the model may ease estimation for poorly behaved optimization problems, which in
such cases can be regarded as an argument in favor of using the LM test. (Depending on
the specific problem, however, imposing restrictions may also complicate estimation.)
Moreover, tying the test to the null model has some appeal if the null model is the
one on which the economic discussion focuses. Beyond practical considerations, Greene
(2018, 557) mentions weaker required assumptions as an argument in favor of the Wald
test, while he regards a lack of invariance to how the restrictions are formulated as an
argument against it. Thus, despite their asymptotic equivalence, having all three tests
available appears to be valuable for applied empirical research.

The LR test—as an alternative to the Wald test implemented by test—is made
available to Stata users through the command lrtest. In contrast—though LM tests
are available for specific settings, xttestO after xtreg, re and estat scoretests after
sem, for instance—Stata does not have an official command for carrying out LM tests
after (constrained ML) estimation. This article introduces lgrgtest, a community-
contributed postestimation command for LM testing of constraints imposed on a model
fit by ML. 1lgrgtest closely accompanies Stata’s estimation option constraints(),
which implements constrained estimation. The community-contributed scoretest com-
mand, which is part of the boottest package (Roodman et al. 2019), provides LM testing
functionality. 1lgrgtest and scoretest use different syntax but yield identical results
for comparable models. Because boottest is primarily concerned with implementing
methods of bootstrap inference, the LM testing functionality of scoretest is not well
known among Stata users; indeed, I was unaware of it until shortly before this article
went to print. Arguably, there is value in having a standalone command available that
focuses on the LM test. The remainder of this article is organized as follows. Section 2
briefly discusses the methodology of the LM test. Section 3 elaborates on the imple-
mentation in Stata. Section 4 introduces the syntax of lgrgtest. Section 5 provides
an empirical illustration and further examples. Section 6 concludes.

2 The LM test

The LM test, also known as the score test, was introduced independently in different
versions by Rao (1948) and Silvey (1959); see Bera and Bilias (2001) for details of its
historical development. This strategy for hypothesis testing rests on maximizing a log-
likelihood! function £(8) with respect to the k x 1 parameter vector 6, subject to a set
of g constraints r(0) = 0. These constraints are the restrictions to be tested, and the

1. The principle of the LM test can be generalized to other M estimators than ML (Wooldridge 2010,
421). Yet, following the bulk of econometric textbooks, we focus on the context of ML estimation.
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null hypothesis is hence Hy: 7(6) = 0. Following the depiction in Arellano (2004), the
LM test statistic (LMS) reads as

~\/ ~ —1 ~
LMS = g (0) I (9) g (0) (1)
~ N -1 N~

~XRr(8) 1(6) R(8)X 2)

with (1) representing the score version (Rao 1948) and (2) representing the LM version
(Silvey 1959) of the test statistic. @ denotes the parameter estimates that maximize
L(0) respecting the constraints. g(@) denotes the score vector 9L£(0)/90, I1(0) denotes
the information matrix —E{9%L£(0)/0000'}, and R(6) denotes the Jacobian dr(8)/00,
each evaluated at @ = 6. The g LM values that the constrained maximization yields are

collected in the vector A. Under the null, LMS is asymptotically x? distributed with g
degrees of freedom.

The equivalence of the two representations of the LM statistic becomes obvious from
the first-order condition g(8) — R(6)A = 0 of the constrained maximization problem
maxg £(6) — A'r(0) (compare Arellano [2004]). If the constraints do not bind and 6
maximizes the likelihood function both with and without the restrictions imposed, A
equals 0 and so does (0) by the logic of ML estimation. Consequently, the test of the
null can be implemented both as a test of A = 0 and as a test of g(6) = 0. The LM test
hence rejects the null if (0) deviates so strongly from 0 that the observed deviation
cannot be attributed to a sampling error given a certain type-one error probability. This
equivalently applies to R(0)A from the multiplier representation of the LM test. The
squared score vector enters the LM statistic weighted by the inverse information matrix;
see (1). This weighting by I(8)~! takes into account that, for a given slope of £(8), a
greater curvature implies a smaller distance from the unrestricted optimum, leading to
a smaller value of LMS; see Buse (1982) for more detailed discussion of this argument,
including an excellent graphical illustration.

Even with estimates 6 in hand, I(6)~! is usually unknown and needs to be estimated
for calculating the LM statistic. The two canonical approaches to estimation (compare
Greene [2018, 559]) are 1) using the actually observed Hessian of the log-likelihood
function evaluated at 8, that is, 1(8)~! = —{92L(6) /8080’ }7', and 2) using the outer
product of the observation-level gradient vector, that is, 1(8)~! = ={>,9:0 0)g;(0) 1,
with 7 indexing observations. Estimating I(8)~! for calculating the LM statistic thub
parallels estimating the variance—covariance matrix of the ML estimator. This, however,
applies only if either the observed Hessian (observed information matrix) or the outer
product of the gradient vector is used for variance estimation, but no other approach
such as the sandwich estimator or bootstrapping. The score version of the LM statistic
is very conveniently computed, particularly if the outer product gradient approach is
used for estimating I'(@)~!. In this case, only the observation-level gradient vectors

gz(H) are required because of g(0 ) > gz(~) and I( ) ={>,9:0 ) i(g)’}_l.
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3 Implementation in Stata

lgrgtest implements the above-described LM test in Stata based on its score version (1).
lgrgtest performs a test of those restrictions that were imposed on the most recently fit
model through specifying the option constraints(). lgrgtest hence directly draws on
Stata’s constraint command and the corresponding estimation option constraints();
see [R] constraint. lgrgtest will run only after estimation commands that implement
constrained ML estimation, with a score vector stored in e(gradient) serving as in-
dication for ML. The only exception to this is cnsreg, after which lgrgtest is also
available as a postestimation command; see below for more details on how lgrgtest
is implemented after cnsreg. Other special cases are sem and gsem. After these two
commands, lgrgtest tests not only the restrictions that are imposed through the op-
tion constraints() but also all restrictions that are specified using the path notation
(symbol @) of sem and gsem; see [SEM] sem and gsem path notation. Users must be
aware that after sem and gsem, lgrgtest mechanically tests all constraints (on paths,
variances, covariances, and means) that are manually specified in the estimation syn-
tax. Depending on the specific model, this might result in a pointless attempt of testing
constraints that are required for identification.

Because constraint allows only for defining linear constraints, lgrgtest is con-
fined to implementing LM tests of linear restrictions imposed on the model parameters.
The syntax for appropriately defining the constraints may be specific to the particular
estimation command that precedes lgrgtest. All Stata commands that allow for the
option constraints() store the constraints in e(Cns), from which lgrgtest retrieves
the information about the restrictions imposed. Yet, in creating e (Cns), different com-
mands may deal differently with constraints that are technically required, for example,
exclusion restrictions for avoiding perfect collinearity. Nonetheless, 1grgtest will cor-
rectly identify the number of test degrees of freedom in almost any case. The option
df O still allows for manually specifying that number.

After constrained ML estimation, Stata does not store g(6) in e(gradient) but
rather the gradient vector of the constrained model evaluated at 5, which is—provided
that convergence is achieved—just a vector of (values close to) zeros. To obtain g(8),
lgrgtest internally reexecutes the respective estimation command without the con-
straints imposed, chooses 0 as starting values, and does not allow the optimization
algorithm to iterate. This requires that the respective estimation command allows for
the maximization options from() and iterate(); see [R] Maximize.? Changing the
data between fitting the constrained model and using lgrgtest is not advisable. This
could cause lgrgtest to fail and even lead to a misleading test result.

Reexecuting the respective estimation command with adjusted options further re-
quires that lgrgtest interpret the command-line entry used for fitting the model.
Hence, lgrgtest runs only if the full command-line entry is stored in e(cmdline)

2. from() and iterate() need to fully control the choice of starting values and the number of iterations.
fmm, for instance, allows for the additional options startvalues() and emopts() that—besides
from()—control the choice of starting values. Thus, 1lgrgtest runs only after fmm because this
special case is explicitly considered by lgrgtest.
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and the command name is stored in e(cmd) (or in e(cmd2)). Moreover, the estimation
command generally needs to have a syntax that complies with Stata’s standard syn-
tax conventions; that is, it is structured into 1) the command name, 2) lists of variable
names, 3) a comma, and 4) a list of options (compare Drukker [2015]). Multiple-equation
estimation commands are compatible with 1grgtest, provided they use in 2) a syntax
that either encloses equation-specific varlists in parentheses () or separates them by | |.
For some selected Stata commands—sem, gsem, nlogit, and fmm, for instance—that
have a more complex syntax, 1grgtest is still available as a postestimation command.
Yet lgrgtest will not run after community-contributed commands that use an un-
conventional syntax. A list of compatible Stata estimation commands is provided in
section 4.4.

lgrgtest uses e(V) from internally reexecuting the estimation command as the
estimate of I (5)*1. However, this is a valid approach only if vcetype is either oim or
opg; see [R] vece__option. Thus, if e(vce) differs from oim and opg, lgrgtest issues
an error message and does not perform a test. Yet, by specifying the option forcevce,
one can force lgrgtest to perform the test. With forcevce, provided that e(vce)
is neither oim nor opg, lgrgtest uses the model-based variance® e (V_modelbased)
instead of e (V). Users of 1grgtest need to seriously think about whether this way of
forcing the command into carrying out the test makes sense in the specific setting. If,
for instance, a wvcetype different from oim or opg is requested in the estimation syntax
to account for some (possible) misspecification, the enforced LM test may suffer from
severe size distortion.

Constrained linear least squares, which is implemented in Stata by the command
cnsreg, is the ML estimator of the constrained linear model only if the errors are
independent and identically normally distributed. If lgrgtest is used after cnsreg,
lgrgtest issues a warning that independent and identically distributed normal errors
are assumed and exploits that under this assumption, ML estimation of the linear model
is equivalent to estimating a normal censored regression model with censoring limits —oo
and +oo. This can be implemented in Stata by using tobit with 11() and ul () left un-
specified. That is, g(@) and I(6)~! are obtained from evaluating the tobit log-likelihood
function at the coefficient estimates that cnsreg yields. The estimated error variance
is calculated as e(rmse) "2*xe(df_r)/e(N) because the ML estimator does not involve
a degrees-of-freedom correction. After cnsreg, lgrgtest expects e(vce) to be ols,
which is translated to vcetype oim in the internal run of tobit. If the option forcevce
is specified, 1grgtest switches to e (V_modelbased) for wcetypes different from ols.

4 The Igrgtest command

lgrgtest requires Stata 15 or higher. lgrgtest can be used only after estimation
commands that allow for the option constraints(). With cnsreg being the only ex-

3. e(V_modelbased) will usually coincide with e(V) for vcetype oim, that is, with the observed sample
Hessian of the log-likelihood function.
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ception, the preceding estimation command also needs to allow for the maximization
options iterate() and from() and needs to store the constraints and the score vector
in the matrices e (Cns) and e(gradient), respectively. Further technical requirements
are that the wvcetype be stored in e(vce), the command name be stored in e(cmd) (or
alternatively in e(cmd2)), and the full command-line entry be stored in e(cmdline).
lgrgtest generally runs only after estimation commands that have a syntax that com-
plies with Stata’s standard syntax conventions. 1lgrgtest can be used if the prefix com-
mands fmm and fp are specified in the preceding estimation. With the option forcevce,
this technically also applies to the prefix commands bootstrap, jackknife, and svy.
However, because the option forcevce makes lgrgtest use e(V_modelbased), ap-
plying lgrgtest probably makes little sense in such settings. The prefix commands
bayes, mfp, mi estimates, nestreg, rolling, statsby, and stepwise preclude using
lgrgtest in postestimation. Except for quietly and noisily, lgrgtest itself does
not allow for prefix commands.

4.1 Syntax

The syntax for 1grgtest reads as follows:

lgrgtest [, notest nocnsreport df (#) noomitted forcevce}

The syntax for 1grgtest does not specify the restrictions to be tested. Rather, this
is done in the preceding estimation syntax via specifying the option constraints().

4.2 Options

notest prevents lgrgtest from displaying any output on the screen.
nocnsreport prevents lgrgtest from displaying the imposed constraints.

df (#) makes lgrgtest use a user-specified number of degrees of freedom, that is, a
number of tested restrictions, in calculating the p-value for the test. The default
is to use the rank of e(Cns). If reexecution of the command without specified
constraints also stores e(Cns), which applies to models that involve automatically
imposed constraints in addition to those specified in the command-line entry, the
difference in ranks is used as the default. Specifying df () will rarely be required.

noomitted makes lgrgtest not consider omitted variables as exclusion restrictions to
be tested. Because some estimation commands, mlogit, for instance, label exclusion
restrictions specified by constraints() as omitted variables in e(Cns), the default
is to consider omitted variables as exclusion restrictions that are to be tested. Speci-
fying noomitted will not affect the number of test degrees of freedom but only which
restrictions are displayed.

forcevce makes 1grgtest perform the LM test even if veetype is neither oim nor opg (not
ols after cnsreg). Because lgrgtest estimates the inverse information matrix as
e (V) obtained from reevaluating the model log-likelihood function at the restricted
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estimates, vcetypes other than oim and opg are most likely inappropriate. With
the option forcevce, 1grgtest issues a warning and uses e (V_modelbased) as an
estimate of the inverse information matrix. If wvcetype is oim or opg (ols after
cnsreg), specifying forcevce has no effect.

4.3 Stored results

lgrgtest stores the following in r():

Scalars
r(p) p-value
r(chi2) LM test statistic (x2)
r(df) test constraints degrees of freedom
r(rank) rank of e(Cns) adjusted for the number automatically imposed con-
straints (only stored if the option df () is specified)
Macros
r(modelbased) modelbased if e(V_modelbased) is used as estimate of the inverse in-

formation matrix

4.4 Compatible Stata estimation commands

This section lists official Stata commands that, according to a series of tests
(Stata/SE 17.0, update level: 04 Oct 2022), allow for 1lgrgtest being used as a postes-
timation command:

[CM] cmclogit, cmmixlogit, cmmprobit, cmroprobit, cmxtmixlogit, nlogit;
[DSGE] dsge; [ERM] eintreg, xteinreg, eprobit, xteprobit, eregress, xteregress;
[FMM] fmm; [ME] mecloglog, meglm, meintreg, melogit, menbreg, meologit,
meoprobit, mepoisson, meprobit, mestreg, metobit; [R] betareg, binreg, clogit,
cloglog, cnsreg, cpoisson, fracreg, frontier, glm, heckman, heckoprobit,
heckpoisson, heckprobit, hetoprobit, hetprobit, hetregress, intreg, ivprobit,
ivtobit, logistic, logit, mlexp, mlogit, mprobit, nbreg, gnbreg, ologit, oprobit,
poisson, probit, scobit, slogit, tnbreg, tobit, tpoisson, truncreg, zinb,
ziologit, zioprobit, zip; [SEM| sem, gsem; [ST] stcrreg, stintreg, streg;

[TE] etpoisson, etregress; [TS] arch, arfima, arima, dfactor, mgarch ccc,
mgarch dcc, mgarch dvech, mgarch vcc, sspace, ucm; [XT] xtcloglog, xtfrontier,
xtheckman, xtintreg, xtlogit, xtmlogit, xtnbreg, xtologit, xtoprobit,
xtpoisson, xtprobit, xttobit

For each command, typically a single basic example (from the respective help en-
try) was tried. Hence, it may still not be possible to use lgrgtest as a postestima-
tion command if some options are specified. A systematic test of compatibility with
community-contributed Stata estimation commands was not carried out.
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5 lllustrations and applications

This section illustrates the use of 1grgtest based on different applications. In the fash-
ion of a replication study, subsection 5.2 links using lgrgtest to a serious econometric
application (Egger et al. 2011b). The accompanying subsection 5.1 just sets the ground
for this exercise by providing information required for understanding what the analysis
in Egger et al. (2011b) is about. Subsection 5.3 is based on a simple example using
one of Stata’s example datasets. It is closely related to examples from the help files for
lgrgtest and mlogit. The focus of subsection 5.3 is on illustrating the use of options
available for lgrgtest.

5.1 Egger et al. (2011b) in a nutshell

The application below of lgrgtest partly replicates and uses data from Egger et al.
(2011b). The replication data are published in Egger et al. (2011a) and are made avail-
able via the Inter-university Consortium for Political and Social Research. In their
empirical analysis, Egger et al. (2011b) address the question of whether preferential
trade agreements (PTA) positively affect bilateral trade flows. One focus of the econo-
metric work is on PTA being most likely endogenous. That is, naively regressing exports
from country i to country j on a dummy (pta,;), indicating a common PTA that covers
i and j, might be a heavily biased estimator for the causal effect of trade agreements
on exports if common unobserved factors matter for both trade flows and the existence
of such agreements.

Egger et al. (2011b) use country-level, cross-sectional (year 2005) data that consist
of 15,750 country dyads. In our replication, we focus on one empirical model-—among
several—estimate in Egger et al. (2011b) that considers the extensive margin of bilateral
trade. In that model, the dependent variable i;; is a binary dummy indicating that
country ¢ exports to country j. Because both the outcome variable i;; and the possibly
endogenous regressor pta,; are binary, the endogeneity issue can be addressed through
estimating a recursive bivariate probit model, provided one is willing to assume joint
normality. Though the nonlinearity of the probit model alone would—in principle—
give identification of the model parameters, Egger et al. (2011b) still impose exclusion
restrictions on their preferred model. They argue that, conditional on further covariates,
1) sharing a past colonizer-colony relationship (colony,;), 2) sharing a common past
colonizer (comcol;;), and 3) having a common history as one joint country (smctry,;)
might affect trade between two countries only through the existence of a mutual PTA
and might hence be excluded from the equation explaining i;;. The nonlinearity of the
model provides—in addition to having more instruments than endogenous regressors—
another margin for testing the validity of the exclusion restrictions because the model
is technically identified even without these restrictions imposed. Consequently, one
can directly test whether these three variables affect Prob (i;; = 1) beyond the effect
that operates through pta,; (Egger et al. 2011b, 134). Egger et al. (2011b) base this
test on estimating the unrestricted model. Yet the entire discussion in Egger et al.
(2011Db) focuses on the restricted model. Thus, basing this test on the preferred model
specification may also be appealing. This is what we use 1lgrgtest for.
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5.2 Replication and further statistical tests

After changing the current working directory to where the replication data (data.dta)
are stored, we run the initial lines (a few lines redundant for the present purpose are
dropped) of the replication code file (bivprobtest.do) provided in Egger et al. (2011a)
under version control (Stata 10.1, the Stata version under which the code was originally
run; see README. pdf from the replication package). These lines of code are intended to
implement a test of the exclusion restrictions. The variables _x_x* are 248 (pregenerated)
exporter- and importer-country indicators.

. version 10.1 : {
. use data, clear
. global pcolfex "_x_59 _x_162"
. global z "dist bord lang cont durab polcomp autoc curcol"
. global instr "colony comcol smctry"
. gen const =1
. drop $pcolfex
. quietly biprobit (pta = $z $instr const _x_*, nocons)
> (1 = pta $z $instr const _x_x, nocons)
test [ilcolony [ilcurcol [ilsmctry

(1) [ilcolony

=0
( 2) [ilcurcol = 0
( 3) [ilsmctry =0
chi2( 3) = 3.78
Prob > chi2 = 0.2864

.}

Next, we use lgrgtest to implement an LM test of the same restrictions. As an
initial step, this requires defining constraints using Stata’s constraint command.

. constraint 1 [ilcolony = 0
0

. constraint 3 [ilsmctry = 0

. constraint 2 [i]curcol

. quietly biprobit (pta = $z $instr const _x_*, nocons)
> (1 = pta $z $instr const _x_x, nocons), constraints(l 2 3)

. lgrgtest
LM test of constraints(l 2 3)
(1) [ilJcolony = 0
(2 [ilcurcol = 0
(3) [ilsmctry = 0
LM chi2( 3) = 3.79
Prob > chi2 = 0.2856

lgrgtest yields a result very close to the one we got from test. Given the sub-
stantial sample size and the asymptotic equivalence of the Wald and LM tests, this does
not come as a surprise. In economic terms, both tests are far from rejecting the null of
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colomy,;, smctry,;, and curcol;; exerting no direct effect on i;;, which warrants using

them as instruments for the endogenous regressor ptaij.4

Only to demonstrate that 1grgtest can be employed for testing cross-equation re-
striction and restrictions imposed on ancillary parameters—contentwise, the restrictions
subject to the test make probably little sense—we estimate a specification in which the
coefficient of dist;; is restricted to be the same in both equations and a cross-equation
error correlation of 0.7 is imposed. Here we compare the LM test with the corresponding
LR test, using lrtest. We base this exercise on a small model without exporter and
importer fixed effects.

. scalar atanh07 = 0.5%1n((1+0.7)/(1-0.7))

. constraint 5 [ildist - [ptaldist = 0

. constraint 6 [/]Jathrho = atanh07

. quietly biprobit (pta = $z $instr) (i = pta $z $instr), constraints(5 6)
. lgrgtest

LM test of constraints(5 6)

( 5) - [ptaldist + [i]dist = 0
( 6) [/lathrho = .8673005

LM chi2( 2) = 16.70
Prob > chi2 0.0002

. estimates store nofe_constrained

. quietly biprobit (pta = $z $instr) (i = pta $z $instr)
. estimates store nofe_unconstrained
. lrtest nofe_unconstrained nofe_constrained

Likelihood-ratio test
Assumption: nofe_constra.d nested within nofe_unconst.d

LR chi2(2) = 17.63
Prob > chi2 = 0.0001

The results that 1grgtest and lrtest yield are almost the same. This is in line
with the theoretical results of the LR and LM tests—in the absence of misspecification
under the null—being asymptotically equivalent.

5.3 Further examples

To illustrate using lgrgtest after a command different from biprobit and to illus-
trate some options of lgrgtest, we make use of an example that is—subject to minor
modifications—borrowed from the manual entry for mlogit; see [R] mlogit for more
details. It draws on Tarlov et al. (1989) and Wells et al. (1989) and is, among other
examples, also used in the help file for 1grgtest. From an economic perspective, the ex-

4. Though of no immediate relevance to illustrating the use of lgrgtest, note that curcol;;, indi-
cating a post-1945 colonizer-colony relationship, is not among the variables that actually serve as
instruments in the specification for which results are reported in the article (see Egger et al. [2011b,
132, table 3, column 6]). In fact, the variables listed in the global macro instr are subject to
exclusion restrictions. That is, comcol;;, not curcol;;, serves as an instrument. The actually im-
posed exclusion restrictions are clearly rejected, irrespective of whether a Wald test, implemented
by test, or an LR test, implemented by lgrgtest, is used.
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ample is concerned with the sociodemographic determinants of health insurance choice
among 615 individuals in poor mental health. The outcome variable insure codes
three choice options: an indemnity plan (Indemnity), a prepaid plan (Prepaid), and
no health insurance at all (Uninsure). We impose a set of restrictions on the original
multinomial logit model that effectively reduces it to a simple binary logit model with
the two outcomes insured and uninsured. Subsequently, we use lgrgtest to test the
simple model against the richer alternative.

. webuse sysdsnl, clear
(Health insurance data)

. constraint 53 [Prepaid]

. mlogit insure age male nonwhite i.site, constraint(53)

Iteration 0: Log likelihood = -555.85446
Iteration 1: Log likelihood = -550.37015
Iteration 2: Log likelihood = -549.98844
Iteration 3: Log likelihood = -549.9878
Iteration 4: Log likelihood = -549.9878
Multinomial logistic regression Number of obs = 615
Wald chi2(5) = 9.51
Log likelihood = -549.9878 Prob > chi2 = 0.0904
( 1) [Prepaidlo.age = 0
( 2) [Prepaidlo.male = 0O
( 3) [Prepaidlo.nonwhite = 0
( 4) [Prepaid]2o.site = 0
( 5) [Prepaidl3o.site = 0
insure | Coefficient Std. err. z P>|z| [95% conf. interval]
Indemnity (base outcome)
Prepaid
age 0 (omitted)
male 0 (omitted)
nonwhite 0 (omitted)
site
2 0 (omitted)
3 0 (omitted)
_cons -.0561551 .0838038 -0.67 0.503 -.2204075 .1080973
Uninsure
age -.0023922 .0110472 -0.22 0.829 -.0240443 .0192598
male .1777916 .3511016 0.51 0.613 -.5103549 .8659382
nonwhite -.2732876 .4021485 -0.68  0.497 -1.061484 .5149089
site
2 -1.260906 .4582332 -2.75 0.006 -2.1569027 -.3627856
3 .059544 .3497673 0.17 0.865 -.6259873 .7450753
_cons -1.453019 .5715737 -2.54 0.011 -2.573282  -.3327548
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. lgrgtest
LM test of constraints(53)

1) [Prepaidlo.age = 0

2) [Prepaid]lo.male = 0

3) [Prepaid]o.nonwhite = 0
4) [Prepaid]2bno.site = 0
5) [Prepaid]3o.site = 0

LM chi2( 5) 30.43
Prob > chi2 0.0000

N~~~

The LM test rejects the simple binary choice model. To illustrate the 1grgtest op-
tion forcevce, we rerun mlogit and request robust standard-error estimation by spec-
ifying the option robust. Subsequently, we call 1grgtest without and with forcevce
specified.

. quietly mlogit insure age male nonwhite i.site, constraint(53) robust
. capture noisily lgrgtest
vcetype oim or opg expected; specify option forcevce to switch to
e (V_modelbased)
. lgrgtest, forcevce
vcetype robust not allowed; switched to e(V_modelbased)
LM test of constraints(53)
1) [Prepaidlo.age = 0
2) [Prepaid]o.male = 0
3) [Prepaid]o.nonwhite = 0
4) [Prepaid]2bno.site = 0
5) [Prepaid]l3o.site = 0
LM chi2( 5) 30.43
Prob > chi2 0.0000

N~~~

Without forcevce, lgrgtest denies carrying out the test because oim or opg is
expected as vcetype but not robust. With forcevce, 1grgtest informs us about using
e(V_modelbased) for calculating the LM statistic. Indeed, the test result is exactly the
same as the one we got above. This just reflects that e (V_modelbased) coincides with
e (V) from mlogit with the default vcetype oim.

Finally, we illustrate the option noomitted. For this purpose, we generate the
variable agecollin, which is perfectly collinear with the explanatory variable age, and
add it as an additional right-hand-side variable to the model. mlogit, like any Stata
estimation command, just drops perfectly collinear regressors from the model. Yet this
exercise is to illustrate how lgrgtest deals with this situation.



398 LM test after constrained ML estimation

. generate agecollin = 2*age
(1 missing value generated)

. quietly mlogit insure age male nonwhite i.site agecollin, constraint(53)
. lgrgtest
LM test of constraints(53)

[GD) [Prepaid]o.agecollin = 0
2) [Uninsurelo.agecollin = 0
3) [Prepaidlo.age = 0
(4 [Prepaid]o.male = 0
(5 [Prepaid]o.nonwhite = 0
( 6) [Prepaid]2bno.site = 0
7 [Prepaid]3o.site = 0
LM chi2( 5) = 30.43
Prob > chi2 = 0.0000

. lgrgtest, noomitted
LM test of constraints(53)

LM chi2( 5) 30.43
Prob > chi2 0.0000

The value of the LM statistic remains completely unaffected. Likewise, the p-value
does not change and is still calculated using the correct number of test degrees of free-
dom. Yet, somewhat confusingly, not 5 but 7 restrictions are displayed. This is because
exclusion restrictions automatically imposed to deal with perfect collinearity are also
stored in e(Cns). The option noomitted is intended to fix this issue. However, it does
not succeed in this example but makes lgrgtest display no constraints at all. This
is due to mlogit labeling variables as omitted in e(Cns), irrespective of whether they
are automatically dropped because of collinearity or intentionally excluded by specify-
ing constraints(). To illustrate that different Stata commands deal differently with
automatically imposed restrictions in terms of what is stored in e(Cns), we estimate
the constrained multinomial logit using gsem, mlogit instead of using mlogit; see
[sEM] Example 37g.

. quietly gsem (2.insure <- age@0 male@0 nonwhite®0 i.site@0 agecollin®@0)
> (3.insure <- age male nonwhite i.site agecollin), mlogit

. lgrgtest, noomitted
LM test of comstraints()

[GD) [2.insure]age = O
2) [2.insurelmale = O
(3 [2.insure]lnonwhite = 0
( 4) [2.insure]2bn.site = 0
(5 [2.insurel3.site = 0
LM chi2( 5B) = 30.43
Prob > chi2 = 0.0000

The restrictions to be tested are imposed using gsem’s path notion instead of speci-
fying the option constraints(). Yet, in terms of model estimation, gsem does exactly
the same as mlogit did above. Nevertheless, the option noomitted makes lgrgtest
behave slightly differently after gsem than after mlogit. After gsem, the actually tested
restrictions are displayed. This works because gsem, unlike mlogit, does not label
manually imposed exclusion restriction as omitted variables in e(Cns).
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6 Conclusions

In this article, we introduced the postestimation command lgrgtest, which provides a
convenient way to employ an LM test for testing the constraints imposed on a model pre-
viously estimated by ML. It complements the Stata commands test and lrtest, which
offer the Wald test and the LR test, respectively, to be used for testing these restrictions.
lgrgtest is an alternative to the existing community-contributed command boottest
and its accompanying wrapper scoretest (Roodman et al. 2019). Because the three
tests may behave differently in finite samples, having them all available appears to be
valuable for Stata users. The Stata implementation of the LM test is, however, subject
to one major limitation, which it shares with scoretest. lgrgtest draws on Stata’s
constraint command and the accompanying option constraints (), which allows only
for imposing linear restrictions on a model. Consequently, though the Lagrange multi-
plier test in theory is well suited for testing genuinely nonlinear constraints, such tests
cannot be implemented in Stata using lgrgtest. Another limitation, which also ap-
plies to scoretest, is that 1grgtest, albeit applicable after numerous Stata estimation
commands, cannot be used as a postestimation command after m1 maximize. This is
because the syntax of m1 and what is stored in e () substantially deviate from the stan-
dard for regular Stata estimation commands. Hence, making lgrgtest available after
ml maximize may be a major future update of the command.
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8 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 23-2
. net install st0712 (to install program files, if available)
. net get st0712 (to install ancillary files, if available)
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