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Abstract. Regression analyses of how state occupation probabilities or expected
lengths of stay depend on covariates in multistate settings can be performed us-
ing the pseudo-observation method, which involves calculating jackknife pseudo-
observations based on some estimator of the expected value of the outcome. In
this article, we present a new command, stpmstate, that calculates such pseudo-
observations based on the Aalen–Johansen estimator. We give examples of use of
the command, and we conduct a small simulation study to offer insights into the
pseudo-observation regression approach.
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1 Introduction
When one studies a setting where participants may transition between several states
over time, multistate models provide a suitable framework. A simple example is the
illness-death model, where transitions between the three states of disease free, diseased,
and dead describe how disease-free study participants may get a disease and later die
or how they may die before they get the disease. Inference in multistate models may be
based on hazard regression models for the transition intensities—for example, the Cox
proportional hazards model—though parameters such as state occupation probabilities
and expected lengths of stay are also of interest and may have more direct interpretations
than intensities. In the setting of the illness-death model, for example, the expected
proportion of diseased individuals at a given time point is a state occupation probability
and could be of interest. Even in a situation with right-censored multistate trajectories,
estimates of state occupation probabilities and expected lengths of stay can be based
on the Aalen–Johansen estimator of transition probabilities. This is essentially a plugin
estimator based on nonparametric fits to the intensities; see (1) below. If one wants
adjusted comparisons of state occupation probabilities and expected lengths of stay
between groups or other types of regression analyses in terms of these outcomes, one may
similarly use plugin estimates based on hazard regression models. Another possibility,
however, is to use a pseudovalue approach as suggested by Andersen, Klein, and Rosthøj
(2003). This has the advantage of providing estimates of parameters directly quantifying
the association between each covariate and the outcome in question. Such parameters
include odds ratios, risk ratios, risk differences, where odds and risk refer to state
occupation, and differences in expected length of stay in certain states.

© 2023 StataCorp LLC st0717

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X231175332&domain=pdf&date_stamp=2023-06-22


492 Pseudo-observations in a multistate setting

The pseudovalue approach by Andersen, Klein, and Rosthøj (2003), here called the
pseudo-observation method, works by converting the potentially censored trajectories
into pseudovalues of the desired outcome, also called pseudo-observations. The pseudo-
observations are the jackknife pseudovalues based on leave-one-out estimates from a
suitable estimator. These pseudo-observations replace the potentially unobserved indi-
vidual outcomes, for instance, of state occupation or length of stay, in any regression
analysis of interest. The pseudo-observation for an individual relates to the contribu-
tion of the individual to the estimate. The idea of the approach is that if the estimand
is the mean of an outcome, the pseudo-observation may hold important information
on the potentially unobserved outcome for that individual. This piece of intuition cer-
tainly works in the uncensored case with an average of the individual outcomes as an
estimate of the outcome mean where the individual pseudo-observation turns out to be
the individual outcome. The approach cannot be expected to work with any estimator
but agrees well with inverse probability of censoring weighted estimators, such as the
Kaplan–Meier estimator of survival, under certain assumptions according to the results
of Overgaard, Parner, and Pedersen (2017, 2019). When one obtains regression param-
eter estimates, the suggestion by Andersen, Klein, and Rosthøj (2003) is to use a robust
sandwich variance estimate for obtaining standard errors of the regression parameter
estimates.

Examples of use of the pseudo-observation method in multistate models have been
presented in several articles. Andersen, Klein, and Rosthøj (2003) considered an ex-
ample with a logistic regression model for state occupation at several time points; the
model was essentially a proportional-odds model. It was used with a state of hav-
ing acute graft-versus-host disease while not having relapsed or died as the state of
interest in a bone marrow transplantation example. Andersen and Klein (2007) consid-
ered the pseudo-observation method for current leukemia-free survival, which combines
state occupation probabilities of two states: first and second remissions. Grand and
Putter (2016) considered a regression analysis of expected length of stay based on the
pseudo-observation method with an application in expected life in disability. In Spitoni,
Lammens, and Putter (2018), the pseudo-observations were not used for a regression
analysis but for calculation of prediction errors of predicted state occupation probabil-
ities.

As we describe in more detail below, the pseudo-observations are conceptually not
difficult to compute. To give an example, the pseudo-observations of state occupation
may be based on the Aalen–Johansen-derived estimates of state occupation probabil-
ities, which can be obtained using the msaj command from the multistate package
for Stata by Crowther and Lambert (2016). However, it is desirable to have Stata
commands that allow for easy specifications of states and time points of interest and
more efficient calculation of the desired pseudo-observations. Parner and Andersen
(2010), updated by Overgaard, Andersen, and Parner (2015), present commands for
calculation of pseudo-observations for state occupation and length of stay in the simple
special case of survival followed by failure of one or more types; this case is often called
the competing-risks case. In this article, we present the command stpmstate, which
calculates pseudo-observations for state occupation and length of stay based on the
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Aalen–Johansen estimator in more general multistate settings. The command allows
for calculation of both types of pseudo-observations at various states and several time
points simultaneously. In this article, we also offer some theoretical insights into why
or when the pseudo-observation method would work in a multistate setting, and this is
corroborated in a simulation study. In particular, we note how the Markov assumption
is not required for the method to work under the stated censoring assumptions.

Methodological and computational details are found in section 2. In section 3, we
present the stpmstate command, and examples of its use are given in section 4. In
section 5, we conduct a small simulation study to demonstrate some properties and
limitations of estimates obtained using the pseudo-observation method in this setting.
Finally, we have some closing remarks in section 6.

2 Method
2.1 The general pseudo-observation method

The method considered in this article deals with censoring and allows for regression
analysis of censored outcomes on baseline covariates. We call this method the pseudo-
observation method because it uses the jackknife pseudo-observations or pseudovalues of
a relevant estimator. The general method can be described as follows. Suppose interest
is in how an outcome V depends on baseline covariates Z but V is not always observed
because of censoring. Find a reasonable estimator of the expectation θ = E(V ), and
calculate the jackknife pseudo-observations based on this estimator. Concretely, if θ̂ is
the estimate based on the entire sample and θ̂(i) is the estimate obtained by using the
sample where observation i has been left out, the ith jackknife pseudo-observation is
θ̂i = nθ̂−(n−1)θ̂(i), where n is the sample size. The main idea of the method is that the
pseudo-observations may carry information on the association between V and Z, and the
next step is to use the pseudo-observations as the outcomes in the relevant regression
analysis, replacing the potentially censored outcomes Vi, to estimate the parameters
in a model of how the expectation of V depends on covariates, E(V | Z) = µ(β;Z).
The outcome V could be multivariate—for instance, a status at several different time
points—but we will focus on the univariate case.

An example of the method described above is with V indicating T > t for a survival
time T and time point of interest t > 0. In this case, the estimate, θ̂, could be the
Kaplan–Meier estimate of the survival probability. Calculations in this case can be
carried out using the stpsurv command introduced in Parner and Andersen (2010) and
with an update described by Overgaard, Andersen, and Parner (2015). Other examples
are handled by stpmean and also stpci and stplost in a competing-risks setting, as
described in the referenced articles.

When the pseudo-observations have been calculated, a wide variety of models can
be fit using the generalized linear models framework of the glm command. If g is the
link function in the generalized linear model framework, the model of how the expec-
tation of V depends on covariates is µ(β;Z) = g−1(βTZ) in this case. We cannot
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expect the pseudo-observations to follow any standard distribution as can be speci-
fied by the family() option, and because we are concerned only with the aspect of
the model involving the conditional expectation and not the conditional distribution of
the outcome, it is appropriate to use the robust sandwich variance estimator by spec-
ifying the vce(robust) option to obtain robust standard errors. Using such robust
standard errors was suggested by Andersen, Klein, and Rosthøj (2003) in accordance
with the generalized estimating equation approach of Liang and Zeger (1986). Accord-
ing to Jacobsen and Martinussen (2016), Overgaard, Parner, and Pedersen (2017), and
Overgaard, Parner, and Pedersen (2018), even the robust standard error is not exactly
asymptotically unbiased. In the settings of those articles, the bias was seen to be up-
ward, leading to conservative inference, and the size of the bias very much related to
the size of the effect of covariates on the outcome and the amount of censoring up to
a time point of interest. The bias of the robust standard error seemed to be minor in
many cases. Although the articles mentioned above present coverage probabilities of
corresponding 95% confidence intervals above 96% and 97% in some scenarios, these
scenarios must be considered rather extreme.

An important requirement for the pseudo-observation method to work is that the
pseudo-observations must have the appropriate conditional expectation. Somewhat in-
formally, this can be stated as E(θ̂i | Zi) ≈ E(Vi | Zi). More formally, as described in
Graw, Gerds, and Schumacher (2009) and Overgaard, Parner, and Pedersen (2017), the
requirement is that E{θ̇(Xi) | Zi} = E(Vi | Zi)−E(Vi) where θ̇ is the influence function
of the estimator leading to θ̂ and Xi refers to the observable information on individual
i used by the estimator. There is a close connection between pseudo-observation and
influence function when a reasonable, consistent estimator is considered, namely, that
θ̂i ≈ θ + θ̇(Xi) when the sample size is not too small. In the simple example where V
is the binary indicator of survival to a time point t, T > t, and pseudo-observations
are based on the Kaplan–Meier estimator and other similar examples, the requirement
of E{θ̇(Xi) | Zi} = E(Vi | Zi) − E(Vi) was seen by Graw, Gerds, and Schumacher
(2009) to be fulfilled under an assumption of independence between censoring time and
event time, as well as covariates. Overgaard, Parner, and Pedersen (2017) called this
an assumption of completely independent censorings. Overgaard, Parner, and Pedersen
(2019) demonstrate how inverse probability of censoring weighted estimators satisfies
the requirement of E{θ̇(Xi) | Zi} = E(Vi | Zi) − E(Vi) under the completely indepen-
dent censorings assumption.
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2.2 The pseudo-observation method in multistate settings

We will consider the case where Vi is the binary outcome of state occupation (that
is, being in a certain state at a certain time) or the restricted length of stay (that
is, the time spent in a certain state up to some time point) in a multistate setting.
Such outcomes may be left unobserved because of censoring. The estimators considered
here are the Aalen–Johansen-derived estimators of state occupation probabilities and
expected (restricted) length of stay in such a multistate setting. In line with Gill and
Johansen (1990), we make use of the product integral, a limit of products, with the
notation P. The Aalen–Johansen-derived estimate of the state occupation probabilities
is the row vector

p̂(t) = p̂(0)
t

R
0

{
I+ Λ̂(du)

}
(1)

where p̂(0) is the empirical estimate of the initial state occupation probabilities and
Λ̂ is the matrix of Nelson–Aalen estimates of cumulative forces of transition. Because
the Nelson–Aalen estimates jump only at transition times and are constant between
jumps, the product integral Pt

0{I+ Λ̂(du)} corresponds to the ordinary matrix product∏
u∈(0,t]{I+∆Λ̂(u)}, where only a transition time is a relevant u in the product. Esti-

mates of the expected length of stay in a state j up to time t are obtained by
∫ t

0
p̂j(u)du;

or in other words,
∫ t

0
p̂(u)du is the vector of such estimates for each state.

Using the pseudo-observation method now involves calculating the jackknife pseudo-
observations based on the estimators mentioned above; for instance, θ̂i = np̂j(t)−(n−1)

p̂
(i)
j (t) would be a pseudo-observation to replace the potentially unobserved outcome of

individual i being in state j at time t. Because state occupation is a binary outcome,
models from binomial regression are of interest for this outcome. In the generalized
linear model framework, a logit link results in the model µ(β;Z) = expit(βTZ) for
estimation of state occupation odds ratios, a log link results in µ(β;Z) = exp(βTZ)
for estimation of state occupation probability ratios, and an identity link results in
µ(β;Z) = βTZ for estimation of state occupation probability differences. For the
outcome of length of stay, the identity and log link are of interest for estimation of
differences and ratios of expected length of stay up to some time point. Here focus
has been on a single time point of interest, t, but pseudo-observations corresponding
to multiple time points may be calculated and form a multivariate outcome for each
individual if such an outcome is considered of interest.

In the following paragraphs, we would like to offer a few insights into why and when
the pseudo-observation method is appropriate in this setting. The influence function of
the estimate p̂(t) can be stated as

ṗ(t;X) = ṗ(0;X)
t

R
0

{I+ Λc(du)}

+ pc(0)

∫ t

0

s−

R
0

{I+ Λc(du)} Λ̇(ds;X)
t

R
s

{I+ Λc(du)}
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where ṗ(0;X) and Λ̇(·;X) refer to the influence functions of the empirical estimate of
the initial distribution and the Nelson–Aalen estimates and where pc and Λc refer to
the limits of those estimators. More details are given in the appendix. The influence
function of the estimate of expected length of stay can be derived from the influence
function of p̂(t) and is

∫ t

0
ṗ(u;X)du.

When censoring is independent of the multistate process and allows for possible
observation of the multistate process up to time point t, we have the consistency
properties pc(0) = p(0) and Λc(s) = Λ(s), which ensure that p̂(t) estimates p(t) =
p(0)Pt

0{I+Λ(du)} consistently. See, for instance, Overgaard (2019). Under an assump-
tion of completely independent censoring, which here means that the censoring time is
independent of the multistate process and covariates, E{ṗ(t;Xi) | Zi} = p(t | Zi)− p(t)
also holds, as argued in the appendix. The same property then holds for the influence
function of the estimator of expected length of stay, owing to linearity of the integral.
In other words, the main requirement for the pseudo-observation method to work with
either of the two outcome types is fulfilled under the completely independent censoring
assumption.

A Markov assumption can be used to establish the identity of the transition prob-
ability matrix P (s, t) and the product integral Pt

s{I+ Λ(du)}; see, for example, Aalen
and Johansen (1978). This helps explain the consistency of the Aalen–Johansen es-
timate of the transition probabilities, Pt

s{I + Λ̂(du)}, and then the consistency of
p̂(t) = p̂(0)Pt

0{I+Λ̂(du)} estimating p(t) = p(0)P (0, t) = p(0)Pt
0{I+Λ(du)}. As noted

by Datta and Satten (2001), the Aalen–Johansen-derived estimate of state occupation
probabilities and thereby length of stay is consistent even without the Markov assump-
tion. Essentially, this is because p(t) = p(0)Pt

0{I+Λ(du)} continues to hold without the
Markov assumption even though P (0, t) = Pt

0{I+ Λ(du)} cannot be expected to hold.
Owing to continuity properties of the product integral, assumptions on the censoring
mechanism to ensure consistency of p̂(0) and Λ̂ are then sufficient to establish consis-
tency of p̂(t). This and some further details are discussed in Overgaard (2019), Maltzahn
et al. (2020), and Niessl et al. (2020). Similarly, the pseudo-observation method in mul-
tistate models, considering state occupation probabilities and expected lengths of stay,
does not rely on a Markov assumption.

2.3 Computational approach

The pseudo-observation method requires recalculation of an estimate n times and will
be computationally demanding in larger samples. Additionally, the current Stata and
Mata built-in tools do not appear to allow for a very vectorized calculation of estimates
like those based on the Aalen–Johansen estimator, where a running matrix product
would be useful. Specifically, Pt

s{I+ Λ̂(du)} =
∏

u∈(s,t]{I+∆Λ̂(u)} seemingly requires
a number of matrix multiplications equal to the number of distinct transition times.
We therefore consider it worthwhile to look for ways to reduce the number of required
operations when calculating the pseudo-observations mentioned above.
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As noted by Andersen et al. (1993) in section IV.4.1.4., the estimate p̂(t) is simply
the empirical distribution in the case of no censoring before time point t. The need for
matrix multiplication is entirely eliminated in this case, but this is also a case where
the pseudo-observations are trivial, θ̂i = Vi, and the pseudo-observation method would
have no problem to solve and be of no interest. This example does, however, illustrate
that the number of computations can be reduced considerably in some settings.

In our computational approach, we consider a setting where individuals may enter
and exit the study several times. This is a more general setting than individuals having
one potential exit due to right censoring, as considered earlier. In the following, we
let Yj(s) denote the number of individuals observed to be in state j at time s and
Njk(s, t) denote the number of transitions from j to k in the time interval (s, t]. With
this notation, Λ̂ is given by Λ̂jk(t) =

∫ t

0
Yj(s−)−1Njk(ds) off the diagonal and Λ̂jj(t) =

−
∑

k 6=j Λ̂jk(t) on the diagonal. Here Yj(s−) is then the number of individuals in state j
immediately before time s and can be considered the number of individuals at risk of a
transition from state j at time s. In our computational approach, we take advantage of
the fact that

t

R
s

{
I+ Λ̂(du)

}
= I+H(s, t)

where Hjk(s, t) = Yj(s)
−1Njk(s, t) off the diagonal and Hjj = −

∑
k 6=j Hjk on the

diagonal when there are transitions only from one state and no censorings from that
state and no entries into that state in (s, t]. For a given time point, t, this allows for
a coarse partitioning 0 = u0 < u1 < · · · < um = t of the interval (0, t] such that

Pt
0

{
I+ Λ̂(du)

}
=

∏m
i=1{I + H(ui−1, ui)}. Concretely, the partition is found by the

following procedure:

1. Start with the set of time points, s1 < · · · < sk, of any occurrence, be it a
transition, censoring, or entry.

2. Associate each si with an active transition state where the most recent transition
is from, including potentially at si, if applicable.

3. Reduce to the subset of points, si1 < · · · < sik′ that have been marked by one of
the following points:

a. Mark si if a censoring occurs from or an entry occurs into the active transition
state at si.

b. Mark si if a change in the active transition state occurs at si+1.
c. Mark si if transitions from different states occur at si.

4. Obtain the final subset, u1 < · · · < um, by removing sij if no transitions occur in
(sij , sij+1

].
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With this partition in hand, p̂(t) can be obtained for any t by p̂(t) = p̂(0)
∏

ui<t{I +
H(ui−1, ui)}{I +H(uj , t)}, where uj is the largest ui smaller than t. The estimate of
expected length of stay up to time t is then obtained by

∫ t

0
p̂(s)ds =

∑
si<t p̂(si−1)(si −

si−1) + p̂(sj)(t − sj), where sj is the largest si smaller than t. Here s1, . . . , sk refer to
the similarly named partition mentioned above, but it could be replaced by the distinct
transition times where the estimate p̂(·) changes.

The number of calculations of the actual pseudo-observations is reduced by taking
advantage of the fact that individuals with the same type of transitions, entries, or
censorings in each of the intervals (ui−1, ui] contribute very similarly to the p̂(t) es-
timates even if the transitions, entries, or censorings of the individuals in the various
(ui−1, ui] intervals do not occur at the same time point. If we make sure t is on the
list of ui, the contribution to the calculation of p̂(t) is in fact the same and the pseudo-
observations for state occupation at time t will be the same for such individuals. For
pseudo-observations for expected length of stay up to time t, individuals with the same
contribution to each p̂(si) up to time t will have the same pseudo-observation accord-
ing to the calculation above. This is ensured under the stricter requirement that the
individuals make transitions at the same time points.

3 The stpmstate command
In the following section, we describe the new stpmstate command, which calculates
pseudo-observations for state occupation and length of stay in a multistate setting. The
command requires the data to be stset such that risk sets can be determined using
variables _t0 and _t. Transitions are specified using the from() and to() options as
described below. An individual is understood to have been in the state of the variable
specified by from() between _t0 and _t and then to have made a transition to the state
of the variable specified in to() at time _t. If the state of the two variables of from()
and to() are the same, the individual is understood to have exited at time _t without
making a transition; this is the way to specify a censoring. The failure information of
_d is not used. The dataset may contain multiple transitions per individual in a long
format in this manner.

3.1 Syntax

stpmstate newvar = {p(state) | los(state)}
[
newvar = ...

] [
if
] [

in
] [

weight
]
,

at(numlist) from(varname) to(varname)
[
by(varlist) id(varname)

atnumbers placement(place) replace
]

where newvar is the name of the new variable to be generated containing pseudo-
observations or the stub of the new variables if multiple time points are specified by
at(). Specifying p(state) results in pseudo-observations for state occupation for the
state with name specified by state at time points specified by at() as described below,
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whereas los(state) results in pseudo-observations for a length of stay up to time points
specified by at().

You must stset your data before using stpmstate; see [ST] stset. fweights,
aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

3.2 Options

at(numlist) specifies the time points at which pseudo-observations are to be calculated.
at() is required.

from(varname) specifies the variable containing the states where transitions are from.
from() is required.

to(varname) specifies the variable containing the states where transitions are to. to()
is required.

by(varlist) specifies that calculation of pseudo-observations be performed separately in
the groups defined by varlist.

id(varname) specifies the variable identifying the individuals that the leave-one-out
procedure is based on. The default is the ID variable from the preceding stset com-
mand if available, and observations are considered separate individuals otherwise.

atnumbers specifies that names of generated variables be suffixed by the corresponding
time point of the at() list when multiple time points are specified by at() rather
than the 1, 2, . . . , k default.

placement(place) specifies on which row the pseudo-observations for an ID are to be
placed. Possible values of place are first for placement on the earliest entry, last
for placement on the latest entry, and all for placement on all entries of that ID.
The default is placement(first).

replace specifies that generated variables can replace existing variables without error.

3.3 Notes

Any weights from the preceding stset command will be carried over to stpmstate
unless other weights are specified in the stpmstate statement itself. Weights are handled
as if they were frequency weights. This means that n in the calculation is the sum of
the weights and that one unit of weight of ID i is left out rather than all of i in the
calculation of the pseudo-observations.

Generated variables are equipped with characteristics (see [P] char), with informa-
tion on what type of pseudo-observation they hold, for which state, at what time point,
and potentially by which variable the calculation was stratified.

The state variables of from() and to()may be numeric or string variables. The state
variables and the states specified in the command are internally converted to strings.
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For instance, a state denoted by a numeric 1 is considered identical to a state denoted
by the string "1".

The command allows depleted risk sets without error. The calculations remain in
line with the description in section 2. Such depleted risk sets may cause bias in the
estimates and thereby in the pseudo-observation method, and we strongly recommend
applying the method only to time points in a range where ample information is available.

Any information on transitions after the last time point of interest is not used by
the Aalen–Johansen estimates up to that time point and therefore has no influence on
the calculation of the pseudo-observations. The command will generally censor any
information after this point internally, improving computational speed.

The intended use of the command is in the case where all individuals are available
at time 0, but the command will not produce an error if this is not the case. If no
individual is available at time 0, the command will look for the earliest entry to play
the role as 0 in the computations mentioned earlier. Length of stay then refers to time
since this earliest entry.

4 Examples
To illustrate the use of the stpmstate command, we consider the bone marrow trans-
plantation dataset ebmt4.csv from the R package mstate. According to van Houwelin-
gen and Putter (2008), who also use this dataset and are a source for the following
description, the dataset is obtained from the European Group for Blood and Marrow
Transplantation registry. The dataset consists of times, in days, from transplantation to
events such as platelet recovery, adverse event (acute graft-versus-host disease), relapse,
and death for 2,279 leukemia patients who had a bone marrow transplantation between
1985 and 1998. The variables holding these times to events are called rec, ae, rel, and
srv, with recs, aes, rels, and srvs indicating whether an event occurred. The dataset
also contains information on covariates for the patients such as age at transplantation
(categorized as ≤ 20, 20–40, > 40), year of transplantation (categorized as 1985–1989,
1990–1994, 1995–1998), whether prophylaxis was used, and whether the donor was a
gender match or mismatch. The variable names are agecl, year, proph, and match.

We will consider a multistate model with six states for these data: transplanted,
which is the initial state; adverse event, where individuals have experienced an adverse
event but not platelet recovery; platelet recovery, where individuals have experienced
platelet recovery but not an adverse event; adverse event and platelet recovery, where
individuals have experienced both an adverse event and platelet recovery; relapse, where
individuals have relapsed; and death, where individuals have died. This model and
possible transitions are illustrated in figure 1. In Stata, we set this up as follows:
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1: Transplanted

2: Platelet rec.

3: Adverse event

4: Adv. ev. & Pl. rec.

5: Relapse

6: Death

Figure 1. The multistate model of the bone marrow transplantation example

. import delimited
> "https://vincentarelbundock.github.io/Rdatasets/csv/mstate/ebmt4.csv"
(encoding automatically selected: ISO-8859-1)
(16 vars, 2,279 obs)
. foreach var of varlist year agecl proph match {

2. egen `var'_cat = group(`var'), label
3. }

. label define match_cat 1 "mismatch" 2 "match", modify

. stset srv, failure(srvs) id(id)
Survival-time data settings

ID variable: id
Failure event: srvs!=0 & srvs<.

Observed time interval: (srv[_n-1], srv]
Exit on or before: failure

2,279 total observations
0 exclusions

2,279 observations remaining, representing
2,279 subjects

838 failures in single-failure-per-subject data
3,826,341 total analysis time at risk and under observation

At risk from t = 0
Earliest observed entry t = 0

Last observed exit t = 6,299
. foreach var of varlist rec ae rel srv {

2. stsplit post`var' if `var's == 1, at(0) after(`var')
3. recode post`var' (0 = 1) (else = 0)
4. }

(1,218 observations (episodes) created)
(3,497 changes made to postrec)
(1,134 observations (episodes) created)
(4,631 changes made to postae)
(347 observations (episodes) created)
(4,978 changes made to postrel)
(no new episodes generated)
(4,978 changes made to postsrv)
. label define statelbl 1 "Transplanted" 2 "Platelet rec."
> 3 "Adverse event"
> 4 "Adv. ev. & Pl. rec."
> 5 "Relapse" 6 "Death"
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. generate fromstate = 1

. replace fromstate = 2 if postrec & !postae
(896 real changes made)
. replace fromstate = 3 if postae & !postrec
(961 real changes made)
. replace fromstate = 4 if postae & postrec
(760 real changes made)
. replace fromstate = 5 if postrel
(347 real changes made)
. generate tostate = fromstate
. by id (_t), sort: replace tostate = fromstate[_n + 1] if _n < _N
(2,699 real changes made)
. replace tostate = 6 if _d == 1
(838 real changes made)
. label values fromstate tostate statelbl

At this stage, the 2,279 individuals are split into 4,978 rows, with 3,537 rows repre-
senting observed transitions between states, including 838 transitions into the absorbing
death state, whereas the remaining 1,441 rows represent censorings. In other words, of
the 2,279 individuals, 838 are eventually observed to die, and the remaining 1,441 indi-
viduals are lost to follow-up beforehand. This censoring problem is the issue we will be
handling using the pseudo-observation method. These censorings essentially occur over
the entire follow-up period, the maximal follow-up time being 6,299 days or 17.2 years.
For example, 543 censorings occur before 5 years of follow-up.

To give an example of what the data look like when they are set up like this, we can
look at the first two individuals.

. list id _t0 _t fromstate tostate if id == 1 | id == 2, sepby(id)

id _t0 _t fromstate tostate

1. 1 0 22 Transplanted Platelet rec.
2. 1 22 995 Platelet rec. Platelet rec.

3. 2 0 12 Transplanted Adverse event
4. 2 12 29 Adverse event Adv. ev. & Pl. rec.
5. 2 29 422 Adv. ev. & Pl. rec. Relapse
6. 2 422 579 Relapse Death
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This is understood as follows. Individual 1 transitions to state 2 at day 22 and is then
censored in state 2 at day 995. Individual 2 transitions to state 3 at day 12, then to
state 4 at day 29, then to state 5 at day 422, and finally to state 6 at day 579. The
individuals are in fromstate between _t0 and _t and contribute to the risk set in that
state in that interval. Note that this is different from the way the multistate package
would have had the data set up. The multistate package requires an entry for each
potential transition of the individual to work with transition-specific risk sets and other
things. The way the data are set up for stpmstate above is sufficient to determine
the size of risk sets and number of transitions necessary in the computational approach
described earlier because risk sets are state specific but not transition specific.

4.1 State occupation probability example

Let us take an interest in the probability of having had platelet recovery without adverse
events, relapse, or death occurring yet after 5 years, that is, being in state 2 in figure 1.
Because this outcome is unknown for individuals who are lost to follow-up before 5 years,
we calculate pseudo-observations for this outcome using stpmstate as follows:

. stpmstate pseudo = p(2), at(`=5*365.25') from(fromstate) to(tostate)
Computing pseudo-observations (progress dots indicate percent completed).

1 2 3 4 5
.................................................. 50
.................................................. 100

As described earlier, the specification pseudo = p(2) means we want to generate a
variable called pseudo, which, because we have specified p(), should hold pseudo-
observations for state occupation, and this is desired for state 2. The time of interest
for the pseudo-observation is controlled by the at() option, where `=5*365.25' gives
us approximately 5 years because the time scale was kept in days above. Note that we
could have generated various variables with pseudo-observations by adding more speci-
fication, for instance, stpmstate ps2 = p(2) ps3 = p(3) for pseudo-observations for
state occupation for both state 2 and 3. Also, if we wanted pseudo-observations at
several time points of interest, we could have specified a numlist in at()—for instance,
at(100(100)400)—if time points 100, 200, 300, and 400 are of interest. A specification
with pseudo = p(2), at(100(100)400) would have generated 4 variables—pseudo1,
pseudo2, pseudo3, pseudo4—using pseudo as a stub and 1, 2, 3, and 4 as suffixes
unless the atnumbers option had been used. Specifying atnumbers would have led to
the generation of variables pseudo100, pseudo200, pseudo300, and pseudo400, which
could be useful for a subsequent reshape of the data.

After generating the pseudo variable above, suppose we are interested in how the
state occupation probability for state 2 at 5 years depends on how the covariates age at
transplantation and gender match. In that case, we can now do a glm with the pseudo-
observations as the outcome variable and with the covariates specified as usual. As
discussed above, using robust standard errors is expected to be fairly appropriate. We
specify a log link below to consider a model where covariates influence the probability
by ratios, pj(t | Z) = exp(βTZ) for state j = 2 at t = 5 years, where Z denotes the
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vector of age category and gender match indicators in addition to a constant term.
In its current format, the dataset has multiple rows per individual, but because the
pseudo-observation variable is nonmissing only on one of these by default, the earliest,
we can proceed with the glm procedure without reformatting or making restrictions.

. glm pseudo i.agecl_cat i.match_cat, eform link(log) vce(robust) baselevels
Iteration 0: Log pseudolikelihood = -2658.4499
Iteration 1: Log pseudolikelihood = -1811.734
Iteration 2: Log pseudolikelihood = -1083.2436
Iteration 3: Log pseudolikelihood = -1082.8065
Iteration 4: Log pseudolikelihood = -1082.8061
Iteration 5: Log pseudolikelihood = -1082.8061
Generalized linear models Number of obs = 2,279
Optimization : ML Residual df = 2,275

Scale parameter = .1516965
Deviance = 345.1094552 (1/df) Deviance = .1516965
Pearson = 345.1094552 (1/df) Pearson = .1516965
Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = ln(u) [Log]

AIC = .953757
Log pseudolikelihood = -1082.806075 BIC = -17244.03

Robust
pseudo exp(b) std. err. z P>|z| [95% conf. interval]

agecl_cat
20-40 1 (base)
<=20 1.104623 .1204473 0.91 0.361 .8920714 1.367818
>40 1.013094 .1178623 0.11 0.911 .8065327 1.272558

match_cat
mismatch 1 (base)

match 1.266397 .1476224 2.03 0.043 1.007735 1.591451

_cons .1451825 .0160501 -17.46 0.000 .1168995 .1803083

According to this analysis, to take an example, the probability of being in the platelet
recovery state at 5 years since transplantation in the ≤ 20 years category is a factor
1.10 (confidence interval [0.89, 1.37]) higher than in the reference category 20–40 years
when comparing on a fixed level of gender match category. The intercept parameter,
estimated at 0.145 (confidence interval [0.117, 0.180]), refers to the probability of being
in the platelet recovery state at 5 years since transplantation in the reference category
of 20–40 years at transplantation and gender mismatch.

We could have specified another link function in the glm command if we wanted to
study a different model. For this outcome, an interesting option is the logit link function
if state occupation odds and odds ratios are desired.
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4.2 Length-of-stay example

To illustrate the use of pseudo-observations of length of stay, suppose we are now inter-
ested in the amount of time spent in remission having had an adverse event within the
first five years after transplantation and how this amount of time depends on the use
of prophylaxis. In the multistate model of figure 1, we consider two states in remission
having had an adverse event, namely, one with platelet recovery and one without. In
the following, we calculate pseudo-observations for length of stay restricted to five years
after transplantation for each of these states. The two pseudo-observation variables are
then combined to form the relevant pseudo-observation. Because the amount of time
spent in one of the two states is the sum of the amounts of time spent in the two states,
or more precisely because a natural estimate of the expected length of stay is also the
sum of the two separate estimates, the pseudo-observation can also be obtained by the
corresponding sum.

. stpmstate ps_los_ae = los(3) ps_los_recae = los(4), at(`=5*365.25')
> from(fromstate) to(tostate)
Computing pseudo-observations (progress dots indicate percent completed).

1 2 3 4 5
.................................................. 50
.................................................. 100
. generate pseudo_los = ps_los_ae + ps_los_recae
(2,699 missing values generated)

With the pseudo-observations in hand, we can now fit a model of our choosing. If we
wanted to estimate the difference in expected length of stay associated with prophylaxis
use while adjusting for factors such as age at transplantation and whether the donor
was a gender match or mismatch, we could consider a linear model, E(Vi | Zi) = βTZi,
where covariates Zi consist of observations on the mentioned variables in addition to a
constant term and where Vi refers to the potentially unobserved length of stay up to
five years. Such a model can be fit using the default identity link of the glm command
as follows.
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. glm pseudo_los i.proph_cat i.agecl_cat i.match_cat, vce(robust) baselevels
Iteration 0: Log pseudolikelihood = -18474.294
Generalized linear models Number of obs = 2,279
Optimization : ML Residual df = 2,274

Scale parameter = 644965.1
Deviance = 1466650545 (1/df) Deviance = 644965.1
Pearson = 1466650545 (1/df) Pearson = 644965.1
Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = u [Identity]

AIC = 16.21702
Log pseudolikelihood = -18474.29432 BIC = 1.47e+09

Robust
pseudo_los Coefficient std. err. z P>|z| [95% conf. interval]

proph_cat
no 0 (base)
yes -192.6659 36.836 -5.23 0.000 -264.8631 -120.4687

agecl_cat
20-40 0 (base)
<=20 13.8786 41.9529 0.33 0.741 -68.34757 96.10477
>40 -28.78528 41.5118 -0.69 0.488 -110.1469 52.57635

match_cat
mismatch 0 (base)

match 9.842872 39.10605 0.25 0.801 -66.80358 86.48932

_cons 616.5214 39.25449 15.71 0.000 539.5841 693.4588

We see that, in this adjusted analysis, prophylaxis use is associated with a decrease of
193 (confidence interval [120, 265]) days spent having had an adverse event in remission
within the first 5 years after transplantation.

On second thought, we might suspect that year of transplantation is an important
confounder. We do have information on year of transplantation in categories, and
suppose we now want to adjust for this categorical variable. We can simply use the
same pseudo-observations in the new model.
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. glm pseudo_los i.proph_cat i.agecl_cat i.match_cat i.year_cat, vce(robust)
> baselevels
Iteration 0: Log pseudolikelihood = -18467.843
Generalized linear models Number of obs = 2,279
Optimization : ML Residual df = 2,272

Scale parameter = 641888.6
Deviance = 1458370888 (1/df) Deviance = 641888.6
Pearson = 1458370888 (1/df) Pearson = 641888.6
Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = u [Identity]

AIC = 16.21311
Log pseudolikelihood = -18467.84329 BIC = 1.46e+09

Robust
pseudo_los Coefficient std. err. z P>|z| [95% conf. interval]

proph_cat
no 0 (base)
yes -163.394 38.70929 -4.22 0.000 -239.2628 -87.52515

agecl_cat
20-40 0 (base)
<=20 17.47392 41.812 0.42 0.676 -64.47609 99.42393
>40 -45.61846 42.51294 -1.07 0.283 -128.9423 37.70538

match_cat
mismatch 0 (base)

match 9.053128 39.15273 0.23 0.817 -67.6848 85.79106

year_cat
1985-1989 0 (base)
1990-1994 153.408 42.54835 3.61 0.000 70.01479 236.8013
1995-1998 84.95325 44.82027 1.90 0.058 -2.89286 172.7994

_cons 524.7723 48.66241 10.78 0.000 429.3957 620.1488

This changes the conclusion. Now prophylaxis use is associated with a decrease of
163 (confidence interval [88, 239]) days spent having had an adverse event in remission
within the first 5 years after transplantation in this new adjusted analysis.

We have mentioned how covariate-independent censoring is a requirement as part of
the completely independent censorings assumption. We ought to consider whether the
completely independent censorings assumption is reasonable and, in particular, check
whether censoring is in fact independent of covariates. In this regard, the added variable
concerning the year of transplantation is particularly suspect because the censoring time
may well simply be the time from transplantation to an end-of-study calendar time and
is thus completely determined by the time of transplantation. As we discuss further in
section 6, approaches to alleviate the problem exist, and a suggestion by Andersen and
Pohar Perme (2010) is to base pseudo-observations on a mixture estimator, combining
estimates from strata of a variable that censoring depends on. This approach is equiv-
alent to calculating pseudo-observations in each stratum, and it is an approach we can
also take in the multistate setting considered here. The calculation is easily carried out
using the by() option of stpmstate, as demonstrated below.
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. stpmstate ps_los_ae_by = los(3) ps_los_recae_by = los(4) , at(`=5*365.25')
> from(fromstate) to(tostate) by(year_cat)
Computing pseudo-observations (progress dots indicate percent completed).

1 2 3 4 5
.................................................. 50
.................................................. 100
. generate pseudo_los_by = ps_los_ae_by + ps_los_recae_by
(2,699 missing values generated)

With the new pseudo-observations in hand, we can fit the same model as above.

. glm pseudo_los_by i.proph_cat i.agecl_cat i.match_cat i.year_cat, vce(robust)
> baselevels
Iteration 0: Log pseudolikelihood = -18469.275
Generalized linear models Number of obs = 2,279
Optimization : ML Residual df = 2,272

Scale parameter = 642695.4
Deviance = 1460203922 (1/df) Deviance = 642695.4
Pearson = 1460203922 (1/df) Pearson = 642695.4
Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = u [Identity]

AIC = 16.21437
Log pseudolikelihood = -18469.27464 BIC = 1.46e+09

Robust
pseudo_los~y Coefficient std. err. z P>|z| [95% conf. interval]

proph_cat
no 0 (base)
yes -164.5535 38.64405 -4.26 0.000 -240.2944 -88.81251

agecl_cat
20-40 0 (base)
<=20 16.56764 41.77769 0.40 0.692 -65.31513 98.4504
>40 -45.70776 42.61102 -1.07 0.283 -129.2238 37.8083

match_cat
mismatch 0 (base)

match 9.399726 39.16746 0.24 0.810 -67.36709 86.16654

year_cat
1985-1989 0 (base)
1990-1994 152.6126 42.30561 3.61 0.000 69.69513 235.5301
1995-1998 84.72187 44.88182 1.89 0.059 -3.24489 172.6886

_cons 525.942 48.51066 10.84 0.000 430.8628 621.0211

Based on this adjusted analysis, prophylaxis use is associated with a decrease of 165
(confidence interval [89–240]) days spent having had an adverse event in remission within
the first 5 years after transplantation. This is only slightly different from the conclu-
sion above, and the potential problem of covariate-dependent censoring due to year of
transplantation seems to be minor here, at least up to five years after transplantation.
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5 Simulations
To further illustrate the properties of the pseudo-observation method in multistate mod-
els, we conduct a simulation study. We want to illustrate that the method does produce
reasonable parameter estimates under the requirements discussed in section 2, that some
bias can be expected when the completely independent censoring assumption is not met,
but that reasonable parameter estimates can be expected even in the non-Markov case
when assumptions are met. We also want to illustrate how the robust sandwich variance
estimator fares in these scenarios.

1: Healthy 2: Ill

3: Dead

Figure 2. The multistate model of the simulation study

The setting considered in this simulation study is as follows. A multistate model
with three states is considered. The three states can be thought of as healthy, ill, and
dead, and the model is an illness-death model with recovery as illustrated in figure 2.
We consider three scenarios of such a model. Common to all scenarios are the following
features. We have two covariates, Z = (Z1, Z2)

T , where Z1 is a group variable, simulated
as b(1, 0.5), that we aim at estimating the effect of and Z2, independently simulated
as log-normal(0, 0.3), is a factor that we want to adjust for. Initially, all individuals
are healthy. Conditional on covariates, we have the transition rates λ12(s) = (0.2Z1 +
0.2Z2)

−1, λ13(s) = λ23(s) = log(2)/5, whereas λ21(s) depends on the scenario and
λ31(s) = λ32(s) = 0. Trajectories are right-censored, but the censoring rates depend on
the scenario. A sample size of 400 independent individuals is considered in all scenarios.
The three specific scenarios are as follows.

Sc.1 Constant λ21(s) = 1 and completely independent censoring with censoring rate
λC(s) = 1/5.

Sc.2 Constant λ21(s) = 1 and covariate-dependent censoring with rate
λC(s) = (2.5Z1 + 3.75Z2)

−1 independent of the multistate process.

Sc.3 A non-Markovian process where a latent log-normal(0, 0.3) waiting time deter-
mines when a transition back to healthy from ill occurs if death has not oc-
curred in the mean time and completely independent censoring with censoring
rate λC(s) = 1/5.

The marginal mean time to censoring is 5 or roughly 5 in either scenario. We consider
two outcomes of interest—namely, state occupation for state 2, the ill state, at time 5
and length of stay in state 2 up to time 5. The scenarios are simple to simulate, but for
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either outcome the conditional expectation of the outcome does not depend in a simple
way on covariates. We fit simple models that are wrong nonetheless to illustrate how
the best fit to the pseudo-observations match the best fit in uncensored data. For the
state occupation outcome, we consider the model p2(5 | Z1, Z2) = expit(β0 + β1Z1 +
β2Z2), corresponding to a logit link in the generalized linear model framework. For the
length of stay outcome, we consider the model los2(5 | Z1, Z2) = β0 + β1Z1 + β2Z2,
corresponding to an identity link in the generalized linear model framework. In either
case, the parameter of interest is considered to be β1, which has the interpretation
as either an adjusted log odds-ratio concerning odds of state occupation at time 5 or
an adjusted difference in expected length of stay up to time 5 associated with the
group variable Z1, adjusting for Z2. The parameter β1 is estimated using the pseudo-
observation method based on the Aalen–Johansen-derived estimate of state occupation
probabilities and expected lengths of stay as described above. The robust sandwich
variance estimate is used as a variance estimate. For comparison, a similar parameter
estimate is obtained based on the uncensored sample where state occupation and length
of stay are directly observed. For each scenario and for each outcome, we make 10,000
iterations of this procedure.

The results of this simulation study are presented in table 1, which shows averages
of β1 estimates in uncensored samples to get an idea of what kind of best fit we are
trying to estimate in that particular scenario. Of perhaps primary interest are the pre-
sented averages of parameter estimates in censored samples obtained using the pseudo-
observation method. The variance observed in parameter estimates across iterations is
also presented, as well as the average of variance estimates across iterations.

Table 1. Results of simulations in six scenarios. “Est. uncens.” refers to average
of parameter estimates in the uncensored samples, “Est. cens.” refers to parameter
estimates in the censored samples, “Obs. var.” refers to the variance in parameter
estimates, and “Var. est.” refers to averages of variance estimates.

Est. uncens. Est. cens. Obs. var. Var. est.
State occupation, sc. 1 −0.2533 −0.2597 0.0989 0.0965
State occupation, sc. 2 −0.2508 −0.2141 0.0949 0.1014
State occupation, sc. 3 −0.2421 −0.2403 0.0952 0.0958
Length of stay, sc. 1 −0.4879 −0.4865 0.0275 0.0276
Length of stay, sc. 2 −0.4856 −0.4600 0.0278 0.0276
Length of stay, sc. 3 −0.4499 −0.4498 0.0262 0.0266

In table 1, we see that, for scenarios 1 and 3 for either outcome, very similar averages
are obtained in censored and uncensored samples, indicating no or very limited bias of
the method in these scenarios. In contrast, a considerable bias in this sense can be seen
for either outcome in scenario 2, where completely independent censoring is not fulfilled.
Across scenarios, the observed variance and the average variance estimate seem to be
in a reasonable correspondence. Figure 3 illustrates the approximate normality of the
β1 parameter estimates of the model for state occupation under scenario 1.
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Figure 3. Estimates of β1 in simulations of scenario 1 for state occupation. The average
of estimates is at the dashed line.

In conclusion, this simulation study illustrates how reasonable parameter estimates
can be obtained using this method when assumptions are met but that some bias can oc-
cur when the completely independent censoring assumption is violated. The simulation
study also illustrates how the robust sandwich variance estimator provides reasonable
estimates of the variance of parameter estimates in these scenarios.

6 Conclusions
We have presented the stpmstate command and demonstrated how it can be used for
obtaining jackknife pseudo-observations in multistate settings and how these pseudo-
observations can be of use in regression analyses of interest. The approach will be
appropriate even without a Markov property of the underlying multistate process.

However, there are limitations on the usability of this pseudo-observation approach.
We have mentioned how covariate-independent censoring is a requirement that can be
quite strict in practice, where attrition may be associated with certain characteristics of
study participants that also influence state occupation. This limitation of the pseudo-
observation method stems from the fact that the Aalen–Johansen estimator, which the
pseudo-observations are based on, does not account for covariates, and the limitation
can likely be removed by basing pseudo-observations instead on more involved estima-
tors that account for covariates, such as the estimator suggested by Datta and Satten
(2002). Another option is to generalize the approaches of Binder, Gerds, and Andersen
(2014) and Overgaard, Parner, and Pedersen (2019), where the censoring distribution
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is also modeled. As mentioned in section 4, another suggestion can be found in An-
dersen and Pohar Perme (2010), where pseudo-observations are based on a mixture
estimator, which combines estimates from strata of a variable that censoring is con-
sidered to depend on. The pseudo-observations obtained from the mixture estimator
are in fact identical to what is obtained by calculating pseudo-observations based on
the original estimator in each stratum. In section 4, we saw how this approach can be
taken in the multistate setting considered in this article simply by using the by() option
of stpmstate. The completely independent censoring assumption is equivalent to an
assumption of conditional independence of censoring time and an underlying multistate
process given covariates and independence of censoring time and covariates. The con-
ditional independence is usually impossible to check with the available data, but the
independence of censoring time and covariates can be checked, at least if the conditional
independence of censoring time and underlying multistate process holds. Another po-
tential limitation is that of delayed entry. Preliminary investigations into the theory
indicate that the selection that happens if some potential study participants do not
actually enter the study because they reach an absorbing state before coming under
observation can cause bias. But this bias may be minor in many cases and was not
detected when studied by Grand et al. (2019).

The examples and the method presented here focused on one outcome of interest at a
given time point. The pseudo-observation approach can be taken when considering more
than one time point and also more than one outcome at the same time. The stpmstate
command allows for simultaneous calculation of the required pseudo-observations. To
fit the desired model, one may need to reshape the data into a long format and then
obtain parameter estimates by using glm while accounting for the fact that more obser-
vations on the same individuals are used when calculating standard errors by specifying
vce(cluster id) for the relevant id variable. If separate models and model parame-
ters are considered for different outcomes, the seemingly unrelated estimation approach,
as carried out by the suest command, may be useful for simultaneous inference about
the various parameters.

An alternative to using jackknife pseudo-observations and the pseudo-observation
method as demonstrated here would be to use weighting according to the inverse prob-
ability of complete observation, that is, to use the approach of inverse probability of
censoring weighting. Weights can be applied to how each individual enters the procedure
of obtaining regression parameter estimates—for example, in the glm step—or weights
can be applied to the outcome variable specifically, as suggested by Scheike and Zhang
(2007). This latter approach is known in some settings as direct binomial regression;
see also Scheike, Zhang, and Gerds (2008). How these approaches compare with the
pseudo-observation approach does not seem to be known.
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8 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 23-2

. net install st0717 (to install program files, if available)

. net get st0717 (to install ancillary files, if available)
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Appendix
In this appendix, we want to clarify a few theoretical details of the pseudo-observa-
tion method, particularly those regarding the assumptions to ensure that the pseudo-
observations have the correct conditional expectation.

We let X denote the observed multistate process where we let X(s) = 0 indicate
that the underlying process is not under observation at time s, which could be due to
censoring before time s. The vector of initial distributions p(0) is estimated by the
empirical version of pc(0), where pc

j(0) = P{X(0) = j | X(0) 6= 0}. The cumulative
forces of transition matrix Λ is given by Λjk(s) =

∫ s

0
pj(u−)−1Fjk(du) for off-diagonal

elements and Λjj(s) = −
∑

k 6=j Λjk(s) on the diagonal, where Fjk(s) is the expected
number of transitions from j to k up to time s for an individual. Each Λjk(s) is estimated
by Nelson–Aalen estimates, where the total number of individuals observed in state j
just before time u replaces pj(u−) and the total number of observed transitions from j
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to k up to time s replaces Fjk(s). Without further assumptions, we denote the limit of
the matrix of estimates Λ̂ by Λc, an observable cumulative forces of transition matrix.
It should be clear that under an assumption of independent censoring, we have both of
the consistency properties pc(0) = p(0) and Λc = Λ.

Now, because the Aalen–Johansen-derived estimates of the state occupation prob-
abilities are p̂(t) = p̂(0)Pt

0{I + Λ̂(du)}, the influence function of the estimate p̂(t) will
depend on the influence functions of both p̂(0) and Λ̂. More precisely, the influence
function of p̂(t) can be stated as

ṗ(t;X) = ṗ(0;X)
t

R
0

{I+ Λc(du)}

+ pc(0)

∫ t

0

s−

R
0

{I+ Λc(du)} Λ̇(ds;X)
t

R
s

{I+ Λc(du)}

and involves two terms: one term is related to the influence function ṗ(0;X) of p̂(0),
and a second term involves the influence function Λ̇(·;X) of Λ̂. The form of the latter
term comes from the Duhamel equation; see, for example, Gill and Johansen (1990).
To be precise, we have ṗ(0;X) = 1(X(0) = j)/

∑
k 6=0 p̃k(0) − pc

j(0)
∑

k 6=0 1(X(0) =
k)/

∑
k 6=0 p̃k(0), where p̃j(0) = P (X(0) = j) is the initial probability of being observed

to be in state j and, for j 6= k,

Λ̇jk(s;X) =

∫ s

0

1

p̃j(u−)
NX,jk(du)−

∫ s

0

1(X(u−) = j)

p̃j(u−)
Λc
jk(du)

where NX,jk(s) counts the number of transitions from j to k of the observable multistate
process X before time s.

Under an assumption of completely independent censoring—that is, the censoring
time is independent of multistate process and covariates—we have, as mentioned, that
pc(0) = p(0) and Λc = Λ but also that pc(0 | Z) = p(0 | Z), Λc(· | Z) = Λ(· | Z), and
p̃j(s | Z)/p̃j(s) = pj(s | Z)/pj(s) for the conditional distributions given covariates Z.
In addition to E{ṗ(0;X) | Z} = p(0 | Z) − p(0), this implies that E{Λ̇jk(s;X) | Z} =∫ s

0
pj(u− | Z)/pj(u−){Λjk(du | Z)− Λjk(du)} or, in matrix form, that

E{Λ̇(s;X) | Z} =

∫ s

0

diag{p(s)}−1 diag {p(s | Z)} {Λ(du | Z)− Λ(du)}

where diag(a) is the diagonal matrix with the vector a on the diagonal. Because

p(0)
s

R
0

{I+ Λ(du)} diag {p(s)}−1 diag {p(s | Z)}

= p(s)diag {p(s)}−1 diag {p(s | Z)} = p(s | Z)

= p(0 | Z)
s

R
0

{I+ Λ(du | Z)}
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we see that

E{ṗ(t;X) | Z} = {p(0 | Z)− p(0)}
t

R
0

{I+ Λ(du)}

+ p(0)

∫ t

0

s−

R
0

{I+ Λ(du)}diag {p(s)}−1

diag {p(s | Z)} {Λ(du | Z)− Λ(du)}
t

R
s

{I+ Λ(du)}

= {p(0 | Z)− p(0)}
t

R
0

{I+ Λ(du)}

+ p(0 | Z)
∫ t

0

s−

R
0

{I+ Λ(du | Z)}

{Λ(du | Z)− Λ(du)}
t

R
s

{I+ Λ(du)}

= {p(0 | Z)− p(0)}
t

R
0

{I+ Λ(du)}+ p(0 | Z)[
t

R
0

{I+ Λ(du | Z)} −
t

R
0

{I+ Λ(du)}

]

= p(0 | Z)
t

R
0

{I+ Λ(du | Z)} − p(0)
t

R
0

{I+ Λ(du)} = p(t | Z)− p(t)

where the Duhamel equation is also used. This shows how the main requirement for the
pseudo-observation method to work is fulfilled under the completely independent cen-
soring assumption. A similar argument is given in the supplement of Spitoni, Lammens,
and Putter (2018).




