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1 Introduction
The availability of panel data allows advantages with respect to cross-section or time-
series data (see, for example, Baltagi [2021]). In particular, panel data allow researchers
a better assessment of economic dynamics at the unit (individual, firm, etc.) level.

Dynamic panel-data models are widely used in empirical studies, and various meth-
ods have been proposed in the literature for estimation of the parameters of interest
(Hsiao, Pesaran, and Tahmiscioglu 2002; Gouriéroux, Phillips, and Yu 2010; Kiviet
1995), with the generalized method of moments (GMM) being the most widely applied
method in empirical research (Hansen 1982). Two different approaches are customarily
adopted in empirical analysis: the difference GMM estimator and the system GMM esti-
mator (Arellano and Bond 1991; Arellano and Bover 1995; Blundell and Bond 1998). A
third GMM estimator is also available, by Ahn and Schmidt (1995), based on a nonlin-
ear set of moment conditions, which has so far seen limited application in the empirical
literature (only recently available in Stata; see Kripfganz [2017]).
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The three approaches differ in terms of the moment conditions exploited in the
estimation process. The difference GMM estimator and the nonlinear estimator by Ahn
and Schmidt (1995) exploit the same set of model assumptions, but the latter efficiently
includes all moment conditions spanning from these assumptions. On the contrary,
the system GMM relies on an additional assumption underlying the initial observation,
therefore allowing a wider set of moment conditions. When the condition is satisfied,
the system GMM estimator outperforms the other GMM estimation methods in terms of
asymptotic efficiency and small-sample bias (Blundell and Bond 1998).

In this article, we describe the command xttestms for computation of the Lagrange
multiplier (LM) test for verifying the assumption underlying the system GMM estimation.
The test has been proposed by Magazzini and Calzolari (2020), who show its better
performance with respect to customarily used testing procedures.

The article proceeds as follows. In the next section, we set up the model assumptions
and notation and briefly describe available GMM estimation procedures. In section 3,
we introduce the LM test, and in section 4 we describe the syntax of the xttestms
command. In section 5, we present the results of a Monte Carlo simulation. We provide
two examples in section 6 and conclude in section 7.

2 Dynamic panel-data models
The baseline dynamic panel-data model can be written as (i = 1, . . . , N , t = 1, . . . , T )

yit = ρyit−1 + x′
itβ + εit (1)

yit is an observation on the dependent variable for unit i at time t, xit is a vector of
independent variables, and θ = (ρ,β′)′ is a vector of unknown parameters. The constant
term and lags of the independent variables can be included in xit; time dummies are
customarily included in xit to account for the effect of economy-wide variables. Further
lags of the dependent variables can also be included in the model. For notational
convenience, we assume that yi0 and xi0 are observed. The error term εit can be
decomposed into two sources of variation:

εit = ui + eit

ui is an individual component, and eit an idiosyncratic noise assumed to be uncorrelated
with ui and uncorrelated over time: E(uieit) = 0 and E(eiteis) = 0 for every t and
s 6= t. Heteroskedasticity is allowed in eit. Independent variables are allowed to be
freely correlated with the individual component ui, whereas different assumptions can be
made about the correlation between xit and eis at different time periods (s = 1, . . . , T ).
Let us denote xk,it the kth component of xit; we can distinguish three cases:

• xk,it is strictly exogenous if E(eit|xk,i0, . . . , xk,iT , ui) = 0.

• xk,it is a predetermined variable if E(eit|xk,i0, . . . , xk,it, ui) = 0.

• xk,it is endogenously determined if E(eit|xk,i0, . . . , xk,it−1, ui) = 0.
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To apply GMM estimation to (1), one usually applies the first-difference transforma-
tion to remove the individual component ui:

∆yit = ρ∆yit−1 +∆x′
itβ +∆eit

The model can be recursively written as

∆yit = ρt−1∆yi1 +

t−2∑
s=0

ρs
(
∆x′

it−sβ +∆eit−s

)
(2)

Under the assumption of uncorrelated eit, lags two or more of yit can be used as
instruments for ∆yit−1. Therefore, the following moment conditions can be considered,
leading to the difference GMM estimator (Arellano and Bond 1991):

E(yit−j∆eit) = 0 (t = 2, . . . , T ; j ≥ 2) (3)

As for xit, different assumptions about the correlation between xit and eis lead to
different sets of moment conditions that are exploited in estimation (Blundell, Bond,
and Windmeijer 2001):

• strictly exogenous xk,it:
E(∆xk,it∆eit) = 0 (4)

• predetermined xk,it:

E(xk,it−j∆eit) = 0 for j ≥ 1 (5)

• endogenously determined xk,it:

E(xk,it−j∆eit) = 0 for j ≥ 2 (6)

The nonlinear estimator adds the following moment conditions (Ahn and Schmidt
1995):

E(∆εitεiT ) = 0 for every t < T (7)

The system GMM estimator includes additional moment conditions based on the
level equation (Blundell and Bond 1998), particularly

E(∆yit−1εit) = 0 (8)

Blundell and Bond (1998) argue that these additional moment conditions encompass
the nonlinear moment conditions (7). Magazzini and Calzolari (2020) show that, in the
simple dynamic case with no additional regressors, the additional moment conditions
(8) would correspond to the moment conditions in (7) plus the moment condition on
the initial observation E(∆yi1εi2) = 0.
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Additional moment conditions based on the level equation are also available for
predetermined or endogenously determined xk,it, respectively:

E(∆xk,itεit) = 0 (9)

for predetermined xk,it or
E(∆xk,it−1εit) = 0 (10)

for endogenously determined xk,it.

3 Testing mean stationarity
When the model parameters are estimated using the maximum likelihood method, the
(asymptotically equivalent) “trio” of Wald, likelihood ratio, and LM testing is well estab-
lished among practitioners. Such a “trio” strategy has also been developed in a GMM
context to test the value of model parameters or the validity of moment conditions
(Newey and West 1987; Newey and McFadden 1994; Ruud 2000).

The focus in this section is on testing the validity of the initial moment condition,
which is required for consistency of the system GMM estimator. This is customarily
assessed by relying on the Hansen and difference-in-Hansen tests, which are based on
the difference between the minimized GMM criterion functions of a restricted and an
unrestricted model (Blundell and Bond 1998; Blundell, Bond, and Windmeijer 2001).
In this context, Magazzini and Calzolari (2020) propose an alternative approach based
on an LM strategy, which is shown to have better power with respect to the strategy
customarily used in empirical analysis. This LM strategy treats the system GMM esti-
mator as the restricted estimator in an “augmented” set of moment conditions in which
additional parameters are included to account for departure from the mean stationarity
assumption.

Consider the simple autoregressive model, in which β = 0, in (1). Throughout
this section, it is assumed that the conditions for the application of the difference and
nonlinear GMM estimators are satisfied so that moment conditions in (3) and (7) are
satisfied. Under the null hypothesis that the initial moment condition assumption holds,
the system GMM estimator is obtained by jointly exploiting the moment conditions in (3)
and (8). However, if the moment conditions in (8) are not satisfied, one can introduce
additional parameters and write [t = 2, . . . , T ; see (10) in Magazzini and Calzolari
(2020)]

E(∆yit−1εit) + ψt−1 = 0

GMM estimation can be applied for the estimation of the parameters ρ, ψ1, . . . , ψT−1 to
produce an unrestricted estimator. The system GMM estimator can be obtained under
the null hypothesis

H0 : ψ1 = ψ2 = · · · = ψT−1 = 0

Any strategy in the “trio” may be applied for this purpose: a Wald or an LM strategy
would be equivalent to the difference-in-Hansen test comparing system and difference
GMM that is usually adopted (Magazzini and Calzolari 2020).
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However, as noted in Magazzini and Calzolari (2020), according to (2), one can write

ψt−1 = ρt−2ψ1

so that the validity of the system GMM estimator can be assessed only by testing whether
the additional parameter ψ1 is equal to zero in the following “augmented” (in the sense
of including additional parameters) set of moment conditions [see (13) in Magazzini and
Calzolari (2020)], jointly used in estimation with (3):

E(∆yit−1εit) + ρt−2ψ1 = 0 (11)

The proposed LM test statistic can be computed as [see (15) in Magazzini and Cal-
zolari (2020)]

LM = NgN

(
θ̂RN

)′
Ω̂−1ĜN

(
Ĝ′

N Ω̂−1ĜN

)−1

Ĝ′
N Ω̂−1gN

(
θ̂RN

)
gN (θ) is the vector of moment conditions (3) and (11), and GN (θ) is its first derivative.
Both are evaluated at the restricted estimate, composed of the system GMM estimate of
ρ and ψ1 = 0. The matrix Ω̂ is the efficient weighting matrix used in estimation. The
test asymptotically has a χ2 distribution with a number of degrees of freedom equal to
the number of tested parameters—in this case 1 (Ruud 2000; Newey and West 1987).

Compared with the Hansen and difference-in-Hansen strategies customarily adopted
in this context, the number of degrees of freedom of the test (the number of parameters
to be tested) is reduced, leading to an increased power of the test (Magazzini and
Calzolari 2020). Furthermore, when the model includes the lagged dependent variable
as a unique regressor, Magazzini and Calzolari (2020) show that the proposed test
procedure is asymptotically equivalent to the test based on the difference between the
minimized GMM criterion function of the system GMM estimator and the minimized
GMM criterion function of the nonlinear GMM estimator by Ahn and Schmidt (1995).
For its higher computational simplicity, the LM strategy can be preferred to a Wald-type
test statistic or difference-in-Hansen computation; in fact, it can be based on the system
GMM estimator (restricted estimator) rather than on the joint estimation of ρ and ψ1

that would entail minimizing a nonlinear function of the parameters (to produce the
unrestricted estimator).

The procedure based on the LM test is easily extended to the case of dynamic models
with additional regressors (that is, β 6= 0). For simplicity, let us consider the case of
one additional regressor,

yit = ρyit−1 + βxit + εit

with εit = ui + eit.

Table 1 summarizes the moment conditions that can be exploited in three cases:
1) xit satisfies strict exogeneity; 2) xit is a predetermined regressor; and 3) xit is
treated as an endogenously determined variable. In all cases, the conditions for the
application of the difference (and nonlinear) GMM estimator are valid so that moment
conditions based on the first-difference equations remain unchanged in the restricted
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and unrestricted models. On the contrary, absent mean stationarity, departures from
the initial condition assumption are modeled by including additional parameters in the
set of moment conditions used for system GMM estimation.

When xit satisfies strict exogeneity, system GMM estimation is based on the moment
condition in (4) that is added to the moment conditions (3) and (8) to jointly estimate ρ
and β. In this case, no additional moment condition is obtained from the level equations.
Violation of mean stationarity can therefore be modeled by specifying (11) in place of
(8). Thus, computation of the test statistic would proceed as previously described, and
the system GMM estimator should not be considered if the null hypothesis H0: ψ1 = 0
is rejected. Still, the asymptotic distribution of the test statistic is χ2 with 1 degree of
freedom.

In the presence of predetermined or endogenously determined regressors, additional
parameters should also be considered to “correct” the moment conditions (9) or (10).
We also need to adjust moment condition (11) to account for the inclusion of additional
regressors in the equation. For example, for a predetermined regressor, xit, T additional
parameters should be considered (t = 1, . . . , T ):

E(∆xitεit) + ξt = 0 (12)

According to the recursive formula (2), the moment conditions related to yit−1 should
also include the additional parameters ξt so that moment conditions in (11) are adjusted
according to the following formula:

E(∆yit−1εit) + ρt−1ψ1 +

t−2∑
s=0

ρsξtβ = 0 (13)

The system GMM estimator would be obtained as a restricted estimator, and its
validity can be assessed by testing the null hypothesis:

H0 : ψ1 = ξ1 = ξ2 = · · · = ξT = 0

For an endogenously determined regressor, departure from the mean stationarity
assumption can be accommodated by specifying (t ≥ 2),

E(∆xit−1εit) + ξt = 0 (14)

Table 1 summarizes the unrestricted and restricted (system) moment conditions, as
well as the null hypothesis used to assess the validity of the mean stationarity assump-
tion, in the simpler case of one (strictly exogenous, predetermined, or endogenously
determined) regressor (inclusion of additional regressors is straightforward). The mo-
ment conditions are developed under the assumption of lack of autocorrelation in the
idiosyncratic component eit.
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The GMM method can accommodate limited violation of the lack of autocorrela-
tion assumption by adjusting the number of lags of the dependent variables and the
regressors that can be considered as legitimate instruments. This possibility, as well as
the inclusion of further lags of the dependent variables or the regressors, can also be
accounted for. Such an instance is considered in the example in section 6.2.

4 The xttestms command
The syntax of the xttestms command is the following:

xttestms
[
, showgmm

]
The test can be run after a system GMM estimation, using either the command

xtdpdsys or the command xtabond2 by Roodman (2009). The xttestms command
verifies that the additional moment conditions that characterize the system GMM esti-
mator are satisfied using an LM test (Magazzini and Calzolari 2020); that is, it verifies
the validity of the mean stationarity assumption for the initial conditions.

Computation of the LM test statistics requires the availability of the matrix of in-
struments, the matrix of regressors, and the weighting matrix used during estimation.
The three matrices are produced when using the xtabond2 command in estimation with
the svmat option. This option requires that Mata run in speed-favoring mode. If the
option is not specified by the user or the system GMM estimator is obtained using the
xtdpdsys command, the model is refit to produce the relevant matrices—this step is ac-
complished using the command xtabond2 with the svmat option. Therefore, one must
have xtabond2 installed before running xttestms; this requirement must be verified
before running xttestms.

The option showgmm shows the results obtained when refitting the model.

5 Monte Carlo simulation
We report the results of a Monte Carlo simulation that extends and integrates the results
reported in Magazzini and Calzolari (2020).

The data-generating process (DGP) is set as in (1), with the error terms ui ∼
N(0, σ2

u). Heteroskedasticity is introduced in the design by letting eit = δiτtνit with
δi ∼ U(0.5, 1.5), τt = 0.5+ 0.1 t, and νit ∼ χ2

1 − 1 (Windmeijer 2005). The regressor xit
is generated as

xit = ρx xit−1 + θuui + θeηit + wit

with ρ = ρx = 0.5 and β = 1.

The parameter θu drives the correlation between xit and ui, whereas the term θeηit
is defined to drive the correlation between xit and eis. When ηit = eit, the variable xit is
endogenously determined; if ηit = eit−1, it is predetermined; and when ηit is generated
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independently from eis (s = 1, . . . , T ), the regressor is strictly exogenous [we consider
ηit ∼ N(0, 1)]. We set θu = 0.25 and θe = −0.1; wit ∼ N(0, 0.16) (see Blundell, Bond,
and Windmeijer [2001]).

When we generate the initial observation, the covariance stationary formulation is
adopted, but at the initial period, we multiply the individual component in yi1 and xi1
by, respectively, γy and γx. Thus, the mean stationary case corresponds to γy = γx = 1.
Otherwise, the assumption is not satisfied.

The sample size is set to N = 500 to resemble the number of units in the examples
in section 6, and T = 4, 8.

Table 2 reports the parameters used in the experiments and the corresponding mean
(and standard deviations) of the two-step system GMM estimates of ρ and β obtained in
the Monte Carlo replications under different DGPs for the x, that is, strictly exogenous,
predetermined, and endogenously determined. The results of estimation reported in
table 2 were obtained after xtdpdsys (more precisely, to save on computation time,
we obtained the estimates using the xtabond2 command with the h(2) option, which
produces the same results as xtdpdsys). Similar results can be obtained when using the
xtabond2 default weighting matrix in the first step (corresponding to the h(3) option;
see Windmeijer [2000]; Youssef, El-Sheikh, and Abonazel [2014]; and Kiviet [2007] for
a discussion related to the choice of the initial weighting matrix in system GMM).
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Table 2. Experiment details and Monte Carlo mean and standard deviation of the
system GMM estimator for different DGP for the regressor

x strictly exo. x predet. x endog. det.

exp. T γy γx ρ̂ β̂ ρ̂ β̂ ρ̂ β̂

1 4 1 1 0.501 0.998 0.520 1.060 0.509 1.017
(0.062) (0.113) (0.060) (0.167) (0.065) (0.303)

2 8 1 1 0.501 0.998 0.510 1.034 0.506 0.960
(0.027) (0.082) (0.028) (0.087) (0.029) (0.157)

3 4 1 0.7 0.565 1.019 0.573 1.419 0.559 1.537
(0.055) (0.115) (0.053) (0.114) (0.061) (0.262)

4 4 0.7 1 0.666 1.048 0.657 1.338 0.668 1.225
(0.040) (0.117) (0.031) (0.110) (0.043) (0.276)

5 4 0.7 0.7 0.696 1.053 0.655 1.507 0.661 1.503
(0.039) (0.118) (0.032) (0.091) (0.046) (0.245)

6 8 0.7 0.7 0.613 1.096 0.612 1.349 0.614 1.401
(0.029) (0.088) (0.024) (0.072) (0.028) (0.144)

7 4 0.8 0.8 0.652 1.043 0.629 1.411 0.634 1.398
(0.043) (0.117) (0.036) (0.101) (0.047) (0.254)

8 8 0.8 0.8 0.577 1.058 0.582 1.258 0.585 1.277
(0.030) (0.086) (0.027) (0.080) (0.030) (0.153)

9 4 1.2 1.2 0.570 1.058 0.663 1.371 0.636 1.641
(0.108) (0.129) (0.068) (0.203) (0.087) (0.351)

10 8 1.2 1.2 0.505 1.069 0.539 1.115 0.524 1.227
(0.031) (0.089) (0.032) (0.097) (0.034) (0.188)

11 4 1 1.3 0.454 0.993 0.606 1.074 0.592 1.115
(0.068) (0.112) (0.063) (0.220) (0.072) (0.399)

12 4 1.3 1 0.620 1.084 0.675 1.457 0.644 1.732
(0.108) (0.133) (0.072) (0.146) (0.099) (0.302)

13 4 1.3 1.3 0.706 1.136 0.708 1.505 0.680 1.763
(0.093) (0.131) (0.032) (0.152) (0.056) (0.300)

14 8 1.3 1.3 0.531 1.132 0.575 1.219 0.552 1.437
(0.034) (0.093) (0.032) (0.098) (0.034) (0.186)
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For each experiment, we run 10,000 replications using the same seed. The number
of Monte Carlo replications has been chosen so that, in the worst-case scenario (corre-
sponding to a rejection rate of 50%), the power of the test can be assessed with a 95%
confidence bound of about 1% (Morris, White, and Crowther [2019]).1 When we assess
size at the 5% level of statistical significance, the confidence interval is 5% ± 0.43%.
Under a different perspective, Davidson and MacKinnon (1998) suggest considering the
Kolmogorov–Smirnov critical value when comparing empirical p-values with theoretical
ones. With 10,000 Monte Carlo replications, discrepancies in size of ±1.36% would be
ascribed to randomness.

As expected, the system GMM estimator is consistent if γx = γy = 1, that is, when
the mean stationarity assumption is satisfied. On the contrary, bias emerges when the
initial condition is not satisfied (either γx or γy is not equal to 1 or both are not equal
to 1).

In each experiment, we also computed the share of rejections for the test of overiden-
tifying restrictions (Hansen; H), the difference-in-Hansen test that compares the system
GMM and the difference GMM estimators (diffH), and the LM test produced by xttestms
(LM).

1. We thank the managing editor for suggesting this reference.
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The size of the proposed test procedure is reported in table 3, showing the share of
rejection at the 1–5–10% level of significance (LOS) in the experiments with γx = γy = 1.

Table 3. Sizes of the test procedures (experiments 1, 2): share of 1–5–10% LOS rejec-
tions; test of overidentifying restrictions (Hansen; H), the difference-in-Hansen test that
compares the system GMM and the difference GMM estimators (diffH), and the LM test
produced by xttestms (LM)

T DGP for x LOS H diffH LM

4 strict exo. 1% 0.0084 0.0096 0.0107
5% 0.0475 0.0499 0.0506
10% 0.9998 0.1019 0.0986

4 predetermined 1% 0.0088 0.0129 0.0145
5% 0.0477 0.0613 0.0602
10% 0.0974 0.1213 0.1161

4 endog. det. 1% 0.0078 0.0120 0.0114
5% 0.0466 0.0561 0.0518
10% 0.0931 0.1092 0.1008

8 strict exo. 1% 0.0054 0.0107 0.0121
5% 0.0424 0.0600 0.0591
10% 0.0945 0.1183 0.1125

8 predetermined 1% 0.0038 0.0131 0.0114
5% 0.0351 0.0623 0.0524
10% 0.0864 0.1208 0.1049

8 endog. det. 1% 0.0052 0.0147 0.0127
5% 0.0378 0.0669 0.0604
10% 0.0900 0.1267 0.1112

In terms of size, the proposed test procedure generally performs well as diffH (even
though small size distortion emerges with T = 8). The Hansen test, H, is undersized
in experiments with T = 8 and endogenous regressors (Hayakawa 2016). When we
use xtabond2 to produce the results (with the default h(3) option), similar results are
obtained even if diffH and LM exhibit larger overrejection in the experiments with T = 8
and endogenous (predetermined or simultaneous) regressors.2

Figures 1–3 report the share of rejections at the 5% level in the experiments with γy,
γx, or both different from 1, that is, these experiments in which the mean stationarity
assumption is not satisfied (see table 2 for details on the value of γy, γx, and T across
the experiments).

2. Full simulation results are available from the authors upon request.
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Figure 1. Power of the testing procedures across the Monte Carlo experiments, strictly
exogenous regressors (refer to table 2 for details on the value of the parameters)

Figure 2. Power of the testing procedures across the Monte Carlo experiments, prede-
termined regressors (refer to table 2 for details on the value of the parameters)
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Figure 3. Power of the testing procedures across the Monte Carlo experiments, endoge-
nously determined regressors (refer to table 2 for details on the value of the parameters)

In terms of power, the LM test outperforms diffH and H in the case of strictly
exogenous regressors, while no clear-cut advantage emerges with predetermined or en-
dogenously determined regressors. Overall, LM behaves similarly to diffH in the case of
correlation between the idiosyncratic component and the regressor, either predetermined
or simultaneous. In all cases, diffH and LM outperform H.

6 Examples
We propose two examples to show how to implement the xttestms command on real
data.

In all cases, before applying the proposed testing procedure, the researcher should
check whether the assumptions for the application of the difference GMM estimator are
satisfied. The LM test procedure by Magazzini and Calzolari (2020) uniquely checks the
validity of the mean stationarity (initial condition) assumption needed for consistency
of the system GMM estimator.

6.1 A labor equation

We first consider the data used in Cameron and Trivedi (2005, chap. 21–22), taken from
Ziliak (1997). The data include information on a sample of 532 individuals over the
years 1979–1988. Please refer to the cited references for additional details. The variable
of interest is lnhr, the logarithm of annual hours worked. We first consider a simple
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dynamic model with no regressors so that only the first lag of lnhr is included in the
specification, besides a constant term and time dummies. Then the variable lnwg, the
natural logarithm of hourly wage, is included among the regressors, treated as a strictly
exogenous variable.

6.1.1 Dynamic model with no regressors

Consider the model
lnhrit = µ+ ρ lnhrit−1 + τt + ui + eit

The system GMM estimator can be obtained by using

. infix 2 firstlineoffile 1: lnhr 1-16 lnwg 17-33 kids 34-50 age 51-67
> 2: agesq 1-16 disab 17-33 id 34-50 year 51-67
> using "https://cameron.econ.ucdavis.edu/mmabook/MOMprecise.dat"
(5,320 observations read)
. tabulate year, generate(dyear)

(output omitted )
. sort id year
. xtset id year

(output omitted )
. xtdpdsys lnhr dyear3-dyear10, twostep vce(robust)

(output omitted )

The Arellano–Bond tests for autocorrelation in first-difference residuals (Arellano
and Bond 1991) support the lack of serial correlation in the idiosyncratic disturbance so
that identifying conditions for the application of the difference and the nonlinear GMM
estimator are satisfied.

The LM test for verifying the condition on initial observations required for consistency
of the system GMM estimator can be computed by typing xttestms:

. xttestms
Number of lags detected in the equation: 1

lag(s) of lnhr included among the regressors: 1
LM test of mean stationarity
Test statistic = 6.82063 with p-value .009011
The test statistic has a chi2(1) distribution

In the do-file that replicates this example, the value of the test statistic is also
obtained using matrix computation. The LM test is χ2 distributed with 1 degree of
freedom [equal to the number of additional parameters; in this case ψ1 in (11)]. The
LM test rejects the mean stationarity condition, so the system GMM method should not
be applied for estimation, and difference or nonlinear GMM should be used instead.
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6.1.2 The case of strictly exogenous regressors

We now include the variable lnwg in the equation and treat it as a strictly exogenous
variable (again, we also test the lack of autocorrelation in the idiosyncratic component
using the Arellano–Bond test):

. xtdpdsys lnhr lnwg dyear3-dyear10, twostep vce(robust)
(output omitted )

. xttestms
Number of lags detected in the equation: 1

lag(s) of lnhr included among the regressors: 1
LM test of mean stationarity
Test statistic = 7.02113 with p-value .008055
The test statistic has a chi2(1) distribution

In this case, there are no additional moment conditions to be tested related to the
strictly exogenous variable. The computation of the test can proceed analogously to
the previous case with no regressors (the matrices e(X) and e(Z) used in computation
now include, respectively, the additional variable and the additional moment conditions
related to lnwg).

The initial condition assumption is not satisfied in this case, and the result is also
in line with the results of the Hansen and difference-in-Hansen test (with p-values,
respectively, of 0.007 and 0.0099). Moreover, we are allowed to treat lnwg as a strictly
exogenous variable because the p-value of the difference-in-Hansen test for the variables
in ivstyle() equals 0.166.

6.2 A production function

We now consider usbal89.dta, used by Blundell and Bond (2000) and Bond (2002).
The balanced panel dataset includes 509 U.S. firms observed over 8 years, 1982–1989.

We consider the preferred specification in Blundell and Bond (2000) and Bond
(2002). However, we use the twostep option when computing the system GMM es-
timator. Differently from the previous example, only lags 3 or older can be used as
legitimate instruments, and lagged values of the regressors are included in the equation
of interest.3 The proposed test procedure can still be applied by adjusting the way in
which we “augment” the moment conditions related to the equation in levels.

We compute the system GMM estimator and then compute the LM test for the validity
of the mean stationarity assumption:

3. See “Using Stata to Replicate Table 4 in Bond (2002)”, available at https: // www.nuffield.ox.ac.
uk/people/sites/bond-teaching/.

https://www.nuffield.ox.ac.uk/people/sites/bond-teaching/
https://www.nuffield.ox.ac.uk/people/sites/bond-teaching/
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. use http://fmwww.bc.edu/ec-p/data/bond/usbal89, clear

. xi: xtabond2 y l.y n l.n k l.k i.year, gmmstyle(y n k, laglimits(3 .))
> ivstyle(i.year, equation(level)) twostep robust

(output omitted )
. xttestms
Number of lags detected in the equation: 1

lag(s) of y included among the regressors: 1
lag(s) of n included among the regressors: 0 1
lag(s) of k included among the regressors: 0 1
LM test of mean stationarity
Test statistic = 33.3191 with p-value .000467
The test statistic has a chi2(11) distribution

As in Bond (2002), time dummies are included as instruments in the level equation
only. When one uses xtabond2 to obtain the estimates, it is important to specify lags
of the variables using the lag operator (that is, l.y, l.n, and l.k) so that xttestms
can properly recognize the lags of the variables included in the equation. To check
whether all variables are properly treated, one can look at the output of xttestms,
which includes the number of lags that are specified for each variable and whether these
are treated as predetermined or simultaneously determined variables.

According to the LM test, the mean stationarity assumption is not satisfied. This
result is in line with the Hansen test and difference-in-Hansen test reported at the
bottom of xtabond2’s results, being, respectively, 79.45 (χ2 with 55 degrees of freedom,
p-value 0.017) and 41.12 (χ2 with 15 degrees of freedom, p-value < 0.001).

Note that, if we had used the command xtdpdsys to obtain estimation, that is, used
a different initial weighting matrix for estimation, we would have obtained a weaker
result, with the value of the test being equal to 18.56 (p-value = 0.069).

7 Conclusions
In this article, we presented a new command, xttestms, to be run after dynamic panel-
data estimation. The command computes the LM test for mean stationarity proposed by
Magazzini and Calzolari (2020). The testing procedure focuses on assessing the validity
of the “level” moment conditions exploited in the context of the system GMM estimator
(Blundell and Bond 1998).

Based on Monte Carlo simulations in this article and in Magazzini and Calzolari
(2020), the new testing strategy produces advantages with respect to customarily used
procedures based on the Hansen and difference-in-Hansen tests. The increase in the
power of the test is substantial for strictly exogenous variables, whereas advantages
seem to be more limited for predetermined or endogenously determined regressors.

The increase in power is determined by the reduction in the number of degrees of
freedom of the proposed testing procedure, which is more limited when endogeneity of
the regressors is introduced in the model. Further research might consider the applica-
tion of the recursive formula to the “level” moment conditions built on the regressors to
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further improve the performance of the test. Indeed, Blundell, Bond, and Windmeijer
(2001) state that mean stationarity of the regressors is critically dependent on the initial
observation.

In the context of endogenous regressors, we would suggest using the proposed test
procedure jointly with the ones customarily used in the literature (that is, the procedures
based on the Hansen test).

8 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 23-2

. net install st0714 (to install program files, if available)

. net get st0714 (to install ancillary files, if available)
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